Are morphological characteristics of Parrotia (Hamamelidaceae) pollen species diagnostic?☆

Benjamin Adroit a,⁎, Friögeir Grímssson b, Jean-Pierre Suc c, Gilles Escarguel d, Reinhard Zetter e, Johannes M. Bouchal b, Séverine Faquettet, Xin Zhuang f, Morteza Djamali h

a Swedish Museum of Natural History, Department of Palaeoecology, Box 50007, 10405 Stockholm, Sweden
b University of Vienna, Department of Botany and Biodiversity Research, 1030 Vienna, Austria
c Sorbonne Universitét-CNRS-UUPS, Institut des Sciences de la Terre Paris, ISTEP-UMR7193, 75005 Paris, France
d Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés UMR CNRS 5023 LEHNA, Université Claude Bernard Lyon 1, France
e University of Vienna, Department of Palaeontology, 1090 Vienna, Austria
f ISEM, Univ Montpellier, CNRS, EPHE,IRD, Montpellier, France
g Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Finland
h Institut Méditerranéen de Biodiversité et d'Ecologie–IMBE (Aix Marseille Univ, Avignon Université, CNRS,IRD), Europole de l’Arbois, Aix-en-Provence, France

A R T I C L E I N F O

Article history: Received 24 August 2022
Received in revised form 20 September 2022
Accepted 22 September 2022
Available online 29 September 2022

Keywords: Pollen morphology
Tertiary
Relict plant species
Refugia
Hyrcanian forest
Eastern China forest

A B S T R A C T

Parrotia persica is one of the most notable endemic relict tree species growing in the Hyrcanian forest at the southern Caspian Sea. The recent discovery of sibling species Parrotia subaequalis, occurring in the temperate forests of south-eastern China, offers the opportunity to compare their morphology and ecological preferences and to dig deeper into the paleophytogeographic history of the genus from a perspective. Since pollen morphology of these species would be essential to unravel the origin and evolution of these Arcto-Tertiary species, the present study aimed to investigate whether it is possible to segregate pollen from these two species. Therefore, a detailed combined light- and scanning electron microscopy-based pollen-analysis of each taxon was conducted, the pollen was described, measured, and compared using statistical approaches and principal component analyses to establish unbiased results. The correlation-based principal component analysis achieved for each species shows an overall good superposition of pollen grains measured in equatorial and polar views in the first principal plane, revealing that the P. persica pollen is morphometrically as homogeneous as that of P. subaequalis. Then, the significant difference, mainly driven by lumen density, has been highlighted between the two species. Ultimately, the cross-validation of the resulting two-species linear discriminants classifier shows that based upon this reference dataset, (sub) fossil pollen grain can now be confidently assigned to either of the two species with an 85,8% correct-assignment rate. This opens new doors in the affiliation of fossil Parrotia pollen and suggests that previous pollen records need to be revised.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Some areas of the northern Hemisphere were less impacted by the severe cold climate conditions of the Pleistocene glaciations (Frenzel et al., 1992). For that reason, particular areas in the temperate biome of Eurasia became refugia for several plant species referred to as Arcto-Tertiary floral elements (Manchester et al., 2009). Species such as Zelkova carpinifolia (Pall.) Dippel, Parrotia persica (DC.) C.A.Mey., Pterocarya fraxinifolia (Lam.) Spach, Acer cappadocicum Gled., and Ginkgo biloba L. are valid examples of relict plant taxa that nowadays occur in refugia regions in Iran (the Hyrcanian forest), on Creté (Greece) and Sicily (Italy), and in Eastern Asia. However, while these plants are important in characterizing the impact of the last glacial/interglacial cycles (Manchester et al., 2009; Akhani et al., 2010), the paleoclimatic and paleophytogeographic history of these relict species in their modern refugia is poorly understood (Cao et al., 2016). The lack of information is partly attributed to the scarcity of Cenozoic plant fossil records from the Caucasus prior to the Late Miocene (Shatilova et al., 2011). In addition, the difficulty in identifying tricolpate pollen of Hamamelidaceae is considered the cause of the absence of Parrotia in Eastern-Asia Cenozoic floras, a region which is now home to many Arcto-Tertiary floral elements (Zhi-chen et al., 2004). Moreover, due to the dampened effect of Quaternary glaciations the Arcto-Tertiary...
elements persisted in their ecosystems and only developed slight morphological changes which might mask recent diversification events (Qian and Ricklefs, 2000; Nagalingum et al., 2011). Thus, a focus on the detection and characterization of morphological differences and variability between species of the same genus, from the past to present, will provide insights into the evolutionary history of these Arcto-Tertiary floral elements in response to, for example, the formation of dispersal barriers and environmental changes.

Pollen is primordial for highlighting changes in plant taxa from both a chronological and chorological perspective (Marquer et al., 2014; Martin and Harvey, 2017). Morphological dissimilarities between pollen of closely related species may also reflect differences in the adaptation to long-term environmental changes (e.g. Cruden, 1976; Hedhly et al., 2005). Several palaeoecological studies, especially from Europe, provide insight into Quaternary environments, vegetation, and climate (e.g., Leroy and Roiron, 1996; Reille et al., 2000), and some studies have focused on specific relict plant taxa, such as Zelkova (Follieri et al., 1986) and Parrotia (Bíňka et al., 2003), from particular geographic regions. However, the limitation of the palynological approach is that pollen identification can usually be made only at the family and/or genus level and it can be hard or impossible to differentiate species or subspecies of the same genus (Nakagawa et al., 1998, for Zelkova spp.). For example, the pollen of Zelkova has been discovered from Quaternary sediments in most of Europe, and these pollen records could represent several different species, which some have gone extinct and/or are now relicts in Crete (Kozlowski et al., 2014) and Sicily (Garfi and Buord, 2012). The lack of ability to distinguish pollen from different sister species prevents reliable biogeographic studies related to paleoenvironmental changes. In that context, the case of the Persian ironwood (Parrotia persica (DC.) C.A.Mey) is of particular importance.

2. Material and methods

2.1. Origin and accessibility of samples

Pollen from both extant Parrotia, freshly collected as well as herbarium material was analyzed. Flowers were collected from trees occurring in their natural habitats, Parrotia persica flowers from plants in the Hyrcanian forest of Iran, and P. subaequalis flowers from plants in the Yixing forest of eastern China. The herbarium material used for this study belongs to the following collections: 1) Herbarium of the Department of Paleontology of the University of Vienna (HDP-WU); 2) IMBE palynological database, CNRS, Aix-Marseille University (MEPRC); 3) ISEM reference palynological database, CNRS, University of Montpellier.

2.2. Sample preparations

The anthers were extracted from the flowers and acetolyzed following the protocol called ‘fast way’ of Halbbritter et al. (2018, p. 103). Individual grains were then photographed with light microscope (LM) and transported onto scanning electronic microscope (SEM) stubs to be photographed following the “single-grain method” as modified by Halbbritter et al. (2018, p. 121).

2.3. Pollen observations, descriptions, and measurements

Pollen grains were observed with both LM and SEM and described and measured following Punt et al. (2007) and Halbbritter et al. (2018). The morphometric characteristics of P. persica and P. subaequalis were established based on measurements with LM from 120 pollen grains: 60 for each species, including 30 pollen grains measured in equatorial view and 30 in polar view (detailed measures are available in Suppl. 1).

2.4. Statistical analyses of pollen features

Due to previously observed differences in lumen size in P. persica pollen leading to the assumption of some polymorphism (Naud and Suc, 1975; Bíňka et al., 2003; Paridari et al., 2012), and due to the larger lumen size in P. subaequalis pollen, a morphometric study was performed on pollen grains in both equatorial and polar views. Using a calibrated square (side = 10 μm) sketched on pollen photographs at magnification×1000, the lumina were counted and thirty lumina measured in equatorial and polar views for each species. The morphometric characterization of P. persica and P. subaequalis pollen was assessed using complementary multivariate statistical tools based on the six quantitative descriptors (detailed measures are available in Supplement 1). All analyses were performed using PAST v. 4.02 (Hammer et al., 2001). As a preliminary step, these 6 quantitative descriptors measured for each of the 120 pollen grains included in the analyzed dataset were first transformed in order to optimize within-species multivariate normality (evaluated using the Doornik-Hansen test; (Doornik and Hansen, 1994) and homoscedasticity (i.e., homogeneity of variances and co-variances, as evaluated using the Box’s M test; (Rencher and Christensen, 2012) (Tables 1 and 2). The linear measurements (E, LII, WII, Lsl and Wsl, see caption Table 1) were log10-transformed, and the Nlumen (see caption Table 1) was square root-transformed, as customarily done for linear and count measurements, respectively (Sokal and Rohlf, 1995).

Fig. 1. Geographic maps showing the distribution of *Parrotia* persica in Iran and *P. subaequalis* in China. Distribution of extant populations marked with red based on (Sefidi et al., 2011; Zhang et al., 2018b; Liu et al., 2021). Geographic background adjusted from: The World Factbook, Central Intelligence Agency. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2.5. Principal component analysis

The multivariate distribution of pollen grains measured in equatorial and polar views was first explored separately for each species through correlation-based principal component analysis (PCA; Legendre and Legendre, 2012). Differences between the two views were further investigated through one-way Multiple Analysis of Variances (MANOVA; Rencher and Christensen, 2012) and its nonparametric equivalent, one-way PerMANOVA based on the Mahalanobis generalized distance matrix, 99.999 permutations; (Anderson, 2001). These tests were coupled with two-group linear discriminant analysis (LDA; Legendre and Legendre, 2012) in order to visualize group differences.

Plate I. Parrotia persica in its natural habitat in the Hyrcanian forest, Iran. (1) Fruits, usually less than 1 cm in diameter. (2) Flowers, usually 1 cm long. (3–4) Leaves, obovate, commonly 10 cm in length, can reach 15 cm. (5–6) Tree or sometimes large shrub, usually 8–10 m tall, but can be up to 25 m. Scale bar = 1 cm in 1–4; 1 m in 5 and 6. Photos (1) from Dr. Hamid Gholizadeh; (2–4) from the open access website ebben.nl.
along the canonical axis tested by MANOVA. Additionally, the multivariate difference of the two species in both equatorial and polar views was evaluated using two-group one-way MANOVA (two species) and four-group one-way MANOVA (two species × two views). The same two-group and four-groups were conducted on a one-way and two-way Mahalanobis-based PerMANOVA coupled with the corresponding LDA.

2.6. Climatic and biome niche analysis

We compiled historical climate data (1970–2000) from 196 georeferenced occurrences of *P. persica* and seven of *P. subaequalis* using WorldClim vers. 2.1 (https://www.worldclim.org/data/worldclim21.html) at a resolution of 30 s (ca. 1km²; Fick and
Table 1
Light microscopy measurements of *Parrotia* pollen.

<table>
<thead>
<tr>
<th>Species</th>
<th>P. persica, equatorial view</th>
<th>P. subaequalis, equatorial view</th>
<th>P. persica, polar view</th>
<th>P. subaequalis, polar view</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollen number</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Mean ± Std.Dev.</td>
<td>36.06 ± 6.763</td>
<td>38.44 ± 6.597</td>
<td>36.08 ± 4.488</td>
<td>36.05 ± 2.532</td>
</tr>
<tr>
<td>Median [1st–3rd Quartile]</td>
<td>37.35 [30.68–41.78]</td>
<td>36.75 [33.08–44.48]</td>
<td>37.82 [35.87–44.18]</td>
<td>37.05 [34.91–43.02]</td>
</tr>
<tr>
<td>Min–Max values</td>
<td>27.5–33.4</td>
<td>26.9–48.9</td>
<td>36.5–105.5</td>
<td>21.8–72.6</td>
</tr>
</tbody>
</table>

Note: Statistical summary of the six quantitative descriptors measured for *P. persica* and *P. subaequalis* in equatorial and polar views (see Suppl. 1 for full detailed values). E (μm) = equatorial diameter of pollen. Nnum = number of lumina per 10 μm² of pollen surface, which corresponds to the lumen density in fine. LI and WLI = length and width of the largest lumen observed in the same 10 μm² area. LSI and WSI = length and width of the smallest lumen observed in the same 10 μm² area.

Hijmans, 2017; see Supplementary File 2). The georeferenced data were filtered so that multiple occurrences with the same coordinates were treated as a single data point. To characterize climatic and ecological niches of the two modern species, we created distribution maps for each species using the GBIF dataset (https://www.gbif.org/). These occurrences were plotted onto 5 arc minute grids Köppen-Geiger climate maps (1986–2010 data; Kottek et al., 2006; Rubel et al., 2017) to establish “Köppen signatures” for both species; and on major terrestrial biome maps (Olson et al., 2001) to assess their biome preferences. For the Köppen-Geiger plots, the georeferenced data were filtered so that multiple occurrences within a single grid cell were only counted once (labeled ‘unique grid cells’ in the diagrams; Supplementary File 3). Likewise, for the biome plots, georeferenced data were filtered so that multiple occurrences within the same coordinates were treated as single data points (labeled ‘unique localities’ in the diagrams; Supplementary File 3). Georeferenced data and the Köppen-Geiger maps with a 5 arc minutes resolution were processed using the “Sample Raster Values” Toolbox in QGIS Version 3.16.4-Hannover. The biome shape files were processed using the “Geoprocessing Tool” in QGIS. The files and Köppen-Geiger climates occupied by both *Parrotia* species are shown as maps generated with QGIS and as frequency (proportional distribution) diagrams (Supplementary File 3). Excel files provide the raw point data (Supplementary File 2).

Hijmans, 2017; see Supplementary File 2). The georeferenced data were filtered so that multiple occurrences with the same coordinates were treated as a single data point. To characterize climatic and ecological niches of the two modern species, we created distribution maps for each species using the GBIF dataset (https://www.gbif.org/). These occurrences were plotted onto 5 arc minute grids Köppen-Geiger climate maps (1986–2010 data; Kottek et al., 2006; Rubel et al., 2017) to establish “Köppen signatures” for both species; and on major terrestrial biome maps (Olson et al., 2001) to assess their biome preferences. For the Köppen-Geiger plots, the georeferenced data were filtered so that multiple occurrences within a single grid cell were only counted once (labeled ‘unique grid cells’ in the diagrams; Supplementary File 3). Likewise, for the biome plots, georeferenced data were filtered so that multiple occurrences within the same coordinates were treated as single data points (labeled ‘unique localities’ in the diagrams; Supplementary File 3). Georeferenced data and the Köppen-Geiger maps with a 5 arc minutes resolution were processed using the “Sample Raster Values” Toolbox in QGIS Version 3.16.4-Hannover. The biome shape files were processed using the “Geoprocessing Tool” in QGIS. The files and Köppen-Geiger climates occupied by both *Parrotia* species are shown as maps generated with QGIS and as frequency (proportional distribution) diagrams (Supplementary File 3). Excel files provide the raw point data (Supplementary File 2).

3. Results

3.1. Pollen descriptions

Species: *Parrotia persica* (DC) C.A.Mey. (Tables 1 and 2; Plates III and V).

Description: Monad, oblate to prolate, spheroidal, circular to semi-lobate in polar view, elliptic to semi-circular in equatorial view; tricolpate; exine 2–2.5 μm thick, nexine thinner than sexine; semitectate; reticulate, heterobrochate; microreticulate, with nanoechinate suprasculpature in SEM; muri narrow, 0.3–0.6 μm wide, rounded, often incomplete in intercolpum (SEM); nanoechini mostly in single rows; testa (i.e., perforations) small, 0.1–1.5 μm wide, circular to irregular in outline, with few (0–4) freestanding coluleae, lumina decreasing sharply around colpi (SEM); colpus membrane echinate to nanoechinate and granulate, sculpture elements conglomerating along colpus margin forming irregular and segmented verrucose to rugulate with nanoechinate suprasculpature (SEM).

Remarks: *Parrotia persica* pollen has previously been studied by both LM (Nad and Suc, 1975; Paridari et al., 2012) and SEM (Boyle and Philbrick, 1980; Fritz and Allesch, 1999; Bijka et al., 2003; Paridari et al., 2012).

Parrotia subaequalis (Hung T.Chang) R.M.Hao et H.T.Wei (Tables 1 and 2; Plate IV and VI).

Table 2
Multivariate statistical tests and morphometrical characterization of *Parrotia* pollen.

<table>
<thead>
<tr>
<th>Test</th>
<th>P. persica vs. P. subaequalis</th>
<th>(two groups, pooled views)</th>
<th>P. persica vs. P. subaequalis</th>
<th>(four groups, separate views)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multivariate normality (Doornik-Hansen)</td>
<td>Ep = 7.8; p = 0.80 NS</td>
<td>Ep = 15.2; p = 0.02 NS</td>
<td>Ep = 24.4; p = 0.007 *</td>
<td>Ep = 24.4; p = 0.018 *</td>
</tr>
<tr>
<td>Multivariate Homoscedasticity (Box’s M)</td>
<td>M = 243; p = 0.42 NS</td>
<td>M = 340; p = 0.088 NS</td>
<td>M = 73.6; p = 4.1 × 10⁻⁷ ***</td>
<td>M = 124.8; p = 1.1 × 10⁻⁸ ***</td>
</tr>
<tr>
<td>One-way MANOVA (Wilks’s λ)</td>
<td>λ = 0.77; p = 0.027 *</td>
<td>F = 0.79; p = 0.59 NS</td>
<td>F = 12.30; p < 10⁻⁵ ***</td>
<td>F = 5.46; p < 10⁻³ ***</td>
</tr>
<tr>
<td>One-way PerMANOVA (Mahalanobis)</td>
<td>F = 2.30; p = 0.028 *</td>
<td>F = 0.79; p = 0.59 NS</td>
<td>-</td>
<td>Species: F = 12.52; p < 10⁻⁵ ***</td>
</tr>
<tr>
<td>Two-way PerMANOVA (Mahalanobis)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>View: F = 2.31; p = 0.028 *</td>
</tr>
</tbody>
</table>

Note: In each case, the statistics is given, followed by its corresponding p-value (p). NS is used for Non-Significant result; Ep and M are the respective names of the Doornik-Hansen and Box’s M statistical test result. NS: p > 0.05 (non-significant); *: 0.01 < p < 0.05 (weakly significant); **: 0.001 < p < 0.01 (moderately significant); ***: p < 0.001 (strongly significant).
Description: Monad, oblate, spheroidal, circular to semi-lobate in polar view, elliptic to semi-circular in equatorial view; tricolpate; exine 1.2–2 μm thick, nexine thinner than sexine; semitectate; reticulate, heterobrocate, with nanoechinulate suprasculpture in SEM; muri narrow, 0.5–0.8 μm wide, rounded, often incomplete in intercolpium (SEM); nanoechini mostly in single rows; lumina small to large, 0.6–2.5 μm wide, circular to irregular in outline, with few to many (0–12) free-standing columellae, lumina decreasing sharply around colpi (SEM); colpus membrane echinate to nanoechinate and granulate, sculpture elements conglomering along colpus margin forming irregular verrucae with nanoechinulate suprasculpture (SEM).

3.2. Statistical approach and pollen comparison

The correlation-based PCA achieved for each species show an overall good superposition of pollen grains measured in equatorial and polar views in the first principal plane (explaining 61.7% and 67% of the total variability for P. persica and P. subaequalis, respectively; Fig. 2A, C). In both cases, the multivariate space appears to be structured in the same way, with the lumen density vs. size of the smallest and largest lumina driving the first principal component, and the equatorial diameter driving the second principal component. Parametric and nonparametric MANOVAs confirm for each
species the impossibility of distinguishing between specimens observed in the equatorial view and those observed in the polar view (Table 1). The significant result obtained for *P. persica* is a spurious by-product of the presence in the analyzed sample of 22 (37%) large-E pollen grains (equatorial diameter) pollen grains coming from a single microscope slide (n° 35,249) and involving 13/22 (59%) grains in polar view, while the small-E group involves 17/38 (44.7%) grains in polar view. Similar tests achieved without the equatorial diameter descriptor return non-significant results confirming the morphometric homogeneity between equatorial and polar views (MANOVA: \(\lambda = 0.86, p = 0.13 \) NS; PerMANOVA: \(F = 1.69, p = 0.13 \) NS). Finally, the two-group LDA (Linear Discriminant Analysis) illustrates the lack of morphometric differences between equatorial and polar views for each species (Fig. 2B, D).

On the contrary, compared to each other, pollen from the two *Parrotia* species show highly significant morphometric differences based on pooled and separate equatorial and polar views (Table 2). The two-way PerMANOVA (species × view) confirms that most of the morphometric heterogeneities between groups come from differences between species, with no significant interaction between species and view factors. The corresponding LDAs also illustrate significant differences, showing that the morphometric difference between the two species is mainly driven by lumen density vs. size of the smallest and largest lumina (Fig. 3).

Plate IV. Scanning electron microscopy (1–6) micrographs of *Parrotia subaequialis* (slide MEPRC-1050 of the IMBE collection, plant sample collected in China). (1) Polar view, partly preserved aperture membrane. (2) Polar view, aperture membrane mostly lost. (3) Close-up of central polar area. (4) Close-up of intersapertural area. (5) Close-up showing colpus margin and membrane. (6) Close-up showing the end of the colpus and membrane. Scale bars – 10 \(\mu \)m (1–2), 1 \(\mu \)m (3–6).
3.3 Extant Parrotia biomes and climate niches

Both extant Parrotia species are part of the “Temperate Broadleaf and Mixed Forests” biome (Olson et al., 2001; Supplementary File 3). Based on our georeferenced dataset, both species display relatively similar mean annual temperature (MAT) preferences and coldest month mean temperature (CMMT) tolerances (Supplementary Files 2 and 3). Significant differences were observed with precipitation. While *P. subaequalis* thrives under fully humid conditions (Cfa climate; Fig. 4, with 1052 (1287) 1585 mm mean annual precipitation (MAP) and 485 (549) 666 mm of precipitation during the three warmest months, *P. persica* tolerates 291 (750) 1195 mm MAP, with strong seasonality and a precipitation depression during the summer months. With only 22 (76) 135 mm of precipitation during the three warmest months, *P. persica* thrives mainly under a Csa climate (Fig. 4), bordering in the east of its natural distribution to B5 climate and extending at higher elevations along the mountain ranges near the Caspian Sea into Cfa climate.

4. Discussion

4.1 Concrete distinction of pollen

The pollen of both Parrotia species is easily identified at the genus level. The suspected polymorphism of *P. persica* pollen can be rejected based on the LDA, revealing that the *P. persica* pollen is morphometrically as homogeneous as those of *P. subaequalis*. When compared, the pollen grains of *P. persica* are slightly larger and their exine is thicker than those of *P. subaequalis* (Plates III and IV; Tables 1 and 2). Although pollen grains of both species are reticulate in LM, the lumen density is much finer in *P. persica* than in *P. subaequalis*. These differences are more visible with SEM observations, where the sculpture of *P. persica* is micro-reticulate and the sculpture of *P. subaequalis* is reticulate (compare Plate III, 3 and 4 to Plate IV, 3 and 4). SEM further differentiates the reticulate sculpture of the two species; the muri are broader, the diameter of the lumen is larger, and the number of free-standing columellae.
is higher in *P. subaequalis* compared to *P. persica*. Furthermore, sculpture elements along the colpus margins are differently arranged in the two species (compare Plate III, 5 and 6 to Plate IV, 5 and 6). Furthermore, statistical approaches confirm the significant difference between pollen of the two *Parrotia* species. Combining the available evidence, *P. persica* is best characterized by a dense and small lumina, while *P. subaequalis* is characterized by a less dense and larger lumina, as summarized in Table 1. Ultimately, the cross-validation of the resulting two-species linear discriminant classifier shows that based on this reference dataset, (sub)fossil pollen grains can now be confidently assigned to either one of the *Parrotia* species with an 85.8% correct-assignment rate.

4.2. Inputs for paleopalynology and affiliation to extant species

The equatorial diameter (E) and length of the polar axis (P) in fossil *Parrotia* pollen is usually not comparable to that of pollen from extant *Parrotia* due to the hydrated state of extant material studied with LM. Potential fossil *Parrotia* pollen is mostly preserved in a dehydrated state, either with the aperture enfolded or widely open (lacking colpus membrane). Fossil pollen grains with enfolded apertures are stretched along their polar axis, therefore, they have an excessively long polar axis compared to their equatorial diameter. Grains with widely open apertures are collapsed, and their poles are compressed; therefore, they have an excessively wide equatorial diameter. This makes it hard to compare the size/outlines/shape (e.g. the P/E-ratio) of single dispersed fossil *Parrotia* pollen to that of either *P. persica* or *P. subaequalis*. Irrelevant to this is the sculpture observed in LM and/or SEM. The number and size of the lumina are not affected by the P/E ratio and can be measured in both fossil and extant pollen and compared. As evident in Table 1, there is a clear difference in the lumens size range and partly in their number per 10 μm² between the two living species. These features currently seem to be the only tool for possibly segregating fossil *Parrotia* pollen and investigating if they are morphologically/taxonomically closer to one or the other extant species. To test this, we measured the lumen features from potential fossil dispersed *Parrotia* pollen previously described from Late Oligocene to Pliocene localities of Europe (see Table 3, and references therein). Interestingly, the oldest European records from our comparison, which are of late Oligocene to Middle Miocene age, suggest affiliation to *P. persica*. The younger records, of Late Miocene to Pliocene age, suggest affiliation to *P. subaequalis*. The reasons for this might be as follows: 1) the pollen type of *P. persica* is the basal/ancestral pollen within *Parrotia*, and European Oligocene to Middle Miocene *Parrotia* plants, one species or more, produced pollen comparable to that of modern-day *P. persica*. The change or addition in morphology could reflect a divergence within the genus and the origin of a new species that is now confined to East Asia; 2) this has no meaning and the affiliation 'older versus younger records' to either of the living species might change and intertwine back in time when a larger number of records are considered. In any case, such assumptions would have to be supported or rebutted in a future more detailed study based on a larger fossil pollen collection from different Eurasian locations.

4.3. Paleoecological and paleoclimatological considerations

Since plant species of the same genus can characterize drastically different ecological niches, it is important to be able to segregate tree pollen at intragenetic levels, especially when those taxa are also present in the fossil record. For example, the genus *Acer* comprises more than hundred different plant species developing within drastic different environments. In western Eurasia (Europe, Caucasus), pollen cannot be
used to discriminate between the drought-adapted *Acer monspessulanum* L., *Acer campestre* L., *Acer cappadocicum* Gled., which occupy a closed montane forest even up to a mesic valley (Akhani, 1998), and the humid forest species such as *Acer velutinum* Boiss., *Acer pseudoplatanus* L., *Acer platanoides* L. (Beug, 2004, p. 250). Another example is *Quercus*, also very widespread in the world and in the fossil record. The *Quercus robur*–*pubescens* pollen type cannot be discriminated between various white oaks that can be swamp forest or dry steppe forest elements (Beug, 2004, p. 144). However, the possibility to discriminate the evergreen (e.g., *Quercus ilex*-type) from deciduous oak (*Quercus robur*-type) has been an asset for paleoecologists to understand the ecological history of Mediterranean forest ecosystems.

As evident herein, *Parrotia* is one of those genera in which it is possible to differentiate between the pollen of its species. The case of *Parrotia* is interesting because this Arcto-Tertiary floral element can be useful in determining Quaternary interglacial paleo-refugia. So far, *Parrotia* pollen grains described from the Cenozoic of Eurasia have mostly been attributed to *P. persica* (Stachurska et al., 1973; Naud and Suc, 1975; Leroy and Roiron, 1996; Jiménez-Moreno et al., 2007; Jiménez-Moreno and Suc, 2007; Suan et al., 2017; Suc et al., 2020; Popescu et al., 2021). The present study shows that previous fossil pollen records could potentially be revised based on the pollen morphology and that future studies comprising fossil *Parrotia* pollen need to consider the morphological differences between the two extant species of the genus.

The main reasons why it is important to revise previous fossil *Parrotia* pollen records and correctly affiliate new finds is the potential impact on paleoenvironmental interpretations. Today, *P. persica* and *P. subaequalis* do not share the same bioclimatic conditions. Although their biomes can both be defined as Temperate Broadleaf & Mixed Forests, the climate sustaining *P. subaequalis* is a fully humid warm temperate climate with hot summers, a typical Cfa climate (e.g., Kottek et al., 2006; Fig. 4), while in the Hyrcanian forest, *P. persica* thrives under a warm temperate climate with hot but dry summers, a typical Csa climate (e.g., Kottek et al., 2006; Fig. 4, Supplementary Files 2 and 3). This difference in the present climatic conditions is also supported by the Computerized Bioclimatic Maps of the World (Rivas Martínez et al., 2011) where *P. persica* is shared between the bioclimate n°33

Fig. 2. Principal Component and Linear Discriminant Analyses of *Parrotia* pollen. Correlation-based Principal Component Analyses (A, C) and two-group (equatorial view vs. polar view) Linear Discriminant Analyses (B, D) of 60 pollen grains from *Parrotia persica* (A, B) and *P. subaequalis* (C, D).
Fig. 3. Morphometric analyses of Parrotia pollen. Two-species (A) and four-group (2 species × 2 views; B) Linear Discriminant Analyses reflecting the morphometrical difference between Parrotia persica and P. subaequalis.

Fig. 4. Köppen-Geiger climate signatures of Parrotia persica and P. subaequalis based on their modern distribution. Climate types according to Köpp et al. (2006), Peel et al. (2007), and Rubel et al. (2017).
(i.e. Temperate–oceanic) and n°26 (i.e. Mediterranean–xeric-oceanic) while P. subaequalis remains in n°32 (i.e. Temperate–continental) bioclimatic conditions. Unfortunately, the allegedly narrow ecological niche of P. persica, is commonly used to infer paleoclimate conditions (temperatures and precipitations) for Eurasian paleoenvironments (Emberger and Sabeti, 1962; Ramezani et al., 2013). But in their publication on the palynoflora from the Lavanttal Basin, Grímsson et al. (2015) referred to several studies focused on P. persica providing significant range in the amount of for example annual precipitation, mean annual temperature, elevation, and associated plant species.

Overall, a comparative ecological niche modeling of both extant species is needed in order to put forward a more reliable paleoenvironmental interpretations based on affiliation to either of the extant species. Moreover, because of the restricted distribution of extant Parrotia some climatic parameters could be underestimated (e.g. Bruch et al., 2002; Uhl et al., 2007; Thiel et al., 2012).

5. Conclusions

Comparison between pollen grains of Parrotia persica (from the Hyrcanian forest of Iran and Azerbaijan) and P. subaequalis (from temperate forests of south-eastern China) demonstrates significant morphological differences. The two-species LDA ultimately provides a linear classifier so dispersed pollen grains can be assigned to either species based on six analyzed descriptors. This distinction can be done using simple light microscopy; P. subaequalis is characterized by large and sparse lumina, and P. persica is best identified by small and dense lumina. Until now, palaeopalynological studies, affiliated fossil Parrotia type pollen automatically as being grains of P. persica. The recent discovery of the sibling P. subaequalis and now, with our study, the demonstration of its significant difference in pollen morphology when compared to P. persica led to re-evaluate the former palaeoenvironmental estimations, especially in Europe where the fossil records between Late Miocene to Pliocene support an affiliation to P. subaequalis pollen type. Such observation could suggest a divergence within Parrotia and the emergence of the new species, that is now restricted to Eastern Asia.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Mrs. Xuefeng Yang (杨雪峰) who collected and provided to us the flower of the species Parrotia subaequalis from China. We are also grateful to Hossein Akhani who provided photographs of Parrotia persica pollen from Iran. Overall, we thank the respective teams from China and Iran. Helpful discussion with Thomas Denk is acknowledged.

We thank reviewers Prof. Gonzalo Jiménez-Moreno and one anonymous reviewer for their work.

This work was supported by a grant from Carl Tryggers Stiftelse (project no. CTS21: 1585).

The following are the supplementary data related to this article.

References

