
http://www.diva-portal.org

This is the published version of a paper published in Fungal diversity.

Citation for the original published paper (version of record):

He, M-Q., Zhao, R-L., Liu, D-M., Denchev, T T., Begerow, D. et al. (2022)
Species diversity of Basidiomycota
Fungal diversity, 114(1): 281-325
https://doi.org/10.1007/s13225-021-00497-3

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-5020



Vol.:(0123456789)1 3

Fungal Diversity (2022) 114:281–325 
https://doi.org/10.1007/s13225-021-00497-3

REVIEW

Species diversity of Basidiomycota

Mao‑Qiang He1 · Rui‑Lin Zhao1,2 · Dong‑Mei Liu3 · Teodor T. Denchev4 · Dominik Begerow5 · Andrey Yurkov6 · 
Martin Kemler5 · Ana M. Millanes7 · Mats Wedin8 · A. R. McTaggart9 · Roger G. Shivas10 · Bart Buyck11 · Jie Chen12 · 
Alfredo Vizzini13 · Viktor Papp14 · Ivan V. Zmitrovich15 · Naveed Davoodian16 · Kevin D. Hyde17,18,19

Received: 8 September 2021 / Accepted: 27 December 2021 / Published online: 14 January 2022 
© The Author(s) under exclusive licence to Mushroom Research Foundation 2022

Abstract
Fungi are eukaryotes that play essential roles in ecosystems. Among fungi, Basidiomycota is one of the major phyla with 
more than 40,000 described species. We review species diversity of Basidiomycota from five groups with different lifestyles 
or habitats: saprobic in grass/forest litter, wood-decaying, yeast-like, ectomycorrhizal, and plant parasitic. Case studies of 
Agaricus, Cantharellus, Ganoderma, Gyroporus, Russula, Tricholoma, and groups of lichenicolous yeast-like fungi, rust 
fungi, and smut fungi are used to determine trends in discovery of biodiversity. In each case study, the number of new species 
published during 2009–2020 is analysed to determine the rate of discovery. Publication rates differ between taxa and reflect 
different states of progress for species discovery in different genera. The results showed that lichenicolous yeast-like taxa 
had the highest publication rate for new species in the past two decades, and it is likely this trend will continue in the next 
decade. The species discovery rate of plant parasitic basidiomycetes was low in the past ten years, and remained constant 
in the past 50 years. We also found that the establishment of comprehensive and robust taxonomic systems based on a joint 
global initiative by mycologists could promote and standardize the recognition of taxa. We estimated that more than 54,000 
species of Basidiomycota will be discovered by 2030, and estimate a total of 1.4–4.2 million species of Basidiomycota glob-
ally. These numbers illustrate a huge gap between the described and yet unknown diversity in Basidiomycota.

Keywords Biodiversity · Fungi · Species number · Taxonomy

Introduction

The number of species are there on Earth was listed in the 
top 125 scientific questions in 2005 that remains unanswered 
(Kennedy and Norman 2005; https:// www. scien cemag. org/ 
colle ctions/ 125- quest ions- explo ration- and- disco very; Hyde 
et al. 2020a, b). Fungi constitute a diverse kingdom of eukar-
yotes, estimated to represent 2.2 million species or possibly 
up to 13.2 million species (Hawksworth and Lücking 2017; 
Willis 2018; Wu et al. 2019; Antonelli et al. 2020). Fungi 
are essential in ecosystems as they decompose and recycle 
nutrients by breaking down complex organic compounds to 
simple molecules. Some are symbiotic with plants or with 
algae forming lichens, and some are parasites of plants, ani-
mals or other organisms.

Basidiomycota R.T. Moore 1980 is a lineage of Fungi 
(Zhao et al. 2017a; Tedersoo et al. 2018). There are clades 
in Basidiomycota supported by modern systematic studies 
that correspond to the four subphyla viz. Agaricomycotina 
Doweld 2001, Pucciniomycotina R. Bauer, Begerow, J.P. 
Samp., M. Weiss & Oberw. 2006, Ustilaginomycotina Dow-
eld 2001 and Wallemiomycotina Doweld 2014 (Zhao et al. 
2017a; Tedersoo et al. 2018; He et al. 2019; Wijayawardene 
et al. 2020). These linegaes comprise most well-known phe-
notypic groups which are the mushrooms and puffballs in 
Agaricomycotina, the rust fungi in Pucciniomycotina, and 
the smut fungi in Ustilaginomycotina. The phylum Basidi-
omycota also includes a broad range of dimorphic fungi, 
which switch between a yeast phase and and a filamentous 
phase, along their life-cycle (Boekhout et al. 2021).

Molecular phylogenetic approaches have revolu-
tionised fungal taxonomy of Basidiomycota in the last 
decades (Lücking et  al. 2021). These advances have 
greatly enhanced our knowledge of species diversity in 
Basidiomycota. Based on evidence from molecular data, 
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numerous new taxa have been discovered in the past ten 
years. Besides new taxon discovery, many species identi-
fied only by morphology in the past have been reclassified 
as novel taxa in the molecular era. Some examples from 
China are (i) the cultivated medicinal mushroom “Lin-
zhi”, first identified as the European species Ganoderma 
lucidum (Patouillard 1907), which is now recognized as 
G. lingzhi (Cao et al. 2012); (ii) the enoki mushroom, for-
merly the European species Flammulina velutipes, pres-
ently F. filiformis (Wang et al. 2018); and (iii) the black 
fungus, formerly Auricularia auricula-judae, presently A. 
heimuer (Wu et al. 2014).

Molecular analyses aid in discovery of morphologically 
indistinguishable cryptic species in basidiomycetes, includ-
ing species of Tricholoma (Carriconde et al. 2008; Jargeat 
et al. 2010; Heilmann-Clausen et al. 2017; Yang et al. 2017), 
polypores (Carlsen et al. 2011; Korhonen et al. 2018; Pei-
ntner et al. 2019), boletes (Sato et al. 2007), and yeasts 
(Boekhout et al. 2021). The number of fungi might be up to 
11-fold greater than currently known if cryptic speciation is 
considered (Hawksworth and Rossman 1997; Hawksworth 
and Lücking 2017).

The number of fungal species has been estimated in 
different ways (Blackwell 2011; Hawksworth and Lükc-
ing 2017). Wu et al. (2019) estimated that there could be 
11.7–13.2 million species of fungi worldwide based on 
environmental DNA sequence data. A plant-to-fungus ratio 
calculated from known plant and macrofungal associations 
predicted between 53,000 and 110,000 macrofungal species 
worldwide (including macrofungi in Ascomycota; Mueller 
et al. 2007). Aptroot and Luecking (2016) used grid-based 
approaches to estimate there could be 800 species of Try-
petheliaceae (Dothideomycetes: Ascomycota) which is 
a lichenized group restricted to tropical forest and savan-
nah ecosystems. De Meeus and Renaud (2002) predicted 
up to 25,000 species of Basidiomycota, but no method was 
indicated.

Available estimates of extant species in Basidiomycota 
vary because different criteria have been used. The number 
of described species is feasible and has already been sug-
gested in several global team works. The number of Basidi-
omycota was mentioned as 31,515 in Ainsworth & Bisby’s 
Dictionary of the Fungi (Kirk et al. 2008). Ten years later, 
a detailed systematic study recognized more than 36,000 
extant species in Basidiomycota (Begerow et al. 2018). The 
number increased to 41,270 according to the latest outline 
of Basidiomycota (He et al. 2019).

In this paper, we give overviews for particular groups of 
basidiomycetes, focusing on species diversity and the pro-
gress in discovering new species during the past two dec-
ades. Using these results, we estimate how many species will 
be described in the next decades. Furthermore, we estimate 
the species number in Basidiomycota worldwide.

Methods of species number estimation

Families of Basidiomycota were divided into five main 
groups: grass/forest-litter saprobic, wood-decaying, yeast-
like, ectomycorrhizal, and plant parasitic taxa. These 
groups could account for 88% of the known basidiomy-
cetes (Põlme et al. 2020).

Nine case studies were selected to represent basidiomy-
cetes within these five groups.

The new species publication rate was calculated by the 
formula “ � = (A/B)/12” where “A” is the new species num-
ber published during 2009 to 2020, and “B” is the estimated 
species number in 2008 (Kirk et al. 2008).

We extrapolated the publication rate from the nine case 
studies to ecologically similar groups of Basidiomycota 
based on the current taxonomic system of Basidiomycota 
at the family rank (He et al. 2019). Assuming the con-
stant publication rate in the next ten years, we estimated 
the number of species in each family by N = A × (1 + �)

y , 
where A is the number of recognized species in 2020, 
y is the number of year and � is the publication rate. 
The estimated species number of each order is listed  
in Table 11.

Finally, the described species are estimated by different 
publication rates of each studied group of Basidiomycota.

Case studies

Grass/forest‑litter saprobic basidiomycetes

AGARICUS

Agaricus (Agaricaceae, Agaricales) are saprobic fungi 
characterized by fruitbodies with an annulate stipe and 
free lamellae that produce dark brown spore prints. They 
are solitary or gregarious in various habitats, such as in 
forests, gardens, on roadsides, pastures, manure heaps, or 
decaying organic matter from sea level up to the vegeta-
tion limit in mountainous areas (Cappelli 1984). Agaricus 
occurred around 66 million years ago (Mya) in the tropics 
and was dispersed to other areas worldwide (Zhao et al. 
2011, 2016a, b; He et al. 2017). The distribution range 
extends to all continents except Antarctica (Parra 2008; 
Zhao et al. 2011). Certain species of Agaricus are favored 
by people for their nutritional and medicinal properties, 
such as A. bisporus (J.E. Lange) Imbach, the button mush-
room, which is the most cultivated species in the world. 
Similarly, A. subrufescens Peck is famous for its antioxi-
dant activities (Llarena-Hernández et al. 2017). Several 
other Agaricus species are collected as wild edible mush-
rooms, for example, A. campestris L.: Fr., A. augustus Fr. 
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and A. arvensis Schaeff (Li et al. 2021). However, species 
belonging to the A. sect. Xanthodermatei may cause mild 
digestive upsets, but without serious risks of fatal conse-
quences (Parra 2008; Boxshall et al. 2021).

Agaricus has a long history of taxonomic research. 
Numerous monographs have been published from dif-
ferent areas mainly based on morphology, and mostly 
from temperate areas, such as those from Europe (Möller 
1950; Pilát 1951; Konrad and Maublanc 1952; Kühner 
and Romagnesi 1953; Wasser 1980; Cappelli 1984; Parra 
2008); from America (Kerrigan 1986; Singer 1986). The 
most referred monographs on tropical Agaricus are those 
of Heinemann (Heinemann 1956, 1978, 1980), in which 
descriptions and classifications of tropical species has 
been largely based on traditional systematics of temper-
ate species.

Until the year 2000, taxonomic classification did not 
reflect molecular phylogeny of species, and their evolu-
tionary histories had not been studied (Callac and Chen 
2018). In the last decade, due to the development of 
molecular approaches, knowledge of the diversity of Aga-
ricus has improved. The first molecular study by Mitchell 
and Bresinsky (1999) was soon to be followed by other 
researchers (Challen et al. 2003; Geml et al. 2004; Kerri-
gan et al. 2005, 2008). Eight temperate sections have been 
widely accepted in A. subg. Agaricus: Agaricus, Arvenses, 
Bivelares, Chitonioides, Minores, Sanguinolenti, Spissi-
caules and Xanthodermatei. The structure of the annulus 
(superous vs. inferous; simple vs. double or two layered), 
odour, discoloration of context when cut or rubbed and 
Schäffer reaction (aniline × nitrogen acid) are the major 
criteria for infrageneric classification. The first mono-
graphs to use molecular data are those of Parra (2013) 
and Kerrigan (2016), which documented the most com-
prehensive information of temperate species from Europe 
and North America.

Generally, Agaricus species living in tropical or subtropi-
cal areas are much less well-studied than taxa in temper-
ate areas. Heinemann (1978, 1980) proposed Lanagaricus 
Heinem. and Conioagaricus Heinem. as two predominantly 
subtropical and tropical subgenera, which indicated that 
the diversity of Agaricus from the tropics would be differ-
ent from those of temperate areas. ITS-based phylogenetic 
studies revealed 11 new phylogenetic clades from tropical 
areas, with more clades than from temperate areas (Zhao 
et al. 2011). As a result of phylogenetic studies, Lanagaricus 
became a heterotypic synonym of the subgenus Pseudochi-
tonia; sections Trisulphurati and Laeticolores, which were 
placed in A. subgenus Lanagaricus by Heinemann (1956), 
were placed in the subgenera Pseudochitonia and Minores, 
respectively in systematic studies of Zhao et al. (2016a, b) 
and Chen et al. (2017).

During the last decade, the taxonomy of Agaricus has 
developed due to the application of multigene molecular 
phylogenies, especially using divergence time estimates as 
additional criteria, which proved to be a useful method to 
rank and name monophyletic clades (Zhao et al. 2016a, b). 
A new classification system for Agaricus considering stem 
age as a criterion for standardizing taxonomic ranks was 
proposed by Zhao et al. (2016a, b). The new system is com-
posed of 5 subgenera and 20 sections. Using the same crite-
ria, one more subgenus and four sections were described in 
later phylogenetic studies (Chen et al. 2017; He et al. 2018a; 
Parra et al. 2018).

Species diversity of Agaricus

Asia, especially China and Thailand, is the region from 
which most new species were described during the last dec-
ade. Large parts of the studies stem from international col-
laborations between European and Asian teams (Callac and 
Chen 2018). In total, 119 new species were described from 
Asia, representing 63% of the new species described world-
wide (Chen et al. 2012, 2015, 2016, 2017, 2019a; Zhao et al. 
2012, 2013; Karunarathna et al. 2014; Li et al. 2014a, 2016; 
Thongklang et al. 2014, 2016; Ariyawansa et al. 2015; Gui 
et al. 2015; He and Zhao 2015; Liu et al. 2015a, 2020; Wang 
et al. 2015b; Dai et al. 2016; Kaur et al. 2016; Zhao et al. 
2016a, b; Zhou et al. 2016; He et al. 2017, 2018a,b; Hyde 
et al. 2017; Zhang et al. 2017; Bashir et al. 2018; Mahdiza-
deh et al. 2018; Hussain and Sher 2019; Phookamsak et al. 
2019; Zheng et al. 2019; Cao et al. 2021). Most of these new 
species were from tropical or subtropical regions, which is 
a good indication of the potential high species diversity in 
other unexplored tropical areas.

Fourty two new species were published from the Ameri-
cas, which is the region with the most descriptions of new 
species after Asia. Most contributions were from North 
America, with a monograph on North American Agaricus 
written by a senior mycologist and expert on Agaricus (Ker-
rigan 2016). Some new taxa were described from the Carib-
bean and South America (Drewinski et al. 2017; Parra et al. 
2018).

Twenty new species were described from Europe (Parra 
et al. 2011, 2014, 2015; Parra 2013; Mua et al. 2017; Parra 
and Caballero 2017; Mahdizadeh et al. 2018). The majority 
(20 species) are from the monograph of Parra (2013).

New species were also published from other areas. Seven 
and three new species were described from Oceania and 
Africa, respectively. Two of three species described from 
Africa are also found in Asia (Zhao et al. 2012; Chen et al. 
2017). Interestingly, the seven Agaricus species described 
from Australia were of the sequestrate (secotioid) form with 
an enclosed hymenium. Their phylogenetic analyses sug-
gested that climatic events in Australia could be correlated 
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with the evolution of sequestrate forms (Lebel and Syme 
2012; Lebel 2013). Ten species that are known species, but 
as new combinations or new names are not accounted here.

Species, especially from tropical and subtropical regions 
have been better studied and classified in recent years with 
a comprehensive taxonomic system (Zhao et al. 2016a, b; 
Chen et al. 2017; Parra et al. 2018; He et al. 2019). Previous 
studies were preliminary steps to evaluate the species diver-
sity in these regions. Extensive sampling in under sampled 
areas is necessary. Today, almost 600 species of Agaricus 
are recognized, and this number will likely increase further, 
since diversity studies in many regions are undergoing, such 
as in Brazil, Caribbean regions, China, India, Mexico, and 
Pakistan. On the other hand, numerous species appeared 
to be widely distributed in different continents (based on 
the morphology). However, among the hundreds of tropi-
cal collections, none are conspecific with temperate taxa 
(with the exception of A. endoxanthus and A. subrufescens) 
(Thongklang et al. 2014; Chen et al. 2016). That indicates 
that many new cryptic species may be discovered during 
such a process.

New species publication rate

According to Bas (1991), the number of extant Agaricus 
species worldwide is close to 400. Zhao et al. (2011) rec-
ognized 386 species in the genus, including 183 that were 
tropical species. With 189 new species described from 
2010 to 2020, the number of species recognized today 
exceeds 500 (Callac and Chen 2018; Chen et al. 2019a, b; 
Hussain and Sher 2019; Phookamsak et al. 2019; Zheng 
et al. 2019; Liu et al. 2020; Cao et al. 2021). In fact, among 
the 189 newly described species, with the exception of A. 

pachydermus (Lebel and Syme 2012), A. patialensis (Kaur 
et al. 2016) and A. zelleri (Kerrigan 2016), ITS sequence 
data is available for all taxa (Table 1; Fig. 1).

Wood‑decaying basidiomycetes

GANODERMA

Ganoderma is a large, worldwide distributed polypore 
genus in the Basidiomycota that includes species causing 
white rot on various tree species. Recent studies indicated 
that Ganoderma emerged around 60 Mya (Zhu et al. 2015; 
Tian et al. 2021). The first monograph of ganodermatoid 
taxa was made by Patouillard (1889), in which he distin-
guished 29 Ganoderma species. A hundred years later, 
more than two centuries of taxonomic work on this group 
was summarized by Moncalvo and Ryvarden (1997), with 
a thorough overview of Ganoderma species described 
before the molecular era. Of the listed 217 Ganoderma 
species (Ganoderma and Elfvingia were combined) in 
their study, 148 species were accepted. The majority of 
these species (ca. 65%) were represented only by one or 
some few collections restricted to the type locality and 
adjacent regions (Moncalvo and Ryvarden 1997). This 
high rate of rare or poorly known species may have been 
due to the varied morphology of Ganoderma fruitbod-
ies, and substandard identification keys based on some 
arbitrarily chosen morpho-anatomical characteristics used 
by different mycologists (e.g. Pegler and Young 1973; 
Steyaert 1980; Moncalvo 2000; Ryvarden 2000; Smith 
and Sivasithamparam 2003; Torres-Torres and Guzmán-
Dávalos 2012).

Table 1  Number of Agaricus 
species published between 2009 
and 2020

New species publication rate 0.0412 (190/384/12)

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number 1 1 1 10 12 9 17 72 34 16 6 11

Fig. 1  Line chart of number of 
new Agaricus species published 
from 2009 to 2020
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Species diversity of Ganoderma

Although Ganoderma is a well-researched genus, differ-
ent morphology-based species concepts have resulted in 
ambiguous species delimitation and identification sys-
tems (Moncalvo 2000). Since taxonomists have provided 
scientific names for more than three hundred Ganoderma 
species described solely on morphology, the re-discovery 
of already named species is a real problem (Papp 2019). 
In order to unlock the confused nomenclature and taxon-
omy in Ganoderma and clarify the geographical distribu-
tion range of the species, the use of barcoding sequences 
seems to be necessary. Molecular phylogenetic studies have 
shown that most of the examined Ganoderma species are 
geographically restricted, in contrast to the earlier theories, 
which assumed that these species have wide distributions 
and largely unstructured populations (e.g., Moncalvo and 
Buchanan 2008; Zhou et al. 2015; Loyd et al. 2018). Phy-
logenetic studies have also demonstrated that widely used 
Ganoderma names have often been erroneously applied to 
species described from other biogeographic zones. As an 
example, Cabarroi-Hernández et al. (2019) found, that G. 
weberianum (Bres. & Henn. ex Sacc.) Steyaert, a species 
originally described from Samoa (Steyaert 1972) did not 
occur in the Neotropics, and G. weberianum encompassed 
at least two species, namely G. mexicanum Pat. and G. par-
vulum Murrill (Cabarroi-Hernández et al. 2019).

Ganoderma species are important wood-decaying fungi, 
which grow as facultative parasites of trees, or live as sap-
robes on dead logs, stumps and roots. The host specificity 
of Ganoderma species is highly variable, but many species 
show striking host generalism (e.g. G. adspersum, G. appla-
natum, G. curtisii, G. philippi, G. resinaceum, G. zonatum) 
(Luangharn et al. 2020). Although numerous Ganoderma 
species have a wide host range, the study of Ganoderma spe-
cies occurring on different trees has recently yielded several 
new species. As an example, based on a study of Gano-
derma basidiomes collected on Jacaranda mimosifolia in 
South Africa (Crous et al. 2014; Coetzee et al. 2015), three 
new Ganoderma species were described using nucleotide 
sequence data. Two new Ganoderma species were found 
by Xing et al. (2018) from the southeast coast of China on 
living trees of Casuarina equisetifolia. Casuarina has been 
reported as a host genus for Ganoderma casuarinicola (Xing 
et al. 2018), but this species was later reported by Luangharn 
et al. (2019) from Thailand, based on specimens collected on 
Pinus kesiya. A recent study, multilocus phylogeny showed 
that a bambusicolous species has long been incorrectly iden-
tified as G. neojaponicum Imazeki in Taiwan, and it is rather 
a new undescribed species. The new species, G. bambusi-
cola is only known from southern Asia and grows on bam-
boo roots, while morphologically similar G. neojaponicum 
occurs on roots or trunks of conifers in East Asia (Wu et al. 

2020). The above examples demonstrate that although most 
Ganoderma species are not host-specific, the host trees and 
geographical distribution may play an important role in spe-
cies segregation.

Currently, more than 60,000 tree species are known to 
science, from which nearly 58% are single country endem-
ics (Beech et al. 2017). Most of these species are known 
from Australia, Brazil, China, Madagascar, and the largest 
number of trees is found in the Neotropic biome, followed 
by the Indo-Malay and the Afrotropic biomes (Beech et al. 
2017). Although Ganoderma occurs in all forested eco-
systems, tropical and sub-tropical regions appear to be the 
center of its biodiversity. We estimate that nearly 500 species 
of Ganoderma occur globally, of which less than 40% are 
currently known. Considering this, approximately 300 spe-
cies await discovery. The vast majority of these will likely 
be discovered in biodiversity hotspots.

New species publication rate

Different morphology-based species concepts have resulted 
in ambiguous species delimitation and identification sys-
tems in the genus, however, due to the rapid adoption of 
molecular genetic methods, our understanding of the genetic 
variability within the genus improved significantly over the 
last two decades (Papp 2019). Therefore, species bounda-
ries in Ganoderma can be re-evaluated based on barcoding 
sequences, and molecular systematics has been shown to 
be a valuable tool in current taxonomy (Hapuarachchi et al. 
2019). As a result of extensive taxonomic studies on Gano-
derma mostly performed by phylogenetic methods, 39 new 
species were revealed in the past 20 years from Africa (Cam-
eroon, Ghana, South Africa), Asia (China, India, Indonesia, 
Japan, Laos, Thailand), Central America and the Caribbean 
(Martinique, Mexico) and South America (Colombia, Ecua-
dor, French Guiana, Venezuela) (Hapuarachchi et al. 2018, 
2019; Liu et al. 2019; Luangharn et al. 2019; Papp 2019; 
Tchotet Tchoumi et al. 2019; Ye et al. 2019; Wu et al. 2020; 
Ryvarden 2020). Currently only 64 Ganoderma species 
are represented by DNA sequence data (Jayawardena et al. 
2020). However, based on sequences deposited in GenBank 
(Sayers et al. 2020) and UNITE (Nilsson et al. 2019), the 
species number of Ganoderma is presumably much higher. 
Considering the morphology-based observations and the 
phylogenetic results, He et al. (2019) estimated there are 
presently 180 extant species in the genus.

Ganoderma has a cosmopolitan distribution, but most of 
the species are known from tropical and sub-tropical regions. 
Although, more than 20 Ganoderma species have been 
described from Europe (Moncalvo and Ryvarden 1997), only 
five well separated clades are confirmed by phylogenetic 
methods (Beck et al. 2020). Further studies are needed to 
clarify the species boundaries in the G. lucidum complex 
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(incl. three morphospecies) and the G. resinaceum lineage 
(incl. two genotypes within one morphospecies) (Papp et al. 
2017; Náplavová et al. 2020). In order to clarify the laccate 
Ganoderma species present in the United States, more than 
500 collections were studied by Loyd et al. (2018), who 
revealed 12 species using molecular phylogenetic techniques 
combined with morphological examination. Together with 
the five additional non-laccate species listed by Zhou et al. 
(2016), a total of 17 Ganoderma species are currently known 
from the United States. The genus shows a much higher 
diversity in Asia. As an example, Luangharn et al. (2020) 
reported 23 Ganoderma species only from the Greater 
Mekong Subregion, out of which three species were new 
to science. In recent years the genus has been intensively 
studied in Asia and several new species have been described 
especially from China (e.g., Cao et al. 2012; Cao and Yuan 
2013; Li et al. 2015, 2016; Xing et al. 2018; Hapuarachchi 
et al. 2018; Liu et al. 2019; Ye et al. 2019). However, the 
taxonomic position of many previously described species 
has not yet been settled (e.g., Moncalvo and Ryvarden 1997; 
Wu and Dai 2005; Papp 2016). However, more species can 
be expected in the future, especially from the tropical parts 
of Asia, and many more new species are expected to be 
found from wooded areas of Africa, Australia, and as well 
as Central and South America (Table 2; Fig. 2).

Although, no DNA sequence data are available for the 
majority of currently accepted Ganoderma species (He 
et al. 2019; Jayawardena et al. 2020), several unidentified 
or mislabelled sequences are deposited at public databases, 
which represents distinct Ganoderma lineages (Papp et al. 
2017). In order to estimate the global species richness in 
Ganoderma, an OTU (operational taxonomic unit; Blax-
ter et al. 2005) abundance dataset was used. ITS sequence 
data was retrieved from the UNITE database (Nilsson et al. 
2019). The dataset contained 2483 ITS sequences represent-
ing 160 phylogenetic species (OTUs) at a 98.5% similarity 

threshold. The dataset was analyzed based on a Single-Indi-
vidual-Based rarefaction method in the EstimateS v9 pro-
gram (Colwell 2013). Based on the result of Chao1 estima-
tor, the estimation number is (1.9)2.7(4.2) times the extant 
species. This indicate a global estimate for Ganoderma 
of (342–)486(–756) species worldwide, 180 of which are 
currently known. Therefore, the global species richness in 
Ganoderma could be estimated at 2.7 × 180 ≈ 486 species.

Basidiomycetous yeasts and allied dimorphic taxa 
in Cystobasidiomycetes, Microbotryomycetes 
and Tremellomycetes

Basidiomycetous yeasts were among the first organisms to 
be isolated and grown in culture from environmental plants 
and air samples (e.g., Guillermond 1920; Stark 1921). The 
ability to grow in a predominantly unicellular form appeared 
independently in different lineages of Basidiomycota and 
the ancestor of basidiomycetous yeasts occurred in Cysto-
basidiomycetes around 330 Mya (Nagy et al. 2014; Zhao 
et al. 2017a). Identification of these species is based on a few 
simple morphological characters, such as pigmentation, cell 
shape and peculiarities of proliferation on artificial media. 
With the development of microbiological methods, a few 
important links between yeasts and basidiomycetous taxa 
were made. The presence of ballistoconidia was observed 
in the red yeast Sporobolomyces. Then, hyphae with clamp 
connections, and smut-like teliospores were described in 
the yeast genus Sporidiobolus (Nyland 1949). The mating 
of sexually compatible yeasts and the discovery of mating 
and a sexual state in Rhodotorula glutinis indicated a close 
relationship between some yeasts and basidiomycetous fungi 
(Banno 1963, 1967). Other teleomorphic basidiomycetous 
genera have been described in yeasts, for example Auriculi-
buller, Curvibasidium, Cystofilobasidium, Leucosporidium, 

Table 2  Number of new 
Ganoderma species published 
between 2009 and 2020

New species publication rate 0.0313 (30/80/12)

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number 1 3 1 2 0 1 4 4 2 4 6 2

Fig. 2  Line chart of number of 
new Ganoderma species pub-
lished from 2009 to 2020
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and Papiliotrema (reviewed in Kurtzman and Boekhout 
2017).

Predominantly unicellular stages, or yeasts, occur in all 
three sub-phyla of the phylum Basidiomycota: Agaricomy-
cotina, Pucciniomycotina, and Ustilaginomycotina (Hibbett 
et al. 2007; Boekhout et al. 2011; Kurtzman and Boekhout 
2017; Oberwinkler 2017). Many species alternate yeast and 
hyphal stages throughout their life cycle and were termed 
as “dimorphic” (Bandoni 1995). The term was introduced 
by Brefeld in the 1880s to contrast the yeast stage of basidi-
omycetous fungi having also a dikaryotic hyphal phase from 
the typical unicellular morphology of sexual ascomycetous 
yeasts. In dimorphic taxa, the dikaryotic filamentous phase, 
which forms the basidiomata, is a mycelium that originates 
from the mating of two compatible strains, and has the 
potential to form basidia and spores after meiosis. The dikar-
yotic mycelium grows in nature in association with another 
fungus (including lichenized fungi) and gain nutrients com-
pletely or in parts from the host (Begerow et al. 2017). A 
teleomorphic state has also been observed in laboratory 
experiments in several yeast genera, for example Bullero-
myces, Curvibasidium, Leucosporidium, and Papiliotrema 
(reviewed in Begerow et al. 2017). Two types of structures 
responsible for host-parasite interactions were observed 
in culture, namely, haustoria and colacosomes (reviewed 
in Begerow et al. 2017). Interestingly, yeasts commonly 
thought to be saprobes (e.g., Bullera, Cryptococcus, Dio-
szegia, Leucosporidium, Rhodotorula, and Sporobolomyces) 
are also known to produce either of these structures. Poten-
tial hosts of sexual states of fungi known as basidiomycetous 
yeasts are often not known, but they can be discovered in the 
future, as in the case of Tremella yokohamensis (Malysheva 
et al. 2015) and Phaeotremella foliacea (Spirin et al. 2018).

Basidiomycetous yeasts are common inhabitants of plant 
surfaces, aquatic habitats and soils (Peter et al. 2017). The 
role of saprobic asexual yeast states in successful propaga-
tion and vectoring was first recognized in plant parasites. 
More recently, it has been convincingly demonstrated that 
asexual species that are closely related to sexual myco-
parasites and lichenicolous fungi are widespread in nature 
(reviewed in Peter et al. 2017; Begerow et al. 2017; Kacha-
lkin et al. 2019). Yeast and filamentous taxa have tradition-
ally been studied by different groups of researchers and 
therefore the characteristics used have also been completely 
different: physiology (biochemical characters) in yeasts, and 
morphology (macro- and micromorphology) in filamentous 
species (discussed in Begerow et al. 2017; Oberwinkler 
2017). Integrated phylogenetic classifications (Liu et al. 
2015a, b, c; Wang et al. 2015a) attempted to standardize 
diagnostic characteristics in both phenotypic groups as much 
as possible. Even if some groups are currently are known to 
contain only or predominantly yeasts or filamentous stages, a 
classification based on their life-stage is obviously artificial, 

and here we will follow here integrated classifications as far 
as possible.

The range of fungal hosts for the species with a known 
filamentous phase in nature is very wide including both 
basidio- and ascomycetes, but individual Tremellomycetes 
are usually very host-specific. As examples, Tremella dac-
tylobasidia grows associated to the corticioid fungus Vuil-
leminia macrospora (Zamora 2009), Syzygospora lappon-
ica grows inside the hymenium of Ascocoryne sarcoides 
(Kotiranta and Mietinen 2006), and there are a number of 
lichenicolous Tremella species each growing on a different 
genus or even species of lichenized ascomycetes (e.g., Mil-
lanes et al. 2014a, 2015; Zamora et al. 2016, 2018; Diederich 
et al. 2018, 2020). Lichenicolous fungi with an assumed 
dimorphic life-style, can be found among several clades of 
the Tremellomycetes (Millanes et al. 2011; Liu et al. 2015a, 
b, c), and the Cystobasidiomycetes, where lichen-inhabiting 
species are represented only in the genera Chionosphaera, 
Cyphobasidium and Microsporomyces (Diederich 1996; 
Millanes et al. 2016a; Černajová and Škaloud 2019; Li et al. 
2020a, b). The relatedness between fungi known as yeasts 
and lichenicolous fungi was demonstrated by Diederich 
(1996), who was the first to observe and illustrate unicel-
lular budding of spores which is also the first observations 
of yeast-stages in lichenicolous representatives. Several 
lichenicolous Tremellomycetes and Cystobasidiomycetes 
have now been shown to be dimorphic, but the life cycle of 
lichenicolous taxa is very poorly studied and understood. 
The spectrum of hosts of lichen-associated taxa is most 
likely much larger as suggested by recent observations of 
yeasts not inducing symptoms in their lichen-hosts (Prill-
inger et al. 1997; Ekman 1999; Lindgren et al. 2015; Spri-
bille et al. 2016; Černajová and Škaloud 2019; Tuovinen 
et al. 2019, 2021; Mark et al. 2020; Smith et al. 2020). 
Yeasts detected or isolated from lichens include members 
of classes Cystobasidiomycetes and Tremellomycetes. Both 
groups comprise well-studied species of lichenicolous fungi, 
traditionally considered parasites of lichens (Millanes et al. 
2011; Oberwinkler 2017). Lichen-inhabiting yeasts are 
included in the Cystobasidiales, Erythrobasidiales, and 
Tremellales. Recently, a potential involvement of yeasts in 
lichen symbiosis has been suggested as a third partner (Spri-
bille et al. 2016; Tuovinen et al. 2019) and this suggestion is 
still under debate (Oberwinkler 2017; Begerow et al. 2017; 
Lendemer et al. 2019; Mark et al. 2020; Hawksworth and 
Grube 2020; Smith et al. 2020; Tagirzhanova et al. 2021). 
Although interactions of different nature between lichenized 
fungi and lichen-inhabiting yeasts are feasible, the specific-
ity of host-parasite associations and dispersal mechanisms 
of yeast states needs to be clarified to prove the three-party 
interactions. Consequently, here we use the terms ‘host’, 
‘lichenicolous’ and ‘symptom’ without assuming parasit-
ism as the only possible relationship between the partners.
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Species diversity of basidiomycetous yeasts and dimorphic 
taxa in Cystobasidiomycetes, Microbotryomycetes 
and Tremellomycetes

The number of known basidiomycetous yeasts exceeded 
1400 species in 2011 (Kurtzman et al. 2011) and is rap-
idly growing (Yurkov 2017). The most dynamic taxonomic 
group is the class Tremellomycetes with 34 new genera, 385 
species and 278 taxonomic combinations published in the 
last 20 years. The majority of these discoveries and changes 
concern yeast-like taxa and the re-classification of the poly-
phyletic Bullera, Cryptococcus, and Trichosporon (Liu et al. 
2015a, b, c; Li et al. 2020a, b), and the application of the 
‘One fungus = One name’ principle to the classification of 
sexual and asexual states in genera Bullera, Bulleribasidium, 
Cryptococcus, Mrakia, and Papiliotrema (Liu et al. 2015a, 
b, c). A total of 30 new genera, 127 species and 56 combina-
tions in Microbotryomycetes (excluding smuts) were pub-
lished. As in the previous case, the major changes in that 
group concern the reclassification of previously polyphyl-
etic genera Bensingtonia, Rhodotorula, and Sporobolomyces 
(Wang et al. 2015a) and unification of the classification of 
anamorphic and teleomorphic taxa, e.g., Leucosporidium, 
Rhodosporidium, and Sporidiobolus.

Taxonomic studies on Cystobasidiomycetes resulted 
in ten new genera, 43 species and 39 combinations. As in 
Microbotryomycetes, reclassification of members of genera 
Rhodotorula and Sporobolomyces account for the majority 
of taxonomic novelties (Yurkov et al. 2015a; Wang et al. 
2015a). As a result of these recent major reclassification 
events, several older teleomorphic generic names have been 
resurrected and/or applied to clades containing also yeast 
states, e.g. Carcinomyces, Colacogloea, Cystobasidium, 
Heterocephalacria, Kriegeria, Naematelia, Phaeotremella, 
and Rhynchogastrema.

Phylogenetic analyses convincingly demonstrated the 
polyphyly of a few teleomorphic genera, such as Cystoba-
sidium (Millanes et al. 2016a) and Tremella (Millanes et al. 
2011). Cystobasidium hypogymniicola and C. usneicola that 
are distantly related to the type species of the genus Cysto-
basidium, were transferred into a new genus Cyphobasidium 
(Millanes et al. 2016a). Liu et al. (2015a, b, c) suggested to 
restrict the genus Tremella to the clade containing T. mes-
enterica and T. fuciformis and reclassified several clades 
in Tremellomycetes. However, the placement of Tremella 
s. l. clades 1–3 recognised by Millanes et al. (2011) and a 
few sexual species remained unclear (Liu et al. 2015a, b, 
c; Kachalkin et al. 2019; Li et al. 2020a, b). Twenty-two 
Tremella species, of which 15 are not related to Tremella 
s. s., have been described between 2015 and 2020. Not 
only Cystobasidium and Tremella s. l., but also the genera 
Sirobasidium and Syzygospora are highly polyphyletic. Syzy-
gospora was previously characterized by holobasidia and 

passively released spores. Syzygospora s. s. has now been 
restricted to S. alba and S. pallida (Filobasidiales, Tremel-
lomycetes), whereas other species have been transferred to 
the genera Carcinomyces (C. effibulatus) in Tremellales, 
Heterocephalacria (H. bachmannii, H. physciacearum, and 
H. solida), and Piskurozyma (P. sorana) in Filobasidiales 
(Liu et al. 2015a, b, c). Sirobasidium is characterized by 
basidia arranged in linear chains (de Lagerheim and Paouil-
lard 1892). The phylogenetic position of the type species 
of Sirobasidium, S. sanguineum, is unclear because there 
is no sequence data available for this species, and thus it 
has not been possible to re-delimit this genus (discussed in 
Kachalkin et al. 2019).

A review of the geographic patterns of yeasts included 
examples of organisms with broad and narrow distribution 
ranges (Yurkov 2017). For instance, a few species of Vish-
niacozyma (e.g., V. victoriae, Tremellomycetes) are a good 
example of ubiquitous plant-related species. The soil yeast 
Saitozyma podzolica (Tremellomycetes) is another example 
of a widespread species that is linked to a particular type of 
habitat, moist, acid environments, including acid tropical 
soils (Yurkov et al. 2012). Species of Naganishia can sus-
tain desiccation in deserts and cold environments (Buzzini 
et al. 2018). Geographic distribution in mild climates in 
opposite hemispheres and at complementary latitudes was 
been reported for red-coloured yeasts of Phaffia (Yurkov 
2017; David-Palma et al. 2020). A similar bipolar distribu-
tion showed psychrophilic yeasts in Arctic and Antarctic 
regions, e.g., members of genera Glaciozyma and Nagan-
ishia (Tremellomycetes). Among yeasts predominantly 
restricted to a particular type of substrate, Solicoccozyma 
(Tremellomycetes) is a common member of soil communi-
ties (Yurkov 2018). Plant surfaces are often inhabited by 
red-coloured Sporidiobolales (Microbotryomycetes), e.g. 
Rhodotorula and Sporobolomyces (Fonseca and Inácio 
2006). Despite extensive sampling, a few species have been 
so far obtained from a single region, being thus good candi-
dates for endemic species. For example, all three species of 
the genus Carlosrosaea (Tremellomycetes) are known from 
Brazilian bromeliads. Dimennazyma cistialbidi (Tremel-
lomycetes) has been isolated only from leaves of a single 
Mediterranean plant, Cistus albidus in Portugal (Inácio et al. 
2005). The lichenicolous species are in general widespread 
and follow the geographical distribution of their lichen hosts. 
Evidence suggests that speciation in investigated licheni-
colous Tremellomycetes and Cystobasidiomycetes is rather 
driven by host selection rather than by geographical isola-
tion (Werth et al. 2013; Millanes et al. 2014b, 2015, 2016b; 
Spribille et al. 2016; Diederich et al. 2020).

The number of species in the three classes is rapidly 
growing, but it is often difficult to directly compare species 
numbers reported across different studies. Detection, iden-
tification, and classification of yeasts have undergone major 
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changes since the application of gene sequence analyses 
and genome comparisons (Kurtzman and Boekhout 2017). 
Phylogenetic analysis is leading to a major revision of yeast 
systematics and redefinition of nearly all genera (Liu et al. 
2015a, b, c; Wang et al. 2015a). In the absence of infor-
mation on hosts, ultrastructure and life-histories, which are 
available for teleomorphic taxa, the bulk of solely asexual 
yeasts has been taxonomically rearranged in phylogenetic 
hypotheses (Oberwinkler 2017).

Application of ribosomal DNA sequencing for identifi-
cation of yeasts provided stable characters for recognition 
of morphologically and physiologically indistinguishable 
species. As a result of both sampling from the environment 
and better species discrimination, the numbers of described 
yeasts doubled in the period from 1998 to 2011 (Lachance 
2006). Yeast species cited in earlier works were often iden-
tified by different techniques and criteria that may not be 
as accurate as the current sequence-based approaches. The 
same constraints, different sampling and isolation proto-
cols, and identification tools, make a direct comparison of 
regional species richness values and yeast numbers in dif-
ferent substrates impossible. Another difficulty is that many 
species are documented from only a limited number of 
strains. Therefore, distribution range and association with a 
particular substrate, host and vector are not known for many 
of these fungi.

Recent phylogenetic analyses suggest that many clades 
in Tremellomycetes, Microbotryomycetes and Cystobasidi-
omycetes are largely undersampled and represented only by 
a few species and environmental sequences (e.g., Liu et al. 
2015a, b, c; Mašínová et al. 2017; Kachalkin et al. 2019). 
Public sequences in GenBank provide good overview of 
potential new species. Known from very few isolates in cul-
ture collections, these yeasts await description, sometimes 
for decades. A few Tremellomycetes have been isolated in 
Portugal by Inácio et al. (2002) and re-sampled 20 years later 
(Kachalkin et al. 2019). The class Microbotryomycetes com-
prise a number of monotypic genera, which are character-
ized by a unique characteristic or phylogenetic position, for 
example Heterogastridium, Kriegeria, Libkindia, Meredith-
blackwellia, Pseudoleucosporidium, Pycnopulvinus, Udeni-
ozyma, and Yunzhangia. The number of species in a few 
more genera is growing slowly, notably in Camptobasidium, 
Cryolevonia, Hamamotoa, Heitmania, Yamadamyces, and 
Yurkovia. Many of these yeasts are slow-growing extremo-
philes, organisms thriving under conditions that are hard to 
survive (Buzzini et al. 2018). Consequently, their isolation, 
cultivation, characterization and preservation are extremely 
difficult and their diversity is largely underestimated.

Gadanho et al. (2006) reported members of the tremel-
lomycete genera Goffeauzyma, Naganishia, Solicoccozyma, 
Phaeotremella and the Microbotryomycetes genera Pseu-
dohyphozyma and Rhodotorula from an acidic pond of the 

Iberian Pyrite Belt. The genus Goffeauzyma contains a clade 
of yeasts from extreme acidic environments (Gadanho and 
Sampaio 2009; Russo et al. 2010). Only a few fungal species 
can survive temperatures of 55–60 °C, and none of them are 
yeasts, which usually grow between 20 and 25 °C (Buzzini 
et al. 2018). Among a few thermotolerant basidiomycetes, 
human pathogens of the genus Cryptococcus (C. neofor-
mans species complex) in Tremellales and Trichosporonales 
species Takashimella tepidaria and Vanrija thermophila 
show a remarkable tolerance to elevated temperatures. Psy-
chrophilic and psychrotolerant species are more common 
among basidiomycetous yeasts. The tremellomycete genera 
Mrakia (Cystofilobasidiales), Naganishia (Filobasidiales), 
Gelidatrema (Tremellales), Holtermanniella (Holtermanni-
ales) accommodate several prominent cold-adapted yeasts 
(Buzzini et al. 2018). Members of the genus Cystobasidium 
in Cystobasidiomycetes were also repeatedly isolated from 
cold habitats. In Microbotryomycetes, several genera are 
almost exclusively restricted to cold environments. Particu-
larly, the genera Leucosporidium (Leucosporidiales), and 
members of the family Chrysozymaceae (e.g., Bannozyma, 
Fellomyces, Hamamotoa) and order Kriegeriales (Campto-
basidium, Cryolevonia, Glaciozyma, Phenoliferia) show 
strong affinity to low temperatures. Some of these yeasts 
can be also isolated from mild climates (e.g., Yurkov et al. 
2016, 2020). Nevertheless, many of them remain under-
sampled, probably because of the slow growth and com-
plicated culture handling. Extremophile yeasts may, there-
fore, represent a large proportion of undescribed diversity. 
Also, knowing physiological preferences of yeast states is 
important to obtain cultures of lichenicolous fungi and other 
mycoparasites.

Sexual states of dimorphic basidiomycetes are not always 
easy to spot in nature. Fruitbodies of witches' butter, Tre-
mella mesenterica and a few other jelly fungi are rather large 
(up to 10–15 cm) and brightly coloured. However, many 
species of jelly fungi do not have such a remarkable outlook 
being white, transparent, or dark-coloured, and producing 
small basidiocarps that are hardly visible when dry (e.g., 
Pseudotremella moriformis, and Phaeotremella simplex). 
Some other tremellalean species are intrahymenial parasites, 
producing spores within the fruitbodies of their hosts, and 
are only visible microscopically (e.g. Tremella giraffa, Tre-
mella protoparmaliae, and Syzygospora lapponica).

Ribosomal RNA sequencing helps largely when identi-
fying yeasts and dimorphic taxa. But molecular analyses 
of mycoparasites and lichenicolous fungi is challenging 
and may include cloning, design of specific primers and 
meta-barcoding approaches. Due to the aforementioned 
constraints, sequences of yeast stages largely outnum-
ber sequences of sexual species, as discussed in Liu et al. 
(2015a, b, c) and Kachalkin et al. (2019). A combination 
of two ribosomal DNA-barcodes provides usually reliable 
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identification results, with the ITS region being, as a rule, 
more variable than the LSU (Schoch et al. 2012). A few 
lineages in the Tremellomycetes demonstrated the opposite 
situation, in spite of the expected greater variability in the 
ITS region, which is less constrained for mutations (Scor-
zetti et al. 2002). However, a growing number of available 
sequences showed that species delimitation with ITS and 
LSU is sometimes problematic. Studies that utilized multi-
locus sequence analyses (MLSA), mating experiments, and 
genomic analyses revealed cryptic species and species com-
plexes. There are seven closely related species in the patho-
genic Cryptococcus species complex (Hagen et al. 2015) 
and three species in the C. amylolentus species complex 
(Passer et al. 2019). The available knowledge suggests that 
the reliable identification of species in that genus can be 
achieved by sequencing protein-coding genes (e.g., Passer 
et al. 2019). An MLS analysis of the Papiliotrema flavescens 
species complex demonstrated a limited utility of ITS and 
LSU and additionally revealed two novel cryptic species in 
the complex (Yurkov et al. 2015b). Nucleotide sequences 
of type strains in Mrakia, Solicoccozyma, Saitozyma, and 
Vishniacozyma allow a formal separation of species in these 
genera. However, when other publicly available sequences 
were considered, it was not always possible to set clear bor-
ders between closely related species (Scorzetti et al. 2002; 
Yurkov et al. 2015b, 2020). Specifically, it is unlikely that 
pairwise comparisons of nucleotide sequences of ITS and 
LSU will always provide a reliable identification of yeasts 
comprising the following species complexes, namely Mra-
kia gelida (with M. frigida and M. blollopis) Solicoccozyma 
aeria (with S. phenolica and S. terrea), Saitozyma pod-
zolica, and Vishniacozyma victoriae (with V. carnescens 
and V. tephrensis). There is a good chance that further, and 
more detailed, studies will reveal cryptic diversity in other 
clades and genera of Tremellomycetes. In Microbotryo-
mycetes, several species complexes are known, including 
cold-adapted yeasts in Leucosporidium scottii and carotene-
producing red yeasts Rhodotorula glutinis. Species in the 
Rhodotorula glutinis species complex were delimited using 
a combination of nucleotide sequences analyses, MSP-PCR 
fingerprinting, mating assays, and DNA-DNA hybridisa-
tion experiments (Gadanho and Sampaio 2002) and later 
sequences of pheromone receptor genes (Coelho et al. 2011). 
Similarly, the psychrotolerant yeasts Leucosporidium scottii, 
L. creatinivorum, L. yakuticum were demonstrated to com-
prise a complex of closely related interbreeding species (de 
García et al. 2015).

A large amount of overlooked diversity is probably also 
hidden in several species complexes of lichenicolous and 
mycoparasitic taxa. Millanes et al. (2014b) confirmed that 
Biatoropsis usnearum included several independent line-
ages some of which were later described as species based 
on molecular and morphological evidence (Millanes et al. 

2016b; Diederich and Ertz 2020), and a few others remain 
undescribed awaiting for thorough morphological charac-
terization. Other examples of species initially discovered as 
‘cryptic’ that have been later characterized and described 
based on morphological traits include Tremella cetrariel-
lae and Tremella tubulosae (Millanes et al. 2015; Diederich 
et al. 2020). Several groups are known to include cryptic 
diversity, notably Cyphobasidium spp. (Cystobasidiomy-
cetes), Phaeotremella foliacea, Tremella macrobasidiata 
and Tremella mayrhoferi (Tremellomycetes) (Spribille et al. 
2016; Zamora et al. 2009, 2016, 2018). Future analyses of 
host-related, morphological, and molecular data will clarify 
taxonomic status and diversity of these groups.

New species publication rate

The Dictionary of Fungi (Kirk et al. 2008) listed 14 species 
in the class Cystobasidiomycetes, 208 species in Microbot-
ryomyctes, and 377 species in Tremellomycetes. Diversity 
of fungi in Tremellomycetes and Cystobasidiomycetes have 
substantially increased since then. In a breakdown of diver-
sity of species and genera described during the last ten years, 
the most species-rich class is Tremellomycetes followed by 
Microbotryomycetes and Cystobasidiomycetes (Table 3, 
Fig. 3). The species numbers reflect problems of high-rank-
ing classification in these taxonomic groups. Nearly a half 
of species described in Microbotryomycetes and Cystoba-
sidiomycetes could not be assigned to any taxonomic order 
and are presently accommodated in incertae sedis genera. In 
Tremellomycetes, the vast majority of taxonomic novelties 
were described in the order Tremellales.

Ectomycorrhizal basidiomycetes

GYROPORUS

Gyroporus (Gyroporaceae, Boletales) is a genus of obli-
gately ectomycorrhizal, poroid mushrooms with represent-
atives on every major continent except Antarctica. The 
genus comprises species with bright yellow spore prints, 
clamp connections, and the unique condition of having 
circumferentially (as opposed to longitudinally) arranged 
stipe hyphae. Members of Gyroporus are mycorrhizal with 
an array of plant species from several plant families includ-
ing Betulaceae, Fabaceae, Fagaceae, Myrtaceae, Pinaceae 
and Phyllanthaceae. Gyroporus is a boletoid genus in the 
largely gasteroid Sclerodermatineae (Binder 1999), a sub-
order of Boletales notable for exhibiting a diverse array of 
morphologies and ecologies (Wilson et al. 2011). Gyro-
porus diverged from other lineages in Sclerodermatineae 
around 61 Mya (Wilson et al. 2012). The iconic European 
taxa Gyroporus castaneus and Gyroporus cyanescens have 
been documented since the eighteenth century, classified 
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at that time in Boletus (Bulliard 1787, 1788). Despite this 
long history of formal documentation, many Gyroporus 
species remain to be discovered and described. There are 
about 35 recognized species (this includes some described 
varieties not yet formally elevated to species status), which 
historically have been mostly described from Eurasia, 
Africa, and North America. The existence of globally 
distributed semi-cryptic species complexes has hindered 
progress on properly diagnosing and describing new spe-
cies. This is especially true for numerous nondescripts, 

brown-colored species that are often mistakenly identified 
as Gyroporus castaneus.

Species diversity of Gyroporus

Since Gyroporus species are described from fruitbodies, the 
eventual description of all extant species via existing her-
barium specimens and further fieldwork is a tractable effort. 
Also, metagenomic approaches may be a route to estimate 
and corroborate species diversity. For example, in a study of 
fungal internal transcribed spacer (ITS) sequences from soil 

Table 3  New yeast species of Tremellomycetes, Microbotryomycetes and Cystobasidiomycetes published between 2009 and 2020

Taxon 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 New species 

publication rate

Tremellomycetes 12 14 17 19 14 7 31 15 12 6 38 67 0.0557 (252/377/12)

Tremellales 11 8 15 16 11 6 24 12 6 3 16 54

Filobasidiales 1 1 1 1 13 6

Trichosporonales 1 2 2 2 2 1 3 2 5 2 1 6

Holtermanniales 1

Cystofilobasidiales 3 1 3 1 8 1

Cystobasidiomycetes 3 1 4 2 2 4 4 1 4 9 11 0.2679 (45/14/12)

Cystobasidiales 2 2 2 4 3 1 3 2 5

Erythrobasidiales 1 3

Microbotryomycetes 6 6 5 4 1 3 7 3 5 4 32 0.0304 (76/208/12)

Heitmaniales 3 2

Heterogastridiales 1

Kriegeriales 1 2 1 1 2

Leucosporidiales 1 1 1 1 1

Microbotryales 6 1 1

Rosettozymales 3

Sporidiobolales 1 2 3 2 7

Fig. 3  Line chart of new yeast 
species of each order in Tremel-
lomycetes, Microbotryomycetes 
and Cystobasidiomycetes pub-
lished between 2009 and 2020
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across Australia (Davoodian et al. 2020b), 19 species (opera-
tional taxonomic units based on ITS) of Gyroporus were 
inferred from across the continent. Based on Davoodian 
et al. (2018, 2019, 2020a), ten species of Gyroporus are 
documented from Australia based on phylogenetic analysis 
of atp6 and rpb2 DNA sequences and morphology (includ-
ing three species yet to be formally described). Considering 
that ITS sequences can overestimate species diversity given 
intragenomic variation among copies within some lineages 
(e.g., Vydryakova et al. 2012; Lindner et al. 2013), it is pos-
sible that all species of Gyroporus from Australia are known 
and the task of describing all species is easily achievable. If 
not, it is possible that further collections are required from 
areas where fieldwork has been infrequently conducted, 
such as the Kimberly of Western Australia. Davoodian et al. 
(2020b) inferred 1002 ITS operational taxonomic units for 
the Boletales across Australia; assuming the diversity of 
Australian Boletales is between half this number and 1000 
species, describing all Australian Boletales is a potentially 
achievable project with large teams of workers. By using 
environmental metagenomics to acquire rough estimates of 
species diversity throughout an area, in combination with 
graphing species accumulation curves at various scales, the 
discovery and eventual description of all species of Gyropo-
rus and other Boletales traditionally described from fleshy 
basidiomes can be readily implemented across the globe.

New species publication rate

Given advances in phylogenetic systematic techniques, in 
recent years there has been major activity around describing 
new species of Gyroporus, which has aided in untangling the 
species complexes and expanded the occurrence of novel 
described species to Australia as well as South America 
(e.g.Davoodian et al. 2018, 2019, 2020a; Magnago et al. 

2018a, b; Table 4; Fig. 4). Based on the phylogenetic and 
morphological diversity uncovered in these and other recent 
studies, the number of species of Gyroporus is likely to be in 
the range of 70–100. East Asia and Southeast Asia especially 
appear to be the largest reservoir of undescribed Gyroporus 
diversity (Davoodian et al. 2018, 2020a).

TRICHOLOMA

Tricholoma was established as a tribus within the genus 
Agaricus (Fries 1821) and then erected as a distinct genus 
by Staude (1857). Tricholoma now is the type and largest 
genus of the conserved family Tricholomataceae (McNeill 
et al. 2006) as recently circumscribed by Sánchez-García 
et al. (2014) using molecular data. Over the years more than 
1000 names (including species and infraspecific taxa; 1293 
according to Index Fungorum, http:// www. index fungo rum. 
org/, accessed on 27 Oct. 2020; 1350 according to Myco-
bank, https:// www. mycob ank. org/, accessed on 27 Oct. 
2020, Robert et al. 1999; 1104 according to Catalogue of 
Life, Roskov et al. 2020) have been published or combined 
in the genus and many of these have since been transferred 
to other genera, based on morphological and/or molecular 
data (Singer 1986; Trudell 2012; Christensen and Heilmann-
Clausen 2013; Heilmann-Clausen et  al. 2017; Reschke 
et al. 2018). Currently, about 250 species are recognized in 
Tricholoma s. s. worldwide (Kirk et al. 2008; Ovrebo and 
Hughes 2018; Reschke et al. 2018; He et al. 2019; Ovrebo 
et al. 2019; Xu et al. 2020). This genus diverged from its 
saprotrophic sister genera Dermoloma and Pseudotricho-
loma and began diversification during the late Eocene, 61 
(36–92) Mya, possibly with Pinaceae as ectomycorrhizal 
hosts (Sánchez-García 2016; Sánchez-García and Matheny 
2017), favored by cooling temperatures and the expansion 

Table 4  Number of new 
Gyroporus species published 
per year between 2009 and 2020

New species publication rate 0.150 (18/10/12)

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number 0 0 0 1 1 0 0 1 2 7 3 3

Fig. 4  Line chart of new Gyro-
porus species described per year 
between 2009 and 2020

http://www.indexfungorum.org/
http://www.indexfungorum.org/
https://www.mycobank.org/
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of their host communities, as shown in other groups of 
ECM fungi (Ryberg and Matheny 2012; Looney et al. 2016; 
Sánchez-García 2016; Sánchez-García and Matheny 2017; 
Sato and Toju 2019).

Tricholoma has been restricted to species with centrally 
stipitate, fleshy fruitbodies with adnate-sinuate lamel-
lae (tricholomatoid habit), white spore-print and smooth, 
hyaline, inamyloid spores (Gulden 1969; Bon 1984, 1991; 
Singer 1986; Shanks 1997; Bessette et al. 2013; Christensen 
and Heilmann-Clausen 2013; Heilmann-Clausen et al. 2017; 
Reschke et al. 2018). Vizzini et al. (2020), using a novel 
standardized method to test sporal amyloidity showed evi-
dence that in the tested European species of this genus, the 
spores are amyloid. Tricholoma is widely accepted or sup-
posed to be an ectomycorrhizal (ECM) genus (Trappe 1962; 
Garrido 1988; Molina et al. 1998; De Roman et al. 2005; 
Agerer 1999, 2006; Zeller et al. 2007; Rinaldi et al. 2008; 
Tedersoo et al. 2010; Ryberg and Matheny 2011; Chris-
tensen and Heilmann-Clausen 2013; Heilmann-Clausen 
et al. 2017). However, the genus also encompasses some 
species that form dual ectomycorrhizal/monotropoid or 
ectomycorrhizal/pyroloid associations linking trees and 
monotropoid or pyroloids mycoheterotrophic plants (Eri-
caceae) (Björkman 1960; Bidartondo and Bruns 2001, 2002; 
Leake et al. 2004; Bidartondo 2005; Tedersoo et al. 2007; 
Trudell 2012) or are associated with green or achlorophyl-
lic orchids (Jacquemyn et al. 2016; Pecoraro et al. 2018; 
Schweiger 2018; Chen et al. 2019b). Tricholoma matsutake 
was suspected to be parasitic on pine roots without forming 
a fungal mantle (mycoclena) or a Hartig net (Masui 1927; 
Ogawa 1975; Yamanaka et al. 2020). Yamada et al. (1999a, 
b), Guerin-Laguette et al. (2004) and Endo et al. (2015), 
however, demonstrated that T. matsutake form on roots of 
seedlings, in field and in vitro, true ectomycorrhizae with a 
fungal mantle and a well-developed Hartig net. Tricholoma 
matsutake can also behave as a root endophyte of arbuscular 
mycorrhizal trees (Murata et al. 2013, 2014; Selosse et al. 
2018). Tricholoma species form medium-distance explora-
tion types with uniformly shaped or differentiated rhizo-
morphs (Agerer 1999, 2006).

Species diversity of Tricholoma

Tricholoma species show a worldwide distribution (Teder-
soo et al. 2010; Christensen and Heilmann-Clausen 2013; 
Heilmann-Clausen et al. 2017; Reschke et al. 2018), but 
they seem to be the most common and diverse in temper-
ate and subtropical zones in both the southern and northern 
hemisphere. The host plants are mainly trees belonging to 
Pinaceae, Fagaceae, Betulaceae and Salicaceae (Trudell 
2012; Bessette et  al. 2013; Christensen and Heilmann-
Clausen 2013; Heilmann-Clausen et  al. 2017; Reschke 
et al. 2018) but some Tricholoma species are associated with 

Eucalyptus (Myrtaceae) (Bougher 1996), Dryas (Rosaceae) 
and Helianthemum (Cistaceae) (Christensen and Heilmann-
Clausen 2013), Ericaceae (subfamilies Monotropoideae and 
Pyroloideae) (Leake et al. 2004; Bidartondo 2005; Teder-
soo et al. 2007; Trudell 2012) and Orchidaceae (Jacquemyn 
et al. 2016). Some species prefer to fruitify in old and rather 
unmanaged forests (Christensen and Heilmann-Clausen 
2013; Dvořák et al. 2017) and can be used as indicators of 
natural forests.

The diversity hotspot of Tricholoma species appears 
to be the North American area, for which more than 100 
accepted species have been reported (Trudell 2012; Bessette 
et al. 2013; Trudell et al. 2017; Ovrebo and Hughes 2018; 
Reschke et al. 2018). Sixty-three to 88 species are listed 
from Europe (Bon 1984, 1991; Riva 1988, 1998, 2003; 
Galli 2005; Kirby 2012; Christensen and Heilmann-Clausen 
2013). Fifty-five species are reported from Turkey (Intini 
et  al. 2003, 2015; Sesli and Denchev 2008; Doğan and 
Akata 2011; Vizzini et al. 2015; Şen et al. 2018; Şen and 
Alli 2019; Haelewaters et al. 2020). About 50 species have 
been reported from China (Deng et al. 2004; Deng and Yao 
2005; Yu et al. 2006; Hosen et al. 2016; Yang et al. 2017; 
Reschke et al. 2018; Xu et al. 2020). From other Asian areas, 
there are scattered reports from Japan (Kawamura 1954; 
Hongo 1959, 1968, 1974, 1983, 1988, 1991; Imazeki et al. 
1988), Korea (Murata et al. 2008; Park et al. 2014),Viet-
nam (Kiet 1998), Laos (Wan et al. 2012), Thailand (Sanmee 
et al. 2007), Malaysia (Corner 1994, who used a very broad 
Tricholoma genus concept), Bhutan (Wan et al. 2012), India 
(Tanti et al. 2011; Gogoi and Sarma 2012; Khaund and Joshi 
2013) and Nepal (Adhikari 2014). Reports from other parts 
of the world are those from Australia (Bougher 1996) and 
New Zealand (Stevenson 1964; Orlovich and Cairney 2004), 
North Africa (Maire 1915; Malençon and Bertault 1975; 
Kytövuori 1988; Ota et al. 2012; Benazza-Bouregba et al. 
2016), Central America (Costa Rica, Ovrebo et al. 2019) and 
South America (Horak 1964; Singer 1954, 1966).

Several Tricholoma species seem to have a circumboreal 
distribution in Asia, Europe and North America: e.g. T. albo-
brunneum, T. cingulatum, T. matsutake, T. roseoacerbum, 
T. vaccinum (Heilmann-Clausen et al. 2017; Trudell et al. 
2017; Reschke et al. 2018). Some species (~ 20%, Sánchez-
García 2016; Sánchez-García and Matheny 2017) show an 
extreme host specificity and may be restricted to a single 
host genus or species, such as T. diemii and T. patagonicum 
with Nothofagus dombeyi, T. albobrunneum and T. imbrica-
tum with Pinus spp., T. cingulatum with Salix spp., T. popu-
linum with Populus spp., T. dulciolens and T. inamoenum 
with Picea spp., T. quercetorum with Quercus spp. (Singer 
1954; Grubisha et al. 2012; Christensen and Heilmann-
Clausen 2013; Reschke et al. 2018); many other species such 
as T. argyraceum, T. scalpturatum, and T. sulphureum are 
reported in association with various hosts (Bon 1984, 1991; 
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Riva 1988, 2003; Molina et al. 1998; Galli 2005; Carriconde 
et al. 2008; Jargeat et al. 2010; Christensen and Heilmann-
Clausen 2013; Sánchez-García and Matheny 2017; Reschke 
et al. 2018).

Species identification and section recognition within 
Tricholoma traditionally relied on morphological features 
such as pileus colour, structure of the pileipellis, presence/
absence of clamp-connections, presence/absence of hyme-
nial cystidia, size and shape of the basidiospores (Bon 1984, 
1991; Singer 1986; Riva 1988, 1998, 2003; Shanks 1997; 
Kirby 2012; Trudell 2012; Bessette et al. 2013; Christensen 
and Heilmann-Clausen 2013). Such morphological delimit-
ing characters were supported as useful and phylogenetically 
informative by molecular analyses (e.g., Heilmann-Clausen 
et al. 2017; Reschke et al. 2018). The nrITS region is still the 
most widely used molecular marker in species delimitation 
within Tricholoma and it has been found to be a suitable bar-
code (Comandini et al. 2004; Carriconde et al. 2008; Mou-
hamadou et al. 2008; Jargeat et al. 2010; Heilmann-Clausen 
et al. 2017; Trudell et al. 2017; Reschke et al. 2018; Ovrebo 
et al. 2019; Xu et al 2020), but see the caveats in Badotti 
et al. (2017). Other markers, such as the V6 and V9 domains 
of the mitochondrial SSU-rDNA (Mouhamadou et al. 2008), 
the 5' part of the mitochondrial cox1 gene (Moukha et al. 
2013), the gpd gene (Jargeat et al 2010; Ota et al. 2012), 
megB1 region (Ota et al. 2012) and the tef gene (Jargeat et al 
2010; Ota et al. 2012) were used coupled or not to nrITS. In 
particular, sections Genuina, Caligata, Contextocutis, Seri-
cella, Terrea and Tricholoma are in urgent need of further 
phylogenetic studies because T. equestre s.l., T. sulphureum 
s.l., T. viridilutescens/sejunctum, T caligatum group, and T. 
scalpturatum/argyraceum are species complexes showing 
considerable cryptic diversity (Kytövuori 1988; Kalamees 
2001; Carriconde et al. 2008; Jargeat et al. 2010; Moukha 
et al. 2013; Heilmann-Clausen et al. 2017; Trudell et al. 
2017; Reschke et al. 2018).

The knowledge of the diversity and distribution of Tricho-
loma species on a global scale is generally still unsatisfac-
tory and patchy. Species diversity of Tricholoma species 
appears quite well-studied in Europe (above all in the north-
western part), and important recent monographic works in 
Europe are those of Gulden (1969), Bon (1984, 1991), Riva 
(1988, 1998, 2003), Noordeloos and Christensen (1999), 
Galli (2005), Christensen and Heilmann-Clausen 2008, 
2012, 2013; Kirby 2012 and Heilmann-Clausen et al. (2017). 
Heilmann-Clausen et al. (2017) provided the first compre-
hensive molecular analysis (only ITS based) of the genus, 
focused on northern European species. Molecular works 
focused only on sections or species complexes are those 
by Carriconde et al. (2008), Mouhamadou et al. (2008), 
Moukha et al. (2013), Jargeat et al. (2010). Reschke et al. 
(2018) is the first molecular analysis combining Tricholoma 
collections from Europe, North America and Asia.

An estimate of total fungal diversity in Europe based 
on the ideal 6:1 ratio of fungi/vascular plants proposed by 
Hawksworth (1991, 2001) would suggest that, in general, the 
fungal diversity in Europe is well investigated (over 75,000 
fungal species/over 12,500 plant species, 6:1 ratio, Senn-
Irlet et al. 2007).

Despite being the area for which the highest number of 
species (100) has currently been surveyed, in North America 
the genus Tricholoma historically has received relatively lit-
tle attention. Compared to the situation in Europe, North 
American Tricholoma species are poorly known and nearly 
all groups/sections are in need of additional study (Trudell 
2012; Reschke et al. 2018). The over 60 Tricholoma species 
described by Peck in the late 1800s and early 1900s (e.g., 
Peck 1875, 1891, 1900, 1904, 1912), and those described 
by Murrill in the first half of the 1900’s (e.g., Murrill 1913, 
1938, 1942, 1945, 1949) are still difficult to interpret and 
many of them were later transferred to other genera. The 
studies by Kauffman (1918), Smith (1942), Hesler (1958) 
and Bigelow (1979) were not carried out in a monographic 
perspective. Then, the most important contributions were 
those by Ovrebo (1973, 1980, 1986, 1989), Ovrebo and 
Tylutki (1975), Ovrebo and Smith (1979), Ovrebo and 
Hughes (2018), mainly focused on Pacific Northwest and 
the Great Lakes region and often interpreting some of Peck’s 
species concepts; by Shanks (1994, 1996, 1997) mainly on 
Tricholoma species from California; Bessette et al. (2013), 
with the first comprehensive monograph on North American 
Tricholoma spp.; Trudell et al. (2017), Ovrebo and Hughes 
2018 and Reschke et al. (2018) using molecular markers. 
Additional studies are needed to deepen the knowledge 
concerning the diversity and taxonomy of Tricholoma spp. 
in North America. Bates et al. (2018) reported for North 
America a 1.9:1 ratio (44,000 fungal species/23,000 plants).

China, albeit with only 50 species listed, is the Asian 
area with the greatest diversity of Tricholoma species (Deng 
et al. 2004; Deng and Yao 2005; Yu et al. 2006; Hosen et al. 
2016; Yang et al. 2017; Reschke et al. 2018; Xu et al. 2020). 
Scarce and scattered is the knowledge about the presence 
of Tricholoma species in adjacent Asian countries due to 
the lack of modern comprehensive treatments (Reschke 
et al. 2018). The knowledge of Tricholoma in China is still 
limited, as relatively few studies have been devoted to this 
topic. Deng et al. (2004) provided an annotated checklist 
of Tricholoma from China (40 species) and Deng and Yao 
(2005) made revision of some Tricholoma species reported 
from China. Since then, 12 new species were described from 
China (Yu et al. 2006; Hosen et al. 2016; Yang et al. 2017; 
Reschke et al. 2018; Xu et al. 2020). As one of 17 megad-
iverse countries (Noss 1990), China is a hotspot extremely 
rich in biodiversity and endemism, and its Flora consists 
of about 35,000 plant species (Ministry of Environmental 
Protection of China (EMP), 2011; Volis 2018), while, on the 
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contrary, the database for the Checklist of Fungi in China 
currently contains around 27,900 fungal species (Fang et al. 
2018; Institute of Microbiology, Chinese Academy of Sci-
ences 2018), with a 0.8:1 ratio. Focusing on a smaller area, 
Northern Yunnan in southwest China is part of one of the 25 
world biodiversity hotspots of the world (Myers et al. 2000). 
About 15,000 seed plant species and 7,000 fungal species 
are reported from Yunnan (Yang et al. 2004), which leads 
to a 0.46/1 ratio (7000/15,000), a ratio very far from the 
ideal 6:1 ratio proposed by Hawksworth (1991, 2001) (but 
see also Tedersoo et al. 2014 and Hawksworth and Lücking 
2017 for a reassessment of diversity ratios).

The 250 Tricholoma species so far recognized world-
wide are an underrepresentation of the actual biodiversity 
of the genus. Cryptic speciation occurrence revealed in some 
Tricholoma species by molecular analyses (e.g. Carriconde 
et al. 2008; Jargeat et al. 2010; Heilmann-Clausen et al. 
2017; Yang et al. 2017) does not facilitate the assessment of 
specific diversity (Hawksworth and Rossman 1997; Hawks-
worth and Lücking 2017). Based on studies of selected fun-
gal complexes available, it was suggested that, in general, the 
number of known fungi might rise by a factor of five (Hawk-
sworth and Rossman 1997) or more (up to eleven according 
to Hawksworth and Lücking 2017) for cryptic speciation. 
The application of multiple genetic markers will allow to 
untangle the species complexes.

The status of many species described from North Amer-
ica is unclear. The application of taxa originally described 
from Europe on American specimens must be redefined for 
many species. As said by Trudell (2012), “For now, a bigger 
issue comes from not knowing whether the North American 
fungi to which European names have been applied really 
do belong to the same species. Few, if any, mycologists 
have spent enough time on both continents to have firsthand 
comparative knowledge of large numbers of their respective 
fungi and few critical studies have been done to evaluate our 
use of European names.

The number of Tricholoma species recorded in North 
America and Asia is scarce compared to those in Europe, 
considering the extension of these geographical areas and 
the fact that in Asia and America there is the greatest diver-
sity of Pinaceae and Fagaceae (the two most important 
host families for Tricholoma species) at genus and species 
level (Nixon 2006; Kremer et al. 2007; Eckenwalder 2009; 
Cannon et al. 2018; Farjon 2018). Most Tricholoma species 
are able to form ECM associations with a wide range of 
host trees, and, probably, this generalist attitude may have 
allowed them to explore and adapt to new environmental 
niches, and consequently increasing their rate of diversifica-
tion (Sánchez-García 2016; Sánchez-García and Matheny 
2017). As it was generally pointed out by Tedersoo et al. 
(2014), ectomycorrhizal species richness is strongly related 
to the richness of host plant species.

Further research is needed to increase the knowledge 
concerning the taxonomy, diversity and phylogeography of 
Tricholoma species worldwide. A careful sampling strat-
egy of North American and Asian areas will be crucial, but 
also Australia, New Zealand and South America should be 
included. Biodiversity analyses will also have to take into 
account the ongoing outputs from the metabarcoding meth-
ods (Tedersoo et al. 2014; Hawksworth and Lücking 2017; 
Khan et al. 2020).

New species publication rate

The number of described fungal species accelerated in 
the last decade (2009–2020) after the advent of molecular 
approaches to species delimitation (Hawksworth and Lück-
ing 2017). Apart from some intraspecific taxa [e.g., T. sul-
phureum var. nigrescens (Gillet) Deparis (Deparis 2013, 
T. virgatum var. fulvoumbonatum Seslı, Contu and Vizzini 
(Vizzini et al. 2015), T. sulphureum var. inolens Chiarello 
& Battistin (Chiarello and Battistin 2018), T. viridifucatum 
var. etruriae Raumi, Martolini, Matteini and Pierotti (Raumi 

Table 5  Number of new 
Tricholoma species published 
between 2009 and 2020

New species publication rate 0.0133 (32/200/12)

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number 2 1 1 1 1 0 1 2 6 7 3 7

Fig. 5  Line chart of the number 
of new Tricholoma species pub-
lished from 2009 to 2020
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et al. 2019)], a nom. inval., T. grave (Bessette et al. 2013) 
and four nomina nova published by Blanco-Dios (2020) for 
replacing four Malaysian taxa whose names are preoccupied 
(Corner 1994), 26 new species were established between 
2010 and 2020 (see Table 5), constituting 10% of the spe-
cies currently recognized in Tricholoma (about 250, Kirk 
et al. 2008; Ovrebo and Hughes 2018; Reschke et al. 2018; 
He et al. 2019; Ovrebo et al. 2019; Xu et al. 2020). Eleven 
were described from Asia (China), eight from Europe, three 
from Central America (Costa Rica), two from Turkey, and 
two from North America (USA and Mexico); 20 of which 
have been described in the last 4 years (Fig. 5).

RUSSULA

Russula is the type genus of the russuloid clade or the order 
Russulales, and the ancestor of Russulales diverged during 
late Jurassic (170–180 Mya) (Zhao et al. 2017a, b; Varga 
et al. 2019). In taxonomic study, it is a very old genus, dating 
back to the end of the eighteenth century (Persoon 1796), 

probably because it is so prominently present in most habi-
tats, so extremely diverse and also very well characterizable 
both in the field and under the microscope. Consequently, it 
has attracted the interest of many professional and amateur 
mycologists and is undoubtedly one of the most frequently 
monographed genera of larger mushrooms (see Fig. 6).

Fig. 6  European Russula 
described in the past two centu-
ries (1793–2003) by European 
mycologists with indication of 
the most important published 
genus monographs or other 
major contributions by profes-
sional (in red) and amateur (in 
green) mycologists

Fig. 7  American Russula described in the past two centuries (1872–2006) by American mycologists with indication of the most important pub-
lished genus monographs or other major contributions by professional (in red) and amateur (in green) mycologists

Fig. 8  Species number of Russula from 1860 to 2005 (416 species in 
total including 329 species from USA and 87 species from Europe)
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Most of the traditional complex infrageneric classifica-
tion of the genus has been laid out in these European mono-
graphs, especially those written in more recent years by emi-
nent amateur mycologists (Romagnesi 1967, 1987; Sarnari 
1998, 2005; Bon 1988). In Europe, this amateur community 
represents in Europe the major source of expertise in the 
genus since the 1960s.

In other parts of the world, the diversity of the genus has 
been largely neglected as was the case for most of the other 
macrofungi, with two notable exceptions though: The United 
States of America and Central Africa. The exploration and 
description of the existing Russula diversity in North Amer-
ica started approximately a century later compared to Europe 
(see Figs. 7, 8), essentially with the studies of Peck (see 
Adamčík et al. 2018). However, the clear gap between pro-
fessional and amateur mycologists in America was respon-
sible for the sudden arrest of local Russula research once the 
professional expertise had vanished, leaving this continent 
at the beginning of the twenty-first century with an aston-
ishing number of 329 different endemic Russula that had 
been described (in addition to an estimated number of 87 
European Russula that had been reported from the area) but 
that quasi nobody in America was able to identify any more.

The second part of the world for which Russula diversity 
was fairly well-documented during the past century is tropi-
cal Africa (including Madagascar), where the mycological 
exploration of larger mushrooms had its roots in the colonial 
period. For Russula, apart from many smaller contributions, 
the principal monographs were those published in the Fun-
gus flora of Central Africa series (https:// www. ffta- online. 
org/) by Buyck (1993, 1994, 1997) and in the “Prodrôme a 
une flore mycologique pour Madagascar et Dépendances” 
series by Heim (1938), culminating in almost 200 hundred 
different, well-illustrated and described Russula species and 
their infraspecific taxa for tropical Africa at the beginning 
of the twenty-first century.

Species diversity of Russula

Russula has always been considered one of the most diverse 
ectomycorrhizal mushroom genera, whereas older hand-
books estimated the total number of Russula species in the 
world to be around 700–800 (Kirk et al. 2008), the most 
recent estimates are higher. Looney et al. (2016) calculated 
that the number of sequenced OTUs in the northern hemi-
sphere was already in excess of 1000, but Buyck (2012) 
estimated on the basis of more than 10 years of collecting in 
North America that the number of North American Russula 
alone was surely closer to 1500 than to the ca. 450 known 
at present. The total number of Russula species in the world 
has been estimated to be in excess of 3000 (He et al. 2019), 
but could still be higher. These high estimates seem at least 
supported by the fact that many newly published Russula 

species are not known from environmental sequences, while 
most of the continents are largely unexplored with excep-
tion of Europe and, to a lesser degree, also North America. 
Indeed, unpublished results from inventories in little or 
unexplored parts of the world such as Madagascar and New 
Caledonia show that probably their entire Russula mycota 
may be original as even morphologically similar species are 
genetically distant from their closest relatives.

New species publication rate

During the past ten years the situation has changed pro-
foundly, and this time on all continents. The main game 
changer has been the development of molecular tools at the 
end of the twentieth century and their impact on species 
descriptions and fungal phylogenies. Even for beginners, 
Russula was always a very ‘easy’ genus to recognize in the 
field, at least in Europe, but the genus was reputed extremely 
difficult as to the recognition of the various individual spe-
cies because of the often-incredible variation in color and 
other features, and this notwithstanding a rich array of 
microscopic features compared to many other mushroom 
genera. This morphological variability ultimately led to an 
exaggerated multiplication of names at different nomenclatu-
ral ranks (species, variety or form) given to the same taxa by 
different mycologists.

During the past decennium, the number of new Rus-
sula species published each year oscillated between 10 and 
15, except for a few years when new species numbers sky-
rocketed. In 2011, for example, there were 88 new Russula 
taxa published, 23 new species and many new varieties and 
forms, all of them uniquely based on often rather insignifi-
cant morphological differences. The large majority of these 
new taxa were described in a new Russula monography pub-
lished in Eastern Europe (Socha et al. 2011), others were 
described by a French Russula expert with a prolific record 
of new species and infraspecific taxa (Freund and Reumaux 
2011). The year 2011 therefore resembles other years in the 
past (e.g. Reumaux et al. 1996; Reumaux and Moenne-Loc-
coz 2003) when similar monographs were published with 
many new species and infraspecific taxa entirely based on 
subjective interpretations of sometimes minor morphologi-
cal differences. Nowadays, large monographic works that 
introduce large numbers of new species in Russula purely 
based on morphology are becoming increasingly rare in the 
modern era of sequence data. Indeed, with the introduction 
of ITS barcode sequences to characterize species most of 
the subjectivity in species recognition shifted from mor-
phology to interpretation of nucleotide differences (Li et al. 
2019a, b), especially since most new species are now often 
described by young mycologists with hardly any experience 
with morphological recognition of Russula species.

https://www.ffta-online.org/
https://www.ffta-online.org/
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More recently, there has been another sudden surge in 
novel Russula names with the publication in 2017, 2018 
and 2019 of respectively 78, 115 and 42 new Russula spe-
cies. This time, the explanation is entirely different from the 
one in 2011 as no monograph or other major revision is the 
origin of this avalanche of new names, but rather a purely 
technical implication of previously published phylogenetic 
results. Indeed, similarly to many other lineages of agaricoid 
mushrooms, earlier molecular phylogenies (e.g. Miller et al. 
2001; Lebel and Tonkin 2007) had suggested that several 
secotioid to entirely hypogeous genera in Russulales were 
possibly synonymous with older agaricoid genera, represent-
ing convergent evolutions toward similar morphologies in 
unrelated terminal clades. The publication of new species 
of ‘truffle-like’ Russula had started with a paper by Lebel 
and Tonkin (2007) describing several novel species from 
Australia supported by molecular sequence data. Massive 
recombination of the known species of these secotioid to 
hypogeous relatives into Russula followed only recently 
with papers published by Lebel (2017) and Elliot and Trappe 
(2018) (Table 6; Fig. 9).

CANTHARELLUS

Cantharellus, is the type genus of the cantharelloid clade 
or the order Cantharellales. The ancestor of Cantharellus 
occurred around late Jurassic (170–180 Mya) or earlier (280 
Mya) (Zhao et al. 2017a, b; Varga et al. 2019). In taxonomy 
study, it is a very old genus and the first published mention 
of the name ‘Cantharel’ date back to the mid-eighteenth cen-
tury (Adanson 1763), The genus delimitation and system-
atic placement of Cantharellus has a very turbulent history 
(Buyck et al. 2014), most likely due to the very poor diver-
sity of useful microscopic features for species recognition 

and the very similar overall morphology shared with many 
other mushroom genera. Of the 346 species described in 
Cantharellus at the end of the twentieth century, the genus-
wide type revisions by Eyssartier (2001) demonstrated that 
only 59 species were good members of Cantharellus; all 
other names had been recombined in as many as 40 different 
genera distributed over nine of the major clades in Agarico-
mycetes (Buyck et al. 2014).

Modern phylogenies have demonstrated that Cantharellus 
belongs to one of the oldest mushroom-forming clades in 
Basidiomycota (Zhao et al. 2017a, b). This might explain the 
poor diversity of microscopic features (no spore ornamenta-
tions, lack of well-differentiated cystidia in any of their tis-
sues) and the important variation in some of these, such as 
the instability of the number of spores produced per basid-
ium, or the absence or presence of clamp connections among 
infrageneric clades. It is therefore not surprising that phylo-
genetic analyses of sequence data have profoundly impacted 
species recognition that was, before the advent of molecular 
tools, primarily based on field habit. Also, a correct genus 
delimitation, in particular from its sister genus Craterellus, 
was only possible after the introduction of molecular data 
(Feibelman et al. 1994; Dahlman et al. 2000). Today, spe-
cies recognition in Cantharellus has primarily become a 
matter of sequence data, although successful sequencing of 
the typical fungal barcode (nr ITS) poses major problems 
because of its unusual length (up to > 1500 base pairs) and 
extreme variability, favoring the use of tef-1 sequences to 
characterize species (Buyck and Hofstetter 2011).

Species diversity of Cantharellus

Contrary to many other ectomycorrhizal genera, such as 
Russula, which are common in appropriate habitats on all 
continents, the existing biodiversity of Cantharellus varies 

Table 6  Number of new 
Russula species published per 
year between 2009 and 2020

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number 3 10 22 9 11 11 12 14 40 60 37 19
New species publication rate 0.0276 (248/750/12)

Fig. 9  Line chart of number of 
new Russula species published 
from 2009 to 2020
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greatly between continents (Buyck 2016) and reflects most 
likely its different evolutionary history. Indeed, whereas 
lower diversity in Europe may probably be explained by 
recent glaciations, both South America and Australia seem 
extremely poor in Cantharellus species, with only a hand-
ful of species known from either continent. This is in great 
contrast with the extreme biodiversity of Cantharellus in 
tropical Africa (including Madagascar), with already more 
than 90 different species, and the steadily growing num-
ber of chanterelles that are described from North America 
and Asia. Future biogeographic interpretations based on 
broadly sampled, multi-marker phylogenies will hopefully 
offer an appropriate explanation for the distribution pattern 
of Cantharellus.

New species publication rate

During the past 10 years the number of new Cantharellus 
species has been constantly growing at a rate of five to 15 
new species published every year, or a total of 90 new spe-
cies between 2010 and 2020. Compared to the 19 new Can-
tharellus species published between 2000 and 2009 (this 
number does not account for infra-specific or infra-generic 
taxa, nor for two species that have since been transferred 
to Craterellus), this is a considerable progress, putting the 
total number of accepted Cantharellus species now at 166 or 
almost three times more than there were 20 years ago. The 
publication rate of new species is not expected to diminish 
in the years to come as many undescribed taxa await descrip-
tion, particularly in Africa and Asia (Buyck 2016), justifying 
a total biodiversity estimate for Cantharellus ranging from 
250 to perhaps 300 species worldwide (Table 7, Fig. 10).

Plant parasitic basidiomycetes

RUST FUNGI

Rust fungi (Pucciniales) are amongst the most collected and 
studied fungi, in part due to their impact to agriculture as 
well as distinctive disease symptoms. Rust fungi are obli-
gate biotrophic pathogens of plants and the largest patho-
genic order in the Basidiomycota (Cummins and Hiratsuka 
2003). Rust fungi are highly host-specific, yet their evolu-
tion has been driven by host jumps to unrelated plants, fol-
lowed by adaptive radiation and switches to proximal hosts 
(van der Merwe et al. 2008; McTaggart et al. 2016; Aime 
et al. 2018a; Aime and McTaggart 2021). The phenotypic 

and genetic diversity of rust fungi is reflected across seven 
suborders and 18 families (Aime and McTaggart 2021).

The starting point for binomial names of rust fungi is Syn-
opsis Methodica Fungorum (Persoon 1801). By the height 
of the Agricultural Revolution in the 1850s, more than 1500 
rust fungi had been named and described, mostly from 
Europe and North America. Up to the end of the twentieth 
century, revisionary studies of rust fungi were based on mor-
phology (Sydow and Sydow 1904, 1915) and/or host range 
(Cummins 1937, 1940a, b, 1943a, b, 1945). Notable regional 
revisions of rust fungi have been composed for Australia 
(McAlpine 1906), Europe (Sydow and Sydow 1904, 1915; 
Dietel 1928), Japan (Hiratsuka et al. 1992), New Zealand 
(Cunningham 1931), North America (Arthur 1907–1931) 
and South Africa (Doidge 1950).

The largest radiation of rust fungi is found in the Puccini-
aceae, whose members shared a most recent common ances-
tor between 15 and 65 Mya (McTaggart et al. 2016; Aime 
et al. 2018a; Aime and McTaggart 2021). The evolutionary 
success of the Pucciniaceae is evident by (i) their known 
diversity that accounts for almost half of all rust fungi, 
including almost 4000 species in Puccinia, (ii) their ability 
to infect diverse and unrelated hosts, and (iii) multiple path-
ways of evolution to convergent hosts (Dixon et al. 2010).

There are a few plant families that do not host rust fungi, 
notably the Dipterocarpaceae and Restionaceae. In Aus-
tralia, two of the largest and most diverse plant families, 
Myrtaceae and Proteaceae, are hosts to very few rust fungi 
(Walker 1983), with exceptions in the Pucciniaceae, namely, 
Puccinia cygnorum (Shivas and Walker 1994) and Uredo 
xanthostemonis on Myrtaceae, and Puccinia grevilleae 
(McTaggart and Shivas 2008) and Uredo angiosperma on 
Proteaceae.

Species diversity of rust fungi

Approximately 320 genera of rust fungi have been described, 
of which ~ 125 generic names are in current use. Genera 
described before nomenclatural changes brought about by 
1F1N were often based on a life cycle stage (asexual taxa), 
which did not indicate evolutionary relationships between 
taxa. Some examples of these asexual rust genera include 
Campanulopsora, Canasta, Morispora (Yepes et al. 2007), 
Malupa (Ono et al. 1992), Petersonia and Wardia (Cummins 
and Hiratsuka 2003). Seven of the nine genera described 
in the last decade are monotypic and from Asia, Australia 
or South America, namely Austropuccinia (Beenken 2017), 
Caetea (Yepes and de Carvalho 2012), Crossopsorella 

Table 7  New species of 
Cantharellus published between 
2009 and 2020

New species publication rate 0.1153 (87/65/12)

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number 3 2 7 10 4 17 8 15 6 4 4 7
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(Souza et al. 2018), Neopuccinia (Junior et al. 2019), Qua-
sipucciniastrum (Qi et al. 2019), Puccorchidium and Sphe-
norchidium (Beenken and Wood 2015). The two exceptions 
are Neophysopella with 13 species (Ji et al. 2019) and Pelas-
toma with two species (Yepes et al. 2012). Three challenges 
that currently face taxonomic resolution of rust fungi at 

generic rank are (i) polyphyly of genera such as Puccinia, 
Pucciniastrum and Ravenelia, (ii) generic placement of spe-
cies in asexual taxa, and (iii) taxonomic placement without 
comparison to types (Aime and McTaggart 2021).

There are approximately 10,559 accepted names of rust 
fungi at species rank (www. Index Fungo rum. org, accessed 

Fig. 10  Line chart of number of new Cantharellus species published from 2009 to 2020

Fig. 11  Treemap of taxonomic placement at family and genus rank for 10,559 described species of rust fungi. Plotted using the Treemap pack-
age (Vitolo C. 2014. TreeMap,  available at https:// github. com/ cvito lo/r_ treem ap) in R (R Core Team 2014)

http://www.IndexFungorum.org
https://github.com/cvitolo/r_treemap
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9th Nov. 2020) (Fig. 11). This number was calculated by 
querying 110 generic names of rust fungi and exclud-
ing names that were variants below species rank as well 
as taxonomic or nomenclatural synonyms. The three most 
speciose genera, Puccinia (3978 species), Aecidium (1455 
species) and Uredo (1394 species), are polyphyletic (Aime 
and McTaggart 2021).

New species of rust will certainly be found in isolated, 
under-explored, biodiverse areas, as well as through dis-
covery of cryptic diversity in species complexes. For 
example, species diversity of rust fungi has increased 
through resolution of taxa in Chrysomyxa (Feau et al. 
2011), Coleosporium (McTaggart and Aime 2018), 

Dasyspora (Beenken et al. 2012), Endoraecium (McTag-
gart et al. 2015), Gymnosporangium (Zhao et al. 2016a, b), 
Melampsora (Toome and Aime 2015; Zhao et al. 2017a), 
Milesina (Bubner et al. 2019), Neophysopella (Chatasiri 
and Ono 2008), Phakopsora (Beenken 2014; Maier et al. 
2016), Phragmidium (Liu et al. 2018), Puccinia (Demers 
et al. 2017; Liu and Hambleton 2010, 2013), Puccinias-
trum (Liang et al. 2006), Ravenelia (Ebinghaus and Bege-
row 2018; Ebinghaus et al. 2018, 2020) and Uromycladium 
(Doungsa-ard et al. 2018) (Fig. 12).

Fig. 12  Lollipop plot of the number of described species of Puccinia from 1800 to 2020. Made using ggplot (Wickham 2016) in R (R Core 
Team 2014)

Table 8  Number of new species 
of selected rust fungi published 
in between 2009 and 2020

New species publication rate 0.0029 (228/6570/12)

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number 14 26 14 23 12 17 25 12 15 34 10 26
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New species publication rate

We searched MycoBank.org (Robert et al. 2013) to calcu-
late the number of names described after 2009 in the largest 
genera of rust fungi based on Fig. 11, namely Aecidium, 
Chrysomyxa, Dasyspora, Endoraecium, Gymnosporangium, 
Melampsora, Milesina, Neophysopella, Phakopsora, Phrag-
midium, Puccinia, Pucciniastrum, Ravenelia, Uredo, Uro-
myces and Uromycladium  (Table 8; Fig. 13).

We predict that the rate of discovery of new taxa of rust 
fungi will decline in the future. The rigor with which rust 
fungi were collected in the golden age of mycological dis-
covery (nineteenth and twentieth centuries) has declined. 
This is illustrated in Fig. 12 by the change in numbers of 
species of Puccinia described since 1801. Further, the rate 
of habitat loss bodes poorly for taxa that await discovery. We 
estimate that the number of extant rust fungi on this planet 
is ~ 10,000 species, which accounts for as yet unidentified 
taxonomic synonymy.

SMUT FUNGI

Classically, smut fungi are characterized by a specific life 
cycle that alternates between a dikaryotic, plant-parasitic 
stage and a haploid, saprobic yeast phase. The most charac-
teristic trait of smut fungi is their thick-walled teliospores, 
which often results in a sooty-like appearance of affected 
plant parts. Only recently has it been realized that this group 
of fungi, which is very well-characterized by its life cycle, 
represents a phylogenetically, heterogenous group that has 
evolved three times independently in Ustilaginomycotina, 
Microbotryales (Pucciniomycotina), and Entorrhizomycota 
(Begerow et al. 1997, 2014, 2018). Many taxa belonging to 
these clades do not exhibit the classical smut fungal lifestyle. 
In the Exobasidiomycetes (Ustilaginomycotina) deviations 
from the canonical smut fungal life cycle are often observed. 
Exobasidium species on Ericaceae or Microstroma species 
on various tree species, for instance, do not produce teli-
ospores anymore, but produce basidia directly from their 
hyphae through the stomata of their hosts (e.g., Begerow 
et al. 2001, 2002). Additionally, phylogenetic studies have 
shown that many lineages that are exclusively known as 

yeasts are found in these groups and it is assumed that sev-
eral lineages have lost the ability to parasitize plants (Wang 
et al. 2015c; Kijpornyongpan et al. 2018; Nasr et al. 2019).

Several genera of smut fungi consist exclusively of spe-
cies known only from their asexual states: Acaromyces, Fer-
eydounia, Golubevia, Jaminaea, Meira, Microbotryozyma, 
Moniliella, Quambalaria, Robbauera, Sympodiomycopsis, 
Tilletiopsis, and Violaceomyces. Many yeasts were classi-
fied in large asexual genera, e.g. Pseudozyma (asexual Usti-
laginaceae), Rhodotorula (asexual Microbotriales as well a 
few Ustilaginales and Microstromatales species), and Til-
letiopsis (asexual Exobasidiomycetes) until re-classification 
by Wang et al. (2015c, d). In Microstroma, Mycosarcoma, 
Moesziomyces, and Ustilentyloma it was possible to link 
independently discovered asexual and sexual states in sev-
eral instances. The correct placement of asexual species into 
sexual genera is often hampered by the lack of sequences 
derived from teleomorphs. It is likely that sexual parasitic 
states of asexual species will be discovered among known 
fungal species when sequenced.

Species diversity of smut fungi

Over 2000 species of smut fungi and related lineages are 
currently known. By far the most species-rich are Ustilag-
inomycotina (1906 species), followed by Microbotryales 
(128), and Entorrhizomycota (18). Smut fungi are found 
mostly on herbaceous host plants, and some of the Exoba-
sidiomycetes (e.g. Exobasidium, Graphiola, Microstroma, 
and Quambalaria) also occur on woody hosts. Smut fungi 
have been observed worldwide, including Tilletia schencki-
ana on Deschampsia antarctica from the Kerguelen Islands 
in the Antarctic region (Hennings 1906). The highest species 
diversity has been reported from the Northern Hemisphere, 
with most species in Europe and Asia. The available lit-
erature, monographs, and regional checklists suggest that 
these estimates of diversity are highly biased towards the 
northern Hemisphere, whereas other regions, especially in 
the tropics, are yet to be surveyed. The most comprehensive 
and still most up to date source concerning the diversity 
and distribution of smut fungi is the world monograph by 
Vánky (2011a).

Fig. 13  Line chart of new 
species of selected rust fungi 
published from 2009 to 2020
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Europe is the best studied continent (Vánky 1994), espe-
cially, Northern Europe (UK: Mordue and Ainsworth 1984; 
Norway: Jørstad 1963; Sweden: Lindeberg 1959; Nannfeldt 
1979; Finland: Liro 1924, 1938; Denmark: Rostrup 1890), 
Central Europe (Belgium: Vanderweyen and Fraiture 2014; 
Germany: Scholz and Scholz 1988; Klenke and Scholler 
2015; Austria: Zwetko and Blanz 2004; Switzerland: Zogg 
1986; Poland: Kochman and Majewski 1973; Hungary: 
Vánky 1985), and the Carpathian Region (Vánky 1985). 
Monographs or checklists of smut fungi in Southwestern, 
Southern, and Southeastern Europe are published for France 
(Viennot-Bourgin 1956), Iberian Peninsula (Almaraz 2002), 
Italy (Ciferri 1938), Slovenia (Lutz and Vánky 2009), Cro-
atia (Ivić et al. 2013), Romania (Săvulescu 1957; Vánky 
1985), and Bulgaria (Denchev 2001), and for Eastern 
Europe: for the Baltic States (Ignatavičiūtė 1975, 2001), 
European Russia (Karatygin and Azbukina 1989; Azbukina 
and Karatygin 1995), and Ukraine (Savchenko and Heluta 
2012). The distribution data for some of these countries are 
outdated while the information about the western and south-
ern parts of the Balkan Peninsula and the Aegean Islands is 
lacking.

For Asia, monographs or checklists of smut fungi are 
published for Siberia and Russian Far East (Karatygin and 
Azbukina 1989; Govorova 1990; Azbukina and Karatygin 
1995; Azbukina et al. 1995), Middle Asia (Uzbekistan: 
Ramazanova et al. 1987; and Kazakhstan: Schwarzman 
1960), Transcaucasus (Azerbaijan: Ulyanishchev 1952), 
Western Asia (Israel: Savchenko et al. 2015; Iran: Vánky 
and Abbassi 2013), Indian Subcontinent (Ahmad et al. 1997; 
Vánky 2007), Central and Eastern Asia (Mongolia: Braun 
1999; China: Guo 2000, 2011; Korean Peninsula: Denchev 
et al. 2007; Japan: Ito 1936; Kakishima 1982; Denchev et al. 
2013a), Indo-China (Thailand: Shivas et al. 2007), and Pap-
uasia (Papua New Guinea: Shivas et al. 2001). Many regions 
in Siberia, Middle Asia, Caucasus, Western and Central 
Asia, Indo-China, Malesia, and Papuasia are understudied 
or even unexplored.

In North America, monographs were published by Clin-
ton (1902, 1904, 1906), Zundel (1939), and Fischer (1953). 
The smut fungi of Mexico are presented in Durán (1987). 
Recently, a comprehensive monographic treatment of the 
smut fungi of Greenland was published by Denchev et al. 
(2020a). The largest gap of knowledge for this continent is 
Canada from where only a few articles have been published 
during the last 50 years.

For Central and South America and the Caribbean, mono-
graphs or checklists of smut fungi are published for Costa 
Rica (Piepenbring 1996), Panama (Piepenbring 2001), Cuba 
(Piepenbring and Hernández 1998), Colombia (Molina-
Valero 1980; Piepenbring 2002a), Bolivia (Piepenbring 
2002b), Brazil (Viegas 1944), and the Neotropics (Piepen-
bring 2003). A monographic treatment of the smut fungi of 

Argentina was published by Hirschhorn (1986). Neverthe-
less, few collection trips focused on this group have been 
carried out in this part of the world and the smut fungi of 
Central and South America and the Caribbean continue to 
be understudied.

In terms of the smut fungi, Africa is the least studied con-
tinent. There is a monograph of African smut fungi by Zam-
bettakis (1970, with a supplement in 1980), a monograph of 
South African smut fungi (Zundel 1938), and checklists of 
the smut fungi in Africa (Vánky et al. 2011), Ethiopia and 
Eritrea (Vánky 2005), and Malawi, Zambia, and Zimbabwe 
(Vánky and Vánky 2002).

For Australasia, there are monographs of the smut fungi 
of Australia (Vánky and Shivas 2008) and New Zealand 
(Vánky and McKenzie 2002). Australia is the continent from 
where the highest number of smut fungi have been described 
for the last few decades.

Compared to filamentous smuts, the number of discov-
ered yeast taxa in the Ustilaginomycotina is rather small and 
currently about 50 species are recognized. No yeast-like taxa 
are known from the Entorrhizomycota. Due to the limited 
number of observations, geographic distribution patterns of 
these yeast species are mostly unknown. Often these are also 
recovered from geographic regions or ecosystems that do not 
harbour known host species. For example, several asexual 
species of Farysia, which parasitizes hosts belonging to the 
Cyperaceae, were described from leaves of different plants 
worldwide with no link to a sexual stage (Inácio et al. 2008; 
Rush et al. 2020). Often these yeasts are found on the surface 
of leaves (Fonseca and Inácio 2006; Kemler et al. 2017) and 
some yeast taxa interact with plants in other ways than do 
smut fungi. Several new Exobasidiomycetes yeasts (Enty-
loma, Golubevia, and Jamesdicksonia) for instance were iso-
lated from apples in different countries and were ultimately 
linked to the postharvest disorder named “white haze”, an 
intensive fungal growth on the apple fruit surface result-
ing in a compromised quality of the fruits (Boekhout et al. 
2006; Richter et al. 2019). Fungi morphologically similar 
to the asexual morphs of Ustilaginomycotina were also fre-
quently isolated from air, soils, or animal (including human) 
samples (reviewed in Boekhout et al. 2011; Begerow et al. 
2014, 2018). It is also worth mentioning that some yeast 
states of smuts (e.g., Acaromyces, Meira, some members of 
Microstromatales) are associated with insects or insect frass. 
Whether these fungi performed a remarkable host-shift or 
use the insects as vectors requires further studies.

Biased accounts of species diversity to a few regions 
is a difficulty to estimate the exact number of smut fungi 
throughout the world. As can be seen from the species 
descriptions throughout the last decade, it is also clear that 
a handful of researchers have described the majority of smut 
fungi in this period. Further problems result from the fact 
that the species concept in smut fungi have changed from a 
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purely morphological to a phylogenetic species concept and 
most species are nowadays described based on molecular 
markers. This research has shown that sumt fungi are highly 
host specificity, and many species described as multi-host 
parasites potentially harbor a large number of cryptic spe-
cies. However, many smut fungal specimens are decades old 
and it can become difficult to use molecular tools to delimit 
potential new species. Next to finding unknown species in 
poorly surveyed regions of the planet, it will also be essential 
to collect specimens from a majority of already described 
species throughout the world to understand the real extent 
of cryptic species diversity.

Describing species diversity of yeast-like taxa faces its 
own challenges. How to bring about germination and pro-
liferation on artificial media of asexual states of smut fungi 
has been known for almost 100 years, and isolation of smut-
related yeasts is not uncommon. The cultivation of asexual 
species can be challenging due to their slow growth and 
special requirements, including low incubation temperatures 
(Boekhout et al. 2006). Some smuts produce anamorphs 
in situ, e.g., Anthracoidea, Entyloma, Exobasidium, Micro-
botryum, and Ustilago. The characteristics of these asexual 
morphs unfortunately were rarely studied in detail, however 
there are exceptions (e.g., Lehtola 1940). As a result, our 
understanding of growth requirements of asexual states of 
smuts is mainly based on species described as yeasts. Stud-
ies of the physiology of these fungi can potentially improve 
cultivation success of smuts in the future.

New species publication rate

In the last 11 years 162 new species of smut fungi and related 
lineages have been described and the numbers of species has 
risen to over 2000 in 2020. Of the newly described species 
in the last 11 years, 22 are only known in their asexual yeast 
stage. It has been suggested that there could be around 4500 
species of smut fungi (Vánky 2011a, b). Taking into account 
the fact that the majority of smut fungi found so far are para-
sitic on host plants in the Poaceae and Cyperaceae, and the 
centres of diversity of these plant families are in regions that 
have not been extensively surveyed for smut fungi, it seems 
reasonable that the number of species could be double of 
what is known today.

No estimations of yeast-like taxa phylogenetically related 
to smuts are available to date, and these fungi show no geo-
graphic and host-dependent distribution so far. Therefore, it 
remains unknown how yeast-like taxa will influence species 
diversity in Ustilaginomycotina and Microbotryales. Pub-
lic sequences that are related to smut fungi, but which are 
not named as independent species, indirectly reflect a larger 
diversity of yeasts in the two groups. For instance, several 
genera and possibly families in Exobasidiomycetes await 
description (Richter et al. 2019). These efforts are hampered 

by the ongoing, but yet incomplete, reclassification of tele-
omorphic smuts and yeast-like forms. Additionally, the for-
merly polyphyletic yeast genera Pseudozyma, Rhodotorula 
and Tilletiopsis have been restricted to clades that contain 
respective type species. Therefore, either taxonomic novel-
ties should be described in already existing sexual genera 
(e.g., Entyloma, Graphiola) or in newly erected genera, like 
in the cases of Jaminaea, Meira, Sympodiomycopsis, and 
Violaceomyces (Table 9; Fig. 14).

Species number in Basidiomycota

The above case studies represent five main groups of basidi-
omycetes: saprophytes of grass/forest-litter, wood-decay-
ing, ectomycorrhizal, yeast-like and plant parasitic. We 
calculated the publication rate of new species in each of 
the groups in the past twelve years (2009–2020; Table 10). 
Based on the latest taxonomic system of Basidiomycota (He 
et al. 2019), we applied the publication rate from the case 
studies to all the same group of Basidiomycota on a family 
rank. Estimated species number of each order are listed in 
Table 11. The analysis predicted there will be 54,000 species 
in Basidiomycota describled until 2030.

A total of 41,270 species known in Basidiomycota 
account for about one third of the known fungal diversity of 
144,000 species worldwide (He et al. 2019; Wijayawardene 
et al. 2020). Thus, we estimate the species number of Basidi-
omycota to be 1.4–4.2 million worldwide which is the 1/3 
of mid-values in previous studies (2.2–3.8 million in Hawk-
sworth and Lücking 2017; 11.7–13.2 million in Wu et al. 
2020).

Discussion

Our analyses of species publication rates in the past twelve 
years and the species numbers in currently recognized fami-
lies of Basidiomycota predicted more than 54,000 species 
in Basidiomycota described by 2030. Publication rates of 
new spcies differ among taxa and reflect their progress on 
biodiversity research.

Among the analysed five groups, dimorphic yeast-like 
basidiomycetes showed the highest new species publication 
rate (0.0599). A possible explanation is that yeasts are wide-
spread organisms and inhabit a broad range of habitats (Peter 
et al. 2017). Yeasts grow relatively well on artificial media 
and their identification is straightforward (Kurtzman et al. 
2011; Boekhout et al. 2021). In the past 10 years, numerous 
taxonomic novelties representing yeast-like fungi (includ-
ing allied dimorphic taxa) have been discovered from all 
over the world. Although the majority of publications in 
that period were dedicated to descriptions of a few species 
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(usually 1–2 species per publication, Yurkov 2017), more 
than 100 new species from China were documented in a 
single study (Li et al. 2020a, b). According to the new spe-
cies numbers published in the past ten years, the number of 
known dimorphic yeast-like fungi has rapidly grown, espe-
cially in the order Tremellales, where several short-term 
peaks in publication rates were observed (see Fig. 3). It is 
likely that the same trend will continue and the diverisity of 
dimorphic yeast-like taxa will be increase in the following 
ten years with more new species and genera described in 
the future (e.g., Millanes et al. 2021). Exploration of as yet 
understudied regions and environments, as well as a more 
precise identification of cryptic morphologically indistin-
guishable species will substantially contribute to the species 
diversity in these fungi.

Unlike basidiomyceteous yeasts, the new species publica-
tion rate of plant parasitic basidiomycetes was relatively low 
and rather stable over the time. This is probably because of 
their obligate parasitic relationship with host plants. The 
stable number of extant plants restricts the diversity of plant 
parasitic basidiomycetes to some extent. The fastest rate of 
new species description in Puccinia occurred between 1900 
and 1950 (see Fig. 12), and has declined in the last 50 years. 
The description of new species of plant parasites is biased 
by their agricultural importance. The smut fungi are well 
documented in the northern hemisphere, and Europe is well 

sampled. In large parts of Asia, Africa and Latin America, 
where high species diversity must be assumed, only a few 
studies have been conducted (e.g., Piepenbring et al. 2012).

The rates of publication of sporocarp-forming basidiomy-
cetes differ greatly between taxa. This is probably due to 
their relatively complex lifestyles and distribution patterns 
which determine field observations and, thus, the discovery 
of new species. The species diversity of sporocarp-forming 
basidiomycetes is insufficiently studied. The highest spe-
cies diversity is reported from temperate zones (Varga et al. 
2019), and it has also been shown to be high in the tropical 
zone, such as diversity of Agaricus (Hyde et al. 2018). Fur-
ther studies of sporocarp-forming basidiomycetes are needed 
to understand the diversity of this group of fungi.

The estimated number of 1.4–4.2 million species in 
Basidiomycota worldwide is much larger than the known 
diversity. Future discoveries of biodiversity face several 
challenges from anthropogenic climate change and grow-
ing pressure on natural environments, including habitat 
fragmentation and biodiversity loss. Reliable identifica-
tion of new species requires a substantial investment of 
time and resources to document diverse properties such 
as morphology, physiology, life-cycle, host relationships, 
and nucleotide sequences not restricted to the common 
DNA-barcode, ribosomal ITS. High numbers of pre-
dicted but yet undescribed species needs the mycological 

Table 9  Number of new smut species in different orders published from 2009 to 2020

Sub-Phylum Class Order 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 New species publication rate

Ustilaginomycotina Exobasidiomycetes Ceraceosorales - - - - - - - 2 - - - - 0.001 (69/579/12)

Doassansiales - - - - - - - - - - - -

Entylomatales 1 - - - 2 4 - 1 3 6 5 -

Exobasidiales 5 - - 4 1 1 - 1 1 1 1 3

Georgefischeriales - - - - 1 - - 1 - - 1 -

Golubeviales - - - - - - - - - - 1 -

Microstromatales - - - - - - - 1 7 1 2 -

Robbauerales - - - - - - - - - - - -

Tilletiales 3 1 1 - - 3 - - - 4 - -

Malasseziomycetes Malasseziales - - 1 - - - - 3 - 1 - - 0.0321 (5/13/12)

Moniliellomycetes Moniliellales - - - 2 1 - - - - 4 - - 0.0729 (7/8/12)

Ustilaginomycetes Cintractiellales - - - - - - - - - 1 - 1 0.0061 (85/1155/12)

Uleiellales - - - - - - - - - - - -

Urocystidales 1 - 3 2 1 1 1 - - 2 - 2

Ustilaginales 3 - 17 2 15 3 3 3 14 4 2 2

Violaceomycetales - - - - - - 2 - - - - -

Pucciniomycotina Microbotryomycetes Microbotryales - - - 1 1 - - - - 2 1 1 0.0041 (6/122/12)

Based on: Afshan et al. 2020; Aime et al. 2018b; Albu et al. 2015; Bao et al. 2010; Bezerra et al. 2018; Brewer et al. 2014; Cabañes et al. 2011, 2016; Cao et al. 2018; Chamnanpa et al. 2013; Crous et al. 2019; 

Denchev and Denchev 2011a, 2011b, 2012, 2013, 2016a, 2016b, 2016c, 2018a,b, 2019; Denchev et al. 2010, 2011a, 2011b; 2012, 2013a, 2013b, 2016, 2018, 2019, 2020b; Francesca et al. 2016; Guo and Xu 

2013; He et al. 2011; Honnavar et al. 2016; Kennedy et al. 2012; Kijpornyongpan and Aime 2016, 2017; Kruse and Thines 2019; Kruse et al. 2018a, 2018b, 2018c, 2020; Li et al. 2014b, 2017a, 2017b, 2019, 

2020; Limtong et al. 2017; Lorch et al. 2018; Lutz et al. 2012; Macedo et al. 2016; McTaggart et al. 2020; Mekha et al. 2014; Nasr et al. 2014, 2017, 2019; Oliveira et al. 2013, 2014; Piątek 2014; Piątek and 

Shivas 2011; Piątek et al. 2011, 2012a,b, 2013a,b, 2015a,b, 2016; Piepenbring et al. 2012, 2020; Richter et al. 2019; Riess et al. 2019; Rooney-Latham et al. 2017; Rush and Aime 2013; Rush et al. 2020; 

Savchenko 2015; Savchenko and Carris 2017; Savchenko et al. 2013, 2014a,b; 2016, 2020; Shivas et al. 2011, 2012; Singh et al. 2020; Sipiczky 2020; Stajsic et al. 2018; Sun et al. 2018; Thanh and Hien 2018; 

Thanh et al. 2012, 2013, 2018; Vánky 2011b, 2013; Vánky and Abbasi 2011a,b; Vánky and Salo 2011; Vánky et al. 2013; Ziegler et al. 2018
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community to speed-up publication rates to formally doc-
ument diversity in a race against biodiversity loss (Pearce 
et al. 2020).

In the past decade, molecular tools facilitated the iden-
tification of known and novel species of fungi and helped 
to produce robust single- and multi-gene phylogenies. For 

example, large monographic works that introduced large 
numbers of new species in Russula purely based on mor-
phology may presently be viewed doubtful in the modern 
era of sequence data. Indeed, with the broad introduc-
tion of the ITS-barcode (as well as other sequences) to 

Fig. 14  Line chart of number of new smut species in different orders from 2009 to 2020

Table 10  The estimated species number of case studies

Case study Groups
Publication rate 

from 2009 to 2020

Species number 

in 2020

Estimated species 

number in 2030

Agaricus Grass/forest-litter saprobic 0.0412 600 898 

Ganoderma Wood-decaying 0.0313 180 245

Tremellomycetes

Yeast-like

0.0557

0.0599

629 1125 

Cystobasidiomycetes 0.2679 59 106 

Microbotryomycetes 0.0304 284 508 

Gyroporus

Ectomycorrhizal

0.15

0.0465

35 55 

Tricholoma 0.0133 250 394 

Russula 0.02276 3000 4,726 

Cantharellus 0.1154 166 262 

Rust*

Plant parasitic

0.0029

0.0199 

6798 8275 

Exobasidiomycetes 0.001 648 789 

Malasseziomycetes 0.0321 18 22 

Moniliellomycetes 0.0729 15 18 

Microbotryomycetes 0.0041 128 156 

Ustilaginomycetes 0.0061 1240 1509 

*Rust data including Aecidium, Chrysomyxa, Dasyspora, Endoraecium, Gymnosporangium, Melampsora, Milesina, 

Neophysopella, Phakopsora, Phragmidium, Puccinia, Pucciniastrum, Ravenelia, Uredo, Uromyces and Uromycladium.
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Table 11  The predicted number of species in each order of the Basidiomycota in 2030

Subphylum Class Order Groups included Species number 
estimated in 
2030

Total

Agaricomycotina Agaricomycetes Agaricales Wood-decay, grass/forest-litter sapro-
phytic, ectomycorrhizal

24,508

Agaricomycotina Agaricomycetes Amylocorticiales Wood-decay 50
Agaricomycotina Agaricomycetes Atheliales Wood-decay 115
Agaricomycotina Agaricomycetes Auriculariales wood-decay 190
Agaricomycotina Agaricomycetes Boletales Ectomycorrhizal, wood-decay 3133
Agaricomycotina Agaricomycetes Cantharellales Ectomycorrhizal

Wood-decay
859

Agaricomycotina Agaricomycetes Corticiales Wood-decay 112
Agaricomycotina Agaricomycetes Geastrales Grass/forest-litter saprophytic 231
Agaricomycotina Agaricomycetes Gloeophyllales Wood-decay 52
Agaricomycotina Agaricomycetes Gomphales Ectomycorrhizal, wood-decay 633
Agaricomycotina Agaricomycetes Hymenochaetales Wood-decay 1305
Agaricomycotina Agaricomycetes Hysterangiales Ectomycorrhizal, grass/forest-litter 

saprophytic
208

Agaricomycotina Agaricomycetes Jaapiales Wood-decay 2
Agaricomycotina Agaricomycetes Lepidostromatales Yeast 20
Agaricomycotina Agaricomycetes Phallales Grass/forest-litter saprophytic 205
Agaricomycotina Agaricomycetes Polyporales Wood-decay 2772
Agaricomycotina Agaricomycetes Russulales Ectomycorrhizal, grass/forest-litter 

saprophytic, Wood-decay
6662

Agaricomycotina Agaricomycetes Sebacinales Wood-decay 52
Agaricomycotina Agaricomycetes Stereopsidales – 15
Agaricomycotina Agaricomycetes Thelephorales Ectomycorrhizal 506
Agaricomycotina Agaricomycetes Trechisporales Wood-decay 134
Agaricomycotina Agaricomycetes Tremellodendropsidales – 8
Agaricomycotina Dacrymycetes Dacrymycetales Wood-decay 149
Agaricomycotina Dacrymycetes Unilacrymales Wood-decay 1
Agaricomycotina Tremellomycetes Cystofilobasidiales Yeast 52
Agaricomycotina Tremellomycetes Filobasidiales Yeast 91
Agaricomycotina Tremellomycetes Holtermanniales Yeast 23
Agaricomycotina Tremellomycetes Tremellales Yeast

Wood-decay
501

Agaricomycotina Tremellomycetes Trichosporonales Yeast 109
Agaricomycotina 42,700
Pucciniomycotina Agaricostilbomycetes Agaricostilbales Yeast 86
Pucciniomycotina Atractiellomycetes Atractiellales Yeast 104
Pucciniomycotina Classiculomycetes Classiculales Yeast 7
Pucciniomycotina Cryptomycocolacomycetes Cryptomycocolacales Yeast 4
Pucciniomycotina Cystobasidiomycetes Buckleyzymales Yeast 9
Pucciniomycotina Cystobasidiomycetes Cystobasidiales Yeast 52
Pucciniomycotina Cystobasidiomycetes Erythrobasidiales Yeast 13
Pucciniomycotina Cystobasidiomycetes Naohideales – 1
Pucciniomycotina Cystobasidiomycetes Sakaguchiales Yeast 9
Pucciniomycotina Microbotryomycetes Heterogastridiales Yeast 4
Pucciniomycotina Microbotryomycetes Kriegeriales Yeast 13
Pucciniomycotina Microbotryomycetes Leucosporidiales Yeast 20
Pucciniomycotina Microbotryomycetes Microbotryales Plant parasitic 156
Pucciniomycotina Microbotryomycetes Sporidiobolales Yeast 70
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characterize species, the weight in species recognition 
is frequently given not to morphological characters but 
to the interpretation of nucleotide differences, especially 
since most new species are now often described by young 
mycologists with little experience with morphological rec-
ognition. This situation illuminates a lack of mycologists 
with broad taxonomic skills and highlights the necessity 
to educate more young mycologists in rapidly developing 
regions, like Asia (Hyde et al. 2020a, b).

To efficiently explore the species diversity in Basidio-
mycota, both temporally and geographically, a joint global 
initiative by mycologists is needed. In the past ten years, 
diversity, ecology and systematics of basidiomycetes were 
studied globally, though the particular focus of the studies 

differed among the taxa. In sporocarp-forming fungi, Aga-
ricus was intensively studied in an international collabora-
tion between Asian, European and USA researchers. As a 
result, a large number of new species were described from 
in the tropical zones of China and Thailand, making that 
area the primary source of new species in the last dec-
ade. A robust system for classification of Agaricus species 
was established and a total of 178 Agaricus species were 
described worldwide (Zhao et al. 2011, 2016a, b; Chen 
et al. 2017; He et al. 2017; Callac and Chen 2018). Thus, 
we appeal for a broad global collaboration focusing on 
biodiversity and taxonomic studies in Basidiomycota in 
the future, not only in well-explored areas, but also other 
unexplored regions.

Table 11  (continued)

Subphylum Class Order Groups included Species number 
estimated in 
2030

Total

Pucciniomycotina Mixiomycetes Mixiales Yeast 2
Pucciniomycotina Pucciniomycetes Helicobasidiales Plant parasitic 39
Pucciniomycotina Pucciniomycetes Pachnocybales – 1
Pucciniomycotina Pucciniomycetes Platygloeales Plant parasitic, wood-decay 30
Pucciniomycotina Pucciniomycetes Pucciniales Plant parasitic 7980
Pucciniomycotina Pucciniomycetes Septobasidiales Plant parasitic 5
Pucciniomycotina Spiculogloeomycetes Spiculogloeales – 12
Pucciniomycotina Tritirachiomycetes Tritirachiales Yeast 4
Pucciniomycotina 8621
Ustilaginomycotina Exobasidiomycetes Ceraceosorales Plant parasitic 4
Ustilaginomycotina Exobasidiomycetes Doassansiales Plant parasitic 66
Ustilaginomycotina Exobasidiomycetes Entylomatales Plant parasitic 233
Ustilaginomycotina Exobasidiomycetes Exobasidiales Plant parasitic 135
Ustilaginomycotina Exobasidiomycetes Georgefischeriales Plant parasitic 56
Ustilaginomycotina Exobasidiomycetes Golubeviales Yeast 4
Ustilaginomycotina Exobasidiomycetes Microstromatales Plant parasitic 58
Ustilaginomycotina Exobasidiomycetes Robbauerales Yeast 2
Ustilaginomycotina Exobasidiomycetes Tilletiales Plant parasitic 233
Ustilaginomycotina Malasseziomycetes Malasseziales Yeast 38
Ustilaginomycotina Moniliellomycetes Moniliellales Yeast 20
Ustilaginomycotina Ustilaginomycetes Urocystidales Plant parasitic 355
Ustilaginomycotina Ustilaginomycetes Ustilaginales Plant parasitic 313
Ustilaginomycotina Ustilaginomycetes Cintractiellales Plant parasitic 1
Ustilaginomycotina Ustilaginomycetes Ustilaginales Plant parasitic 837
Ustilaginomycotina Ustilaginomycetes Uleiellales Plant parasitic 2
Ustilaginomycotina Ustilaginomycetes Violaceomycetales Yeast 2
Ustilaginomycotina 2359
Wallemiomycotina Wallemiomycetes Geminibasidiales Grass/forest-litter saprophytic 3
Wallemiomycotina Wallemiomycetes Wallemiales Grass/forest-litter saprophytic 12
Wallemiomycotina 15
Total 53,695

“–” means group uncertain
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