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Abstract

This thesis work aimed to investigate opportunities of denitrification on sand
filters (SFs) at industrial scale and how it relates to conventional methods
of achieving denitrification and its effect on the process at Bromma WWTP.
Investigated parameters were ammonium and nitrate removal, oxygen and
aeration, temperature, pH, phosphorus removal, removal of organic material,
removal of suspended solids, water bypass of SF' and activated sludge facility
(ASF), operational times of the SFs and total water load on ASF and SF.
The measurements were made with aCurve, an online internal program at
Bromma WWTP where online analyzers and operational parameters were
logged. The online values for nitrate and nitrite were controlled using stan-
dard cuvettes methods.

The removal of Tot-N achieved values of 0.62-0.94 for denitrification on
SF'. Increased clogging of SFs occured due to dosage of methanol on SFs and
growth of microorganisms causing an increased risk of SF bypass especially
during high water load. Removal of T'SS (total suspended solids), BOD7 and
phosphate were unaffected by the implementation of denitrification on SF's.

The findings of the thesis can be used to further optimize conventional
methods of nitrogen removal in WW'TPs. For further studies the clogging
of SF's when using methanol dosage on sand filters could be investigated as
well as comparing the methods in a controlled environment.
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List of Abbreviations

ASF - Activate Sludge Facility

BOD - Biological Oxygen Demand

BOD7 - Biological Oxygen Demand for microorganisms to digest organic
matter in water in 7 days

SE - Sand filter

SS - Secondary sedimentation

WWTP - Wastewater Treatment Plant
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1 Introduction

Expanding hypoxia is a problem for the Baltic sea. The problem is caused
by increased summer blooming of cyanobacteria which is caused by increased
anthropogenic nutrient loading (Gustafsson et al., 2012). Nitrogen and phos-
phorus are the most common eutrophication causing nutrients (USGS, 2019).
Reducing the emissions of nitrogen and phosphorus is of interest to reduce
the expanding hypoxia.

Bromma Wastewater Treatment Plant (WWTP) treats the wastewater
of about 375,700 people (130 000 m? water/day) living in the western parts
of Stockholm (Eriksson, 2022). The WWTP plans on closing 2026 and the
plan is to treat all the wastewater of the Stockholm region at Henriksdal
WWTP. Together with Henriksdal WWTP Bromma has to release a maxi-
mum yearly average of 10 mg/1 total nitrogen to the Baltic Sea according to
their environmental permit MMD M 3980-15.4 from 2019. In order to fulfill
this requirement Bromma has to make sure they remove enough nitrogen to
compensate for potential issues as Henriksdal while Henriksdal is renovating.
The permit (see Appendix B) also include a maximum yearly average of 0.4
mg/1 total phosphorus and 8 mg/1 BOD?7.

1.1 Aims and objectives

The aim of the following research study is to investigate the opportunities of
denitrification on SF's and how it relates to conventional methods of achieving
denitrification and how this affects the process at Bromma WWTP.

The following research objectives are examined:

e The influence of temperature on the denitrification process on the sand
filters (SFs) and the activated sludge process.

e The impact of carbon source dosage on the denitrification in SFs.

e Determination of feasibility of dosage on SF's compared to conventional
methods.

e Determine the effects of increased aeration in the activated sludge pro-
cess due to denitrification on SF's instead of denitrification in the acti-
vated sludge process.

e The influence of denitrification on SFs on operational time of the SF's
between backwashes.



e The influence of denitrification on SFs on BOD7, phosphorus and sus-
pended solids treatment.

1.2 Delimitations

The thesis only includes the treatment of different forms of nitrogen in the
wastewater and excludes other compounds even if this is of high relevance
for Bromma WWTP. The thesis work is also limited to the SF's, but will in-
clude the activated sludge process since the treatment of nitrogen at Bromma
WTTP is impacted by this process.



2 Background

2.1 Nitrogen

Nitrogen is a nutrient common in nature. Overabundance of nutrients such
as nitrogen, but also phosphorus increases algae production in the water.
When algae dies they are decomposed by bacteria consuming oxygen in the
process. When enough oxygen is removed the water can become hypoxic and
so called "dead zones” appears at the bottom of the ocean where there is
insufficient oxygen to sustain life (USGS, 2019) This is a common problem
in the Baltic Sea (Gustafsson et al., 2012).

The nitrogen is mainly present in wastewater as ammonia (NH3) and am-
monium (NH; ) while a smaller part consists of nitrate (NO3 ). The ammonia
and ammonium is toxic to fish and is unstable in the environment and are
easily transformed into nitrate in water with dissolved oxygen. The nitrate
is more stable in the environment but causes health problems and is easily
transported in water stream and groundwater. (USGS, 2019)

2.2 Treatment of Nitrogen in Wastewater

Nitrogen is present in municipal wastewater mainly as ammonium (NH;)
due to naturally occuring processes and urea (Persson, 2018). The conven-
tional way of treating ammonium in wastewater is through the process of
nitrification and denitrification (Shah & Rodriguez-Couto, 2021). Besides
biological ways of treating ammonium in wastewater, other ways of treating
ammonium could be ammonia stripping, ion-exchange and chemical precipi-
tation. (Persson, 2018)

At municipal WWTPs about 20% of the ammonium is removed natu-
rally in the biological treatment step. In municipal WWTPs the biologi-
cal treatment step’s main task is to reduce organic material, usually mea-
sured through biological oxygen demand (BOD) or chemical oxygen demand
(COD). This process produces sludge. The passive removal of nitrogen is
usually due to assimilation of nitrogen in the cells of the microorganisms in
the sludge. The conventional method of reducing the amount of ammonia
and ammonium in the wastewater is by using nitrification and denitrification
which are biological processes caused by microorganisms. (Persson, 2018)



2.2.1 Nitrification

The process of nitrification is mainly described as (NH})/(NH3) oxidizing
to (NOj3) which is caused by two groups of bacteria. Ammonia oxidation
is caused by ammonia oxidized bacteria (AOB) in a process normally called
nitritation which consists of a a two-step reaction. The first step corresponds
to the oxidation of ammonia to hydroxylamine (NH,OH), see eq. (1). The
second step corresponds to the oxidation of hydroxylamine to nitrite, see
eq. (2). The oxidation of (NOj3) to (NO3) is carried out by nitrite oxidized
bacteria (NOB), see eq. (3). Similar reactions are the case for ammonium.
(Persson, 2018) In Sweden regulations regarding additional treatment of ni-
trogen was added during the 90s (Johansson & Wallstrom, 2001) .

NH3+OQ+2H+26—>NHQOH_+HQO (1)
NH,OH + H,0 + 0.502 — NO, + 5H + 4e 2)

The bacteria for nitrification as shown in eq. (1, 2 and 3) requires oxygen
for the process to occur. This is usually done by implementing an activated
sludge facility (ASF). The nitrification bacteria are sensitive to low pH and
grow very slowly, especially at lower temperatures. (Persson, 2018) This
results in a required sludge age of longer time and therefore return sludge is
a must for the ASF. The required sludge age is highly dependent on water
temperature. With a stable nitrification at a water temperature of 15°C a
sludge age of 6 days is required. At a temperature of 5°C a sludge age of 20
days is required. (Persson, 2018)

2.2.2 Denitrification

The denitrification process is the process of reducing nitrate and nitrite to a
gaseous form of nitrogen. The denitrification is an anoxic process (Persson,
2018) caused by heterotrophic anaerobic bacteria but also demands access
to a degradable organic substance such as the organic matter in the waste
water or an external carbon source. External carbon source is used when
the organic substance in the wastewater is insufficient or unavailable for
biodegradation (Van Niel, Arts, Wesselink, Robertson, & Kuenen, 1993).
During denitrification the oxygen bound in the nitrate (NOj3) is used for
oxidation of the organic substance. The denitrification process is shown in
equation (4) (Persson, 2018). In practice the denitrification process is done in
several steps where the nitrate is converted into a series of gaseous nitrogen
oxides shown in equation (5). (Van Niel et al., 1993).



Carbon source + 2NO3;~ + H,O —— 2.5CO5 +20H™ + N, (4)
NO;~ — NO;™ (aq) —> NO (g) —> N2O (g) —> Na(g)  (5)

2.2.3 Factors influencing Denitrification

The factors influencing the Denitrification process are:

2.3

pH: According to a study the optimal pH value is 7.5 for biological
denitrification and the biological denitrification rate decreased gradu-
ally when diverting from 7.5 pH.(YATONG, 1995)

Temperature: A study concluded that temperature had a major im-
pact on denitrification rate. At lower temperatures ranging 6-10°C the
denitrification rate was lower than when the temperature was rang-
ing 10-25°C and the highest denitrification rate was at 25°C. (Carrera,
Vicent, & Lafuente, 2004)

Phosphorus: Besides nitrogen content of the wastewater phosphorus is
also a nutrient causing eutrophication in the recipient and is present
in wastewater as phosphate ions (Bunce, Ndam, Ofiteru, Moore, &
Graham, 2018). In the UK about 70% of the phosphorus entering
rivers are from sewage discharges (Bowes et al., 2015).

BOD7: BOD7 (Biochemical Oxygen Demand) is a measure of the oxy-
gen needed for microorganisms to degrade organic material in water in

seven days and determines the organic content of wastewater (Tiirker,
Okaygiin, & Almagadma, 2009).

Suspended solids: Total suspended solids (TSS) is a measure on the
total amount of suspended solids in wastewater. Suspended solids are
inorganic and organic easily sedimented solid particles bigger than .45
m in diameter.(Persson, 2018)

C/N ratio: the carbon to nitrogen (C/N) ratio is significant for growth
of microorganisms. (Sobieszuk & Szewczyk, 2006)

Bromma Wastewater treatment plant

Bromma WWTP (see Figure 1) consists of two facilities; Nockebyanldggnin-
gen, which is focusing on the biological treatment and Akeshovsanliggningen
which is focusing on the mechanical and sludge treatment. The Bromma
WWTP consists of several process steps:

b}



. Wastewater comes from Riksby, Hésselby and Jarva.

. The wastewater passes through a step screen of 3 mm gaps in order to
remove larger particles from the wastewater.

. Precipitation chemicals iron sulfate and ferric chloride are added. The
ferrous chloride is added for increased precipitation during cold periods
to increase the separation in the pre-sedimentation step to be able to
increase the sludge age in the ASF. The iron sulfate is used to precipi-
tate phosphorus. The water then arrives at the sand trap where sand
and larger particles sediment. The sand is removed and reused.

. The water is taken to a pre-aeration step. The wastewater is aerated
to let fats, oils and lighter particles reach the surface to be removed.

. The water is then taken to a pre-sedimentation step to let heavier
particles settle where the primary sludge is taken to a strainpress and
the water is then taken to the Nockeby facility for biological treatment
together with the water from the reject.

. As the water arrives at the Nockeby facility it is usually mixed with a
carbon source before taken to the ASF, usually the carbon source used
is methanol.

. The activated sluge facility has 8 zones with different zone control (see
figure 1). The recirculation from the ASF and the post sedimentation
recycles water rich of nitrate and sludge to the first zone where it meets
the influent water rich of organic content to enable pre denitrification
in the first 2 zones. It is important that zone 2 does not contain excess
of oxygen since this will disable denitrification and enable nitrification
causing the organic content to be digested by other microorganisms.
Zone 3 and 4 are flexible zones which can be controlled individually in
order to enable nitrification or denitrification depending on ammonia
content. Zone 5 and 6 are used for nitrification. Zone 7 is a flexible zone,
most often not aerated in order to allow the water to lose oxygen content
to allow the recirculation to have low oxygen content. Due to the low
content of degradable organic material in the waste water methanol
is usually added as a carbon source to enhance the pre-denitrification
especially during cold periods. This can be a problem since some of
the added methanol can be removed by the aeration in zone 5 and 6.
Outgoing water is usually sent back to Zone 1 to get nitrate in the first
zones and therefore cause pre-denitrification and secondary sludge from
the secondary sedimentation (SS) tank is sent back to the first zone to
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Figure 1: Zones for the ASF

Polymer can then added to improve the flocking of particles to enhance
the secondary sedimentation, but depends on outgoing total suspended

solids (TSS).

. The water then comes to the secondary sedimentation tank where some

of the sludge is recycled back to the ASF and the rest of the sludge
goes back to the Akeshov facility for sludge treatment.

Before the water comes to the SF's iron sulfate can be added to further
reduce phosphorus levels.

The water then comes to the SFs where the water is filtered. The SFs
filter a lot of water and needs backwashing as the filter is clogged.

After the SF's, heat is extracted for district heating and the water is
released to the Baltic Sea.



Figure 2: Flowchart of Bromma WWTP

2.4 Sand filters at Bromma

The SF hall consist of 24 SF pools filled with natural sand. The filters have
an area of 60 m? (6 + 10 m). The filter material cosists of two fractions. One
fraction is sand which is 0.5 meter deep and the other fraction is Filtralite®)
MC 2.5-4 mm which is 1 meter deep.

According to the dimensions the filters are supposed to be able to filter
a flow of 14 400 m3/h, the biological treatment step is dimensioned for 10
800 m?3/h. For higher flows the filters will be bypassed and therefore part of
the water will be unfiltered. The filter pools are designed to keep a water
level of 3.4 m and when the water level increases the outlet valve opens more.
When the outlet valve is 95% or more open for 15-20 minutes backwash of
the filters are done automatically.

Backwashing is done in the following way: the outlet valve opens fully
and the water flow to the filter is closed to empty the filters. Then the out-
let valve closes and backwash starts. Backwash is done twice in a row with
20 m/h water and 30 m/h air. After backwashing the sorting starts which
fluidises the bed and the backwashing pumps are started again. This is di-
mensioned to be done with a flow of 90 m/h water.

In each SF the pressure difference over the filter is measured. The pressure
difference is the difference of the pressure above the filter minus the pressure



under the filter. The pressure difference lowers as the filter is clogged and
increases after backwashing. Usually the filters are backwashed every 36
hours regardless of the pressure difference.

2.4.1 Wastewater bypass

When the flow of water to the SFs exceeds the capacity of the SFs, bypass
of wastewater occurs. Bypass means the wastewater is released to the efflu-
ent without passing through the SF. This lowers the quality of the released
wastewater to the recipient. Because of clogging the capacity of the SFs vary.
Bypass of wastewater also occurs at the ASF.

This mixes biologically treated and biologically untreated wastewater as
well as filtered and unfiltered wastewater causing dilution of the Wastewater
streams making it ineligible to measure the nitrogen when bypass occurs.
The bypass and water streams as well as the measuring spots where the
measurements are done at Bromma WWTP are shown in Figure 2.

ASF BYPASS SF BYPASS
Activated Post Sedimentation Sand filter
ludee facility v > an ters >,
T sludge facility T > T va
Effluent
igﬂ;ent ASF Influent Effluent WWTP
}Tieasuﬁng measuring sand filter measuring
measuring

Figure 3: Wastewater streams for the system boundaries used during mea-
surements as well as measuring spots and bypass streams

2.5 Sustainable development goals

To analyze how this thesis impacts the sustainable development goals (SDGs)
is relevant since this is the reason for conducting the thesis. The SDGs most
relevant to this thesis is SDG 6 Clean water and sanitation, SDG 11 Sustain-
able cities and communities, SDG 12 Responsible consumption and production
and SDG 14 Life below water.

This thesis aims to investigate how different methods have an impact on
the removal efficiency of nitrogen (SDG 6) of current wastewater (SDG 12



and 14) treament plants which is an industrial facility and uses industrial
technologies (SDG 9). Cities (SDG 11) generate wastewater and the thesis
aims to investigate other ways to treat nitrogen in wastewater compared to
conventional methods of Bromma WWTP.

Subgoal 6.3 Improve water quality, wastewater treatment and safe reuse
includes to, by 2030, improve water quality by reducing pollution and to
halve the proportion of untreated wastewater and to increase recycling of
wastewater. (Goal 6: Clean water and sanitation, 2022) This thesis aims to
investigate the efficiency of different nitrogen treatment methods in current
wastewater treatment plants

Subgoal 9.5 Enhance research and upgrade industrial technologies includes
upgrading the technological capabilities of industrial sectors. (Goal 9: In-
dustry, innovation and infrastructure, 2022)

Subgoal 9.4 Upgrade all industries and infrastructures for sustainability
includes upgrading infrastructure and retrofit industries to make them sus-
tainable with a focus on resource-use efficiency and a use of clean and envi-
ronmentally sound technologies and industrial porocesses. (Goal 9: Industry,
innovation and infrastructure, 2022)

Subgoal 11.6 Reduce the enviromental impact of cities includes reducing
the per capita environmental impact impact of cities especially mentioning
municipal waste management. (Goal 11: Sustainable Cities and communi-
ties, 2022)

Subgoal 12.4 Responsible management of chemicals and waste includes
significantly reducing emissions of chemicals and all wastes to water. (Goal
12: Responsible consumption and production, 2022) This goal was for 2020,
but could still be relevant.

Subgoal 14.1 Reduce marine pollution includes to, by 2025, prevent and

reduce marine pollution of all kinds from specifically land-based activites,
even mentioning nutrient pollution. (Goal 14: Life below water, 2022)
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3 Methodology

In order to set up the process with the microorganisms in the SF's there has
to be an external carbon source added to the SFs for the microorganisms to
grow. Acclimatization time also has to be considered and in this first process
2 weeks was used since there had previously been no external carbon source.
Methanol was used as an external carbon source and was dosed both on the
activated sluge facility and the SF's for 2 weeks of acclimatization time. After
2 weeks the external dosaging of methanol was changed to being 100% on
the SFs before starting the trials to allow for acclimatization. After the 3
weeks the trials conducted according to Table 1. The trials were changed
based on the results from previous weeks in order to try to achieve a more
optimal process.

Table 1: Test periods and the corresponding dosage used for the trials
Test Week Dosed on ASF  Dosed on SF Total dosage

[m?/d] [m?/d)] [m?/d]
I 67 0 1.2 1.2
I 810 0 1.7 1.7
I 11-12 0.8 0.9 1.7
IV 1315 1.1 0.6 1.7
V1617 0.6 1.1 1.7
VI 1819 0 1.7 1.7

3.1 Analytical methods

Different types of measurements were used. The majority of the data used to
analyze the outcomes of the trials were done as online optical measurements.
The online tools were also tested against standard cuvettes methods in the
laboratory in order to validate the accuracy of the online measurements. The
online measurement tools were tested about once a week and also cleaned
every monday in order to achieve more accurate data.

Equipment:

e Spectrophotometer: Hach Lange GmbH DR2800
e Nitrite Cuvettes: Hach Lange LCK342, 0.6-6.0 mg/1
e Nitrate Cuvettes: Hach Lange LCK339, 0.23-13.5 mg/1

11



The control values of influent NO3-N to SF is provided in Table 2 and
efluent NO3-N to SF is provided in Table 3. The controls show that the
NOs3-N online measurement tool for the influent shows errors in the range of
3-11% and the NO3-N online measurement tool for the effluent shows errors
in the range of 6-18%.

Table 2: Control measurements of NO3-N for influent to sandfilter samples

Time Cuvette Online value Error
[mg/1] [mg/1] (%)
9.39 24 Feb 2022 9.78 10.8 10
9.39 24 Feb 2022 9.77 10.8 11
9.39 24 Feb 2022 9.78 10.8 10
9.43 24 Feb 2022 9.52 10.0 5
9.43 24 Feb 2022 9.50 10.0 5
9.43 24 Feb 2022 9.54 10.0 5
9.52 2 Mars 2022 9.74 10,3 6
9.53 2 Mars 2022 10.2 10.5 3
10.01 2 Mars 2022 9.75 10.5 8
10.03 2 Mars 2022 9.81 10.9 11
10.09 2 Mars 2022 9.81 10.9 11

Table 3: Control measurements of NO3-N for effluent from sandfilter samples

Time Cuvette Online value Error
me/ll g/l (%)
10.59 11 Apr 5.95 6.3 6
11.00 11 Apr 5.91 6.3 7
11.01 11 Apr 5.90 6.3 7
10.00 13 Apr 1.57 1.8 15
10.01 13 Apr 1.52 1.8 18

3.1.1 Daily collected samples

Some of the control samples were made with daily collected samples. Collect-
ing a sample over 24 hours. This could then be controlled with the average of
the daily value from the online optical tool. The results from this is provided
in Table 4. The daily collected samples provide a smaller error, but have
fewer data points.

12



Table 4: Control measurements of NO3-N for efluent from sandfilter using
daily samples

Day Cuvette Online value FError
[mg/1] [mg/1] (%)
12-13 feb 7.0 7.9 11
15 feb 8.0 7.5 7
24 feb 7.1 7.2 1

Table 5: Control measurements of NO3-N for influent to sandfilter using daily
sample

Day  Cuvette Online value Error

(mg/1] (mg/1] (%)
15fb 9.9 10.2 3

3.1.2 Measurements

The measurements included in the thesis are listed in table 2. Except for
TSS and BOD7 which are mentioned later.

Table 6: Measurements included in the thesis, x marks where it is measured.

Unit Inf ASF ASF InfSF SF Eff WWTP
Water [m?/h| X X
NH,-N [mg/I] X X X
NO3-N [mg/I] X X
NO2-N [mg/I] X
Aeration [Nm3/h] x
Bypass [m3/h] X X
Total pump frequency [H z] X
Temperature (°C) X
pH X
Phosphate [mg/]] X X

Inf means influent and eff means effluent

Different types of measurements were conducted: online measurements
and cuvette analysis. The most common measurements were online mea-
surements done with SVOA’s internal software aCurve which is a tool where

13



all the online measurement tools automatically put in the values. The online
measurements were only controlled for the NO3-N using standard cuvettes
and samples on influent to SF and effluent from SF. This resulted in the
different quantities being measured the following way:

e Water [m?/h] - Online (not controlled)

e NH,-N [mg/I] - Online (not controlled)

e NO;3-N [mg/I] - Online (controlled)

e NOo-N [mg/l] - Cuvettes

e Aeration [Nm?/h] - Online (controlled)

e Bypass [m3/h] - Online (not controlled)

e Total pump frequency [Hz] - Online (not controlled)
e Temperature (°C) - Online (not controlled)

e pH - Online (not controlled)

e phosphate [mg/l] - Online (not controlled)

e BODT [ton/week| - Weekly samples influent and effluent

e TSS [ton/week] - Weekly samples influent and effluent

The NO3-N was only measured once using cuvettes in order to establish if
the NOo-N concentration was high enough to have an impact. To do this 10
samples were taken before the SF's because this is the measuring spot where
NO,-N is present the most. The results are shown in table 3. All the samples
gave values lower than the intended area which means the accuracy of the
measurements are low. It also means that the values are below than the
cuvette range of 0.6 mg/l. This was low enough to not consider the NO5-N

14



Table 7: Measurements of NOo-N using Cuvettes ranging 0.6 mg/1 - 6 mg/1

Sample | 13:45 9 April 2022 | 13:52 9 April 2022
I -0.044 0.205
IT -0.042 0.187
111 -0.040 0.192
v -0.051 0.160
\Y% -0.045 0.199

4 Results and Discussions

4.1 Data

The system boundaries for the data collection was over the ASF, secondary
sedimentation and the SFs.

4.1.1 Total Nitrogen

The total amount of influent and effluent nitrogen for each day during the
test period is shown in Figure 4. Only NH4-N is considered for the influent
because of the low NO3-N in the influent. For the effluent both NH4-N and
NO3-N are considered. The last 3 days of the measurements an operational
error occured causing low values.

The averages for each test period is shown in table 8 including removal
efficiency of total nitrogen.

15
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Figure 4: NH4-N influent in the ASF [mg/l] and effluent NH;-N and NO3-N

[myg/1]

Table 8: Ammonium influent in the ASF [mg/I] and effluent ammonium and

nitrate [mg/l] from the WWTP.

Test

I
IT
I1I
IV
v
IV

Inf NH,
[mg/1]

28.6
25.9
24.6
25.2
27.3
31.3

[

[mg/1]

3.1
3.9
1.4
3.0
5.3
1.9

10.7
9.9
8.6
7.9
4.2
2,0

Eff NH, + NO4
[mg/1]

o Rem eff of Tot-N

[mg/l]
1.3
1.1
1.8
2.0
0.7
0.7

0.63
0.62
0.65
0.69
0.85
0.94

g

0.04
0.04
0.09
0.09
0.08
0.02

Inf = Influent
Eff = Effluent

Rem eff = Removal efficiency

The total nitrogen removal seemed to generally be better when using
denitrification on SF as seen in Table 1, Table 8 and Figure 4. However it
increased the longer the test period due to several potential factors such as
water temperature increase (Carrera et al., 2004), better zone control of the
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ASF and increased microorganism growth of the SF's due to longer acclima-
tization time (Persson, 2018).

The removal efficiency of nitrogen increased drastically for time period 5
and 6 and achieved the lowest emissions also considering that the influent of
NH4-N was the highest for all trials. During trial VI the removal efficiency
achieved its highest value where 0.94 removal efficiency was achieved. For
clearer comparisons however a constant climate should be used and the same
C/N ratio should try to be achieved during all experiments (Sobieszuk &
Szewczyk, 2006). The equipment available at Bromma WWTP did not allow
for this. But the results have other strengths such as having a realistic
environment.

4.1.2 Nitrification

All measurements concerning nitrification is shown in Figure 5. The nitrifi-
cation is shown as all NH4-N in all the measurement spots. The NHy4-N from
ASF is higher than the efluent of the NH4-N from the WWTP which means
we have some nitrification in the water pipes, secondary sedimentation or
the SFs.

® Influent NH4-M to ASF @ Effluent NH4-N from ASF
® Effluent NH4-N WWTPE

40
II III IV Vv VI
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10 —

NH4-N [mg/1]

) MWM
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Figure 5: NH4-N influent to the ASF [mg/l] and effluent NH4-N from the
ASF [mg/l] and effluent NH4-N from the WWTP [mg/I]
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The averages for each test period is provided in table 9 as well as removal
efficiencies of NH4-N together with the average aeration in table 10.

Table 9: NH4-N influent in the ASF [mg/l], effluent NH4-N from the ASF
[mg/l] and effluent NH4-N [mg/!] for the entire WWTP.

Test Inf. ASF NH4-N o Eff. ASF NH4-N o Eff. WWTP NH,;-N o

[mg/1] [mg/1] [mg/1] [mg/1] [mg/1] [mg/1]
I 28.6 3.1 5.3 2.1 3.5 1.6
II 25.9 3.9 4.8 1.3 3.2 1.0
11 24.6 1.4 3.2 0.3 1.7 0.2
v 25.2 3.0 3.4 1.1 2.4 1.0
\% 27.3 5.3 2.7 0.6 0.8 0.4
VI 31.3 1.9 2.0 0.3 0.6 0.2

Table 10: NH4-N removal [mg/l] of the ASF, the NH4-N removal efficiency
of the ASF and aeration [Nm?/h).

Test ASF Removal NH4-N o ASF Removal Eff. ¢  Aeration o

[mg/1] [mg /1] [Nm?/h] _[Nm?®/h]
I 23.3 2.2 81 0.06 41900 5400
I 21.1 3.6 81 0.05 33600 3600
11 21.4 1.6 87 0.02 36800 1100
v 21.8 3.2 87 0.05 36600 5100
\Y 24.6 5.3 90 0.04 42980 2500
VI 29.3 2.0 94 0.01 45800 2200

Nitrification is shown in Figure 5 and table 9 and 10. According to
the data, the nitrification of NH4-N mainly occurs in the ASF as shown in
the figure and tables. When observing the differences between the efluent
ASF NH4-N and the effluent WWTP the removal NHy-N is noticable. This
should not theoretically occur since there is a lack of oxygen in the secondary
sedimentation and the SFs (Persson, 2018). The SFs could however cause
increased dissolved oxygen in the sand filters if the filtration speed is high
enough in the SFs (Nakhla & Farooq, 2003).

An additional benefit of moving the denitrification process to the SFs
is that it is possible to use all the zones in the ASF for the nitrification
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process which should increase the nitrification rate in the ASF (Persson,
2018). This is also shown in table 10 where the NH4-N removal is correlated

to the aeration of the ASF.

4.1.3 Denitrification

Denitrification on SF's is shown as the difference in Figure 6. Issues during
two time intervals occured once due to maintenance on the influent NO3-N
to SF measurement tool. The other time where the value is ineligible to use
is because of unknown operational error. Both of these intervals are shown
as gray areas in Figure 6. In reality there is also denitrification in the ASF

but this was not considered.
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Figure 6: NO3-N influent [mg/l] on the SFs and effluent NO3-N [mg/!]
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The averages for the test periods are shown in table 11 together with the

removal efficiencies of NO3-N for the SF's.

Table 11: NO3-N influent to the SFs [mg/l] and effluent NO3-N from the

WTTP [mg/l].
Test Ingoing NO3-N o Outgoing NO3-N o Removal efficiency o
[mg/1] [mg/1] [mg/1] [mg/1]

I 10.0 2.0 7.2 1.7 0.28 0.03
I 10.7 1.8 6.7 1.0 0.37 0.05
11 9.6 2.2 6.9 1.7 0.28 0.04
v 4.8 3.2 5.9 1.4 - -
\Y% 6.3 0.8 3.3 0.6 0.48 0.03
VI 5.5 0.9 1.5 0.9 0.72 0.10

The denitrification of the SF's is dependent on the dosage on the SFs as
can be seen in table 11 and table 1. As previously mentioned this is also
significantly impacted by the temperature, growth of microorganisms and

the C/N ratio.
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4.1.4 Temperature and pH

The temperature and pH for the test periods is shown in Figure 7 together
with the total removed nitrogen.
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Figure 7: Nitrate influent [mg/I] on the SFs and effluent nitrate [mg/I]

The averages for each test period is shown in table 12 together with total

removed N

Table 12: Temperature [°C],pH of the effluent water and Tot-N removed

[mg/1].
Test Temperature (°C) o pH o  Tot-N Removed o
I 11.9 0.3 7.0 0.06 17.9 2.6
IT 114 0.7 7.0 0.05 16.0 3.1
III 12.3 0.2 7.0 0.05 16.0 3.0
IV 12.0 0.6 7.0 0.07 17.3 3.5
V 13.2 0.7 7.1 0.02 23.1 5.6
VI 14.7 04 7.2 0.03 29.3 2.1

From the values in table 12 it is possible to see that the total removal
efficiency increased every week. Table 8 and Figure 7 shows that there is
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a correlation between temperature and total removed nitrogen which agrees
with the literature (Carrera et al., 2004).

pH is consistently between 7 and 7.2 during the trials. According to the
literature a pH of 7.5 is beneficial for the denitrification process and divert-
ing from it gradually decreases the biological denitrification rate (YATONG,
1995).

4.1.5 Phosphate

The result for phosphate removal for the ASF and SF are shown in table 9.

Table 13: Phosphate removal in terms of influent Phosphate [mg/1], effluent
Phosphate [mg/l] and removal efficiency of Phosphate.

Test Inf. Phosphate [mg/l] o  Eff. Phosphate [mg/l] o Removaleff. o
I 0.94 0.20 0.059 0.03 0.94 0.04
IT 0.84 0.20 0.061 0.07 0.93 0.17
I1I 1.0 0.16 0.039 0.02 0.96 0.02
vV 0.97 0.17 0.027 0.01 0.97 0.01
\Y 1.3 0.08 0.014 0.00 0.99 0.00
VI 1.9 0.13 0.024 0.1 0.99 0.00

The phosphate removal is quite consistent and does not seem to get im-
pacted by the dosage form. However according to previous studies sand filter
should not provide satisfactory result for phosphorus removal (Vidal, Hed-
strom, & Herrmann, 2018). This can however be assumed to be consumed
in the biological process due to it being a key component for the survival of
microorganisms. The very low values of the effluent phosphate could however
have an impact on the microorganism growth on the sand filters. However a
phosphate concentration of 0.1 mg/1 is sufficient for denitrification, but have
negative performances when reaching 0.03 mg/L (Debarbadillo, Rectanus,
Canham, & Schauer, 2006). For the trials I-III the efluent water was above
this limit. For the other trials this could however have a negative impact but
does not seem to have since the removal efficiencies are higher in trial IV-VL.
The system achieves high removal efficiencies for all tests.
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4.1.6 BOD7

The result for BOD7 removal for the entire WWTP are shown in Table 14
and are given from weekly samples.

Table 14: BODT removal in terms of influent BOD7 [mg/!], efluent BOD7
[mg/l] and removal efficiency of BOD?7.
Test Inf. BOD7 [mg/l] Eff. BOD7 [mg/l] BOD7

I 95.0 1.1 0.99
IT 147.3 2.5 0.98
I1I 144.9 3.6 0.98
1Y 151.8 2.5 0.98
\Y 145.4 2.9 0.98
VI 196.4 3.9 0.98

The BODT emissions are increasing according to Table 14. The influent
however also increases. According to the literature the increasing tempera-
ture should increase the BOD removal rate (Lim, Huang, Hu, Goto, & Fujie,
2001). The removal efficiency in the trials is lowered for higher temperatures.
It could suggest an overdosage of methanol, it is however uncertain since the
removal efficiencies are close to 1.

4.1.7 Suspended solids

The result for TSS removal for the entire WWTP are shown in Table 15 and
are given from weekly samples.

Table 15: T'SS removal in terms of influent T'SS [mg/I], effluent BOD7 [mg/I]
and removal efficiency of TSS.
Test Inf. TSS [mg/l] Eff. TSS [mg/l] TSS

I 155.1 2.7 0.98
IT 258.5 1.8 0.99
I1I 219.9 2.7 0.97
IV 247.9 2.8 0.99
\Y% 294.9 4.4 0.99
VI 112.9 3.6 0.97

One of the previously major uses for the sand filters was to remove sus-
pended solids. Using the SFs for denitrification should increase clogging of
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the SFs. To investigate the impact on TSS treatment more water bypass was
also considered. Water bypass also impacts other things. Bypass causes both
increased T'SS emissions and it causes unreliable data. The water bypass for
the SF and the ASF for each test period is shown in table 16.

Table 16: ASF bypass [m®/h] and SF bypass [m?/h] for the test periods.
Test ASF bypass [m?/h] o  SF bypass [m®/h] o

I 0 0 8.0 16.6
IT 71.3 223.9 84.0 228.3
I1I 1.1 2.8 0 0.1
IV 35.7 118.9 91.6 231.0
\Y 0 0 0 0
VI 2.7 6.7 0 0

4.1.8 Operational time between backwashes

To investigate the operational time between backwashes the operational time
for the backwash pumps is presented in table 13.

Table 17: Total operational time of backwash pumps for each time period [A]
Test Operational time for pumps o

I 20.5 4.2
IT 29.3 8.5
ITI 20.6 7.0
IV 21.8 9.5
\Y 20.8 2.8
VI 26.2 3.5

Increased operational time for pumps for the backwashing and increased
aeration increases the energy consumption of Bromma WWTP which impacts
economy and sustainaibility of the solution. It is clear that this is most
impacted for trial IT and trial VI.

The water bypass is not only caused by increased clogging of sand fil-
ters due to denitrification on sand filters but also the water flow into the
WTTP. Water flow varies for different periods and will cause water bypass
or increased stress on the WT'TP. Water flow is shown in Figure 8.

The average water flow for the ASF and SF are shown in table 14.
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Figure 8: Water influent to SF [m3/h] on the SFs and water influent to ASF
[m?/h].

Table 18: Water flow ASF and SF [m?/h].
Test Water flow ASF [m3/h] o  Water flow SF [m?/h] o

I 6 200 200 5 700 600
IT 6 600 1000 6 100 1000
III 5 600 0 5000 100
IV 6 000 900 5 400 700
\Y 5 500 200 4 900 200
VI 5 300 200 4 800 300

The operational time for the pumps was highest for trial II and VI. The
dosage on the SFs was the highest during all of the trials during these tests
according to table 1. The water flow was also high during trial II and IV
but lower during trial VI. The load of methanol on the SFs was also lowest
during trial IV. According to literature denitrification on slow SFs works well
for low load of nitrogen (7, 7) this matches with the result.
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4.2 Sustainability

Increased methanol use impacts the environent as well as increased energy
use from the implementation of denitrification on SFs. Lower nitrate and
ammonia emissions to the recipient is however a benefit.

The risk of overdosage of methanol when dosing methanol on SF and
increasing the BOD7 emissions to the recipient is a risk when using denitri-
fication on SF, but there is also a risk of overconsuming the carbon source
when having denitrification in the ASF however that implies a lesser envi-
ronmental risk.
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5 Conclusion

The implementation of carbon dosage to cause denitrification on SFs is sit-
uational. The water temperature had a significant impact on the nitrogen
treatment. The carbon dosage on SFs causes the SFs to manage high wa-
ter flows worse due to increased clogging and higher operation times for the
back wash pumps. The removal of Tot-N however improves when imple-
menting denitrification on SFs compared to the process of pre-denitrification
in the ASF but it is not certain for all operating conditions. The BOD7m,
phosphate and TSS seemed to be unaffected by the implementation of den-
itrification on SF in the system. The carbon source dosage on sand filters
however makes denitrification on sand filters occur even if the phosphate lev-
els are low and achieves total removal of nitrogen of between 0.62 - 0.94 for
different conditions and dosage. Increased aeration improves nitrification in

the ASF.

5.1 Future studies

Future studies should consist of investigating C/N ration for SF denitrifi-
cation and how to reduce the clogging of the SFs when implementing the
process to let the SFs treat high loads of water.
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Appendix A - Data for test periods
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KONCESS TONSNAMNDEN BESLUT Nr 138/92 1(68)
FOR MILJIOSKYDD 1992-09-28 Dnr 192-1096-90

Avd 4

Stockholm Aktbil 55
Dnr 192-1097-90
Aktbil 40
Dnr 192-1098-90
Aktbil 39

92. 10. 20 ,

o e

Stockholm Vatten Aktiebolag
ombud: stadsadvokat Stig Bragnum, Stockholms stadskansli,
juridiska avdelningen, Stromsborg, 105 35 STOCKHOLM

SAKEN

Ansdkan om tillstdnd till utslépp av avloppsvatten i Salt-
sjon, Stockholms och Nacka kommuner, Stockholms 1dn (verksam-
hetskod 92.01)

KONCESSIONSNAMNDENS BESLUT

Koncessionsndmnden lamnar Stockholm Vatten Aktiebolag till-
stdnd enligt miljdskyddslagen att i Saltsjdn slédppa ut av-
loppsvatten fran tdtbebyggelse som &r ansluten till Henriks-
dals, Bromma och Louddens reningsverk,

Koncessionsndmnden skjuter enligt 21 § miljdskyddslagen upp
provningen av vilka villkor som skall gdlla betridffande dels
begrdnsningsvédrden £0r avloppsvattnets innehall av fdrore-
ningar, dels skyddsdtgdrder som avser ledningsndtet och dels
skyddsdtgédrder som avser &dmnen som i icke obetydlig grad kan
stéra processerna i reningsverket, dventyra slammets kvalitet
som jordfdrbdttringsmedel eller som i utloppsvattnet nar
eller kan nd akuttoxiska nivder eller pd annat sdtt ge nega-
tiva effekter 1 recipienten.
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