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We propose a topology optimization-based method for optimal design of cooling
systems in the formof amathematical gamebetween twoplayers trying to reach a
compromise between limiting the amount of a coolingmedium used and obtain-
ing low temperatures in the design domain. The flow of the cooling medium is
governed by a Stokes–Brinkman flow model with penalty, while the tempera-
ture is governed by a stationary convection–diffusion problem whose solution is
approximated using a finite element method with consistent stabilization. Exis-
tence of solution for the continuumproblems and finite element convergence are
shown. The idea and performance of the proposed design method are illustrated
by numerical examples based on a problem-setting inspired by an industrial
design problem for a gas turbine part. The method exhibits good convergence
and is able to generate meaningful design concepts representing various levels
of compromise between limited use of cooling medium and low temperatures.

1 INTRODUCTION

Many products, ranging from phones and computers to jet engines and industrial gas turbines, rely on efficient cooling
to function properly. Design of such products requires, as a minimum, taking into account the physics of temperature
and fluid flow and design criteria associated with the respective physical domain. Such design criteria are potentially
conflicting: on the one hand, it is desirable to keep temperatures low, but on the other hand, one may wish to reduce fan
noise, energy spent on pumping a cooling fluid, or limit the amount of coolant used. Optimal design of cooling systems is
thus clearly a challenging multiphysics, multicriteria optimization problem.
In this paper, we consider a method for design of cooling systems using topology optimization (TO), a computer-based

tool for automatic, optimal design [6, 12]. Existing literature on TO inmultiphysics problems include articles on linear [20]
and nonlinear [10] thermo-elasticity; design of electro-thermo-mechanical systems [49]; coupled thermal-fluid problems
[17, 24, 28, 41], for example, in design of heat sinks [3, 52, 62] or heat exchangers [22]; problems with fluid–structure
interaction [17, 32, 35, 40, 58]; and combined flow and mass transport for battery design [60].
The method for design of cooling systems proposed herein is based on a physics model in the form of a coupled station-

ary thermal-fluid boundary value problemwith flow in solid regions penalized using a design-dependent Brinkman term,
an idea due to Borrvall and Petersson [8], which is now extensively used in the field [2]. Since its inception in 2003 [8],
research on TO in flow problems has gone in two directions: on the one hand, towardsmore advanced flowmodels, includ-
ing Navier–Stokes (N-S) with turbulence models [14, 48, 61]; and on the other hand towards simpler models such as Darcy
flow [1, 4, 28, 42, 63]. In the industrial problem for design of internal cooling channels on which our numerical examples
are loosely based (see Figure 1 below), we expect designs with many small channels. For such designs, simple flowmodels
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F IGURE 1 Setup for the 2D examples. The left panel shows a quite realistic geometry including thermal boundary conditions and an
input pressure (traction) 𝑡 on the top. The middle and right plots show 2D versions of the setup with boundary conditions and loads for the
fluid (left) and the temperature (right) problem. The domain thickness (into the paper) is 3 cm. The thick solid lines indicate nondesignable
outer parts. The distributed heat source 𝑄 is introduced to model convection on the sides.

have been shown to work well [28] and we, therefore, investigate the use of a Stokes flowmodel with the aim of achieving
meaningful conceptual designs at low-to-moderate computational cost (recent work on Stokes flow in TO include
Refs. [31, 37, 38, 56]). Gersborg-Hansen et al. [18], fig. 3] demonstrated that using N-S rather than Stokes flow can lead to
substantially different designs, but whether such differences are seen will of course depend on the optimization problem
formulation and the Reynolds number. The authors of Ref. [18] sought to minimize viscous drag; here we consider an
objective more related to maximizing it, and we did not observe significant differences in the design when optimizing
using N-S flow (see Figure 6 below). Nevertheless, more detailed investigations on the use of advanced flow models for
our problem setup is an interesting direction for future research.
For the flow problem, we use a penalty approach [36] with only the velocity as an unknown field. Compared to a mixed

formulation including also the hydrostatic pressure as an unknown, this leads to a smaller and positive definite stiffness
matrix. A drawback of the penalty method is that it adds to the ill-conditioning of the stiffness matrix, thus degrading
the performance of iterative linear solvers. For 2D andmoderate-sized 3D problems however, the penalty approach with a
direct linear solver based on Cholesky factorization is very efficient and robust. An advantage of using a direct solver is the
possibility to reuse the factor of the stiffness matrix from the state problem when computing derivatives. This advantage
increases with the number of flow-dependent functionals in the problem. In the problem treated herein, there is one state
and one adjoint flow problem, so an iterative solver, applied to a larger indefinite mixed formulation, would essentially
have to be twice as fast in solving each of these problems to be competitive with the penalty approach.We also remark that
the highly accurate solution provided by a direct solver may lead to more accurate derivatives compared to an iterative
solver, which may be quite costly if forced to run to the same level of accuracy as a direct solver. A numerical comparison
with a mixed (stable) formulation is provided at the end of Section 5.2 and shows no significant differences in terms of
optimized design compared to the penalty approach.
A side effect of using a method which allows some compressibility is that, even with appropriate boundary conditions,

the stiffnessmatrix in our temperature problem is not automatically positive definite.We show however that if the penalty
parameter is large enough, the bilinear form will be coercive, and, therefore, the stiffness matrix of a conforming finite
element (FE) method will indeed be positive definite. This condition is not restrictive, because in practise, a fairly large
value of the penalty parameter is needed anyway to ensure that the flow is indeed nearly incompressible; otherwise one
typically obtains nonsensical designs without channels (see e.g., fig. 15a in Ref. [25]). The fact that we do not assume
complete incompressibility in the continuumproblem also enables us to show convergence of solutions of sequences of FE
discretized versions of our design problem in Section 4.1 without requiring the penalty parameter to tend to infinity, which
would cause numerical difficulties. While FE convergence proofs can be found for elasticity [7, 39] and flow problems
[8, 37], we are not aware of any such proofs for the type of thermal-fluid problem treated herein.
In the design-problem treated herein, we seek to simultaneouslyminimize the average temperature in the solidmaterial

and the amount of fluid used for cooling. This leads to a mathematical game [5], or a multicriteria optimization problem
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[33], which is cast as a standard single-criterion optimization problem to minimize a weighted sum of the two objectives.
An issue that can arise in such problems is the different scaling of the objectives, and to address this, we use a numerical
scaling scheme described in Ref. [19] specialized to our case in Section 3.1 below. The result is a well-behaved optimization
problem inwhich the weights of the two objectives can be controlled in an intuitive way (e.g., small changes of the weights
do not lead to wildly different designs), enabling a designer to easily generate different concepts in the range from from
designs optimized for minimum fluid flow to designs optimized only for minimum temperature.

2 THE STATE PROBLEMAND ITS PARAMETRIZATION

The design domainΩ ⊂ ℝ𝑑, 𝑑 = 2 or 3, is an open, bounded set with Lipschitz boundary Γ and outward normal 𝒏. We use
standard density-based TO [6], so the design is described by a scalar field 𝜌 ∈ 𝐿∞(Ω), which should, in each point, ideally
only take on the value 0 (fluid) or 1 (solid). The design is subject to the point-wise bounds 0 ≤ 𝜌 ≤ 1 almost everywhere
(a.e.) in Ω and penalization described below is used to achieve close to binary-valued designs. Following Bourdin [9], we
use a regularized density �̃� defined at each point 𝒙 ∈ Ω as the linear convolution

�̃�(𝜌)(𝒙) = ∫
Ω

𝜌(𝒚)Ψ(𝒙, 𝒚) d𝒚, (1)

in which the kernel

𝜓(𝒙, 𝒚) =
max(0, 𝑅 − ||𝒙 − 𝒚||)

∫
Ω
max(0, 𝑅 − ||𝒙 − 𝒛||) d𝒛 . (2)

Here 𝑅 is the filter radius, || ⋅ || is the Euclidean norm on ℝ𝑑, and the normalization ensures that 𝜌 ∈ [0, 1] a.e. implies
that �̃�(𝜌) ∈ [0, 1] everywhere inΩ. The regularization allows us to prove existence of a solution in the continuum-problem
(see Appendix A), gives some control of the size of the cooling channels, and prevents numerical issues such as FE mesh-
dependent designs and checkerboards associated with low-order FEs [50].

2.1 The flow problem

We consider nearly incompressible Stokes–Brinkman flow with velocity (𝒖 = 𝟎 on Γ𝑢 ⊂ Γ) and traction (𝝈𝒏 = 𝒕 on
Γ𝑡 = Γ ⧵ Γ𝑢) boundary conditions. The flow problem reads

Find 𝒖 ∈ 𝑽 ∶ 𝑎𝐹(𝜌; 𝒖, 𝒗) = 𝓁(𝒗), ∀𝒗 ∈ 𝑽, (3)

where 𝑽 = {𝒗 ∈ 𝑯1(Ω) ≡ [𝐻1(Ω)]𝑑 |𝒗 = 𝟎 on Γ𝑢} (here and in the following, bold font is used to denote spaces of
vector- or matrix-valued functions). The symmetric, bilinear form is given by

𝑎𝐹(𝜌; 𝒖, 𝒗) = ∫
Ω

𝛼(�̃�)𝒖 ⋅ 𝒗 d𝑉 + ∫
Ω

2𝜇𝜺(𝒖) ∶ 𝜺(𝒗) d𝑉 + ∫
Ω

𝜆(∇ ⋅ 𝒖)(∇ ⋅ 𝒗) d𝑉, (4)

where 𝜺(𝒖) = 1

2
(∇𝒖 + ∇𝒖T), 𝜇 > 0 is the viscosity, 𝜆 ≥ 0 is the penalty parameter, and the inverse permeability [8]

𝛼(�̃�) = 𝛼 − (𝛼 − 𝛼)(1 − �̃�)
1 + 𝑞

(1 − �̃�) + 𝑞
, (5)

where 0 ≤ 𝛼 ≪ 𝛼 < ∞, so that �̃� = 0 (fluid) implies 𝛼 = 𝛼 and �̃� = 1 (solid material) implies 𝛼 = 𝛼. The parameter 𝑞 > 0,
with larger values giving higher penalization of intermediate density values in (0,1) with an appropriate optimization
problem formulation (c.f. [34, 45, 51]). Finally, the load functional in (3) is given by

𝓁(𝒗) = ∫
Γ𝑡

𝒕 ⋅ 𝒗 d𝐴, (6)

with traction 𝒕 ∈ 𝑳2(Γ𝑡).
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Since 𝛼 ≥ 0 for all admissible 𝜌, 𝜆 ≥ 0, and 𝜇 > 0, coercivity of the bi-linear form (4) follows fromKorn’s inequality pro-
vided |Γ𝑢| > 0. Continuity of 𝓁 over𝑯1(Ω) is established using Cauchy–Schwartz inequality followed by a trace theorem
[44, Theorem 6, p. 240]. Existence of a unique solution to (3) then follows from the Lax–Milgram lemma.

Remark 1. In most works on TO in flow problems, the inlet boundary condition is a prescribed velocity at a fixed location.
Here, however (see the numerical examples below), we prescribe nonzero traction on a part of the design domain, and
the optimization solver can itself choose where to add or remove material in order to create inlets. □

2.2 The temperature problem

The temperature is governed by a linear, stationary boundary value problem with temperature (𝑇 = 𝑇0 on Γ𝑇), heat flux
(𝒒 ⋅ 𝒏 = 0 on Γ𝑞), and convection (𝒒 ⋅ 𝒏 = 𝛼𝑇(𝑇 − 𝑇∞) on Γ𝛼) boundary conditions on three disjoint boundary parts.
The bilinear form for the temperature problem is taken as

𝑎𝑇(𝜌, 𝒖; 𝑇, �̃�) = ∫
Ω

𝑘(�̃�)∇𝑇 ⋅ ∇�̃� d𝑉 + ∫
Ω

𝑐(𝒖 ⋅ ∇𝑇)�̃� d𝑉 + ∫
Γ𝛼𝑇

𝛼𝑇𝑇�̃� d𝐴, (7)

where the conductivity 𝑘(�̃�) = 𝑘𝑓 + (𝑘𝑠 − 𝑘𝑓)𝑔(�̃�), with 𝑘𝑓 > 0 and 𝑘𝑠 > 0 being the conductivity of fluid and solid,
respectively; and 𝒖 = 𝒖(𝜌) is the solution to (3). The function 𝑔 is chosen according to the RAMP scheme
[51], so

𝑔(�̃�) =
�̃�

1 + 𝑞𝑇(1 − �̃�)
, (8)

where 𝑞𝑇 > 0. The convection coefficient 𝑐 > 0 is taken to be constant. Note that 𝒖 ≈ 𝟎 in the solid part of the domain,
hence the convection term is negligible. Finally, the heat transfer coefficient 𝛼𝑇 > 0.
The temperature problem now reads:

Find 𝑇 ∈  ∶ 𝑎𝑇(𝜌, 𝒖; 𝑇, �̃�) = 𝓁𝑇(𝜌, 𝒖, �̃�) ≡ 𝓁0(�̃�) − 𝑎𝑇(𝜌, 𝒖; �̂�0, �̃�), ∀�̃� ∈  , (9)

where  = {𝑇 ∈ 𝐻1(Ω) | 𝑇 = 0 on Γ𝑇} and �̂�0 ∈ 𝐻1(Ω) is such that �̂�0 = 𝑇0 on Γ𝑇 (the existence of such a function is
ensured under the weak assumption that the boundary data 𝑇0 ∈ 𝐻1∕2(Γ𝑇) [59, Theorem 8.8]). The Sobolev embedding
𝐻1(Ω) ↪ 𝐿4(Ω) ensures that 𝑐�̃�(𝒖 ⋅ ∇𝑇) ∈ 𝐿1(Ω) so that the convection term in 𝑎𝑇 is well-defined. The load-term 𝓁0 in
(3) is due to convection on Γ𝛼 and a distributed heat source 𝑄 ∈ 𝐿2(Ω) and is given by

𝓁0(�̃�) = ∫
Γ𝛼𝑇

𝛼𝑇𝑇∞�̃� d𝐴 + ∫
Ω

𝑄�̃� d𝑉, (10)

where the surrounding temperature 𝑇∞ ∈ 𝐿2(Γ𝛼𝑇 ).
Due to the convection term, the bilinear form (7) is not symmetric, nor necessarily coercive. To see the latter we use the

Poincaré inequality and 𝛼𝑇 > 0 to get the estimate (in which 𝑐1 is a positive constant)

𝑎𝑇(𝜌, 𝒖; 𝑇, 𝑇) = ∫
Ω

𝑘(�̃�)∇𝑇 ⋅ ∇𝑇 d𝑉 + ∫
Ω

𝑐(𝒖 ⋅ ∇𝑇)𝑇 d𝑉 + ∫
Γ𝛼𝑇

𝛼𝑇𝑇
2 d𝐴

≥ 𝑐1𝑘𝑓||𝑇||2𝐻1(Ω)
+ ∫

Ω

𝑐(𝒖 ⋅ ∇𝑇)𝑇 d𝑉. (11)

To bound the last term from below, we first use appropriate versions of partial integration and the product rule
(cf. [16, Theorem 3.8]) to write it as

∫
Ω

𝑐(𝒖 ⋅ ∇𝑇)𝑇 d𝑉 = −
1

2 ∫
Ω

𝑐(∇ ⋅ 𝒖)𝑇2 d𝑉 +
1

2 ∫
Γ

𝑐(𝒖 ⋅ 𝒏)𝑇2 d𝐴. (12)
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Substitution into (11) gives

𝑎𝑇(𝜌, 𝒖; 𝑇, 𝑇) ≥ 𝑐1𝑘𝑓||𝑇||2𝐻1(Ω)
−
1

2 ∫
Ω

𝑐(∇ ⋅ 𝒖)𝑇2 d𝑉 +
1

2 ∫
Γ

𝑐(𝒖 ⋅ 𝒏)𝑇2 d𝐴. (13)

If the flow was incompressible, then the second term on the right would vanish. In the penalty method, the flow is not
incompressible, but ||∇ ⋅ 𝒖||𝐿2(Ω) can be made arbitrarily small by choosing the penalty parameter 𝜆 large enough [36]1.
The integral over Γ in (13) will be non-negative as long as 𝒖 ⋅ 𝒏 < 0 at a point implies 𝑇 = 0 at that point. In our numerical
examples this is satisfied because the temperature is prescribed at the inflow of the domain. It follows that there exists a
constant 𝑐2 > 0 such that

𝑎𝑇(𝜌, 𝒖; 𝑇, 𝑇) ≥ 𝑐1𝑘𝑓||𝑇||2𝐻1(Ω)
−
1

2 ∫
Ω

𝑐(∇ ⋅ 𝒖)𝑇2 d𝑉 ≥ 𝑐2||𝑇||2𝐻1(Ω)
(14)

for sufficiently large values of 𝜆. The bilinear form 𝑎𝑇 is thus, for every admissible design, coercive (and continuous), and
existence of a unique solution to (9) follows, therefore, from the Lax–Milgram lemma.

2.3 The complete state problem

Given an admissible design 𝜌, the complete, weakly coupled state problem reads

Find (𝒖, 𝑇) ∈ 𝑽 ×  such that

𝑎𝐹(𝜌; 𝒖, 𝒗) = 𝓁(𝒗), ∀𝒗 ∈ 𝑽

𝑎𝑇(𝜌, 𝒖; 𝑇, �̃�) = 𝓁𝑇(𝜌, 𝒖; �̃�), ∀�̃� ∈  .
(15)

3 THE DESIGN PROBLEM

Our design problem is amathematical game [5, 20, 57] between two players, each seeking tominimize an objective directly
associated with either flow or temperature by controlling the design.
The objective of the first player is to minimize the fluid compliance, which since we have no nonzero prescribed

velocities amounts to minimizing

𝜙𝐹(𝜌) =
1

2
𝓁(𝒖(𝜌)), (16)

where 𝒖(𝜌) denotes the unique solution to the flow problem for the given design 𝜌. Minimizing this quantity essentially
amounts to minimizing the (𝒕-weighted) average flow speed, and thereby the mass flow, at the inlet.
The objective of the second player is to minimize the average temperature in the solid parts of the design domain, that

is

𝜙𝑇(𝜌) =
1

𝑉 ∫
Ω

�̃�(𝜌)�̂�(𝜌, 𝒖(𝜌)) d𝑉 (17)

where 𝑉 is the volume of the design domain and multiplication with �̃�(𝜌) means that the temperature in the fluid
(�̃�(𝜌) ≈ 0) is made less important. Here �̂�(𝜌, 𝒖(𝜌)) = 𝑇(𝜌, 𝒖(𝜌)) + �̂�0 in which 𝑇(𝜌, 𝒖(𝜌) denotes the unique solution to
the temperature problem for the given design 𝜌.

1 Theorem 3.1 in that reference gives ||𝒖 − 𝒖0||𝑯1(Ω) ≤ 𝐶∕𝜆 where 𝐶 is a positive constant and 𝒖0 solves the original, constrained problem and thus
satisfies ∇ ⋅ 𝒖0 = 0. Then ||∇ ⋅ 𝒖||𝐿2(Ω) = ||∇ ⋅ 𝒖 − ∇ ⋅ 𝒖0||𝐿2(Ω) = ||∇ ⋅ (𝒖 − 𝒖0)||𝐿2(Ω) ≤ ||𝒖 − 𝒖0||𝑯1(Ω) ≤ 𝐶∕𝜆.
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The set of admissible designs is defined as

 =
{
𝜌 ∈ 𝐿∞(Ω) | 0 ≤ 𝜌 ≤ 1 a.e.,∫

Ω

�̃�(𝜌) d𝑉 = 𝛾𝑉
}
, (18)

where 𝛾 ∈ (0, 1) is the volume fraction of solid material in the domain. The filtered design is set to �̃�(𝜌) = 1 a.e. in Ω𝑓𝑖𝑥,
with Ω𝑓𝑖𝑥 being a fixed, non-designable solid part of Ω.

Remark 2. Tomake the connection with game theory clearer, one could introduce the set of feasible strategies𝑈 ⊂  ×
defined by𝑈 = {(𝜌𝐹, 𝜌𝑇) ∈  × | 𝜌𝐹 = 𝜌𝑇} and the so-called biloss operator𝐹 defined by𝐹(𝜌𝐹, 𝜌𝑇) = {𝜙𝐹(𝜌𝐹), 𝜙𝑇(𝜌𝑇)}.
Using these, our game can be cast in so-called standard strategic form [5]. □

3.1 Problem formulation

There are several different ways to formulate our game [5, Section 10.2]. We shall consider minimizing a weighted sum of
the objectives of the two players, leading here to an optimization problemwith only simple, linear constraints. A potential
issue, however, is the different scaling of the objectives [19]. To achieve awell-balanced optimization problem inwhich the
weights of the objectives can be chosen in a somewhat predictable manner, we follow [19, p. 93] and scale the objectives
based on the so-called Utopia and Nadir points in the objective space (here ℝ≥0 × ℝ≥0).
The components of the Utopia point (𝑧𝐹𝑈, 𝑧𝑇𝑈) ⊂ ℝ2 are the (locally) optimal values of the respective individual

problem, that is

𝑧𝐹𝑈 = min
𝜌∈ 𝜙𝐹(𝜌) and 𝑧𝑇𝑈 = min

𝜌∈ 𝜙𝑇(𝜌), (19)

with solutions 𝜌𝐹 and 𝜌𝑇 , respectively. In general, there will not exist a design corresponding to the Utopia point, that is,
𝜌𝐹 ≠ 𝜌𝑇 (of course, neither problem needs to have a unique solution, so more generally one should say that the respective
solution sets are disjoint). Therefore this point is also referred to as the shadow or virtual minimum of the game [5, p. 167].
TheNadir point (𝑧𝐹𝑁, 𝑧𝑇𝑁) is in a sense opposite to theUtopia point: component 𝑖 of theNadir point should be theworst

value obtainable for objective 𝑖 in the design space. However, finding the worst value is itself a nonconvex optimization
problem which may be very difficult to solve to global optimality. Therefore, we take here as an approximation, the Nadir
point as

(𝑧𝐹𝑁, 𝑧𝑇𝑁) = (max{𝜙𝐹(𝜌𝑇), 𝜙𝐹(𝜌0)},max{𝜙𝑇(𝜌𝐹), 𝜙𝑇(𝜌0)}), (20)

where the function evaluations at the initial design 𝜌0 are included because our objectives might not be completely con-
tradictory.
We now introduce the scaled objectives

𝑓𝐹(𝜌) =
𝜙𝐹(𝜌) − 𝑧𝐹𝑈
𝑧𝐹𝑁 − 𝑧𝐹𝑈

and 𝑓𝑇(𝜌) =
𝜙𝑇(𝜌) − 𝑧𝑇𝑈
𝑧𝑇𝑁 − 𝑧𝑇𝑈

. (21)

Assuming that 𝑧𝑖𝑈 are globally optimal values, 𝑧𝐹𝑁 − 𝑧𝐹𝑈 > 0 and 𝑧𝑇𝑁 − 𝑧𝑇𝑈 > 0. However, even if a 𝑧𝑖𝑈 is not a globally
optimal value, it is rather unlikely that 𝑧𝑖𝑁 would be a better value, so in practise, it is probably safe to assume that the
denominators in (21)will be positive. Thus, with some reservations due to the existence of localminima, and assuming that
the Nadir point really is the “worst” point, the scaled objectives will satisfy 0 ≤ 𝑓𝑖(𝜌) ≤ 1 for every 𝜌 ∈  when combined
into a single problem.
Now introduce weights 𝑤𝑖 ≥ 0, 𝑖 = 1, 2, such that 𝑤1 + 𝑤2 = 1. Our design problem then reads

min
𝜌∈ {𝑤1𝑓𝐹(𝜌) + 𝑤2𝑓𝑇(𝜌)}. (22)

Existence of at least one globally optimal solution to this problem is shown in Appendix A. If 𝜌∗ is a global minimizer
of this problem for given weights, then by Ref. [5, Proposition 3, p. 297], this design is a Pareto optimum, i.e., there is no
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THORE et al. 7 of 26

other design that yields a smaller value of 𝑓𝐹 and 𝑓𝑇 . The converse, that all Pareto optima are minimizers of problem (22)
for some combination of weights, is true if 𝑓𝐹 and 𝑓𝑇 are convex, which is not the case here.

4 FINITE ELEMENT APPROXIMATION

Let ℎ = max𝑒=1,…,𝑚 ℎ𝑒 denote the diameter of the largest element in a mesh with 𝑚 = 𝑚(ℎ) elements (for simplicity,
we assume that the same mesh is used for both flow and temperature problems). We consider as ℎ → 0 a sequence of
shape regular meshes and associated, dense (in the appropriate sense) sequences of approximation spaces {ℎ}, {𝑽ℎ},
and {ℎ}. The approximation spaces will be finite-dimensional and closed subspaces of , 𝑽, and  , respectively, and
consist of element-wise infinitely differentiable functions. We assume for simplicity that Ω = ∪𝑚𝑒=1Ω𝑒, where the closure
Ω𝑒 = Ω𝑒 ∪ Γ𝑒, with Γ𝑒 being the boundary of the element.
The design 𝜌 in (15) and its regularized version �̃� are approximated as element-wise constant functions 𝜌ℎ and �̃�ℎ with

elemental values 𝜌𝑒 and �̃�𝑒, respectively. Letting 𝒙𝑒 denote the centroid of element 𝑒 and taking

�̃�𝑒 =

∑𝑚

𝑓=1 𝜌𝑓Ψ(𝒙𝑒, 𝒙𝑓)𝑉𝑓∑𝑚

𝑓=1 Ψ(𝒙𝑒, 𝒙𝑓)𝑉𝑓
, (23)

where 𝑉𝑓 is the volume of element 𝑓, we get that �̃�𝑒 ∈ [0, 1] if 𝜌𝑓 ∈ [0, 1] for all 𝑓 = 1,… ,𝑚.
The state variables are approximated using Galerkin methods with reduced integration and stabilization as

described next.
The FE version of the flow problem (3) reads

Find 𝒖ℎ ∈ 𝑽ℎ ∶ 𝑎𝐹ℎ(𝜌ℎ; 𝒖ℎ, 𝒗ℎ) = 𝓁ℎ(𝒗ℎ), ∀𝒗ℎ ∈ 𝑽ℎ, (24)

where the terms in𝑎𝐹ℎ are the same as𝑎𝐹 in Equation (4) except for the penalty term,which is approximated using reduced
integration to avoid volumetric locking for large values of 𝜆 [23]. The Quad4 or HEX8 elements (used in our numerical
examples) with reduced integration give an FEM equivalent to a mixed formulation based on the Q1-Q0 element, which
may exhibit hydrostatic pressure instabilities. Based on numerical experience by the authors and many others, as well as
theoretic analyses such as Ref. [27] and the one in Section 4.1 below, one can, however, expect the approximation of the
velocity to be acceptable. We mention as a side note that a tetrahedral element which satisfies a discrete Korn’s inequality
and allows for reduced integration is presented in Ref. [21].
To ensure a good approximation of the temperature field without having to use impractically fine meshes, the FE

version

Find 𝑇 ∈ ℎ ∶ 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, �̃�ℎ) = 𝓁𝑇ℎ(�̃�ℎ) − 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; �̂�0ℎ, �̃�ℎ), ∀�̃�ℎ ∈ ℎ (25)

of the temperature problem includes Galerkin/least-squares (GaLS) stabilization [15]. Therefore,

𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, �̃�ℎ) = 𝑎𝑇(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, �̃�ℎ) +

𝑚∑
𝑒=1

∫
Ω𝑒

𝜏(𝑐𝒖ℎ ⋅ ∇�̃�ℎ − ∇ ⋅ (𝑘(�̃�ℎ)∇�̃�ℎ))(𝑐𝒖ℎ ⋅ ∇𝑇ℎ − ∇ ⋅ (𝑘(�̃�ℎ)∇𝑇ℎ)) d𝑉

(26)

and

𝓁𝑇ℎ(�̃�ℎ) = 𝓁0(�̃�ℎ) +

𝑚∑
𝑒=1

∫
Ω𝑒

𝜏(𝑐𝒖ℎ ⋅ ∇�̃�ℎ − ∇ ⋅ (𝑘(�̃�ℎ)∇�̃�ℎ))𝑄 d𝑉, (27)

where 𝜏 = 𝜏ℎ(𝜌ℎ, 𝒖ℎ) is a stabilization parameter. This parameter should be sufficiently large to prevent nonphysical oscil-
lations in the temperature field but also tend to zero as ℎ goes to zero so that the exact solution is retrieved in the limit. The
choice of stabilization parameter is important and discussed in, for example, Refs. [15, 26, 54]. Following Ref. [15, p. 57],
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8 of 26 THORE et al.

this parameter is (for a uniform 3D mesh with each element edge parallel to one of the global coordinate axes) taken as

𝜏 =
ℎ

2
(𝑥𝑐𝑢𝑥 + 𝑦𝑐𝑢𝑦 + 𝑧𝑐𝑢𝑧)∕||𝑐𝒖ℎ||2 (28)

where 𝑥 = coth 𝑃𝑒𝑥 − 1∕𝑃𝑒𝑥, with the directional Peclet number 𝑃𝑒𝑥 = 𝑐𝑢𝑥ℎ∕𝑘(�̃�ℎ), and 𝑦 and 𝑧 are defined similarly.
The parameter 𝜏 may become undefined if one or more velocity components become identically zero, but we have not
encountered this in issue practice.
The FE discretized version of the design problem (22) now reads

min
𝜌ℎ∈ℎ

{𝑤1𝑓𝐹(𝜌ℎ) + 𝑤2𝑓𝑇ℎ(𝜌ℎ)}, (29)

where ℎ = {𝜌ℎ | 𝜌ℎ element-wise constant, 𝜌𝑒 ∈ [0, 1], 𝑒 = 1,… ,𝑚,
∑𝑚

𝑒=1 �̃�𝑒𝑉𝑒 = 𝛾𝑉}. Since, as we show in the proofs
below, for every 𝜌ℎ ∈ ℎ, the bi-linear forms are coercive and continuous and the linear forms continuous over 𝑽ℎ andℎ, respectively, the FE state problems (24) and (25) have unique solutions 𝒖ℎ = 𝒖ℎ(𝜌ℎ) and 𝑇ℎ = 𝑇ℎ(𝜌ℎ, 𝒖ℎ(𝜌ℎ)).
The matrix version of the fluid compliance is computed as

𝜙𝐹(𝜌ℎ) =
1

2
𝓁(𝒖ℎ(𝜌ℎ)) =

1

2
𝒇T𝒖(𝜌ℎ), (30)

in which 𝒖(𝜌ℎ) now denotes the coordinate vector of 𝒖ℎ(𝜌ℎ) relative to the FE basis and

𝒇 =

𝑚∑
𝑒=1

𝑪T
𝑒 ∫

Γ𝑒∩Γ𝑡

(𝑵𝐹
𝑒 )

T𝒕 d𝐴, (31)

in which the matrix 𝑪𝑒 relates element-local to global vectors, and𝑵𝐹
𝑒 is the shape function matrix.

The average temperature is approximated as

𝜙𝑇ℎ(𝜌ℎ) =
1

𝑉 ∫
Ω

�̃�ℎ(�̂�ℎ + �̂�0ℎ) d𝑉 =
1

𝑉
�̃�𝑒

𝑚∑
𝑒=1

∫
Ω𝑒

𝑵𝑒 d𝑉𝑪𝑒

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
𝑳(𝜌ℎ)T

𝑻(𝜌ℎ, 𝒖ℎ(𝜌ℎ)) = 𝑳(𝜌ℎ)
T𝑻(𝜌ℎ, 𝒖ℎ(𝜌ℎ)), (32)

where 𝑻 = 𝑻(𝜌ℎ, 𝒖ℎ(𝜌ℎ)) collects the temperature degrees of freedom.

Remark 3. Regarding the stabilization in problem (25), we note that Δ𝑇ℎ = 0 in the numerical examples because these are
based on bilinear or trilinear rectangular elements. Then, since �̃�ℎ is element-wise constant, there holds that

∇ ⋅ (𝑘(�̃�ℎ)∇𝑇ℎ)) = 𝑘(�̃�ℎ)Δ𝑇ℎ = 0, (33)

meaning that the GaLS method coincides with the streamline upwind/Petrov Galerkin (SUPG) and the stream-line
upwind (SU) methods. For the general case in which these methods do not coincide, we speculate that the GaLS method
is preferable over SUPG, which does not guarantee a coercive problem for every 𝜏 ≥ 0; cf. [43, Proposition 8.4.1]. □

4.1 Finite element convergence

The purpose of this section is to present and prove Theorem 1. To keep it relatively short and simple, the analysis is carried
out assuming—as is the case in our numerical examples—SU-stabilization in the temperature problem; that𝑇0 is constant
on Γ𝑇 so that �̂�0 can be taken as a constant function; and that the centroid of each element is located in the interior of the
element (which is the case if the elements are convex for example).
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THORE et al. 9 of 26

Theorem 1. Every sequence of solutions {𝜌ℎ} to problem (29) has a subsequence converging weakly∗ in 𝐿∞(Ω) to a solution
𝜌∗ to problem (22) as ℎ → 0. The corresponding sequence of filtered densities �̃�ℎ(𝜌ℎ) converges point-wise a.e. to �̃�(𝜌∗).

The main difficulty in proving this theorem is to show convergence of the FE-discretized velocity and temperature in
Lemmas 2 and 5, respectively, but once that has been established, the proof, given at the end of this section, is quite straight-
forward. In the proofs, we make use of the point-wise a.e. convergence of the filtered design for a weakly∗ convergent
sequence of element-wise constant densities shown in Appendix B.

Lemma 2. Let {𝜌ℎ}, 𝜌ℎ ∈ ℎ, be a sequence converging weakly∗ to some 𝜌 ∈ . Then the sequence of velocities 𝒖ℎ = 𝒖ℎ(𝜌ℎ)

converges strongly (and thus weakly) in𝑯1(Ω) to a solution 𝒖 = 𝒖(𝜌) to the flow problem in (15).

Proof. Let (without relabelling) {𝜌ℎ} be an arbitrary subsequence and {𝒖ℎ} the associated sequence of velocities.
Since𝑽ℎ ⊂ 𝑽 and the one-point quadrature approximation 𝐼(∇ ⋅ 𝒖ℎ,∇ ⋅ 𝒖ℎ) of the penalty term in (4) is positive, coer-

civity follows as in the continuous case, with constant 𝑐1. Since 𝑽ℎ ⊂ 𝑽, we also have continuity of 𝓁, with constant 𝑐2.
Combining the coercivity and continuity inequalities gives ||𝒖ℎ||𝑯1(Ω) ≤ 𝑐2∕𝑐1, with 𝑐2∕𝑐1 independent of ℎ. By Theorem
5.14-4 in Ref. [11, p. 300], we may thus extract a weakly convergent subsequence, again denoted {𝒖ℎ}, converging to some
𝒖. Since 𝑽 is weakly closed, this 𝒖 belongs in 𝑽.
To see that the limit 𝒖 ∈ 𝑽 satisfies the flow problem, let 𝒗 ∈ 𝑽 be arbitrary and introduce 𝒗ℎ = 𝒗ℎ(𝒗) converging

strongly (hence weakly) in 𝑯1(Ω) to 𝒗 (the existence of such a function follows from the assumed density of {𝑽ℎ} in 𝑽).
Then, adding and subtracting terms,

|𝑎𝐹(𝜌; 𝒖, 𝒗) − 𝓁(𝒗)| ≤ |𝑎𝐹(𝜌; 𝒖, 𝒗) + 𝑎𝐹ℎ(𝜌ℎ; 𝒖ℎ, 𝒗ℎ) − 𝑎𝐹ℎ(𝜌ℎ; 𝒖ℎ, 𝒗ℎ) + 𝓁(𝒗ℎ) − 𝓁(𝒗ℎ) + 𝓁(𝒗)|
≤ |𝑎𝐹(𝜌; 𝒖, 𝒗) − 𝑎𝐹ℎ(𝜌ℎ; 𝒖ℎ, 𝒗ℎ)| + |𝓁(𝒗ℎ) − 𝓁(𝒗)|, (34)

where 𝓁(𝒗ℎ) → 𝓁(𝒗) since 𝓁 is weakly continuous. The term 𝑎𝐹(𝜌; 𝒖, 𝒗) − 𝑎𝐹ℎ(𝜌ℎ; 𝒖ℎ, 𝒗ℎ) can be split into three parts:

∫
Ω

𝛼(�̃�)𝒖 ⋅ 𝒗 d𝑉 − ∫
Ω

𝛼(�̃�ℎ)𝒖ℎ ⋅ 𝒗ℎ d𝑉, (35)

∫
Ω

2𝜇𝜺(𝒖) ∶ 𝜺(𝒗) d𝑉 − ∫
Ω

2𝜇𝜺(𝒖ℎ) ∶ 𝜺(𝒗ℎ) d𝑉, (36)

and

𝜆 ∫
Ω

(∇ ⋅ 𝒖)(∇ ⋅ 𝒗) d𝑉 − 𝜆𝐼(∇ ⋅ 𝒖ℎ,∇ ⋅ 𝒗ℎ). (37)

Convergence to zero of the first two terms, (35) and (36), was shown in Ref. [56], so we consider only the last term (omitting
the constant 𝜆):|||||∫Ω(∇ ⋅ 𝒖)(∇ ⋅ 𝒗) d𝑉 − 𝐼(∇ ⋅ 𝒖ℎ,∇ ⋅ 𝒗ℎ)

||||| ≤
|||||∫Ω(∇ ⋅ 𝒖)(∇ ⋅ 𝒗) d𝑉 − ∫

Ω

(∇ ⋅ 𝒖ℎ)(∇ ⋅ 𝒗ℎ) d𝑉
|||||

+
|||||∫Ω(∇ ⋅ 𝒖ℎ)(∇ ⋅ 𝒗ℎ) d𝑉 − 𝐼(∇ ⋅ 𝒖ℎ,∇ ⋅ 𝒗ℎ)

||||| . (38)

Here the first term tends to zero by similar arguments as for (36). As for the second term, call it 𝑅, let 𝜀 > 0 be arbitrary,
and write, with 𝜙ℎ = (∇ ⋅ 𝒖ℎ)(∇ ⋅ 𝒗ℎ),

𝑅 ≤
𝑚∑
𝑒=1

|||||∫Ω𝑒 𝜙ℎ d𝑉 − 𝜙ℎ(𝒙𝑒)𝑉𝑒

||||| =
𝑚∑
𝑒=1

||𝜙ℎ(𝝃𝑒) − 𝜙ℎ(𝒙𝑒)||𝑉𝑒, (39)

where the centroid 𝒙𝑒 ∈ Ω𝑒 by assumption. Here we have used the integral mean value theorem, so 𝝃𝑒 ∈ Ω𝑒. Since 𝜙ℎ
is continuous on each element and ||𝒙𝑒 − 𝝃𝑒|| ≤ ℎ, we can choose ℎ small enough that |𝜙ℎ(𝝃𝑒) − 𝜙ℎ(𝒙𝑒)| < 𝜀∕𝑉 for all
𝑒 = 1,… ,𝑚, whence (39) gives 𝑅 <

∑𝑚

𝑒=1 𝜀𝑉𝑒∕𝑉 = 𝜀. Returning to (34), we see that both terms in the last line tend to zero,
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10 of 26 THORE et al.

so that |𝑎𝐹(𝜌; 𝒖, 𝒗) − 𝓁(𝒗)|→ 0. Since the flow problem has a unique solution, and our original subsequencewas arbitrary
it follows that the entire sequence {𝒖ℎ} converges weakly to 𝒖.
To show strong convergence, we make use of coercivity (with constant 𝑐1) to get

𝑐1||𝒖ℎ − 𝒖||𝑯1(Ω) ≤ 𝑎𝐹(𝜌ℎ; 𝒖ℎ − 𝒖, 𝒖ℎ − 𝒖) = 𝑎𝐹(𝜌ℎ; 𝒖ℎ − 𝒖,−𝒖) + 𝑎𝐹(𝜌ℎ; 𝒖ℎ, 𝒖ℎ) − 𝑎𝐹(𝜌ℎ; 𝒖, 𝒖ℎ)

= 𝑎𝐹(𝜌ℎ; 𝒖ℎ − 𝒖,−𝒖) + 𝓁(𝒖ℎ) − 𝑎𝐹(𝜌ℎ; 𝒖, 𝒖ℎ), (40)

where the first term in the last line converges to zero using similar (and simpler) arguments as was used to prove
𝑎𝐹(𝜌; 𝒖, 𝒗) → 𝑎𝐹ℎ(𝜌ℎ; 𝒖ℎ, 𝒗ℎ) in (34); while the two last terms cancel in the limit since 𝓁(𝒖ℎ) converges to 𝓁(𝒖) and
𝑎𝐹(𝜌ℎ; 𝒖, 𝒖ℎ) to 𝑎𝐹(𝜌; 𝒖, 𝒖). It follows that ||𝒖ℎ − 𝒖||𝑯1(Ω) tends to zero. □

To prove coercivity of the bilinear form in the temperature problem, for use in Lemma 5 below, we make use of the
following result:

Lemma 3. Let {𝒖ℎ} be a sequence of solutions to (24) converging strongly in𝑯1(Ω) to a solution 𝒖 of the flow problem (3).
Then for every 𝜀 > 0, there are positive constants 𝐶 and ℎ such that ℎ < ℎ implies

||∇ ⋅ 𝒖ℎ||𝐿2(Ω) < 𝜀 + 𝐶∕𝜆. (41)

Proof. Let 𝒖0 denote the solution to the constrained version of the flow problem (3) with ∇ ⋅ 𝒖 = 0 a.e. enforced. Then
since ∇ ⋅ 𝒖0 = 0 a.e., we can write

||∇ ⋅ 𝒖ℎ||𝐿2(Ω) = ||∇ ⋅ 𝒖ℎ − ∇ ⋅ 𝒖0||𝐿2(Ω) ≤ ||𝒖ℎ − 𝒖0 + 𝒖 − 𝒖||𝑯1(Ω) ≤ ||𝒖ℎ − 𝒖||𝑯1(Ω) + ||𝒖0 − 𝒖||𝑯1(Ω). (42)

The strong convergence 𝒖ℎ → 𝒖 implies that the first term can be bounded by 𝜀 for ℎ small enough. From Ref,
[36, Theorem 3.1], we get ||𝒖 − 𝒖0||𝑯1(Ω) ≤ 𝐶∕𝜆 where 𝐶 is a positive constant. This leads to the asserted estimate||∇ ⋅ 𝒖ℎ||𝐿2(Ω) < 𝜀 + 𝐶∕𝜆. □

To prove continuity of the linear and bilinear forms in the FE-discretized temperature problem, we need to bound the
stabilization term. The following straightforward result is then useful:

Lemma 4. For the stabilization parameter defined in (28), there holds that

|𝜏| ≤ ℎ𝑑∕(2||𝑐𝒖ℎ||). (43)

Proof. For |𝑥| < 𝜋, we have the Taylor expansion coth(𝑥) − 1∕𝑥 ≈ 1∕𝑥 + 𝑥∕3 − 1∕𝑥 + 𝑂(𝑥2) → 0 around 𝑥 = 0.
Therefore, coth(𝑥) − 1∕𝑥 ∈ [0, 1] for all ℎ ≥ 0. This implies (in 2D; the 3D case is similar)

|𝜏| = ||||ℎ2 (𝑥𝑐𝑢𝑥 + 𝑦𝑐𝑢𝑦)∕||𝑐𝒖ℎ||2|||| ≤ ℎ

2

(|𝑐𝑢𝑥| + |𝑐𝑢𝑦|)∕||𝑐𝒖ℎ||2
≤ ℎ

2
(||𝑐𝒖ℎ|| + ||𝑐𝒖ℎ||)∕||𝑐𝒖ℎ||2 = ℎ𝑑∕(2||𝑐𝒖ℎ||). (44)

□

Given Lemmas 3 and 4, we can now prove weak convergence of the temperature. One can show strong convergence in
the same way as was done for the velocities but that is not necessary for the proof of Theorem 1, so we omit it for the sake
of brevity.

Lemma 5. Let {𝜌ℎ}, 𝜌ℎ ∈ ℎ, be a sequence converging weakly∗ to some 𝜌 ∈ . Then if the penalty parameter 𝜆 is large
enough, the corresponding sequence of temperatures {𝑇ℎ = 𝑇ℎ(𝜌ℎ, 𝒖ℎ(𝜌ℎ))} converges weakly in 𝐻1(Ω) to 𝑇 = 𝑇(𝜌, 𝒖(𝜌))

solving the temperature problem in (15).

Proof. Let (without relabelling) {𝜌ℎ} be an arbitrary subsequence and {𝑇ℎ} the associated sequence of temperatures.
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THORE et al. 11 of 26

To show boundedness of the sequence of temperatures, we will use coercivity of the bilinear form in (25). Since ℎ ⊂ 
and the stabilization term is non-negative, we can use the same arguments as used for Equation (14) to get (here and in
the following, 𝑐𝑖 is a positive constant whose meaning can change from one line to the next)

𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, 𝑇ℎ) ≥ 𝑐1𝑘𝑓||𝑇ℎ||2𝐻1(Ω)
−
1

2 ∫
Ω

𝑐(∇ ⋅ 𝒖ℎ)𝑇
2
ℎ
d𝑉. (45)

Using Cauchy—Schwartz and the fact that ℎ is finite-dimensional, so that all norms on this space are equivalent, we
get

𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, 𝑇ℎ) ≥ 𝑐1𝑘𝑓||𝑇ℎ||2𝐻1(Ω)
−
𝑐𝑐2
2

||∇ ⋅ 𝒖ℎ||𝐿2(Ω)||𝑇ℎ||2𝐻1(Ω)

=
(
𝑐1𝑘𝑓 −

𝑐𝑐2
2

||∇ ⋅ 𝒖ℎ||𝐿2(Ω))||𝑇ℎ||2𝐻1(Ω)
> 𝑐3||𝑇ℎ||2𝐻1(Ω)

(46)

for some 𝑐3 > 0 provided ||∇ ⋅ 𝒖ℎ||𝐿2(Ω) < 2𝑐1𝑘𝑓∕(𝑐𝑐2). Choosing 𝜀 = 2𝑐1𝑘𝑓∕(𝑐𝑐2) − 𝐶∕𝜆 > 0, Lemma 3 gives

||∇ ⋅ 𝒖ℎ||𝐿2(Ω) < 2𝑐1𝑘𝑓∕(𝑐𝑐2) − 𝐶∕𝜆 + 𝐶∕𝜆 =
2𝑐1𝑘𝑓

𝑐𝑐2
(47)

for all ℎ small enough. This shows that 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; ⋅, ⋅) is coercive for ℎ small enough and 𝜆 large enough. We remark that
the stabilization improves coercivity but this was not used here where we only made use of the fact that the stabilization
term is non-negative.
We now establish continuity of the right-hand side 𝓁𝑇ℎ(�̃�ℎ) − 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; �̂�0, �̃�ℎ) in Equation (25). Towards this end,

we first note that

𝓁𝑇ℎ(𝑇ℎ) = 𝓁0(𝑇ℎ) +

𝑚∑
𝑒=1

∫
Ω𝑒

𝜏(𝑐𝒖ℎ ⋅ ∇𝑇ℎ)𝑄 d𝑉 = 𝓁0(𝑇ℎ) + ∫
Ω

𝜏(𝑐𝒖ℎ ⋅ ∇𝑇ℎ)𝑄 d𝑉. (48)

Using Cauchy–Schwartz and a trace theorem [44, Theorem 6, p. 240], we get

|𝓁0(𝑇ℎ)| ≤ |∫
Γ𝛼𝑇

𝛼𝑇𝑇∞𝑇ℎ d𝐴 + ∫
Ω

𝑄𝑇ℎ d𝑉| ≤ 𝑐1||𝑇ℎ||𝐻1(Ω) (49)

for some 𝑐1 > 0. The second term in Equation (48) can be estimated using Equation (43) as

∫
Ω

𝜏(𝑐𝒖ℎ ⋅ ∇𝑇ℎ)𝑄 d𝑉 ≤ ∫
Ω

|𝜏| |𝑐𝒖ℎ ⋅ ∇𝑇ℎ| |𝑄| d𝑉
≤ ∫

Ω

ℎ𝑑

2
|𝒆𝑢ℎ ⋅ ∇𝑇ℎ| |𝑄| d𝑉 ≤ ℎ𝑐2||𝑇ℎ||𝐻1(Ω), (50)

where 𝒆𝑢ℎ = 𝑐𝒖ℎ∕||𝑐𝒖ℎ|| and 𝑐2 = (𝑑∕2)||𝑄||𝐿2(Ω). Combining this with (49) we get
𝓁0(𝑇ℎ) ≤ (𝑐1 + 𝑐2ℎ)||𝑇ℎ||𝐻1(Ω). (51)

The other term in the load can be written as

𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; �̂�0ℎ, 𝑇ℎ) = 𝑎𝑇(𝜌ℎ, 𝒖ℎ; �̂�0ℎ, 𝑇ℎ) + ∫
Ω

𝜏(𝑐𝒖ℎ ⋅ ∇𝑇ℎ)(𝑐𝒖ℎ ⋅ ∇𝑇ℎ) d𝑉, (52)

in which continuity of the first term on the right is straight forward to establish. To bound the stabilization term we use
(43), Cauchy–Schwartz, and norm-equivalence in finite dimension, to get

∫
Ω

𝜏(𝑐𝒖ℎ ⋅ ∇𝑇ℎ)(𝑐𝒖ℎ ⋅ ∇𝑇ℎ) d𝑉 ≤ 𝑐3ℎ𝑑 ∫
Ω

|(𝒆𝑢ℎ ⋅ ∇𝑇ℎ)(𝑐𝒖ℎ ⋅ ∇𝑇ℎ)| d𝑉
≤ 𝑐3ℎ𝑑||𝒆𝑢ℎ ⋅ ∇𝑇ℎ||𝐿2(Ω)||𝑐𝒖ℎ ⋅ ∇𝑇ℎ||𝐿2(Ω) ≤ ℎ𝑑𝑐3𝑐4||𝒖ℎ||𝑯1(Ω)||𝑇ℎ||𝐻1(Ω), (53)
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12 of 26 THORE et al.

making use of the inequality 𝑥2 ≤ 𝑀𝑥 if |𝑥| ≤ 𝑀 in the last line to get rid of one ||𝑇ℎ||𝐻1(Ω)-term. This leads to the
estimate

𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; �̂�0ℎ, 𝑇ℎ) ≤ (
𝑐1 + 𝑐5ℎ||𝒖ℎ||𝑯1(Ω)

)||𝑇ℎ||𝐻1(Ω). (54)

Combining this with (51) gives 𝓁𝑇ℎ ≤ 𝑐1 + 𝑐2ℎ + 𝑐5ℎ||𝒖ℎ||𝑯1(Ω) ≤ 𝑐6 since ℎ tends to zero and {𝒖ℎ} is a convergent, hence
bounded sequence. Recalling the coercivity inequality (46), we thus get that, for ℎ small enough, ||𝑇ℎ||𝐻1(Ω) ≤ 𝑐3∕𝑐6.
Since {𝑇ℎ} is bounded, we may now (not relabelling) extract a weakly convergent subsequence. Since ℎ is closed in  ,

it follows that the limit 𝑇 belongs in  . It remains to verify that the limit satisfies the temperature problem (9).
Let �̃� ∈ ℎ be arbitrary, and let �̃�ℎ = �̃�ℎ(�̃�) ∈ ℎ converge strongly to �̃�. Then

|𝑎𝑇(𝜌, 𝒖; 𝑇, �̃�) − 𝓁0(�̃�) + 𝑎𝑇(𝜌, 𝒖; �̂�0ℎ, �̃�)|
= |𝑎𝑇(𝜌, 𝒖; 𝑇, �̃�) − 𝓁0(�̃�) + 𝑎𝑇(𝜌, 𝒖; �̂�0ℎ, �̃�) − 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, �̃�ℎ) − 𝓁𝑇ℎ(�̃�ℎ)

− 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; �̂�0ℎ, �̃�ℎ) + 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, �̃�ℎ) + 𝓁𝑇ℎ(�̃�ℎ) + 𝑎𝑇ℎ(𝜌ℎ, 𝒖ℎ; �̂�0ℎ, �̃�ℎ)|
≤ |𝓁𝑇ℎ − 𝓁0| + |𝑎𝑇 − 𝑎𝑇ℎ| + |𝑎𝑇0 − 𝑎𝑇ℎ0| + |𝑎𝑇ℎ0 − 𝓁𝑇ℎ + 𝑎𝑇ℎ |, (55)

omitting arguments for brevity in the last line. Here the last term is zero, and the third term is the same as the second
expect that 𝑇 and 𝑇ℎ are replaced by the function �̂�0, which is independent on ℎ. We, therefore, only treat the first two
terms in detail, starting with

|𝓁0(�̃�) − 𝓁𝑇ℎ(�̃�ℎ)| ≤ |𝓁0(�̃�) − 𝓁0(�̃�ℎ)| + |||||∫Ω 𝜏(𝑐𝒖ℎ ⋅ ∇�̃�ℎ)𝑄 d𝑉
|||||

≤ |𝓁0(�̃�) − 𝓁0(�̃�ℎ)| + 𝑐2ℎ||�̃�ℎ||𝐻1(Ω), (56)

where (50) was used for the second inequality. The first term in the last line tends to zero due to the weak convergence of
�̃�ℎ to �̃�, and the second since ℎ tends to zero and ||�̃�ℎ||𝐻1(Ω) is bounded independently of ℎ. Then

|𝑎𝑇 − 𝑎𝑇ℎ| ≤ |𝑎𝑇(𝜌, 𝒖; 𝑇, �̃�) − 𝑎𝑇(𝜌ℎ, 𝒖ℎ; 𝑇ℎ, �̃�ℎ)| + |||||∫Ω 𝜏(𝑐𝒖ℎ ⋅ ∇𝑇ℎ)(𝑐𝒖ℎ ⋅ ∇𝑇ℎ) d𝑉
||||| (57)

where the convergence of the first term is handled similarly as in the fluid problem (cf. also Lemma A.1), and the
convergence of the last term follows from the estimate (53) and the fact that {𝑇ℎ} is bounded in 𝐻1(Ω).
We have thus shown that the limit 𝑇 of our subsequence {𝑇ℎ} satisfies the thermal state problem. Since the original

subsequence was arbitrary and, for 𝜆 large enough, this problem has a unique solution, it follows that the entire sequence
converges. □

Finally, before proving the main theorem, we show that the objective functions in Equation (29) are continuous with
respect to the type of convergence just proven:

Lemma 6. Let {(𝜌ℎ, 𝒖ℎ, 𝑇ℎ)}, 𝜌ℎ ∈ ℎ, 𝒖ℎ = 𝒖ℎ(𝜌ℎ), 𝑇ℎ = 𝑇ℎ(𝜌ℎ, 𝒖ℎ(𝜌ℎ)), be a sequence converging weakly∗ × weakly
× weakly to some (𝜌, 𝒖(𝜌), 𝑇(𝜌, 𝒖(𝜌))) ∈  × 𝑽 × 𝑉. Then 𝑓𝐹(𝜌ℎ) = 𝑓𝐹(𝒖ℎ(𝜌ℎ)) → 𝑓𝐹(𝒖(𝜌)) = 𝑓𝐹(𝜌) and 𝑓𝑇ℎ(𝜌ℎ) =

𝑓𝑇ℎ(𝜌ℎ, 𝑇ℎ(𝜌ℎ, 𝒖ℎ(𝜌))) → 𝑓𝑇(𝜌, 𝑇(𝜌, 𝒖(𝜌))) = 𝑓𝑇(𝜌), respectively.

Proof. The two functions 𝑓𝐹 and 𝑓𝑇 are proportional to 𝜙𝐹 and 𝜙𝑇 , respectively. Therefore, the first part of the lemma is
immediate from

𝜙𝐹(𝜌ℎ) =
1

2
𝓁(𝒖ℎ(𝜌ℎ)) →

1

2
𝓁(𝒖(𝜌)), (58)

which holds since 𝓁 is weakly continuous. Then,

𝜙𝑇ℎ(𝜌ℎ) =
1

𝑉 ∫
Ω

�̃�ℎ(𝜌ℎ)𝑇ℎ d𝑉 =
1

𝑉 ∫
Ω

[�̃�ℎ(𝜌ℎ) − �̃�(𝜌)]𝑇ℎ d𝑉 +
1

𝑉 ∫
Ω

�̃�(𝜌)𝑇ℎ d𝑉, (59)
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THORE et al. 13 of 26

where the last integral tends to zero because of the weak convergence of {𝑇ℎ} to 𝑇. Cauchy–Schwartz inequality then gives
the estimate ||||| 1𝑉 ∫

Ω

[�̃�ℎ(𝜌ℎ) − �̃�(𝜌)]𝑇ℎ d𝑉
||||| ≤ 1

𝑉
||�̃�ℎ(𝜌ℎ) − �̃�(𝜌)||𝐿2(Ω)||𝑇ℎ||𝐿2(Ω). (60)

Since |�̃�ℎ(𝜌ℎ) − �̃�(𝜌)| ≤ 1 and �̃�ℎ(𝜌ℎ) → �̃�(𝜌) a.e., we can use the Lebesgue dominated convergence theorem and the fact
that {𝑇ℎ} is a bounded sequence to conclude that right-hand side in (60) tends to zero, and thus from (59) that 𝜙𝑇ℎ(𝜌ℎ) →
𝜙𝑇(𝜌). □

We are now ready to give the

Proof of Theorem 1. By definition, a solution 𝜌∗
ℎ
to problem (29) satisfies

𝑤1𝑓𝐹(𝜌
∗
ℎ
) + 𝑤2𝑓𝑇ℎ(𝜌

∗
ℎ
) ≤ 𝑤1𝑓𝐹(𝜌ℎ) + 𝑤2𝑓𝑇ℎ(𝜌ℎ), ∀𝜌ℎ ∈ ℎ. (61)

For every𝜌 ∈ , there is a function𝜌ℎ = 𝜌ℎ(𝜌) such that𝜌ℎ(𝜌) ∈ ℎ and {𝜌ℎ(𝜌)} tendsweakly∗ to𝜌 ∈  (c.f., e.g., Ref. [47,
Proposition 9, p. 129] and note that strong convergence in 𝐿2(Ω) implies weak∗ convergence in the present situation).
Substitution into inequality (61) gives

𝑤1𝑓𝐹(𝜌
∗
ℎ
) + 𝑤2𝑓𝑇ℎ(𝜌

∗
ℎ
) ≤ 𝑤1𝑓𝐹(𝜌ℎ(𝜌)) + 𝑤2𝑓𝑇ℎ(𝜌ℎ(𝜌)), ∀𝜌 ∈ . (62)

Due to the constraint 𝜌ℎ ∈ [0, 1] a.e. in Ω, any sequence {𝜌ℎ}, 𝜌ℎ ∈ ℎ, is bounded, hence by Ref. [30, Theorem 12, p.
107], admits a subsequence converging weakly∗ to some 𝜌 ∈ 𝐿∞(Ω). Since ℎ ⊂  and  is weakly∗ closed, it follows
that 𝜌 ∈ . This implies in particular that we may from the sequence of FE-solutions {𝜌∗

ℎ
} extract a weakly∗ convergent

subsequence converging to some 𝜌∗ ∈  and, according to Lemmas 2 and 5, such that the corresponding sequences of
velocities and temperatures converge weakly to some 𝒖 = 𝒖(𝜌∗) and 𝑇 = 𝑇(𝜌∗), respectively. Recalling the weak∗ conver-
gence of {𝜌ℎ(𝜌)} together with Lemmas 2 and 5, and using the continuity from Lemma 6, inequality (62) then gives, in the
limit as ℎ → 0,

𝑤1𝑓𝐹(𝜌
∗) + 𝑤2𝑓𝑇(𝜌

∗) ≤ 𝑤1𝑓𝐹(𝜌) + 𝑤2𝑓𝑇(𝜌), ∀𝜌 ∈ , (63)

that is, 𝜌∗ solves problem (22). □

5 NUMERICAL EXAMPLES

The overall framework for solving problem (29) is implemented in Matlab (R2021b), with some time-consuming parts
in the form of C++ MEX files using OpenMP for parallelization. As optimization solver, we use the method of moving
asymptotes (MMA) [53], with default settings [53] unless otherwise stated, together with analytical first-order derivatives
(Appendix C). The Matlab-function decomposition is used for efficient re-use of the numerical factorizations (Cholesky
and LU, respectively) of the stiffness matrices 𝑲𝐹 and 𝑲𝑇 when solving the adjoint problems to compute derivatives. The
2D-examples use uniformmeshes with four-noded, bilinear FEs (Quad4) with 2 × 2Gauss quadrature [23] for all matrices
except for the penalty term in (24), which is evaluated using 1-point (the centroid) Gauss quadrature. In the 3D example,
we use eight-noded, tri-linear FEs (HEX8) with 2 × 2 × 2 Gauss quadrature on all matrices expect for the 1-point rule on
the penalty term. The amount of solid material in the design domain is limited to 50% by setting 𝛾 = 0.5; the initial guess
for the design is in all cases taken as a uniform distribution satisfying the volume constraint; and the filter radius 𝑅 is set
to 1 mm unless stated otherwise. The design plots show the filtered design with values below 0.5 omitted.
The setup for the 2D examples is illustrated in Figure 1. It is inspired by a design problemprovided by SiemensEnergyAB

to design the interior of a so-called guide vane, a wing-like structure used to guide the flow of hot gas inside a gasturbine.
The guide vane, which can be fitted into a box of size 10 × 3 × 12 cm, is heated by hot gas flowing over the sides and
internal cooling is achieved by pumping compressed air through it. Compressed air flows in at the top and is allowed to
exit on the left side.
The viscosity in the flow problem is set to 𝜇 = 1 kg/m⋅s. This is higher than the actual value but results in reasonable

flow speeds, and can, at least partly, bemotivated as away tomodel the effect of turbulence not present in the Stokesmodel.
The magnitude of the traction at the inflow (Figure 1) is set to 4 ⋅ 105 Pa. The penalty parameter 𝜆 is set to 1010 kg/m⋅s.
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14 of 26 THORE et al.

F IGURE 2 Left: Design obtained from minimizing the fluid compliance. Dimensions in centimeter. Right: Temperature [K]

As noted already in Ref. [8], a gradual increase of 𝛼 and 𝑞 in (5) during the optimization process is typically necessary
to obtain reasonable designs. The values chosen are given in each case below. Ideally the choice of when and how much
to change these parameters should be done in an adaptive manner, automatically balancing the desires to minimize the
objective and to have discrete-valued designs, but the only work we are aware of that describes such a method is Ref. [46].
Since the heuristic procedure of just increasing the values 𝛼 and 𝑞 after some fixed values works well (and is much used
in the literature), we leave development of an adaptive scheme as an idea for future research. In the 2D examples we
take 𝛼 = 10𝜇∕𝑏2 as suggested in Ref. [8] (though our numerical experiments show that for example 𝛼 = 0 results in very
similar designs), and in 3D, we set 𝛼 = 0.
In the temperature problem, we set 𝑇∞ = 1373 K, 𝑇0 = 673 K, the conductivity of the solid 𝑘𝑠 = 10.2W/mK, and the

conductivity of air to 𝑘𝑓 = 0.032W/mK. The heat transfer coefficient 𝛼𝑇 = 3500W/m2K. The convection coefficient 𝑐 =
𝜌𝑓𝑐𝑣 J/K⋅m3, where 𝜌𝑓 = 5 [kg/m3] is the actual density of the cooling medium and 𝑐𝑣 = 1001 J/K⋅kg the specific heat.
The heat source 𝑄 is taken as a constant field with magnitude 20 ⋅ 106 W/m3 acting over the entire design domain. With
the dimensions given in Figure 1, this results in a total of 7200 W supplied to the design domain by 𝑄.
In the following, we first study the flow and temperature design problem separately, that is, we look at designs obtained

from attempting to solve separately the two problems in (19). Such “no-compromise designs,” which represent the best
achievable performance in the respective physics domain, are needed to compute the Utopia points in the scalings (21),
but may also be useful to a designer when deciding which “compromise designs” are acceptable. Examples of compromise
designs obtained with different weights in the complete problem (29) are given in Section 5.3.

5.1 Pure fluid problem

Figure 2 shows a pure fluid design on a mesh with 800 × 960 elements (such a fine mesh is not really necessary for this
particular problem but useful below). This gives element side lengths of 0.125 mm, whence the set filter radius of 1 mm
corresponds to eight such lengths. Solid material has been placed to block inflow at the top of the domain and outflow
on the left side, leading to velocities which are very close to zero (but not exactly since 𝛼 < ∞) in the entire domain.
As can be seen in the temperature plot, the temperature is extremely high in the void region in the lower right corner.
This is expected since the thermal conductivity is very low, essentially 𝑘𝑓 , and there is no fluid to transport away heat
by convection. The design in Figure 2 represents an extreme case which is probably of little practical interest, but is the
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THORE et al. 15 of 26

F IGURE 3 Design optimized for temperature only. Left: Design. Middle: Temperature [K]. Right: Flow

best result possible (the design could of course be a local minimum but this appears unlikely) for the fluid player with the
given constraints.

5.2 Pure temperature problem

In the pure temperature problem, the designs are a lotmore interesting and complex. Figure 3 shows a design obtainedwith
the same parameters as in the previous section. A network of channels distributed fairly evenly throughout the domain
manages to keep the temperature down in large parts of the domain. However, high temperatures can be observed on
the right and bottom sides (middle plot). This is not surprising given that the right side is heated both by convection
and the volumetric heat source; the bottom side is isolated; and that we minimize an average rather than (some smooth
approximation of) the maximum temperature. In the real case, the bottom side is attached to the inner stator and some
heat transfer would occur; hence perfect isolation could be replaced by amore realistic boundary condition if desired (and
if good data is available). The temperature field has a smooth appearance and it may be noted that themesh is fine enough
that switching off the stabilization has no visible impact on the field. The rightmost plot in Figure 3 illustrates the flow,
with dark blue representing the minimum and dark red the maximum speed (roughly 18 m/s).
Figure 4 shows iteration history and designs at the end of each continuation step. As can be seen in the upper right plot,

staying at (𝛼, 𝑞) = (108, 0.01) would have given a somewhat difficult-to-interpret design with many intermediate density
values, whereas the design at (108, 0.1) in the lower left corner might actually be acceptable, especially considering that
what we show here should be thought of as conceptual designs.
Figure 5 shows the results when solving the same problem for three different mesh densities. As expected, the design

on the finer meshes is refined but qualitatively similar versions of the design on the coarsest mesh.
To assess the impact of using the penalty approach for the flow problem, we have compared designs obtained using a

mixed formulation based on the nonconformingmixed P1-P0 element proposed byKouhia and Stenberg [29], a very simple
elementwhich, in contrast to the Crouzeuix–Raviart P1-P0 element for example, can handle traction boundary conditions.
The mesh for the flow was obtained from the temperature mesh by dividing each rectangle into two triangles. Figure 6
(left andmiddle) shows examples of designs obtained with the two different methods. As can be seen, the designs are very
similar. We have also solved the problem using the stabilized Q1-Q0method recently analyzed for TO in flow problems in
Ref. [56] and obtained essentially the same design.
Another interesting question is whether switching from Stokes to (stationary) N-S flow has any significant impact on

the optimized designs? The right-most plot in Figure 6 shows an optimized design obtained using stationary N-S flow
with SUPG-stabilization, with the stabilization parameter defined in Ref. [55, eq. (3.10)], for the convective acceleration.
Comparing with the other two designs, we see that they are qualitatively very similar. The N-S equations were solved
using the trust-region dogleg version of Newton’s method implemented in the Matlab-function fsolve, and on average
five Newton iterations was needed to reach convergence to high accuracy for a given design.
Figure 7 shows results obtained from a 3D version of the pure temperature problem. In this case, there is no distributed

heat source 𝑄; instead, heat is supplied by convection on the sides of the now box-shaped, 10 × 3 × 12 cm design domain
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16 of 26 THORE et al.

F IGURE 4 Iteration history (the jumps are due to to changes in 𝑞 and 𝛼 at iteration 250 and 500) and designs at the end of each
continuation step. Top right: (𝛼, 𝑞) = (108, 0.01). Bottom left: (𝛼, 𝑞) = (108, 0.1). Bottom right: (𝛼, 𝑞) = (1010, 0.1).

F IGURE 5 Design for three different mesh densities. Left: 200 × 240. Middle: 400 × 480. Right: 800 × 960.
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THORE et al. 17 of 26

F IGURE 6 Designs using a 400 × 480mesh. Left: Design obtained with the Quad4 penalty approach for the flow. Middle: Design
obtained with nonconforming mixed P1-P0 elements [29] for the flow. Right: Design obtained using the Quad4 penalty approach and
Navier–Stokes flow.

F IGURE 7 3D version of the pure temperature problem. Top left: Setup with boundary conditions. Top right: Design with flow. Bottom
left: Flow only. Bottom right: Temperature field.
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18 of 26 THORE et al.

F IGURE 8 Compromise designs for different weights (𝑤1, 𝑤2). Top row (from left to right): (0.8,0.2), (0.7, 0.3), and (0.5,0.5). Bottom row:
(0.3,0.7), (0.2, 0.8), and (0.1,0.9).

and the goal is to limit the thermal compliance from the convection load. The mesh consists of 140 × 21 × 168 FEs for
both flow and temperature, the filter radius is set to 1.5 mm, and symmetry around the plane 𝑦 = 1.5 cm is utilized to
reduce the number of flow and temperature degrees of freedom to a total of around 1.7 million. The computational time
was dominated by the solution of the flow state problem, which took around 80 s to solve once on a computer equipped
with two 16-core Intel Xeon Gold 6130 CPUs and 384 GB RAM, making for a total of around 15 h to complete 600 MMA
iterations. The thermal state and adjoint problems were solved using GMRES with an algebraic multi-grid preconditioner
implemented the code AMGCL [13]. Looking at Figure 7, one may note the similarity with the 2D designs in Figures 3–6,
suggesting that the set-up for the 2Dproblems inFigure 1 is fairly reasonable. Adesign-feature not captured in 2D, however,
is that the larger channels in, for example, the top right and lower left corner are centered around the symmetry plane
(𝑦 = 1.5 cm) with branches out in the 𝑦-direction into a network of smaller channels closer to the outer shell (𝑦 ≈ 3 cm).

5.3 The complete problem

We now present some results from the complete problem (29) with different values of the weights 𝑤1 and 𝑤2. Since we
use continuation on 𝛼 and 𝑞 in the fluid problem, there is some freedom in choosing the designs for the Utopia (best) and
Nadir (worst) points in the scaled objectives in (21). For the flow problem, the Utopia points are obtained for the largest
values of these parameters, whereas for the temperature problem, it is obtained for the lowest values. For the Nadir point,
it is the other way around.
To ensure high-contrast designs for all choices of weights, with as little intermediate densities as allowed by the density

filter, we used five continuation steps (thiswasmore important for the designswith higherweight𝑤1 on the flow objective)
with 250 iterations at each step. The Brinkman parameters were initialized to (𝛼, 𝑞) = (108, 0.01) and then increased to
(108, 0.1), (109, 0.1), (1010, 0.1), and (1010, 0.2) in the respective step. To stabilize the optimization process for the larger
values, the MMA parameters asyinit, asyincr, and asydecr were changed from initial, default values (0.5,1.2,0.7) to
(0.1,1.1,0.1) at continuation step 4. This was done for all designs, but in practice, it was only necessary for the problems
with larger weight on the fluid compliance, that is, 𝑤1 > 0.5.
Figure 8 shows six different designs, achieving different level of compromise betweenminimization of the fluid compli-

ance and the mean temperature in the solid. In the top row, where the emphasis is on minimizing the fluid compliance,

 15214001, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.202100086 by L

inkoping U
niversitet, W

iley O
nline L

ibrary on [09/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



THORE et al. 19 of 26

F IGURE 9 Flow and temperature fields in the designs from Figure 8 corresponding to weights (0.5,0.5) (top row) and (0.2,0.8) (bottom
row)

there is a single, rather narrow inlet channel and cooling is mainly achieved by conduction in the solid. In the bottom
row, where the emphasis is on minimizing the temperature, there is a big main inlet channel accompanied by two or
three smaller inlets. Figure 9 shows flow and temperature in the designs corresponding to weights (0.5,0.5) and (0.2,0.8),
respectively. Figure 10, finally, shows solutions to the same problem but with half the filter radius, thus allowing for
appearance of much smaller features in the designs. In practise, a lower limit is imposed on the diameter of the cooling
channels for manufacturability and to ensure that soot or dust particles do not get stuck in the channel; for design of gas
turbine parts, this limit would be in the order of 1 mm or slightly less. Measuring for example in the lower right design in
Figure 10, for weight (0.1,0.9), we find that the smallest channels would be in this range (if the design was also extruded
a millimeter in the out-of-plane direction).

6 CONCLUDING REMARKS

We have described a TO-based method for design of cooling systems in which one seeks a compromise between low
temperatures and limited use of a cooling fluid. The idea and performance of the method were demonstrated numerically
in both 2D and 3D for a problem-setting inspired by a real-world industrial design problem. Designs of the type seen in
the bottom rows of Figures 8 and 10, with fairly uniform cooling achieved by a network of small channels resulting in a
not-too-large usage of cooling medium, are probably most desirable in practice. Possible extensions of the presented work
include the use of more advanced flow models and further parallelization to achieve higher resolution in 3D.
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F IGURE 10 Same setup as in Figure 8 but with a smaller filter radius.

6.1 Replication of results

A complete description of the mathematical model together with numerical values for all model parameters is provided
in the paper.
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APPENDIX A: EXISTENCE OF SOLUTIONS
To prove TheoremA.2, asserting the existence of a globally optimal solution to problem (22), wemake use of the following
lemma:
LemmaA.1. Let 𝜌𝑛 ∈  ∗

⇀ 𝜌 ∈  in 𝐿∞(Ω), 𝒖𝑛 ⇀ 𝒖 in𝑯1(Ω) and 𝑇𝑛 ⇀ 𝑇 in𝐻1(Ω). Then, for a given (�̃�, 𝒗) in𝐻1(Ω) ×

𝑯1(Ω), there is a subsequence such that

𝑎𝑇(𝜌𝑛′ , 𝒖𝑛′ ; 𝑇𝑛′ , �̃�) → 𝑎𝑇(𝜌, 𝒖; 𝑇, �̃�) and 𝑎𝐹(𝜌𝑛′ ; 𝒖𝑛′ , 𝒗) → 𝑎𝐹(𝜌, 𝒖, 𝒗). (A.1)

Proof. We first recall the definition (1) of the filtered design and note that the kernel Ψ(𝒙, ⋅) ∈ 𝐿1(Ω) since this function is
continuous on the bounded domain Ω. It then follows immediately from the definition of weak∗ convergence in 𝐿∞(Ω)
that

�̃�(𝜌)(𝒙) − �̃�(𝜌𝑛)(𝒙) = ∫
Ω

[𝜌(𝒚) − 𝜌𝑛(𝒚)]Ψ(𝒙, 𝒚) d𝒚 → 0 (A.2)
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for every 𝒙 ∈ Ω (not just a.e. because �̃� is actually continuous). The remainder of the proof is similar to Lemma 1 in Thore
et al. [24] and thus not repeated here. □

Theorem A.2. The design problem (22) admits at least one globally optimal solution

Proof. Let {𝜌𝑛} be an infimizing sequence. Since  is weakly∗ sequentially compact, we can extract a subsequence {𝜌𝑛}
converging weakly∗ to some 𝜌 ∈ . For each 𝜌𝑛, let 𝒖𝑛 = 𝒖(𝜌𝑛) and 𝑇𝑛 = 𝑇(𝜌𝑛, 𝒖𝑛) be the corresponding solution to (15).
Since the bilinear form 𝑎𝐹(𝜌, ⋅, ⋅) is uniformly coercive on 𝑽 and since 𝓁 is bounded on this space, we get ||𝒖𝑛||𝑯1(Ω) ≤ 𝐶

for all 𝑛 and some𝐶 > 0. Recalling (14), 𝑎𝑇(𝜌, 𝒖; ⋅, ⋅) is, for a sufficiently large 𝜆, coercive on with a constant independent
of both 𝜌 and 𝒖, and using ||𝒖𝑛||𝑯1(Ω) ≤ 𝐶, the load-term 𝓁0(�̃�) − 𝑎𝑇(𝜌, 𝒖; �̂�0, �̃�) can be bounded on  independently of
𝜌 and 𝒖, so that ||𝑇𝑛||𝐻1(Ω) ≤ 𝐶1 for all 𝑛 and some 𝐶1 > 0. The sequence of velocities and temperatures is thus bounded,
whence we may by the closedness of 𝑽 and  and Lemma A.1 (and the continuity of 𝓁 and 𝓁0) extract a subsequence
converging weakly∗×weakly×weakly to some (𝜌, 𝒖, 𝑇) ∈  × 𝑽 ×  with (𝒖, 𝑇) solving the state problem. The proof is
concluded by recalling that 𝜌𝑛 was an infimizing sequence and noting that 𝜙𝐹 = 𝜙𝐹(𝒖) and 𝜙𝑇 = 𝜙𝑇(𝜌, 𝑇), defined in
Equations (16) and (17), are weakly and weakly∗ × weakly continuous on 𝑽 and  , respectively (c.f. Lemma 6). □

APPENDIX B: POINT-WISE CONVERGENCE OF THE DISCRETIZED FILTERED DESIGN
Lemma B.1. Consider �̃�ℎ defined by its elemental values in (23), and let {𝜌ℎ}, 𝜌ℎ ∈ ℎ, be a sequence converging weakly∗ in
𝐿∞(Ω) to some 𝜌 ∈ . Then

�̃�ℎ(𝜌ℎ) → �̃�(𝜌) a.e. inΩ. (B.1)

Proof. Let 𝜀 > 0 be arbitrary. Using Equation (A.2), we find that for every ℎ small enough,

|�̃�ℎ(𝜌ℎ) − �̃�(𝜌)| ≤ |�̃�(𝜌ℎ) − �̃�(𝜌)| + |�̃�ℎ(𝜌ℎ) − �̃�(𝜌ℎ)| < 𝜀∕2 + |�̃�ℎ(𝜌ℎ) − �̃�(𝜌ℎ)| (B.2)

for every 𝒙 ∈ ∪𝑚𝑒=1Ω𝑒. To handle the last term, we first note that, since the elements are disjoint, 𝒙 ∈ Ω𝑒 for exactly one 𝑒.
Let𝑒 denote the set of elements whose centroid is within (Euclidean) distance 𝑅 of 𝒙𝑒. Making use of the integral mean
value theorem in the last line we get

𝑟 ≡
||||||
∑
𝑓∈𝑒

𝜌𝑓𝑉𝑓Ψ(𝒙𝑒, 𝒙𝑓) − ∫
Ω

𝜌ℎ(𝒚)Ψ(𝒙, 𝒚) d𝒚

||||||
=

||||||
∑
𝑓∈𝑒

𝜌𝑓𝑉𝑓Ψ(𝒙𝑒, 𝒙𝑓) −

𝑚∑
𝑓=1

𝜌𝑓 ∫
Ω𝑓

Ψ(𝒙, 𝒚) d𝒚

||||||
≤ ∑

𝑓∈𝑒

𝜌𝑓𝑉𝑓|Ψ(𝒙𝑒, 𝒙𝑓) − Ψ(𝒙, 𝝃𝑓)| + ∑
𝑓∈{1,…,𝑚}⧵𝑒

𝜌𝑓𝑉𝑓|Ψ(𝒙, 𝝃𝑓)|, (B.3)

for some 𝝃𝑓 ∈ Ω𝑓 . The first term in the last line comes from those elements whose centroid lies within the support of the
filter, and the other from those whose centroid lies outside. The centroid being located inside the element, the distance
between any point in an element and its centroidwill tend to zero asℎ → 0. So, for small enoughℎ, the continuity ofΨ gives|Ψ(𝒙, 𝝃𝑓) − Ψ(𝒙𝑒, 𝒙𝑓)| < 𝜀∕(2|𝑒|𝑉𝑓) for 𝑓 ∈𝑒 and |Ψ(𝒙, 𝝃𝑓)| < 𝜀∕(2(𝑚 − |𝑒|)𝑉𝑓) for 𝑓 ∉𝑒 (here |𝑒| denotes the
number of elements in𝑒). Substituting this into (B.3) and noting that 𝜌𝑓 ≤ 1 leads to

𝑟 <
∑
𝑓∈𝑒

𝜀𝑉𝑓

2|𝑒|𝑉𝑓 + ∑
𝑓∈{1,…,𝑚}⧵𝑒

𝜀𝑉𝑓

2(𝑚 − |𝑒|)𝑉𝑓 = 𝜀. (B.4)
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24 of 26 THORE et al.

Based on this result and the fact that every 𝒙 ∈ ∪𝑚𝑒=1Ω𝑒 belongs to some Ω𝑒, we conclude that

�̃�ℎ(𝜌ℎ)(𝒙) =

∑
𝑓∈𝑒

𝜌𝑓𝑉𝑓Ψ(𝒙𝑒, 𝒙𝑓)∑
𝑓∈𝑒

𝑉𝑓Ψ(𝒙𝑒, 𝒙𝑓)
→

∫
Ω
𝜌ℎ(𝒚)Ψ(𝒙, 𝒚)𝑑𝒚

1
= �̃�(𝜌ℎ)(𝒙) a.e. in Ω, (B.5)

using the fact that

∫
Ω

Ψ(𝒙, 𝒚)𝑑𝒚 = 1 ∀𝒙 ∈ Ω (B.6)

with the kernel chosen as in (2). Now Equation (B.1) follows from (B.2). □

APPENDIX C: DERIVATIVES
The matrix problem corresponding to (24) reads: Find (𝒖, 𝒓𝐹) ∈ ℝ𝑛𝐹+𝑛𝐹0 such that

𝑲𝐹𝒖 = 𝒇 + 𝑪T
𝐹 𝒓𝐹

𝑪𝐹𝒖 = 𝟎
(C.1)

where 𝒓𝐹 contains reaction loads (Lagrange multipliers) arising due to the constraint 𝑪𝐹𝒖 = 𝟎. The derivative of the
negative compliance with respect to a filtered variable 𝜌𝑒 can be obtained as follows: First we introduce the augmented
functional

�̂�𝐹 = −𝒇T𝒖 + 𝝀T
1 (𝑲𝐹𝒖 − 𝒇 − 𝑪T

𝐹 𝒓𝐹) + 𝝀T
2 𝑪𝐹𝒖, (C.2)

where 𝝀1 and 𝝀2 are arbitrary vectors. Since (C.1) is satisfied, the values of �̂�𝐹 and 𝜙𝐹 are identical everywhere, so their
derivatives coincide. Now, making use of (C.1) to eliminate the derivatives of 𝝀1 and 𝝀2,

𝜕�̂�𝐹
𝜕𝜌𝑒

= −𝒇T 𝜕𝒖

𝜕𝜌𝑒
+ 𝝀T

1

(
𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖 + 𝑲𝐹

𝜕𝒖

𝜕𝜌𝑒
− 𝒇 − 𝑪T

𝐹

𝜕𝒓𝐹
𝜕𝜌

)
+ 𝝀T

2 𝑪𝐹
𝜕𝒖

𝜕𝜌𝑒

= 𝝀T
1

𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖 +

(
−𝒇T + 𝝀T

1 𝑲𝐹 + 𝝀T
2 𝑪𝐹

) 𝜕𝒖
𝜕𝜌𝑒

− 𝝀1𝑪
T
𝐹

𝜕𝒓𝐹
𝜕𝜌𝑒

. (C.3)

Here the complicating terms 𝜕𝒖

𝜕𝜌𝑒
and 𝜕𝒓𝐹

𝜕𝜌𝑒
vanish by choosing 𝝀1 and 𝝀2 to satisfy

𝑲𝐹𝝀1 = 𝒇 − 𝑪T
𝐹 𝝀2

𝑪𝐹𝝀1 = 𝟎. (C.4)

This system is similar in structure to (C.1) so we may identify 𝝀1 with 𝒖, whence the final expression for the derivative
becomes

𝜕𝜙𝐹
𝜕𝜌𝑒

= 𝒖T 𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖. (C.5)

The matrix problem corresponding to (25) reads: Find (𝑻, 𝒓𝑇) ∈ ℝ𝑛+𝑛𝑇0 such that

𝑲𝑇𝑻 = 𝒇𝑇 + 𝑪T
𝑇 𝒓𝑇

𝑪𝑇𝑻 = 𝑻0.
(C.6)

To get the derivative of (32) with respective to optimization variable 𝜌𝑒, we consider the augmented functional

�̂�𝑇 = 𝑳T𝑻 + 𝝀T
𝑇 (𝑲𝑇𝑻 − 𝒇𝑇 − 𝑪T

𝑇 𝒓𝑇) + 𝝀T
3 (𝑪𝑇𝑻 − 𝑻0) + 𝝀T

𝐹(𝑲𝐹𝒖 − 𝒇 − 𝑪T
𝐹 𝒓𝐹) + 𝝀T

4 𝑪𝐹𝒖 (C.7)
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THORE et al. 25 of 26

where the 𝝀s are arbitrary. Requiring that𝑪𝑇𝝀3 = 𝟎 and𝑪𝐹𝝀4 = 𝟎, we can get rid of derivatives with respect to the thermal
and fluid reaction loads directly and get

𝜕�̂�𝑇
𝜕𝜌𝑒

=
𝜕𝑳

𝜕𝜌𝑒

T

𝑻 + 𝑳T 𝜕𝑻

𝜕𝜌𝑒
+ 𝝀T

𝑇

(
𝜕𝑲𝑇

𝜕𝜌𝑒
𝑻 + 𝑲𝑇

𝜕𝑻

𝜕𝜌𝑒
−
𝜕𝒇𝑇
𝜕𝜌𝑒

)
+ 𝝀T

2 𝑪𝑇
𝜕𝑻

𝜕𝜌𝑒
+ 𝝀T

𝐹

(
𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖 + 𝑲𝐹

𝜕𝒖

𝜕𝜌𝑒

)
+ 𝝀T

4 𝑪𝐹
𝜕𝒖

𝜕𝜌𝑒

=
𝜕𝑳

𝜕𝜌𝑒

T

𝑻 + 𝝀T
𝑇

𝜕𝑲𝑇

𝜕𝜌𝑒
𝑻 + 𝝀T

𝐹

𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖 +

(
𝑳T + 𝝀T

T𝑲𝑇 + 𝝀T
2 𝑪𝑇

) 𝜕𝑻
𝜕𝜌𝑒

+ (𝝀T
𝐹𝑲𝐹 + 𝑪T

𝐹 𝝀4)
𝜕𝒖

𝜕𝜌𝑒
. (C.8)

If we require that 𝝀𝑇 and 𝝀2 satisfy

𝑲T
𝑇 𝝀𝑇 = −𝑳 − 𝑪T

𝑇 𝝀2

𝑪𝑇𝝀𝑇 = 𝟎
(C.9)

we get

𝜕𝜙𝑇
𝜕𝜌𝑒

=
𝜕𝑳

𝜕𝜌𝑒

T

𝑻 + 𝝀T
𝑇

𝜕𝑲𝑇

𝜕𝜌𝑒
𝑻 − 𝝀T

𝑇

𝜕𝒇𝑇
𝜕𝜌𝑒

+ 𝝀T
𝐹

𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖 + (𝝀T

𝐹𝑲𝐹 + 𝑪T
𝐹 𝝀4)

𝜕𝒖

𝜕𝜌𝑒
. (C.10)

Here 𝑲𝑇 = 𝑲𝑇(𝝆, 𝒖(𝝆)) and 𝒇𝑇 = 𝒇𝑇(𝝆, 𝒖(𝝆)), so, with a slight abuse of notation and letting 𝒆𝑖 denote a standard basis
vector in ℝ𝑛𝑓 ,

𝜕𝜙𝑇
𝜕𝜌𝑒

=
𝜕𝑳

𝜕𝜌𝑒

T

𝑻 + 𝝀T
𝑇

𝜕𝑲𝑇

𝜕𝜌𝑒
𝑻 − 𝝀T

𝑇

𝜕𝒇𝑇
𝜕𝜌𝑒

− 𝝀T
𝑇

𝑛𝐹∑
𝑖=1

𝜕𝒇𝑇
𝜕𝑢𝑖

𝒆T
𝑖

𝜕𝒖

𝜕𝜌𝑒
+ 𝝀T

𝐹

𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖 + 𝝀T

𝑇

𝑛𝐹∑
𝑖=1

𝜕𝑲𝑇

𝜕𝑢𝑖
𝑻𝒆T

𝑖

𝜕𝒖

𝜕𝜌𝑒

+ (𝝀T
𝐹𝑲𝐹 + 𝑪T

𝐹 𝝀4)
𝜕𝒖

𝜕𝜌𝑒
=

𝜕𝑳

𝜕𝜌𝑒

T

𝑻 + 𝝀T
𝑇

𝜕𝑲𝑇

𝜕𝜌𝑒
𝑻 − 𝝀T

𝑇

𝜕𝒇𝑇
𝜕𝜌𝑒

+ 𝝀T
𝐹

𝜕𝑲𝐹

𝜕𝜌𝑒
𝒖 (C.11)

if 𝝀𝐹 and 𝝀4 solve

𝑲𝐹𝝀𝐹 =

𝑛𝐹∑
𝑖=1

(
−𝝀T

𝑇

𝜕𝑲𝑇

𝜕𝑢𝑖
𝑻 + 𝝀T

𝑇

𝜕𝒇𝑇
𝜕𝑢𝑖

)
𝒆𝑖 + 𝑪T

𝐹 𝝀4

𝑪𝐹𝝀𝐹 = 𝟎.

(C.12)

As for the right-hand side in the first of these (adjoint) equations, one may choose to assemble it in an element-oriented
way by noting that

𝑛𝐹∑
𝑖=1

𝝀T
𝑇

𝜕𝑲𝑇

𝜕𝑢𝑖
𝑻𝒆𝑖 =

𝑛𝐹∑
𝑖=1

𝝀T
𝑇

(
𝑚∑
𝑒=1

𝜕𝑲𝑇𝑒

𝜕𝑢𝑖

)
𝑻𝒆𝑖 =

𝑚∑
𝑒=1

⎛⎜⎜⎝
∑
𝑖∈𝑒

𝝀T
𝑇𝑒

𝜕𝑲𝑇𝑒

𝜕𝑢𝑖
𝑻𝑒𝒆𝑖

⎞⎟⎟⎠, (C.13)

where 𝑒 contains the velocity degrees of freedom of element 𝑒. Element-oriented assembly saves some computations
compared to the node-oriented assembly, but while is trivial to parallelize, the element-oriented assembly may lead to
race-conditions if two elements try to contribute to the same entry 𝑖 at the same time. However, the computational time
for solving problem (22) is typically completely dominated by the time for solving the state (and adjoint) problems. For
simplicity, we have, therefore, implemented an element-oriented assembly procedure using the OpenMP atomic directive
to avoid race conditions.
The temperature stiffnessmatrix𝑲𝑇𝑒 in (C.13) can be divided into onematrix associatedwith conduction and convection

and one with stabilization. For the latter we get (letting 𝑩𝑒 = ∇𝑵𝑒)

𝜕𝑲𝑇𝜏𝑒

𝜕𝑢𝑖
= ∫

Ω𝑒

[
𝜏
𝜕

𝜕𝑢𝑖
(𝑐𝑩T

𝑒 𝒖ℎ)(𝑐𝒖
T
ℎ
𝑩𝑒) +

𝜕𝜏

𝜕𝑢𝑖
(𝑐∇𝑩T

𝑒 𝒖ℎ)(𝑐𝒖
T
ℎ
𝑩𝑒)

]
d𝑉

= ∫
Ω𝑒

[
𝜏(𝑐𝑩T

𝑒 𝑵
𝐹
𝑒⋅𝑗
)(𝑐𝒖T

ℎ
𝑩𝑒) + 𝜏(𝑐𝑩T

𝑒 𝒖ℎ)(𝑐(𝑵
𝐹
𝑒⋅𝑗
)T𝑩𝑒) +

𝜕𝜏

𝜕𝑢𝑖
(𝑐𝑩T

𝑒 𝒖ℎ)(𝑐𝒖
T
ℎ
𝑩𝑒)

]
d𝑉, (C.14)
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26 of 26 THORE et al.

where 𝑵𝐹
𝑒⋅𝑗

denotes the 𝑗th column of the fluid shape function matrix and 𝑗 is the local number of the 𝑖th velocity
component. Here (specializing to 2D; the 3D case is analogous)

𝜕𝜏

𝜕𝑢𝑖
=
ℎ

2

(
𝜕𝑥

𝜕𝑢𝑖
𝑢𝑥 + 𝑥

𝜕𝑢𝑥
𝜕𝑢𝑖

+
𝜕𝑦

𝜕𝑢𝑖
𝑢𝑦 + 𝑦

𝜕𝑢𝑦

𝜕𝑢𝑖

)
1||𝒖ℎ||2 + ℎ

2
(𝑥𝑢𝑥 + 𝑦𝑢𝑦)

𝜕

𝜕𝑢𝑖

(
1||𝒖ℎ||2

)
, (C.15)

where

𝜕𝑥

𝜕𝑢𝑖
=

𝜕𝑥

𝜕𝑃𝑒𝑥

𝜕𝑃𝑒𝑥
𝜕𝑢𝑖

=
(
1 − coth

2
𝑃𝑒𝑥 + 1∕𝑃𝑒2𝑥

)𝜕𝑢𝑥
𝜕𝑢𝑖

ℎ

𝑘
, (C.16)

in which (assuming the usual x-y-x-y-ordering of the degrees of freedom)

𝜕𝑢𝑥
𝜕𝑢𝑖

=

{
𝑁(𝑖+1)∕2 if 𝑖 is odd
0 otherwise

(C.17)

where 𝑁(𝑖+1)∕2 is a shape function. The last term in (C.15) is given by

𝜕

𝜕𝑢𝑖

(
1||𝒖ℎ||2

)
=

−2||𝒖ℎ||4 𝒖T
ℎ

𝜕𝒖ℎ
𝜕𝑢𝑖

. (C.18)

To compute the two last terms in (C.11), we also need to account for the explicit design-dependence of the stabilization
parameter. To this end, we note that

𝝀T
T𝑒
𝜕𝑲𝑇𝑒

𝜕𝜌𝑒
𝑻𝑒 = 𝝀T

T ∫
Ω𝑒

𝜕𝜏

𝜕𝜌 𝑒
(𝑩T

𝑒 𝒖ℎ)(𝒖
T
ℎ
𝑩𝑒) d𝑉𝑻𝑒 (C.19)

where

𝜕𝜏

𝜕𝜌 𝑒
=

𝜕𝜏

𝜕𝑃𝑒𝑥

𝜕𝑃𝑒𝑥
𝜕𝜌𝑒

+
𝜕𝜏

𝜕𝑃𝑒𝑦

𝜕𝑃𝑒𝑦

𝜕𝜌𝑒
, (C.20)

in which, recalling (28),

𝜕𝜏

𝜕𝑃𝑒𝑥
=

ℎ

2𝑐

𝜕𝑥

𝜕𝑃𝑒𝑥

1||𝒖ℎ||2 = ℎ

2𝑐

(
1 − coth

2
𝑃𝑒𝑥 +

1

𝑃𝑒2𝑥

)
1||𝒖ℎ||2 and

𝜕𝑃𝑒𝑥
𝜕𝜌𝑒

=
−𝑢𝑥ℎ

𝑘2
𝜕𝑘

𝜕𝜌𝑒
. (C.21)

The load-vector contribution from the stabilized source term in (26) can be written as

𝑚∑
𝑒=1

∫
Ω𝑒

𝜏(𝑐𝒖ℎ ⋅ ∇�̃�ℎ)𝑄 d𝑉 =

𝑚∑
𝑒=1

∫
Ω𝑒

𝜏(𝑐𝒖T
ℎ
𝑩𝑒)𝑄 d𝑉

⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟
𝒇T
𝑒

𝑪𝑒�̃�, (C.22)

where 𝒇𝑒 is the contribution from element 𝑒. The derivatives of 𝒇𝑒 are given by

𝜕𝒇𝑒
𝜕𝑢𝑖

= ∫
Ω𝑒

𝑐

(
𝜕𝜏

𝜕𝑢𝑖
𝑩T
𝑒 𝒖ℎ + 𝜏∇𝑵T

𝑒

𝜕𝒖ℎ
𝜕𝑢𝑖

)
𝑄d𝑉 and

𝜕𝒇𝑒
𝜕𝜌𝑒

= ∫
Ω𝑒

𝜕𝜏

𝜕𝜌𝑒
(𝑐𝑩T

𝑒 𝒖ℎ)𝑄 d𝑉. (C.23)
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