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data sharing policies. Specifically, we refer readers

to the following resources: - Biobanque

Québecoise de la COVID-19 (BQC-19): https://

www.bqc19.ca/ - Sedish biobank: https://swecovid.

org/ - Columbia Biobank: https://www.vagelos.

columbia.edu/research/researchers/core-and-

shared-facilities/new-instruments-and-facilities/

columbia-university-biobank - Geisinger Health

Systems: https://www.geisinger.edu/research -

Helix Exome+ and Healthy Nevada Project: https://

healthynv.org/ - Penn Medicine Biobank: https://

pmbb.med.upenn.edu/ - GEN-COVID Multicenter

Study: https://sites.google.com/dbm.unisi.it/gen-

covid - Qatar Genome Program: https://www.

qatargenome.org.qa/ - Deutsche COVID-19 OMICS

Initiative (DeCOI): https://decoi.eu/ - POLCOVID-

Genomika: Medical University of Bialystok ethics

board. - FHoGID: Commission cantonale d’éthique

de la recherche sur l’être humain (CER-VD, https://

www.cer-vd.ch/) - Interval: https://www.

intervalstudy.org.uk/ - Saudi Human Genome

Program: https://shgp.kacst.edu.sa/index.en.html -

Genentech: https://www.gene.com/ - Mount Sinai

Clinical Intelligence Center: https://labs.icahn.

mssm.edu/minervalab/resources/data-ark/mscic-

covid-19-biobank/ - Vanda COVID-19: https://www.

vandapharma.com/ - University of California Los

Angeles: https://www.uclahealth.org/precision-

health/research - Japan COVID-19 Taskforce:

https://www.covid19-taskforce.jp/en/home/ - Thai

Biobank: Institutional Review Board of the Faculty

of Medicine, Chulalongkorn University, Bangkok,

Thailand (COA No. 691/2021) - MNM Biosience

Polish COVID WGS: https://mnmbioscience.com/ -

UK Biobank: https://www.ukbiobank.ac.uk/.
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Abstract

Host genetics is a key determinant of COVID-19 outcomes. Previously, the COVID-19 Host

Genetics Initiative genome-wide association study used common variants to identify multi-

ple loci associated with COVID-19 outcomes. However, variants with the largest impact on

COVID-19 outcomes are expected to be rare in the population. Hence, studying rare vari-

ants may provide additional insights into disease susceptibility and pathogenesis, thereby

informing therapeutics development. Here, we combined whole-exome and whole-genome

sequencing from 21 cohorts across 12 countries and performed rare variant exome-wide

burden analyses for COVID-19 outcomes. In an analysis of 5,085 severe disease cases and

571,737 controls, we observed that carrying a rare deleterious variant in the SARS-CoV-2

sensor toll-like receptor TLR7 (on chromosome X) was associated with a 5.3-fold increase

in severe disease (95% CI: 2.75–10.05, p = 5.41x10-7). This association was consistent

across sexes. These results further support TLR7 as a genetic determinant of severe dis-

ease and suggest that larger studies on rare variants influencing COVID-19 outcomes could

provide additional insights.

Author summary

COVID-19 clinical outcomes vary immensely, but a patient’s genetic make-up is an

important determinant of how they will fare against the virus. While many genetic vari-

ants commonly found in the populations were previously found to be contributing to

more severe disease by the COVID-19 Host Genetics Initiative, it isn’t clear if more rare

variants found in less individuals could also play a role. This is important because genetic

variants with the largest impact on COVID-19 severity are expected to be rarely found in

the population, and these rare variants require different technologies to be studies (usually

whole-exome or whole-genome sequencing). Here, we combined sequencing results from

21 cohorts across 12 countries to perform a rare variant association study. In an analysis

comprising 5,085 participants with severe COVID-19 and 571,737 controls, we found that

the gene for toll-like receptor 7 (TLR7) on chromosome X was an important determinant

of severe COVID-19. Importantly, despite being found on a sex chromosome, this obser-

vation was consistent across both sexes.
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Introduction

Despite successful vaccine programs, SARS-CoV-2 is still a major cause of mortality and wide-

spread societal disruption [1,2]. While disease severity has correlated with well established epi-

demiological and clinical risk factors (e.g., advanced age, obesity, immunosuppression), these

do not explain the wide range of COVID-19 presentations [3]. Hence, individuals without one

of these known risk factors may have a genetic predisposition to severe COVID-19[4]. These

genetic determinants to severe disease can, in turn, inform about the pathophysiology underly-

ing COVID-19 severity and accelerate therapeutics development [5,6].

Previous work on COVID-19 host genetics using genome-wide association studies

(GWASs) revealed 23 statistically robust genetic loci associated with either COVID-19 severity

or susceptibility [7–11]. Given that most GWASs use genetic data obtained from genome-wide

genotyping followed by imputation to measure the association between a phenotype and

genetic variation, their reliability and statistical power declines as a variant’s frequency

decreases, especially at allele frequencies of less than 1%[12]. Ascertainment of rare genetic

variation can be improved with sequencing technology [13]. Rare variants are expected to be

enriched for larger effect sizes, due to evolutionary pressure on highly deleterious variants, and

may therefore provide unique insights into genetic predisposition to COVID-19 severity. Iden-

tifying such genes may highlight critical control points in the host response to SARS-CoV-2

infection.

Measuring the effect of rare genetic variants on a given phenotype (here COVID-19) is dif-

ficult. Specifically, while variants of large effect on COVID-19 are more likely to be rare, the

converse is not true, and most rare variants are not expected to strongly impact COVID-19

severity [14]. Therefore, unless large sample sizes and careful statistical adjustments are used,

most rare variant genetic associations studies risk being underpowered, and are at higher risk

of false or inflated effect estimates if significant associations are found between COVID-19 and

genetic loci. This is exemplified by the fact that several rare variant associations reported for

COVID-19 have not been replicated in independent cohorts [15–17].

Here, we investigated the association of rare genetic variants on the risk of COVID-19 by

combining gene burden test results from whole exome and whole genome sequencing. We

build off recent work on exome-wide analyses [17] and include close to 5 times the number of

severe cases, with a more genetically diverse cohort, to better study the effect of rare variants

on COVID-19. To our knowledge, this is the first rare genetic variant burden test meta-analy-

sis ever performed on a worldwide scale, including 21 cohorts, in 12 countries, including all

main continental genetic ancestries.

Results

Study population and outcome

The final analysis included up to 28,159 individuals infected with SARS-CoV-2, and up to

597,165 controls from 21 cohorts in 12 countries (Fig 1). Most participants were of European

genetic ancestry (n = 576,389), but the consortium also included participants of Admixed

American (n = 4,529), African (n = 25,465), East Asian (n = 4,716), Middle Eastern (n = 4,977)

and South Asian ancestries (n = 9,943). These resulted in a genetically diverse sample of partic-

ipants (Fig 2). Participating cohorts enrolled patients based on local protocols, and both retro-

spective and prospective designs were used. Genetic sequencing was also performed locally,

and cohorts were provided with a specific framework for quality control analyses, but each

were allowed to deviate based on individual needs. Both exome (n = 11 cohorts) and genome
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sequencing (n = 10 cohorts) were included in the meta-analyses. The mean age of participants

was 55.6 years, and 55.9% were females (S3 Table).

We studied three separate outcome phenotypes, as previously described by the COVID-19

Host Genetics Initiative (COVID-19 HGI)[8]. Briefly, the outcome cases were defined accord-

ing to three standard COVID-19 HGI outcomes: A) severe disease: individuals with SARS--

CoV-2 infection who died or required invasive respiratory support (extracorporeal membrane

oxygenation, intubation with mechanical ventilation, high-flow oxygen support, or new bilevel

or continuous positive airway pressure ventilation), B) hospitalisation: individuals with

SARS-CoV-2 who died or required hospitalisation, and C) susceptibility to infection: any indi-

vidual with SARS-CoV-2 infection. These are also referred to as A2, B2, and C2, respectively,

in the COVID-19 HGI meta-analyses [8]. For all three phenotypes, controls were all individu-

als not classified as cases (including population controls with unknown COVID-19 status).

The final meta-analyses included up to 5,085 cases and 571,737 controls for the severe disease

outcome, 12,304 cases and 590,151 controls for the hospitalisation outcome, and 28,196 cases

and 597,165 controls for the susceptibility outcome.

Single-variant analysis

We first performed an exome-wide association study using single variants with a MAF (minor

allele frequency) higher than 0.1% and an allele count of 6 or more in at least one cohort, with

the same additive model and covariates used in the COVID-19 HGI GWAS [8]. Analyses were

performed separately by each cohort and each ancestry using Firth regression as applied in the

Regenie software [18]. Firth regression is a penalized likelihood regression method that provides

unbiased effect estimates even in highly unbalanced case-control analyses [19]. The summary

statistics were then meta-analyzed with a fixed effect inverse-variance weighted model within

each ancestry, and then with a DerSimonian-Laird random effect model across ancestries.

The previously described Neanderthal chromosome 3 locus associated with COVID-19 out-

comes [8,20] was also found in all three phenotypes (Figs 3 and S1), with lead variants in the

CXCR6 gene for the severe COVID-19 phenotype (rs13059238), and in FYCO1 in the hospita-

lisation phenotype (rs13069079), and for the LIMD1 gene in the susceptibility phenotype

(rs141045534). Reassuringly, each cohort provided summary statistics in the chromosome 3

locus, suggesting that the QC process was working as intended (allowing for sample sizes and

number of cases) (S2–S4 Figs).

Three other loci were found for the hospitalization phenotypes. One at SRRM1
(rs1479489847, OR: 4.17, 95% CI 2.60–6.70, p = 3.25x10-9), IL6R (rs911647797, OR: 6.19, 95%

CI: 3.29–11.6, p = 1.45x10-8), and another at cytoskeleton FRMD5 (rs1369031075, OR: 4.06,

95% CI: 2.70–6.11, p = 1.75x10-11). While these loci may hold biological plausibility (especially

IL6R, given the use of IL-6 receptor inhibitors in the treatment of COVID-19), these associa-

tions were driven by two smaller cohorts (Genentech and Vanda, S5 Fig). However, the

SRMM1 locus is located between two stretches of T nucleotides, while both the FRMD5 and

the IL-6 loci are within GC rich regions, making variant calling difficult. Hence, these findings

will require validation, despite the biological plausibility.

Finally, all genetic inflation factors were below 1 (S4 Table). Summary statistics for

genome-wide significant variants can be found in S5 Table and QQ-plots can be found in

S1 Fig.

Burden test definition

Given the expected paucity of large-effect size rare deleterious variants, strategies have been

devised to increase statistical power to test associations between rare variants and
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biomedically-relevant outcomes. One such strategy is to use burden tests [21], where each vari-

ant is collapsed into larger sets of variants, and association is tested between groups of variants

and an outcome. Here, we collapsed deleterious variants in each gene and devised the follow-

ing burden test: for each gene, an individual received a score of 0 if they do not carry any dele-

terious variant, a score of 1 if they carry at least one non-homozygous deleterious variant, and

a score of 2 if they carry at least 1 homozygous deleterious variant. As defined in previous stud-

ies on burden testing of rare variants[17,22] deleterious variants were chosen using three

masks: 1) “M1" which uses only predicted loss of function variants, 2) “M3” which uses all vari-

ants in M1, as well as indels of moderate consequence as predicted by Ensembl [23], and mis-

sense variants classified as deleterious in 5 in-silico algorithms (see Methods), and 3) “M4”,

which uses all variants in M1 and M3, and also adds all missense variants classified as deleteri-

ous in at least 1 of the in-silico algorithms.

The analyses were performed separately both for variants with MAF of less than 1%, and

for variants of MAF less than 0.1%. We defined MAFs based on a combination of gnomAD

[24] MAF annotations, and of cohort-specific common variant exclusion lists. These common

variant exclusion lists included variants that achieved a MAF of>1% or >0.1% in at least one

study population within the consortium. To reduce the effect of fluctuations due to sampling,

a minor allele count (MAC)� 6 in the corresponding study was required for inclusion in the

common variant list. Such “blacklists” have been shown to increase statistical power by remov-

ing variants at lower risk of being highly deleterious, and it reduces the risk of having cohort-

specific false-positive variants being retained on the overall analysis[25]. Hence for each MAF

threshold, each cohort removed any variant with a MAF above the threshold in either gno-

mAD or the corresponding common variant exclusion list.

The resulting score (either 0, 1, or 2) for each mask was then regressed on each of our three

phenotypes using logistic regression, controlling for age, age^2, sex, sex�age, sex�age2, and 10

common variant (MAF > 1%) genetic principal components (the same covariates as for

COVID-19 HGI GWASs [7,8]). Additionally, given that population genetic structure and its

confounding effect on phenotypes is different at the rare variant level [26], we also used the

first 20 genetic principal components from rare variants (MAF<1%) as covariates in all our

analyses. Analyses were otherwise done using the same approach as for single-variant analyses.

Exome-wide burden test analyses results

Our meta-analysis included a total of 18,883 protein-coding genes, and all burden test genetic

inflation factors, for all masks, were less than 1 (S4 Table), suggesting that our results were not

biased by population stratification and that Firth regression adequately adjusted for unbal-

anced case-control counts. Using an exome-wide significance p-value threshold of 0.05/

20,000 = 2.5x10-6, we found 3 genes associated with one of the COVID-19 phenotypes in at

least one mask in our meta-analyses (Table 1 and S6–S12 Figs). Of specific interest, we

observed that carrying a predicted loss of function or in-silico highly deleterious missense vari-

ant (i.e., mask M3) in the toll-like receptor 7 (TLR7) gene was associated with a 5.3-fold

increase (95% CI: 2.7–10.1, p = 5.41x10-7) in odds of severe COVID-19. TLR7 is an important

part of the innate viral immunity, encoding a protein that recognizes coronaviruses and other

single-stranded RNA viruses, leading to upregulation of the type-1 and type-2 interferon path-

way [27]. Results from the severe COVID-19 outcome analyses of TLR7 with other masks also

nearly reach our statistical significance threshold, with larger effects found in the M1 mask

(OR: 13.6, 95% CI: 4.41–44.3, p = 1.64x10-5) and smaller effect in the M4 mask (OR: 3.12, 95%

CI: 1.91–5.10, p = 5.30x10-6), though the latter was balanced by smaller standard errors due to

the larger number of cases (3275 cases in M4 vs 1577 in M1), as expected. These findings
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further support previous reports of TLR7 errors of immunity underlying severe COVID-19

presentations [17,28–31].

In the meta-analyses, we also found that pLoFs (M1) in MARK1 were associated with a

23.9-fold increase in the odds of severe COVID-19 (95% CI: 6.5–88.2, p = 1.89x10-6), and a

12.3-fold increase in the odds of hospitalisation due to COVID-19 (95% CI: 4.8–31.2,

Fig 1. Maps of countries contributing data to the consortium. Sample sizes (cases and controls) for each phenotype were added and represented on the

logarithmic scale by each circle. Relative contribution to each phenotype is represented by the three colors. Maps obtained from https://www.naturalearthdata.

com/.

https://doi.org/10.1371/journal.pgen.1010367.g001
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p = 1.43x10-7). While the number of MARK1 pLoFs (M1) found in severe and hospitalized

cases was small (MAC = 4 and MAC = 8, respectively), the signal was consistent in our three

largest cohorts: UK Biobank, Penn Medicine, and Geisinger Health Services (S9–S12 Figs).

MARK1 is a member of the microtubule affinity-regulating kinase family, and is involved in

multiple biological processes, chief among which is the promotion of microtubule dynamics

[32]. MARK1 has previously been shown to interact with the SARS-CoV-2 ORF9b protein

[33], further supporting its potential role in COVID-19. Lastly, our meta-analyses also found

marginal evidence for an association between severe COVID-19 and pLoFs (M1) in RILPL1
(OR: 20.2, 95% CI: 5.8–70.7, p = 2.42x10-6), a gene that, like MARK1, is associated with micro-

tubule formation and ciliopathy [34].

We then meta-analyzed p-values using the aggregated Cauchy association test [35]

(ACAT). ACAT accounts for correlation between test statistics (as is expected here) by treating

p-values as Cauchy random variables, and taking their weighted average, which also is Cauchy

distributed. With ACAT, the association between TLR7 and severe COVID-19 (p = 1.58x10-6),

and between MARK1 and hospitalisation (p = 4.30x10-7) remained exome-significant (Fig 4).

Full summary statistics are available in S6 Table.

Fig 2. Participant’s genome projection on the first and second genetic principal components of the 1000G reference panel. AFR: African ancestry. AMR: admixed

American ancestry. EAS: east Asian ancestry. EUR: European ancestry. MID: middle eastern ancestry. SAS: south Asian ancestry.

https://doi.org/10.1371/journal.pgen.1010367.g002
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Fig 3. Single variant exome-wide association study Manhattan plot (MAF>0.1%). QQ-plot available in the S1 Fig. Black dashed line

demarcates the genome-wide significance threshold (p< 5x10-8).

https://doi.org/10.1371/journal.pgen.1010367.g003
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Finally, we note that for both TLR7 and MARK1, the signal was driven by European ances-

try participants. Further, while the larger biobanks contributed to these findings, smaller pro-

spective cohorts also provided cases with rare variants at both genes, highlighting the

importance of study design in rare variant association testing (S6–S12 Figs).

TLR7 sex stratified analyses

Given that TLR7 is located on the X chromosome, we performed sex-stratified analyses of the

severe disease phenotype to determine if the effect was also observed in females. These could only

be done for the M3 and M4 masks due to very low number of M1 mask qualifying variants (Fig

5). In both we still see a clear effect among males with a 4.81-fold increase in the odds of severe

COVID-19 in M3-variant carriers (95% CI: 2.41–9.59, 5 case carriers, 47 control carriers), and a

3.08-fold increase in M4-variant carriers (95% CI: 1.83–5.20, 7 case carriers, 143 control carriers).

In females, we still observed a nominally significant signal in the M3 mask, with a 15.2-fold in

odds of severe disease in M3-variant carriers (95% CI: 1.51–153.4). However, an M3-variant was

observed in only one female with severe disease (heterozygous) in these analyses (compared to 76

heterozygous controls). In M4 variant, the analyses included 2 female heterozygous carriers (and

203 heterozygous controls), with a 4.86-fold in odds of severe disease (95% CI: 0.43–54.3).

Rare variants in interferon-related genes and at previously reported

genome-wide significant loci

Despite a 7.7-fold increase in number of cases, and a 1,069-fold increase in number of controls,

the previously reported associations of genes in the interferon pathway with COVID-19 out-

comes [15,16] could not be replicated with either our exome-wide significance threshold (S7

Table) or a more liberal one of p = 0.05/10 = 0.005 (based on Bonferroni correction by the

number of genes in the interferon pathway defined in a previous study[15]).

We also tested for rare variant associations between GWAS candidate genes from genome-

wide significant loci in the COVID-19 HGI GWAS meta-analyses, but observed no exome-

wide significant associations (S8 Table). However, at a more liberal Bonferroni threshold of

p = 0.05/46 = 0.001 (correcting for the 46 genes in the COVID-19 HGI GWAS associated loci),

we observed an increased burden of pLoF (M1) or missense variants (M3 mask) in ABO gene

Table 1. Exome-wide significant findings, as well as other TLR7 results (for the severe phenotype only). Note that for Masks M1, all deleterious variants had a

MAF<0.1%, and hence both burden tests (MAF<1% and 0.1%) gave the same results. Full results available in S4 Table.

Gene Mask Phenotype MAF Beta Standard

Error

Odds

Ratio

95% Confidence

Interval

P-value Heterogeneity p-

value

N Cases 0|1|2

Burden Test

N Controls 0|1|2

Burden Test

Meta-Analysis Across Ancestries

MARK1 M1 Severe COVID-19 <0.1% 3.17 0.67 23.9 6.5–88.2 1.89x10-6 0.883 1935|4|0 540031|92|0

MARK1 M1 Severe COVID-19 <1% 3.17 0.67 23.9 6.5–88.2 1.89x10-6 0.883 1935|4|0 540031|92|0

MARK1 M1 Hospitalisation <0.1% 2.51 0.48 12.3 4.8–31.2 1.43x10-7 0.893 6132|8|0 547943|93|0

MARK1 M1 Hospitalisation <1% 2.51 0.48 12.3 4.8–31.2 1.43x10-7 0.893 6132|8|0 547943|93|0

RILPL1 M1 Severe COVID-19 <0.1% 3.01 0.64 20.2 5.8–70.7 2.42x10-6 0.941 1745|4|0 558448|121|0

TLR7 M3 Severe COVID-19 <0.1% 1.66 0.33 5.25 2.75–10.05 5.41x10-7 0.755 3101|2|5 519047|83|47

TLR7 M3 Severe COVID-19 <1% 1.63 0.33 5.10 2.67–9.72 7.48x10-7 0.760 3275|2|5 519834|85|47

Other TLR7 results for severe phenotype

TLR7 M1 Severe COVID-19 <0.1% 2.61 0.60 13.6 4.14–44.4 1.64x10-5 0.820 1577|0|2 508987|13|11

TLR7 M1 Severe COVID-19 <1% 2.61 0.60 13.6 4.14–44.4 1.64x10-5 0.820 1577|0|2 508987|13|11

TLR7 M4 Severe COVID-19 <0.1% 1.14 0.25 3.12 1.91–5.10 5.30x10-6 0.854 3275|3|7 519616|210|139

TLR7 M4 Severe COVID-19 <1% 1.11 0.24 3.03 1.90–4.85 3.43x10-6 0.956 3273|5|8 521166|221|144

https://doi.org/10.1371/journal.pgen.1010367.t001
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Fig 4. Exome burden test ACAT p-value meta-analysis Manhattan plots and QQ plots. QQ-plot available in the S6 Fig. Black dashed line

demarcates the Bonferroni significance threshold (p< 0.5/20,000).

https://doi.org/10.1371/journal.pgen.1010367.g004
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among those susceptible to SARS-CoV-2 infection (Table 2). For example, individuals carry-

ing a pLoF (M1) with MAF<0.1% in ABO were at a 2.34-fold higher risk of having a positive

SARS-CoV-2 infection (95% CI: 1.50–3.64, p = 1.6x10-4). The ABO results were driven mainly

by European and African ancestry participants (S13 Fig). Note that deleterious variants in

ABO often lead to blood groups A and B [36,37], which is consistent with the epidemiological

association that non-type-O individuals are at higher risk of COVID-19[38]. However, more

work is required to better understand the genetics of this locus as it relates to COVID-19 out-

comes. Lastly, missense variants in NSF (mask M4, MAF<1%) were also associated with

higher susceptibility to SARS-CoV-2 (OR: 1.48, 95% CI: 1.21–1.82, p = 1.4x10-4), but this asso-

ciation was not present in other masks (S9 Table).

Replication in GenOMICC

Data for the M1 mask for TLR7 and MARK1 in the severe COVID-19 phenotype was then rep-

licated with the GenOMICC cohort [11], a prospective study enrolling critically ill individuals

with COVID-19, with controls selected from the 100,000 genomes cohort[39]. Results are

shown in Table 3. For TLR7, European ancestry individuals with a pLoF (M1) had a 4.70-fold

increase in odds of severe disease (95% CI: 1.58 to 14.0, p = 0.005). In the sample of South

Asian ancestry individuals, a pLoF (M1) was associated with a 1.90-fold increase in odds of

severe disease, but the 95% confidence interval crossed the null (0.23 to 15.6, p = 0.55), which

was likely due to a much smaller sample size than in the European ancestry subgroup (1,202 vs

10,645). Of interest, in both Europeans and South Asians, no pLoFs were observed in either of

the control groups.

Fig 5. Sex-stratified TLR7 analyses.

https://doi.org/10.1371/journal.pgen.1010367.g005

Table 2. Results of burden tests at genes identified from common variants GWAS in the COVID-19 HGI. Only genes with p<0.05/46 are shown here. Full results

available in S8 Table.

Gene Mask Phenotype MAF Beta Standard

Error

Odds

Ratio

95% Confidence

Interval

P-value Heterogeneity p-

value

N Cases 0|1|2

Burden Test

N Controls 0|1|2

Burden Test

NSF M4 Susceptibility <1% 0.395 0.104 1.484 1.21–1.82 1.44x10-4 0.866 25752|127|2 585642|1907|5

ABO M1 Susceptibility <0.1% 0.851 0.226 2.341 1.50–3.65 1.68x10-4 0.498 22778|27|0 572310|296|0

ABO M1 Susceptibility <1% 0.784 0.209 2.19 1.45–3.30 1.75x10-4 0.826 23460|34|0 574608|364|0

ABO M3 Susceptibility <1% 0.729 0.195 2.073 1.41–3.04 1.89x10-4 0.869 24455|42|0 575051|434|0

ABO M1 Hospitalisation <0.1% 1.33 0.395 3.78 1.74–8.20 7.56x10-4 0.542 7859|12|0 561642|291|0

ABO M1 Susceptibility <0.1% 0.736 0.222 2.088 1.35–3.23 9.35x10-4 0.512 23779|29|0 572799|320|0

https://doi.org/10.1371/journal.pgen.1010367.t002
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On the other hand, we could not replicate an effect from MARK1, which demonstrated an

OR of 1.21 in European ancestry participants (95% CI 0.075 to 19.7, p = 0.89) and an OR of

4.21 in South Asian ancestry individuals (95% CI 0.058 to 307, p = 0.51).

Discussion

Whole genome and whole exome sequencing can provide unique insights into genetic deter-

minants of COVID-19, by uncovering associations between rare genetic variants and COVID-

19. Specifically, gene burden tests can be particularly helpful, because they test for coding vari-

ants, thereby pointing directly to a causal gene and often suggesting a direction of effect. How-

ever, such studies require careful control for population stratification and an adapted analysis

method such as burden testing, in order to have enough statistical power to find those associa-

tions. In our study, we observed that individuals with rare deleterious variants at TLR7 are at

increased risk of severe COVID-19 (up to 13.1-fold increase in odds in those with pLoFs).

Although this association was suggested by previous studies [28–30], our study provides the

most definitive evidence for the role of TLR7 in COVID-19 pathogenesis, with exome-wide

significance for this gene in the discovery phase followed by strong replication in a large inde-

pendent cohort. TLR7 is a well-studied part of the antiviral immunity cascade and stimulates

the interferon pathway after recognizing viral pathogen-associated molecular patterns. Given

its location on the X chromosome, it has been hypothesis that it could partly explain the

observed COVID-19 outcome differences between sexes [40–42], and to our knowledge, this is

the first study to show that even in heterozygous females, this gene can potentially play a role

in severe disease. Further, this our results suggest that TLR7 mediated genetic predisposition

to severe COVID-19 may be a dominant or co-dominant trait, an observation that cannot be

made in cohorts limited to male participants[28,30].

We also uncovered a potential role for cellular microtubule disruption in the pathogenesis

of COVID-19 and the microtubule network is known to be exploited by other viruses during

infections [43]. Indeed, the MARK1 protein has been shown to interact with SARS-CoV-2 in

previous in-vitro experiments [33]. Nevertheless, these findings at MARK1 were not replicated

in the GenOMICC cohort and will need to be tested in larger cohorts, especially given the

small number of highly deleterious variants that we found in our consortium. Lastly, we found

single variant associations at IL6R, SRRM1, and FRMD5. While IL6R is is already a therapeutic

target [44,45] for COVID-19, and SRRM1 has been reported in a previous pre-print [46], these

were found in smaller cohorts and will require replication.

To our knowledge, this is the first time a rare variant burden test meta-analysis has been

attempted on such a large scale. Our framework allowed for easy and interpretable summary

statistics results, while at the same time preventing participant de-identification or any breach

of confidentiality that stems from sharing results of rare genetic variant analyses [47]. It also

provides important insights into how these endeavours should be planned in the future. First,

our burden test operated under the assumption that the effect of any of the deleterious variants

Table 3. Replication of M1 mask, severe COVID-19, MARK1 and TLR7 results in the GenOMICC cohort. Note that the same variants were included in both the

MAF<1% and MAF<0.1% replication, and the same results were obtained (shown here).

Gene Ancestry Beta Standard Error Odds Ratio 95% Confidence Interval P-value N Cases 0|1|2 Burden Test N Controls 0|1|2 Burden Test

MARK1 EUR 0.195 1.42 1.21 0.075–19.7 0.891 5988|1|0 4655|1|0

MARK1 SAS 1.44 2.19 4.21 0.058–307.6 0.511 787|1|0 414|0|0

TLR7 EUR 1.55 0.555 4.70 1.58–14.0 0.005 5980|1|8 4566|0|0

TLR7 SAS 0.640 1.08 1.90 0.230–15.6 0.552 786|0|2 414|0|0

https://doi.org/10.1371/journal.pgen.1010367.t003
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on the phenotype would be in the same direction and did not account for compound deleteri-

ous variant heterozygosity. This allowed for easier meta-analysis across cohorts, but may have

decreased statistical power. Other methods may be needed in future analysis to soften this

assumption, though some of these cannot be easily meta-analyzed across multiple cohorts

directly from summary statistics (e.g., SKAT-O [48]). Similarly, methods that combine both

rare and common variants might also provide additional insights into disease outcomes

[31,49]. Second, our results highlight the importance at looking at different categories of vari-

ants through different masks to increase sensitivity and specificity of our burden tests. Third,

while the largest biobanks contributed the most to the signal observed at TLR7 and MARK1,

many of our smaller prospective COVID-19 specific cohorts also contributed to the signal.

This further highlights the importance of robust study design to improve statistical power,

especially with rare variant associations. Lastly, work remains to be done to standardize

sequencing and annotation pipelines to allow comparisons of results easily across studies and

cohorts. Here, we provided a pipeline framework to every participating cohort, but there

remains room for process harmonization. While the decentralized approach to genetic

sequencing, quality control, and analyses allowed for more rapid generation of results, it may

come at the cost of larger variance in our estimates. In the future, more sophisticated

approaches may be required to increase statistical power of exome-wide rare variant associa-

tion studies [50].

Our study had limitations. First, even if this is one of the world’s largest consortia using

sequencing technologies for the study of rare variants, we remain limited by a relatively small

sample size. For example, in a recent analyses of UK Biobank exomes, many of the phenotypes

for which multiple genes were found using burden tests had a much higher number of cases

than in our analyses (e.g. blonde hair colour, with 48,595 cases) [22]. Further, rare variant sig-

nals were commonly found in regions enriched in common variants found in GWASs. The

fact that ABO and NSF were the only genes from the COVID-19 HGI GWAS that were also

identified in our burden test (albeit using a more liberal significance threshold), also suggests a

lack of statistical power. Similarly, GenOMICC, a cohort of similar size, was also unable to

find rare variant associations using burden tests [11]. However, their analysis methods were

different from ours, making further comparisons difficult. Nevertheless, this provides clear

guidance that smaller studies looking at the effect of rare variants across the genome are at

considerable risk of finding both false positive and false negative associations. Second, many

cohorts used population controls, which may have decreased statistical power given that some

controls may have been misclassified. However, given that COVID-19 critical illness remains a

rare phenomenon [51], our severe disease phenotype results are unlikely to be strongly affected

by this. Finally, the use of population control is a long-established strategy in GWAS burden

tests [7,8,11,22,52], and the statistical power gain from increasing our sample size is likely to

have counter-balanced the misclassification bias.

In summary, we reproduced an exome-wide significant association with severe COVID-19

outcomes in carriers of rare deleterious variants at TLR7, for both sexes. Our results also sug-

gest an association between the cellular microtubule network and severe disease, which

requires further validation. More importantly, our results underline the fact that future

genome-wide studies of rare variants will require considerably larger sample size, but our

work provides a roadmap for such collaborative efforts.

Methods

Ethics statement

Each cohort had the following statement to make on ethics:
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BQC-19. Each participant or their legal representative (if the participant was incapable to

consent) provided informed consent to the biobank. If a participant regained capacity to give

consent, informed consent was obtained again directly from the participant. The study was

approved by the Jewish General Hospital and Centre Hospitaler de l’Université de Montréal

institutional review boards.

Columbia Biobank: Recruitment and sequencing of participants from the Columbia

COVID-19 Biobank were approved by the Columbia University Institutional Review Board

(IRB) protocol AAAS7370 and the genetic analyses were approved under protocol AAAS7948.

A subset of patients was included under a public health crisis IRB waiver of consent specifically

for COVID-19 studies if patients were deceased, not able to consent, or if the study team was

unable to contact them as per IRB protocol AAAS7370.

DeCOI. Informed consent was obtained from each participant or the legal representative.

DeCOI received ethical approval by the Ethical Review Board (ERB) of the participating hospi-

tals/centres (Technical University Munich, Munich, Germany; Medical Faculty Bonn, Bonn,

Germany; Medical Board of the Saarland, Germany; University Duisburg-Essen, Germany;

Medical Faculty Duesseldorf, Duesseldorf, Germany)

FHoGID. Each participant or their legal representative provided informed consent to the

biobank. FHoGID received ethical approval by the Commission cantonale d’éthique de la

recherche sur l’être humain.

GEN-COVID multicenter study: The patients were informed of this research and agreed to

it through the informed consent process. The GEN-COVID is a multicentre academic observa-

tional study that was approved by the Internal Review Boards (IRB) of each participating cen-

tre (protocol code 16917, dated March 16, 2020 for GEN-COVID at the University Hospital of

Siena).

Genentech. The protocol was reviewed by the institutional review board or ethics com-

mittee at each site. Written informed consent was obtained from all the patients or, if written

consent could not be provided, the patient’s legally authorized representative could provide

oral consent with appropriate documentation by the investigator. Details on institutional

review boards are provided in S9 Table.

GenOMICC. GenOMICC was approved by the appropriate research ethics committees

(Scotland, 15/SS/0110; England, Wales and Northern Ireland, 19/WM/0247). Informed con-

sent was obtained for all participants.

Geisinher Health Systems: All subjects consented to participation and the analysis was

approved by the Geisinger Institutional Review Board under project number 2006–0258.

Helix Exome+ and Healthy Nevada Project COVID-19 Phenotypes: informed consent was

obtained for all participants. The Healthy Nevada Project study was reviewed and approved by

the University of Nevada, Reno Institutional Review Board (IRB, project 956068–12)

Thai Biobank (). Informed consent was obtained for each participant via the biobank.

The study was approved by the Institutional Review Board of the Faculty of Medicine, Chula-

longkorn University, Bangkok, Thailand (COA No. 691/2021).

Japan COVID-19 Task Force: Each participant or their legal representative (if the partici-

pant was incapable to consent) provided informed consent to the biobank. Study was approved

by the ethical committees of Keio University School of Medicine, Osaka University Graduate

School of Medicine, and affiliated institutes.

Interval WGS. After reading study leaflets and participating in a discussion with donor

carer staff, eligible donors were asked to complete the trial consent form before giving a blood

donation. The National Research Ethics Service (United Kingdom) approved this study.

MNM Diagnostics (Polish Covid WGS). All participants, or their guardians/parents for

the participants under 18), provided their informed consent before collecting their blood
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samples. The study was approved by the Institutional Ethics Committee of the Central Clinical

Hospital of the Ministry of Interior and Administration in Warsaw, Poland (decision nr: 41/

2020 from 03.04.2020 and 125/2020 from 1.07.2020).

MSCIC. This research protocol was reviewed and approved by the Icahn School of Medi-

cine at Mount Sinai Institutional Review Board (IRB) (STUDY-20-00341). During the height

of the SARS-CoV-2 pandemic in New York City, all patients admitted to the Mount Sinai

Health System were made aware of the research study by a notice included in their admission

paperwork. The notice outlined details of the planned research, potential specimen collection

and the opportunity to opt-out of research. Flyers announcing the study were also posted

throughout the health system. Given the monumental hurdles of consenting sick and infec-

tious patients in isolation rooms, the IRB allowed for specimen collection to occur prior to

obtaining research consent at the time of clinical blood collection. Patients and/or their legally

authorized representative provided consent to the research study, including genetic profiling

for research and data sharing on an individual level. In a subset of individuals, who were

unreachable following hospital discharge, we were unable to obtain written informed consent.

In these cases, data cannot be share further. All data used these these analyses were anon-

ymized same as above.

Penn medicine. Recruitment of PMBB participants was approved under IRB protocol

813913 and supported by Perelman School of Medicine at University of Pennsylvania.

POLCOVID-Genomika. All study participants provided written informed consent and

received detailed information on the study and associated risk before enrollment. The study

was approved by the Bioethics Committee of the Medical University of Bialystok.

Qatar Genome Program. All QBB participants signed an Informed Consent Form prior

to their participation; QBB study protocol ethical approval was obtained from the Hamad

Medical Corporation Ethics Committee in 2011 and continued with QBB Institutional Review

Board (IRB) from 2017 onwards and it is renewed on an annual basis

Saudi human genome program. Informed Consent was provided to each participant or

their legal guardian (if the participant could not consent) by the corresponding institute. This

study was approved the IRB of each participating hospitals, and the IRB at King Abdullah

International Medical Research Centre, Ministry of National Guard–Health Affairs, Riyadh,

Ministry of Health, and King Fahad Medical City.

Swedish Biobank. Informed consent was obtained for all study participants. The study

was approved by the National Ethical Review Agency (Sweden) (No. 2020–01623).

UK Biobank. All subjects consented to participation. The UK Biobank was approved by

the North West Multi-centre Research Ethics Committee (United Kingdom) (11/NW/0382).

The work described herein was approved by the UK Biobank under application no. 26041.

University of California, Los Angeles biobank. Each participant or their legal represen-

tative (if the participant was incapable to consent) provided informed consent to the biobank.

If a participant regained capacity to give consent, informed consent was obtained again

directly from the participant. This study was considered human subjects research exempt

because all genetic and electronic health records were de-identified. This study was approved

by the UCLA Health Institutional Review Board.

Vanda COVID-19. All participants consented to WGS. The study was reviewed and

approved by Advarra IRB; Pro00043096.

COVID-19 outcome phenotypes

For all analyses, we used three case-control definitions: A) Severe COVID-19, where cases

were those who died, or required either mechanical ventilation (including extracorporeal
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membrane oxygenation), high-flow oxygen supplementation, new continuous positive airway

pressure ventilation, or new bilevel positive airway pressure ventilation, B) Hospitalized

COVID-19, where cases were all those who died or were admitted with COVID-19, and C)

Susceptibility to COVID-19, where cases are anyone who tested positive for COVID-19, self-

reported an infection to SARS-CoV-2, or had a mention of COVID-19 in their medical record.

For all three, controls were individuals who did not match case definitions, including popula-

tion controls for which case status was unknown (given that most patients are neither admitted

with COVID-19, nor develop severe disease [53]). These three analyses are also referred to as

analyses A2, B2, and C2 by the COVID-19 Host Genetics Initiative [8], respectively.

Cohort inclusion criteria and genetic sequencing

Any cohort with access to genetic sequencing data and the associated patient level phenotypes

were allowed in this study. Specifically, both whole-genome and whole-exome sequencing was

allowed, and there were no limitations in the platform used. There were no minimal number

of cases or controls necessary for inclusion. However, the first step of Regenie, which was used

to perform all tests (see below), uses a polygenic risk score which implicitly requires that a cer-

tain sample size threshold be reached (which depends on the phenotype and the observed

genetic variation). Hence, cohorts were included if they were able to perform this step. All

cohorts obtained approval from their respective institutional review boards, and informed

consent was obtained from all participants. More details on each cohort’s study design and

ethics approval can be found in the S3 and S1 Tables.

Variant calling and quality control

Variant calling was performed locally by each cohort, with the pre-requisite that variants should

not be joint-called separately between cases and controls. Quality control was also performed

individually by each cohort according to individual needs. However, a general quality control

framework was made available using the Hail software [54]. This included variant normaliza-

tion and left alignment to a reference genome, removal of samples with call rate less than 97%

or mean depth less than 20. Genotypes were set to unknown if they had genotype quality less

than 20, depth less than 10, or poor allele balance (more than 0.1 for homozygous reference

calls, less than 0.9 for homozygous alternative calls, and either below 0.25 or above 0.75 for het-

erozygous calls. Finally, variants were removed from if the mean genotype quality was less than

11, mean depth was less than 6, mean call rate less than or equal to 0.8, and Hardy-Weinberg

equilibrium p-value less than or equal to 5x10-8 (10−16 for single variant association tests).

Details on variant calling and quality control is described for each cohort in the S3 Table.

Single variant association tests

We performed single variant association tests using a GWAS additive model framework, with

the following covariates: age, age2, sex, age�sex, age2�sex, 10 genetic principal components

obtained from common genetic variants (MAF>1%). Each cohort performed their analyses

separately for each genetic ancestry, but also restricted their variants to those with MAF>0.1%

and MAC>6. Summary statistics were then meta-analyzed using a fixed effect model within

each ancestry and using a DerSimonian-Laird random effect model across ancestries with the

Metal package [55] and its random effect extension [56]. Lastly, given that multiple technologies

were used for sequencing, and that whole-exome sequencing can provide variant calls of worse

quality in its off-target regions [57], we used the UKB, GHS, and Penn Medicine whole-exome

sequencing variants as our “reference panel” for whole-exome sequencing. Hence, only variants

reported in at least one of these biobanks were used in the final single-variant analyses.
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Variant exclusion list

For the burden tests, we also compiled a list of variants that had a MAF > 1% or> 0.1% in any

of the participating cohorts. This list was used to filter out variants that were less likely to have

a true deleterious effect on COVID-19, even if they were considered rare in other cohorts, or

in reference panels [25]. We created two such variant exclusion lists: one to be used in our bur-

den test with variants of MAF less than 1%, and the other for the analysis with MAF less than

0.1%. In any cohort, if a variant had a minor allele count of 6 or more, and a MAF of more

than 1% (or 0.1%), this variant was added to our exclusion list. This list was then shared with

all participating cohorts, and all variants contained were removed from our burden tests.

Gene burden tests

The following analyses generally followed the methods used by recent literature on large-scale

whole-exome sequencing [22] and the COVID-19 HGI [8].

The burden tests were performed by pooling variants in three different variant sets (called

masks), as described in recent UK Biobank whole-exome sequencing papers by Backman et al.
[22] and Kosmicki et al.[17].: “M1” which included loss of functions as defined by high impact

variants in the Ensembl database[23] (i.e. transcript ablation, splice acceptor variant, splice

donor variant, stop gained, frameshift variant, stop lost, start lost, transcript amplification),

“M3” which included all variants in M1 as well as moderate impact indels and any missense

variants that was predicted to be deleterious based on all of the in-silico pathogenicity predic-

tion scores used, and “M4” which included all variants in M3 as well as all missense variants

that were predicted to be deleterious in at least one of the in-silico pathogenicity prediction

scores used. For in-silico prediction, we used the following five tools: SIFT [58], LRT [59],

MutationTaster[60], PolyPhen2[61] with the HDIV database, and PolyPhen2 with the HVAR

database. Protein coding variants were collapsed on canonical gene transcripts.

Once variants were collapsed into genes in each participant, for each mask, genes were

given a score of 0 if the participant had no variants in the mask, a score of 1 if the participant

had one or more heterozygous variant in this mask, and a score of 2 if the participant had one

or more homozygous variant in this mask. These scores were used as regressors in logistic

regression models for the three COVID-19 outcomes above. These regressions were also

adjusted for age, age2, sex, age�sex, age2�sex, 10 genetic principal components obtained from

common genetic variants (MAF>1%), and 20 genetic principal components obtained from

rare genetic variants (MAF<1%). The Regenie software [18] was used to perform all burden

tests, and generate the scores above. Regenie uses Firth penalized likelihood to adjust for rare

or unbalanced events, providing unbiased effect estimates.

All analyses were performed separately for each of six genetic ancestries (African, Admixed

American, East Asian, European, Middle Eastern, and South Asian). Summary statistics were

meta-analyzed as for the single variant analysis. Participant assignment to genetic ancestry was

done locally by each cohort, more details on the methods can be found in the S3 Table.

Lastly, we used ACAT [35] to meta-analyze p-values across masks, within each phenotype

separately. ACAT is not affected by lack of independence between tests. These values were

used to draw Manhattan and QQ plots in Fig 2.

Supporting information
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