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We examine entanglement of thermal states for spin-1/2 dimers in external magnetic fields. Entanglement
transition in the temperature-magnetic-field plane demonstrates a duality in spin-spin interactions. This identifies
a pair of dual categories of symmetric and antisymmetric dimers with each category classified into toric
entanglement classes. The entanglement transition line is preserved from each toric entanglement class to its
dual toric class. The toric classification is an indication of the topological signature of the entanglement, which
bring about topological stability that could be relevant for quantum information processing.
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I. INTRODUCTION

The classification concept has been incorporated in dif-
ferent scientific fields, ranging from biological systems to
abstract topology in mathematics in order to categorize
relevant objects based on shared characteristics. Scientific
classification schemes have not only led to new discoveries
of materials and resources, such as in the topological classifi-
cation of matter [1] and of entangled quantum states [2], but
have also helped significantly to find the most efficient and
robust approaches to technological advances.

One of the fundamental characteristics of quantum me-
chanics is the quantum entanglement, which lies at the heart of
the difference between the classical and the quantum worlds
[3-5]. It is widely believed to be stronger than classical
correlations and over the years has become a critically impor-
tant resource for many applications in quantum technology,
including quantum computing, quantum cryptography, quan-
tum communication, and hypersensitive measurements [6].
As a primary attribute of quantum mechanics, quantum en-
tanglement is also much more involved with the foundations,
predictions, and interpretations of quantum phenomena. It is
strongly linked to the concepts of quantum phase transition
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and quantum geometric phases [7-12]. Despite significant
works having been published, the characteristics of the quan-
tum entanglement is far from a closed topic. New in-depth
investigations of existing or entirely new models or systems,
continue to enrich this field and to add to the understanding of
quantum phenomena, in general.

Here we use entanglement in terms of concurrence [13,14]
from a classification perspective in order to analyze spin-
spin interactions in atomic dimers and to classify them into
entanglement classes. To this end, we focus on the entangle-
ment transition line for thermal states of a generic traceless
spin-pair model in the external parameter space specified by
temperature (7') and applied magnetic-field (B). We classify
the system into a pair of dual categories of symmetric and
antisymmetric dimers. Each category consists of toric entan-
glement classes where each class and its dual are distinguished
by the same entanglement transition line on the 7-B plane.
As a nontrivial example, we introduce dual symmetric and
antisymmetric Heisenberg spin-pair interactions and specify
their toric entanglement classes. We note that in Ref. [15],
the entanglement between two spins in a one-dimensional
Heisenberg chain has been studied as a function of tempera-
ture and external magnetic field, but not from the classification
approach, which is the main focus here. We also note here
that the chosen system, the dimer, is not only an excellent
model system, it also has real physical relevance since atomic
clusters of any size or shape can be realized experimentally,
e.g., as ad-atoms on a substrate [16].

II. GENERAL MODEL HAMILTONIAN

We start with a generic traceless spin-pair model described
by the Hamiltonian (note that we use # = 1 throughout the

Published by the American Physical Society
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paper),

+ (1) _;’_

2
with s® = (s, 50", sg”)) being the spin vector operator act-
ing on spins at site n = 1, 2 of the dimer. We also have that

H(w,J)= s s Js@, (1)

Jo Jy O
J=|Je Jy 0], )
0 0 J.

which is a real-valued matrix describing the essential ex-

change interactions between the two spins. The matrix
elements of this matrix are as follows:
Jo=J+r, J_‘,y=J—r,
Jyy =K =D, Jyy =K+ D, 3)
By =w+tA.

This model accounts for a wide range of important spin-
spin interaction systems, including the Heisenberg interaction
(J;; = J), the Dzyaloshinskii-Moriya (D) interaction, the sym-
metric anisotropic exchange (K), as well as anisotropy of the
exchange on the XY plane (r). It further allows for the spins to
interact differently with the external magetic-field (B..), due to
field inhomogenties. From a physical point of view this would
best be performed by studies of magnetic dimers as ad-atoms
on an overlayer with heterogeneous magnetic structure, or by
investigations of dimers with different magnetization direc-
tion for the two sites.

The two-qubit Hamiltonian [corresponding to s, = £1/2
in Eq. (1)] is chosen so as to ensure that the thermal equilib-
rium state at temperature 7 is of the X type, i.e.,

e O 0 pu
A mr _ 0 pn p3 O
z 0 p p3 O

ps1 O 0 pua

in the ordered product qubit-qubit basis {|00), [01), [10), [11)}
and Boltzmann’s constant is absorbed in 7. Explicitly, we
have

) “4)

1
o= —e V= /4T)[cosh L sinh =L cos 19],
z° 2T 2T
1
pua = e e U= /4T)[cosh o+ sinh _T cos 19]
* 1 - —i
P14 = Py = _Z =/4T) o =i¢ ginh ﬁ sin ¥, 5)
P = lejfz/” [cosh — — s1nh — Cos 9]
Z 2T
= leju/” cosh £ + sinh £ cos 9]
m=7z 2T 2T ’
o2 = ply = — Lot =it gin <2 gin 0,
z° 2T
where
rr+ K? K
tan ¥ = ——, tan ¢ = —,
w r

VD

tan 0 tan ¢ b (6)
an = ——, an ¢ = —,
A J

€1 =vVao?+r?+ K2, =+vVA2+J?+ D2,

and Z = 2(e”Y=/*T) cosh 5= + ¢’=/* cosh 52 ) the partition
function.

The above X -state form is suitable in our analysis for two
reasons: (i) as pointed out before, it accounts for thermal
states of several important spin-spin interaction models, and
(i) the entanglement measure concurrence C(o7) [13,14] can
be calculated analytically. Indeed, one finds [17]

C(or) = 2max{C,, 3, 0}, (7

where

Ci = |p1al — /22033,
G = |p23] — A/ P11p44- ®)

We continue the analysis by exploring the entanglement tran-
sition for which one may solve

max{C;, C;} =0, )

to extract the critical line in the temperature-magnetic-field
parameter space. Equation (9) gives rise to the following
duality:

IH GG =0,
m G<G=0 (10)
which becomes
) e—(Jzz/ZT)pZ o /2Tq2 — alT,
[0 eJu/ZTqZ e~ V= /27)p2 — o~ (J=/T) (11)

for our model system with p = f(e;,v) and g = f(e;,6)
given by the function f(x, y) = sinh 55 sin y.

This duality relation allows us to categorize the spin-
spin interactions in dimers into a pair of dual categories of
interactions. We continue by focusing on symmetric and an-
tisymmetric dimers in the sense that the two spins of same
magnitude forming the dimer are either parallel and antipar-
allel. For each case the corresponding Hamiltonian has the
following form:

(1) Symmetric case. For parallel magnetic moments we
would in the simples case have A =0 and By = B_ = w.
Therefore, interactions of symmetric dimers can be described
by the following Hamiltonian:

B

Hy = D0 5] 4 gl
+J[S(1)S(2) + S(,I)S’s,z)] - D[Sil)siz) - S;I)S)(Cz)]
+r[s0s® — sOs@] 4 K[sDs? 4 ss@]. (12)

Note that A = 0 implies 8 = 7 /2.

(2) Antisymmetric case. In the case of antiparallel mag-
netic moments, we would in the simplest form have w = 0 and
B, = —B_ = A, the interactions of antisymmetric dimers
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FIG. 1. Schematic of an S class or AS class as a two-dimensional
torus in the (J, D, r, K) parameter space.

can be described by

By 2 (2
H; = E[sg ) —sé )] —Jzzsi )sg)

+J[sj(cl)si2> + s;l)sf)] — D[s)((”sf) — sﬁl)sf)]
Fr[s0s® — s 4 K[sDs@ + 5$D5@]. (13)

In contrast to symmetric dimers, here we have v = /2 as a
result of = 0.

Besides the differences, these two categories share the last
two lines in their Hamiltonians.

We note that (I) and (II) in Eq. (11) classify each of the
above categories into equivalence classes of dimers within that
category in a way that all the dimers in the same class have
the same entanglement phase diagram in the T-B parameter
space. That is, each class obeys a single critical line on the 7'-B
plane, across which the corresponding thermal states change
their entanglement feature from entangled to separable, and
vice versa. Explicitly, if we solve Eq. (11) for the critical
line on the T-B plane, we find that two dimers specified with
interaction parameters (J, D, r, K) and (J', D/, v/, K) give rise
to the same critical line on the 7-B plane or they are in the
same class if and only if,

JP+D*=J%+ D7,
24+ K>=r?+K" (14)

In other words, the above symmetric and antisymmetric cat-
egories consist of equivalence classes of dimers where each
class can be represented topologically as a two-dimensional
torus in the (J, D, r, K) parameter space as shown in Fig. 1.
Here, we may refer to an equivalence class of symmetric
dimers as an S class and an equivalence class of antisymmetric
dimers as an AS class.

Having each category of dimers classified into equivalent
toric classes of entangled spins, we further note that each class
in one category has its one-to-one corresponding dual class
in the opposite category. To see this we observe that the two
equations in the duality equation Eq. (12) are related by flip-
ping the sign of the J,.-coupling parameter and exchanging the
p and g functions. Therefore, if a given toric S class character-
ized by the coupling parameters (J, D, r, K) is obtained by one
of the equations in Eq. (12), then its corresponding dual AS
class characterized by the coupling parameters (J, D, 7, K)
can be obtained from the other equation in Eq. (12) and vice
versa. The two dual toric S and AS classes are equivalent in
the sense that they give rise to the same entanglement phase
diagram on the T-B plane if their characterization parameters

S(J, D)XS(r, K) S(r,K)x SUJ, D)

FIG. 2. Toric visualization of dual symmetric and antisymmetric
entanglement classes. Each class has the same toric characteristic as
its dual but with longitudinal or meridian circles in swapped order.

satisfy the following relations:
P4D =P 4R,
r*+K?=J*+ D% (15)

These relations compared to the ones given in Eq. (15) indi-
cate that the dual symmetric and antisymmetric entanglement
classes have the same toric characteristic but with their lon-
gitudinal or meridian circles in swapped order as depicted in
Fig. 2.

Although the above analysis focuses on concurrence, it is
generally independent of the quantum entanglement measure
as it is mainly based on the entanglement transition line on the
T-B plane. For instance, one can obtain exactly the same clas-
sification and entanglement duality using nonlocality [18,19]
and negativity [20]. Note that similar to nonlocality, negativity
does not, in general, share the same features with concurrence
[21,22]. Other than the entanglement duality, our analysis
establishes the topological signature of quantum entanglement
in a sense that the entanglement phase diagram in dimers
provides a clear topological foliation of the coupling parame-
ters manifold into two-dimensional compact torus leaves [23].
Moreover, the toric classifications given in Egs. (15) and (16)
verify that any sets of coupling parameters on the equivalent
dual tori give rise to the same entanglement transition line and
indeed the same entanglement region on the 7-B plane. In
other words, as long as the coupling parameters change within
the dual tori specified by Eqgs. (15) and (16) the entanglement
characteristics of the thermal state remain invariant on the 7-B
plane. This implies a topological stability, namely, robustness
of the entanglement in spin-1/2 dimers against variations of
the coupling parameters in larger topological domain.

To further clarify our point and show that the entanglement
analysis above provides a nontrivial classification and duality,
we consider two examples in the following section.

III. EXAMPLES

Consider two identical spin-1/2 particles with Heisenberg
spin-spin exchange interaction of strength J in an external
magnetic field as given by the Hamiltonian,

B
HYE = 250 452 4750 s, (16)

Note that we use superscript HE here to indicate a Hamilto-
nian of pure Heisenberg form. In the analysis that follows, we
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consider antiferromagnetic coupling J > 0 as entanglement
cannot occur for ferromagnetic coupling [15]. According to
the above classification, the Heisenberg model belongs to a
class of symmetric dimers described by the following general
form of the Hamiltonian,

B
HE _ (1) (2) (1) ¢(2) [ (D ¢(2) (1) ()
H™ = E[SZ + s, ]+JsZ s, —}—J[sx s sy ]

S

—D/[sNs® — 5052, a7
such that
J?+D?=J%. (18)

Note that H'® = H"E for D’ = 0 and J' = J. This accompa-
nies the dual-antisymmetric Heisenberg model described by
the Hamiltonian,

H;SIE — g[sgl) _ s;z)] —Jsgl)sf) + }N’[S)((I)S)((z) _ S;I)S)(]Z)]
+ Ig[sil)sﬁ,z) + S;I)s)(cz)], (19)
where
P 4+KP=J2 (20)

with J being the Heisenberg coupling constant in Eq. (16).
By applying the general formulation of the former

section to Heisenberg classes, we obtain the following con-

currence functions for the corresponding thermal states,

1 J/T
_ a4 <0

CHE — ,
s:l 2Z
T —3
[0 p— 21
$:2 2z ( )
and
CHE _ eJ/T -3
as;1 2z s
(14T
Cih = — g < 0, (22)
with partition function,
Z=1+¢"T +2cosh(B/2T). (23)

Here we have used the conditions in Egs. (18) and (20) in
the derivations of Egs. (22)—(23). Note that the swap of the
antisymmetric concurrence functions in Eq. (23) compared
to its symmetric counterparts in Eq. (22) is what explains
the entanglement duality in Heisenberg spin-spin interactions.
This duality is associated with coinciding entanglement con-
currences,

HE el —3 HE
C(of%) = max — 0t =Clor%) (24)

for both symmetric and antisymmetric Heisenberg thermal
states. Equation (24) defines the critical temperature (that is

D
Heisenberg
S-classes
L5 Separable 1 - J
|~
_ 10} THE=]/In3~091 ]
& g D2+ =72 +K2=]
0.5 Entangled
L
0.0 ] T
00 05 1.0 15 20 25 30 Dual Heisenberg
B/J AS-classes

FIG. 3. The left panel shows the entanglement phase diagram
for symmetric and dual-antisymmetric Heisenberg dimers on the
T-B plane. For each of the Heisenberg-type dimers, the entangle-
ment undergoes a sudden change at the relative critical temperature
THE = J/In 3 ~ 0.91J independent of the applied magnetic-field
strength B. This is an indication of a quantum phase transition. The
right panels illustrate toric visualization of the symmetric (S) and
antisymmetric (AS) Heisenberg entanglement classes. Whereas each
circle of radius J on the (J', D) plane represents a Heisenberg S class
corresponding to a given isotropic Heisenberg exchange coupling J,
the equivalent dual AS class is represented by a circle on the (7, K)
plane with the same radius of J.

independent of the external magnetic field),

THE = J2 4 D2/In3=J/In3~091J,  (25)

above which as shown in Fig. 3, the thermal states Q%llF; and

Q?ES cease to be entangled. The same critical temperature has
been obtained in Ref. [15] for antiferromagnetic Heisenberg
model given in Eq. (16). Nonetheless, our analysis shows that
this critical temperature indeed holds for a wider class of spin-
spin interactions.

The entanglement duality for the Heisenberg interaction is
identified mainly by the toric characteristic equations given
in Egs. (18) and (20). As illustrated in Fig. 3, these equa-
tions foliate the corresponding dual parameter spaces (J', D’)
and (7, K) into circles of radii specified by the Heisenberg
exchange parameter J. Each radius identifies dual circles
representing dual-symmetric and -antisymmetric classes asso-
ciated with the Heisenberg spin-spin interaction. Moreover, all
spin-spin interaction Hamiltonians in given dual topological
classes obey the same critical temperature, given in Eq. (25).

As another example, Fig. 4 illustrates the classification of
the XY interaction described by the Hamiltonian,

B
HXY = (1+ D5 + (1= sV + Z[s) + 5]
(26)

(with superscript XY) into dual toric entanglement classes.
Here r € [0, 1] is the anisotropy parameter controlling the
cylindrical asymmetry of the spin-spin interaction. The XY
model given in Eq. (26) defines interactions from the isotropic
limit » = 0 with additional symmetry [HXY, 5] =0 to the
opposite limit » = 1, which corresponds to the Ising type of
interactions.

The XY interaction given in Eq. (26) represents a sym-
metric class of dimers. Following Eqs. (12) and (13),
the associated general symmetric and dual-antisymmetric
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FIG. 4. The upper panel shows the entanglement transition curve
for symmetric and dual-antisymmetric XY dimers for different val-
ues of anisotropy parameter . Whereas the isotropic limit » = 0
represents the narrowest area of entanglement with magnetic field
independent critical temperature, the critical temperature becomes
magnetic-field dependent for r # 0 and the entanglement area mono-
tonically increases with r so that the Ising limit » = 1 represents
the broadest entanglement area on the 7-B plane. Each value of
r distinguishes a pair of symmetric and dual-antisymmetric toric
entanglement classes depicted in the lower panel.

Hamiltonians read

B
XY _ (1 (2) [ (D ¢(2) (1) (2)
H' = E[Sz +5; ]—i—J[sx Syt sy sy ]

N

— D[s0s® — sWs@] 4 [s0sD — sD5@]

+ K'[sVs? + 55, Q27)
and
Xy _ Bro _ 014 10,0 4 0
s = E[SZ -5 ] +J[sx sy sy ]
A (D2 1.2 ST (D2 12
—D[si )s; ) — s; )si )] + r[s; )s)(c ) — s; )s§ )]
ST (2 1.2
+ K [s"s? + 55, (28)
with equivalent toric characteristic equations,
J/Z + D/2 =1
P+ K== +D*=r (29)
P+K =1

One may note that HXY = H*Y when J'=1 and r' =r.
For each value of r Eq. (30) specifies a pair of dual toric
XY entanglement classes as depicted in the lower panel of
Fig. 4. In fact, it is the anisotropy parameter r that controls the
entanglement classes and the spin-spin duality.

We obtain the following concurrence functions for the XY
classes of thermal states,

1 [ 7 sinh (—‘/l?) 1
v LA T ) o () | =
S 2T .
<y 1 1 I‘2 SiIlh2 <—\/l?)
Co, = = sinh <ﬁ> - |1+ B1r
= CxY, (30)

with partition function Z = 2 cosh(%) +2 cosh(—vB;TJ“"2 .

For all r £ 0, Eq. (31) derives a magnetic-field-dependent
critical temperature given implicitly by
max (C)', C) = max (CXY, CX%) = 0. (31)

S as;1° “as;2

Figure 4 illustrates critical temperatures as functions of the
magnetic field for some values of r.

IV. CONCLUSIONS

In conclusion, we have demonstrated an entanglement
duality in a wide class of physically important spin-spin in-
teraction dimer models. This is performed by analyzing an
entanglement transition of thermal states on the temperature-
magnetic-field plane. The entanglement analysis allows to
foliate the coupling parameter space into a dual-pair of sym-
metric and antisymmetric toric entanglement classes. This
classification is an indication of the topological signature
of quantum entanglement in the sense that quantum entan-
glement is consistent up to topological classifications. The
analysis shows the stability of entanglement against parameter
changes within a broader topological domain, which could be
relevant for the processing of quantum information. We hope
the present results can contribute to a deeper understanding of
the hidden aspects of the concept of quantum entanglement,
and that it is an inspiration to works in nanomagnetism where
magnetic nanosized objects of the type investigated here are
under focus.
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