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Abstract

The process of flying fighter jets naturally comes with tough environments and manoeu-
vres where temperatures, pressures and forces all have a large impact on the aircraft. Part
degeneration and general wear and tear greatly affects functionalities of the aircraft, and
it is of importance to carefully monitor the well being of an aircraft in order to avoid
catastrophic accidents. Therefore, this project aims to investigate various ways to improve
anomaly detection of selected signals in the Gripen E fuel system. The methodology in this
project was to compare collected flight data with generated data of a simulation model.
The method was conducted for three selected signals with different properties, namely the
transfer pump outlet pressure and flow, as well as the fuel mass in tank 2. A neural network
was trained to generate predictions of the residual between measured and simulated flight
data, together with a RandomForestRegressor to create a confidence interval of said signal.
This made it possible to detect signal abnormalities when the gathered flight data heav-
ily deviated from the generated machine learning algorithm predictions, thus alarming for
anomalies.

Investigated methods to improve anomaly detection includes feature selection, adding ar-
tificial signals to facilitate machine learning algorithm training and filtering. A large part
was also to see how an improved simulation model, and thus more accurate simulation
data would affect the anomaly detection. A lot of effort was put into improving the sim-
ulation model, and investigating this area. In addition to this, the data balancing and fea-
tures to balance the data on was revised. A significant challenge to tackle in this project
was to map the modelling difficulties due to differences in signal properties. A by-product
of improving the anomaly detection was that a general method was obtained to create a
anomaly detection model of an arbitrarily chosen signal in the fuel system, regardless of
the signal properties.

Results show that the anomaly detection model was improved, with the main improve-
ment area shown to be the choice of features. Improving the simulation model did not
improve the anomaly detection in the transfer pump outlet pressure and flow, but it did
however slightly facilitate anomaly detection of the fuel mass in tank 2 signal. It is also
concluded that the signal properties can greatly affect the anomaly detection models, as
accumulated effects in a signal can complicate anomaly detection. Remaining improve-
ment areas such as filtering and addition of artificial signals can be helpful but needs to be
looked into for each signal. It was also concluded that a stochastic behaviour was seen in
the data balancing process, that could skew results if not handled properly. Over all the
three selected signals, only one flight was misclassified as an anomaly, which can be seen
as great results.
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Introduction

1.1 Background and Purpose

This section presents the background and purpose of the project, revolving around anomaly
detection and improvements in the fuel system model of Saab 39 Gripen. Here, information is
presented motivating why the project work is relevant and interesting to study. Additionally,
the work done is put into a more general context as well as giving the reader a more extensive
background.

Purpose

Every year thousands of flight hours are performed with the Gripen aircraft. There is a con-
stant need to keep the aircraft in good health to protect the countries, or at Saab to further
develop aircraft technology. When flying, the aircraft is exposed to tough environments, great
forces, and a variety of temperatures. This creates a great interest to gain insight into an air-
craft’s "well-being" in order to prevent system failures. Information regarding component
wear and tear as well as recognizing component degradation is crucial, making it easier to
plan repairs and service. This type of information also facilitates mechanical diagnosis and
can be of great use for troubleshooting and recognizing system deviations.

It is easy to motivate why there is a need to further develop the ability to detect anomalies
in flight data so that faulty parts can be replaced in time and suspicious aircraft behavior
can be investigated. The main goal of improving the ability to accurately detect anomalies
in flight data can not only help reveal alarming data patterns but also point out interesting
information that facilitates further fuel system model development. In addition to this, a
by-product of efforts put into anomaly detection investigation is an improved simulation
model, that can be useful in other aspects. The knowledge gained together with simulation
model improvements can then be of great use at Saab for further flight data analysis. It
can also be used when developing and redesigning current fuel system models in order to
evaluate functionality as the technology moves forward. But the main argument these factors
motivate is the need for anomaly detection, and improving the simulation model is one area
of investigation that can result in a desirable by-product. These factors motivate the goal of
the thesis project: to investigate the fuel system model in order to achieve improved anomaly
detection.
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Background

Itis no doubt that it is beneficial to accurately detect anomalies in flight data signals of Gripen.
However, model-based anomaly detection comes with difficulties as the degrees of freedom
in an aircraft are vast. The fact that every aircraft is hand-built, its uniqueness in parts, and
thousands of flying settings, environments, and properties are all problems that need to be
handled, to mention a few. Degradation of items and general wear and tear also alters plane
characteristics. In addition to this, the problem of deciding which types of data patterns
should be classified as anomalies poses another question to be answered. In some situa-
tions deviating data might be expected, meanwhile, the same data patterns in other situa-
tions could be considered alarming. This shows the need for a dynamic anomaly detection
threshold and motivates the idea to let machine learning algorithms decide what is normal
in an aircraft and not. Thus, algorithms can point out abnormal patterns in the data which
would otherwise be a cumbersome process.

This thesis presents a method where a simulation model implemented in Dymola simulates
signals that are also measured in Gripen aircraft. By looking at the residual between these
signals, it is possible to measure the deviation between model output and measured data.
In regards to deciding what is abnormal and not, machine learning algorithms are trained
to predict the residual. Being trained to find the general residual behavior allows for alarm-
ing patterns in the measured data to be detected. However, the area of improving anomaly
detection is vast and there are a lot of different ways to tackle the problem. One suspected
area thought to facilitate anomaly detection is an improved simulation model. In particular,
to know whether there is something to gain in regards to anomaly detection by shrinking
the residual as a result of a more accurate simulation signal is of interest. Being able to ac-
curately simulate and predict flight data from a complete fuel system model can be of great
use in many aspects, and not only for anomaly detection. For example, an accurate simu-
lation model reduces the need to constantly gather new flight data. To obtain a good fuel
system model knowledge is needed about which areas need improvement and what type of
structure and signal behaviors make a good simulation model. Information such as how to
properly model different sub-parts of the fuel mass model and which signals are important to
accurately model will be of great interest. It is desirable to obtain more information about the
fuel system model, and to what extent the interesting signals needs to be improved. This also
creates an urge to know the trade-off in what type of normal data patterns can be covered
by ML algorithms and where the fuel system model needs to be improved. Additional areas
that facilitate the machine learning algorithm accuracy and thus anomaly detection such as
data processing, different types of filtering, and data balancing are also of interest. The ben-
efits of using model-based anomaly detection are something that became the foundation of a
previous master thesis [20]. This was done by investigating several different ML-methods on
r(t) to predict 7(t) as well as a confidence interval for said signal, I(t). However, the ML model
used for now was implemented at a later stage. The methods used for anomaly detection of
a signal in the fuel system model were created in the previous master thesis project.

For this type of analysis setup, an anomaly can be defined as when measured flight data of
the chosen signal deviate from the prediction interval created with ML algorithms during an
extended period. A more precise description is when () is not within the prediction interval
of the trained ML method, I() during a longer period. A lot of the work done in the previous
master thesis project contains signal pre-processing, feature selection, and evaluation of the
ML methods. It also investigated what kind of model deviations the ML methods can cover.
The work to be done in this project will take a new direction, focusing more on gaining crucial
information about the simulation model /ML algorithm anomaly detection trade-off, and also
investigating new signals with new properties.
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1.2 Uniqueness of this master thesis

A previous master thesis work done by C. Tysk and ]. Sundell developed an anomaly de-
tection method by analyzing the residual between simulated and measured data of the fuel
mass in a tank by using ML methods. This process included data cleansing and investigation
of different ML algorithms to see which algorithms produced the most accurate predictions.
A look into which features to select when training ML algorithms and a data balancing pro-
cess to achieve a more evenly distributed dataset were also done. It was later shown that the
data balancing procedure contained faulty code which skewed the balancing, and this issue
was later resolved by Saab. In addition to this, a method to generate a prediction interval
I(t) making it possible to detect anomalies was also developed. Thus, an anomaly detection
alarm was implemented to detect large deviations in measured flight data. Additional areas
were also looked into such as leakages in the target signal and offsets. The thesis resulted in
an MDM (which in this thesis is renamed to RM), Model Deviation Model developed in Python
in Jupyter notebooks, where methods to perform said procedures were implemented.

This master thesis aims to improve anomaly detection of aircraft data, and a central part
of the procedure of doing so is improving the Dymola simulation model by analyzing the
behavior of three chosen signals with different properties. Another central thesis goal is to
find a suitable level in the trade-off between improving the DM simulating data of the given
signal and ML algorithm performance. By comparing simulated and measured data, efforts
will be made to see how the DM can be improved, and the consequences of improving the
DM in ML algorithm prediction accuracy are of great interest. The previous master thesis
did not include any work in the DM, which extends this thesis into previously unexplored
subjects.

Although some work by previous master thesis writers was put into similar areas that are
looked into in this thesis, such as feature selection and data balancing, the main focus of this
thesis is to improve anomaly detection. The areas of feature selection and data balancing will
be further investigated in this thesis, but with an aim to gain necessary information about the
fuel system model and what ML algorithms can cover.

1.3 List of Terms

A list of commonly occurring terms describing the different models and signals that are cen-
tral to the thesis project is shown below. To facilitate discussion and presentation of the re-
sults, the terms listed will be used to simplify understanding and text.

List of Signals

Below, signals associated with the system model can be seen. Signals include measured sig-
nals from flight data of the aircraft, simulated signals from the Dymola fuel system model,
and signals created from combining mentioned signals in combination with ML algorithm
predictions. The list presents notations for an arbitrarily chosen signal of the fuel system,
which then will be denoted with the actual signal name. The signals that will be investigated
in this project mainly consist of three target signals with different properties. The following
signals will be investigated:

e Transfer Pump Outlet Pressure denoted pr.
* Transfer Pump Outlet Flow denoted fI.
e Fuel Mass in Tank 2, denoted fm.



1.3. List of Terms

To differentiate each of the target signals from each other, and represent measured and
simulated signals the following signal notations are introduced.

Ymeas(t) - An arbitrarily chosen signal from measured flight data in a Gripen aircraft, for
example, the fuel mass or the transfer pump outlet pressure. The signal of choice will
be denoted, e.g. Yyeqs pr(t) for the measured transfer pump outlet pressure.

Ysim(t) - The Dymola model simulated output signal, given a set of input signals. In
similar fashion as yeqs(t), the signal of choice will be denoted, e.g. Vs, pr.(t) for the
measured transfer pump outlet flow.

r(t) - The residual between yg;,, (1) and Yyeqs(t).

#(t) - The predicted output signal from an ML-model that has been trained to predict
r(t) given a set of input signals.

I(t) - Prediction interval for 7(t). Calculated by training a RandomForestRegressor ML-
method to predict (#(t) - #(t))>. The RandomForestRegressor predictions are then used
together with 7rp(t) to create a model prediction interval for r(t). If r(t) deviates from
I(t) for an extended period of time the data of the chosen signal will be classified to
contain an anomaly.

List of Models and Terms

There are two different model areas that are essential in this project. Firstly, an extensive
fuel system model implemented in Dymola contains models to produce different simulation
signals, listed as ys;,,(t) above. Secondly, the models used to analyze r(t) are implemented
in Jupyter notebooks and Pycharm containing ML methods, data pre-processing code, and
implementation of the anomaly detection algorithms.

ML - Short for machine learning.
Features - Which signals in the data set that is included when training ML algorithms.
Target Feature/Signal - The signal of which the ML algorithm is trained to predict.

DM - Dymola Model: A system model for the fuel system as a whole, which is imple-
mented in Dymola. Here it is used with a set of input data taken from sensors and
control signals of Gripen to produce the signal y;,,(t). The notations pr, fim and fl will
be used to specify a certain submodel of the DM, for example DMy, for the submodel
simulating data of the fuel mass.

FD - Flight Data: Registered signals in the aircraft during flight representing flight in-
formation such as pressures, velocities, temperatures, etc. This will be used to train ML
models, and as true data to evaluate simulated data with.

RM - Residual Model: A model used to handle the signals in List of Signals to generate
predictions of the target signal. There is a complete method containing procedures that
result in an RM, that loads and pre-processes yeas(t) and ys;, (t) to generate the signal
r(t). The model consists of ML algorithms to generate predictions of r(t), namely 7(t).
Additionally, the model also contains ML algorithms to create the prediction interval
I(t), by generating predictions of (#(#) - r(t))%. Included in the method to create the RM
are also procedures to handle filtering, anomaly detection, and data balancing of the
signal looked at. A separate RM is developed for each of the target signals to handle
different signal properties, thus creating an RMp,, for the fuel mass, RMy and RMp,
for the transfer pump outlet flow and pressure respectively. The methods to develop
each RM mostly contain similar procedures, with a few exceptions to tackle the unique
behaviors that come with each signal.
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1.4 Problem Formulation and Goals

To obtain a clear vision of what is to be achieved during this project, a thorough description of
the goals is required. Additionally, to reach project goals a good understanding of the prob-
lems and challenges of the subject is crucial. The project problems and goals are thoroughly
presented below.

Description of problems

The main problem of this master thesis is the question of how to acquire a better anomaly de-
tection model. To gain the necessary knowledge needed to improve anomaly detection, a few
central problem areas are stated. Initially, it is of great interest to see how an improved DM,
generating a more accurate simulation signal, affects the ML algorithm performance, and
thus anomaly detection. A central question is how different signal properties affect anomaly
detection, such as the difference in model performance between accumulated signals such as
the fuel mass, and non-accumulated signals such as the transfer pump outlet pressure. In
addition to this, a problem lies in enhancing the conditions for the ML algorithms to acquire
optimal RM performance. This includes all types of procedures done to the training data set
and processes done before training the ML algorithms. For example, the importance of data
balancing, filtering, and feature selection are areas that can pose problems if not looked into
properly. An important problem to look into is the balance between improving the DM and
pinpointing the model flaws that can be accurately covered by ML algorithms. In some cases,
it might be sufficient to improve the model to a certain extent and to let the ML method cover
any deviations. The main problems of the thesis are stated in the following list.

¢ To see if improved anomaly detection can be gained by improving the DM generating
Ysim (1), thus shrinking the residual r(t). This is done by identifying systematic model-
ing faults in the DM, analyzing why these faults occur, and then locating which parts
of the DM need to be improved.

* Developing RMs for the transfer pump outlet pressure and outlet flow. Thus, solving
the problem of creating a good testing environment in Jupyter notebooks, where large-
scale model and signal evaluation is easy.

¢ To map the different signal properties in the fuel mass, outlet pressure, and outlet flow
and how these properties affect model performance.

* Solving the problem of choosing the right feature for each signal, and what kind of
data pre-processing that needs to be done in each RM. Which procedures are of greater
importance to the ML algorithm performance, and which processes can be neglected?

¢ Finding a good balance between improving the DM and RM. How much impact does
each model area have on 7(t) and the prediction interval I(t), and where lies the trade-
off between improving these two models?

Goals

Ideally, the main goal of this master thesis is to acquire significantly improved anomaly de-
tection models for the three chosen target signals. A by-product of the improved anomaly
detection is an improved Dymola simulation model, and what’s to gain from an improved
simulation model. As this knowledge, for now, is unknown, the goal is rather to explore
this area and the improved simulation model can be seen as a by-product when gathering
this information. Additionally, a goal is to see how to best facilitate ML algorithm training
to handle different signal properties. It is also desired to extract wisdom about what kind
of deviations the RMs can accurately cover and not, and also find a good balance between
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1.5. Technical Information

improving the parts of the DM and the RMs. Some deviations might be hard to accurately
model in Dymola, but slight DM improvements might be enough for the ML methods to
successfully cover those specific situations. Mapping situations and signals involved when
anomaly detection struggles are also of great interest, and a large part of the project will aim
to find this knowledge. The overall main goal of the project is however improved anomaly
detection, and fulfilling the goals listed below are all thought to help achieve the main goal.

* Main goal: To acquire a significantly overall improved anomaly detection, in regards
to the signals investigated and their corresponding different properties. A central part
of this is to see what is to gain from improving the Dymola simulation model, thus
shrinking the residual signal.

* To acquire a good knowledge base of what is a reasonable simulation model level to
sufficiently detect anomalies, and to improve the DM in needed areas.

To successfully achieve the main goal the following sub-goals are set.

* To create a structured Python code environment to make data analysis and model eval-
uation easier. This will also simplify the understanding of how model improvements of
the DM should be implemented.

¢ Finding a reasonable trade-off and extracting information about what kind of model
deviation can be accurately covered by the RMs, and where the RMs fails to cover the
DM errors.

¢ To create more accurate simulation models in Dymola of the three target signals, and to
gain the necessary information about how these improvements affect anomaly detec-
tion.

* To create a numerical measurement to track the accuracy of #(t) and I(t) which can be
used for the analysis of changes made in the DM and RMs.

* To gain knowledge about how to properly train ML algorithms to handle certain signal
properties. This includes goals to find important features, how to balance the data, and
general procedures that facilitate ML algorithm training.

1.5 Technical Information

The work done will be coded in Python in online browser tool Jupyter Notebooks, where code
and informative text can be combined. Additional functions, also written in Python from the
previous master thesis will be imported from PyCharm. The simulation tool used to build the
fuel system model is implemented in Dymola and contains an extensive model of the Gripen
fuel system. To simulate and preprocess data, PyCharm and MATLAB will be used.

1.6 Delimitations

Military aircraft like Gripen consists of many subsystems that could be of interest to look
at when considering anomaly detection in flight data. This thesis is limited to only looking
at the fuel system, and more specifically the Dymola simulation model of the fuel system.
The fuel system is made up of hundreds of interesting signals that could be used to analyze
flight data and detect anomalies, but this thesis focuses only on the transfer pump outlet
pressure and flow, together with the fuel mass of tank 2. The properties of these signals
differ vastly, making it possible to gain additional insight into challenges with the anomaly
detection method. The Dymola model will only be improved to simulate a more accurate
version of said signals. In addition to this, work will also be put to facilitate training and

6
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predictions of ML algorithms. However, comparing different ML algorithms is out of scope
for this thesis, although processes like feature selection are included. Going in-depth into the
data balancing process implemented in the previous thesis is out of the scope of this work.

This thesis will only handle data for one aircraft, and one transfer pump. Parts of the
aircraft can be changed, which in turn can cause deviations in the general signal level of the
chosen signals. To handle this behavior is out of the scope of this thesis.






Theory & Related Research

This section presents the relevant theory for the thesis area of investigation. It also presents
the necessary information required to follow the anomaly detection method.

2.1 Previous Master Thesis

The most relevant work to this master thesis project is the previous master thesis done by
C. Tysk and |. Sundell developing the data pre-processing steps, anomaly detection algo-
rithms, and ML models. The project concluded that ML methods can be successfully used
to predict deviations between simulated and measured fuel mass in Gripen E and to detect
fuel mass anomalies. Various settings and methods were tested, but in regards to anomaly
detection, results showed that a linear regression model in combination with a RandomFore-
stRegressor performed best for the fuel mass to accurately predict anomalies. However, this
was further improved by Saab at a later stage to instead use a neural network in combination
with a RandomForestRegressor, which performed even better. Results also pointed toward
the importance of pre-processing the data, including procedures such as feature scaling. In
addition to this, the complexity of feature selection was also highlighted. Another important
source of information for the previous master thesis as well as this thesis is the book by A.
Géron [4] which gives a good foundation of how to sort and handle data within the area of
Machine Learning as well as valuable information about different models of Machine Learn-
ing. The previous master thesis took a lot of inspiration from [4], so it is believed that using
the information present there will greatly facilitate the work of this thesis.

2.2 Saab 39 Gripen and the Dataset

Below, a short introduction to the fuel system, transfer pump, and the corresponding signals
that are introduced with the said system is presented.

Signals

Every aircraft has a set of probes and measuring equipment that collects information and
data during a flight. These measurements include signals such as altitude and measured
fuel mass in all the tanks to information about when a specific valve was opened or closed
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during flight. A big portion of these signals is binary in the fashion that they represent when
a valve is turned on or off, or in the case of a control signal that works in a similar manner.
Other signals that are numerical are available and can contain information about pressures,
velocities, and so on. The other part of the data set is generated from the Dymola simulation
model described in Section [2.3| which generates simulated representations of the measured
signals.

Fuel System

A simple layout of the tanks in the fuel system can be seen in Figure These are the dif-
ferent tanks the fuel system connects, consisting of six different tanks including the right/left
wing tank. At the heart of this fuel system sits the transfer pump which is solely used to
supply the engine feed with fuel by draining fuel from tanks in a specific order. A simple il-
lustration of the transfer pump can be seen in Figure[2.1} In addition to this, it is also possible
to hook up to three drop tanks to the aircraft, one centrally and one for each wing. However,
these can not be seen in Figure 2.1]

Transfer
Pump

EngineFeed

Figure 2.1: An overview of the aircraft fuel system, showing all six tanks and the transfer
pump structure.

2.3 Dymola Model & Modelica

Dymola is a modeling and simulation environment that builds on the object-oriented Mod-
elica modeling language, where it is possible to properly model large and complex systems
using a component-oriented structure. A general modeling environment is developed to eas-
ily model systems including electrical, thermal, and fluid parts, and to connect these systems.
Saab started the transition of moving models implemented in other simulation tools to Dy-
mola more than ten years ago, which is discussed more in detail by I. Lind & H. Andersson
in [T1]]. In addition to this, research has been done in the area of modeling various aircraft
properties and signals in Dymola. Oehler et. Al presents in the challenges of modeling
thermal and fluid effects in an aircraft fuselage. Three areas of improvement are suggested
including mostly user interactive actions. However, the power and potential to easily model
complex systems by using Dymola are also highlighted, showing the great aspects of the tool.

The model used in this project is previously developed by Saab and is a simple large-scale
model of the whole fuel system in Gripen 39-9 E. It contains sub-models generating simula-
tions of various interesting signals in the aircraft, such as different tank masses, pressures,
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and flows. The overall model is quite simple and mainly used as something to test software
and functionalities against. It is not built on physical formulas, but rather on simple logic
to be able to test general behavior. This also explains why the simulation data of the three
target signals initially is not very accurate. Simulation is then done by providing Dymola
with an input file, representing control and measurement signals that are needed to generate
the simulated signals. This input file contains time vectors to define the period of flight, bi-
nary values for control signals, and initial conditions as illustrated in Figure The input
files needed for simulation are mostly created by taking measured data from actual flights.
Sub-models are then created by using either mathematical equations or by building man-
ually with blocks using logical gates, integrators, de-limiters, and other available building
blocks. There are vast options when building the models manually, which makes large-scale
modeling simple.

Control
Signals
Transfer
Pump Outlet
Pressure
Measured
Signals
Fuel System Dymola :> Fuel Masses
Input Data Model
Time Interval ranster
Pump Outlet
Flow
Initial
Conditions

Figure 2.2: Overview of the input/output structure in Dymola.

2.4 Machine Learning Theory

As a central part of this thesis revolves around gaining relevant information about the dif-
ference between modeled and registered fuel properties via machine learning algorithms,
a brief presentation of the most relevant machine learning algorithms and aspects are con-
ducted. The two main algorithms used are the neural network and the RandomForestRegressor.
Two additional machine learning topics are feature selection and data balancing, which have
a great impact on the machine learning algorithm output. These two areas are also put into
context in this section. This section presents a brief overview of the algorithms and subjects
together with a few sources of related research.

Neural Networks

Neural networks are a powerful group of machine learning algorithms. Inspired by the hu-
man brain, a neural network creates a network of neurons in divided layers. Each layer can
consist of one or more neurons, which are connected to other neuron layers via weights and
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biases. Generally, three different types of layers are used with the first one being the input
layer. Secondly, one or more layers making up the hidden layers are introduced. Lastly comes
the output layer which represents the neural network output. Depending on the type of neu-
ral network, algorithms can produce output that is either of the classifier types, producing an
output that selects one class out of several pre-defined classes. On the opposite, neural net-
works can also be of the regressor type, used to generate an output value instead of choosing
between predefined classes. What is interesting in regards to this thesis is the type of neural
network that is used, and how it is used with the data set. Simply put, there are three dif-
ferent types of neural networks. Multi-layer Perceptrons (MLPs) are rather simple networks,
using a feed-forward principle, as can be seen in Figure[2.3] MLPs are the most basic neural
networks and can be used with great results on simpler tasks. Secondly, the Convolution
Neural Networks (CNNs) are a group of neural networks widely used in image and video
processing. CNN’s are very similar to MLPs but also add a type of filtering in the process
that is suitable when handling matrices representing images. Lastly, there is the group of
Recurrent Neural Networks (RNNs). These types of neural networks consider the effect of
past data, basically storing information about previous time data instances to reuse when
making new predictions. Thus, the RNNs are of great use when analyzing time-series data
such as the stock market [19], or accumulated signals of a system. A lot of research and work
has been done in the area of RNNSs, and the ability to counter time-dependent data sets. M.
Canizo presents results in [2] that show the power of combining an RNN and CNN to tackle
the problem of multi-time series anomaly detection with great results.

Input Layer Hidden Layer Output Layer

Input #1
Input #2

+ Output
Input #3

Input #4

Figure 2.3: A simple overview of the basic structure in a neural network.

The basic math structure behind a neural network can be seen in Figure[2.4] Every neuron of
a layer is connected to the neurons of nearby layers, via weights denoted w, as can be seen
in Figure The output of a neuron is then calculated by taking the sum of all the neurons
connected to it, where each neuron’s output is multiplied by its corresponding weight. Ad-
ditionally, a bias b is added to the sum. Lastly, the total sum and bias output of a neuron is
taken as input to an activation function, which introduces the ability to handle non-linearity
in the network. The introduction of the activation function makes it possible for the network
to learn, something that is achieved by pre-training the network. There are several different
activation functions, including the Linear Function, Sigmoid Function and Tangent Hyperbolic
Function .
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INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Figure 2.4: An overview of the mathematical structure behind a neural network.

As neural networks belong to the supervised machine learning algorithms family, training
of the neural network is needed. To adjust the weights and biases of the network, a method
called backpropagation is used. Basically, an error term is introduced in the output layer pun-
ishing faulty outputs. Errors are then back-traced, adjusting the weights and biases in the
neurons for each layer. This is done by reserving a large portion of the input data set to
train the neural network, basically connecting input signals to the correct output, making the
network learn which types of input correspond to the right output. As the performance of
neural networks heavily depends on the training phase, it is important to good training set
containing a lot of data with great variety.

RandomForestRegressor

The RandomForestRegressor is a machine learning algorithm that utilizes ensemble learning
to combine the output of several decision trees to boost performance. To illustrate, decision
trees can be described as an algorithm method that compares a data point X with set limits
A, B, and C, as can be seen in Figure In a similar fashion to a neural network or any other
ML algorithm, a decision tree can be of regression or classification type. In the classification
type of decision trees, the output is one particular class out of a pre-defined set of classes,
and the algorithm is called a RandomForestClassifier. However, this thesis focus will be on
the RandomForestRegressor. The regression type of decision tree outputs something that can
be considered a real number, e.g. the pricing of a house or the outlet pressure of a transfer
pump. The RandomForestRegressor is just like the neural network part of the supervised ML
algorithm family. Thus, it requires a training phase to adjust decision tree limits. Training
the RandomForestRegressor includes re-training all the decision trees until the most accurate
results are acquired. This means that the limits A, B, and C can be adjusted until the most
accurate result according to training data output is achieved.

Root

Figure 2.5: An illustration of the Decision Tree algorithm structure.
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2.4. Machine Learning Theory

The method of ensemble learning is used in a way that takes the average output of all decision
trees to make predictions more accurate, where a majority vote of all the decision trees in the
RandomForestRegressor is conducted. In the regression type of RandomForestRegressor, the
average output value of all decision trees is used, as can be seen in Figure To go a bit
further into the general functionality of a RandomForestRegressor, each decision tree starts
with a root, as can be seen in Figure To decide each limit (seen as A, B, and C in the
example, a penalty function is introduced. Oftentimes, the penalty function sum of squared
residuals is used. By trying all possible ways to divide the data by adjusting A, a penalty score
is obtained that shows, on average, how accurate the output is for each value of the limit A.
The limit that obtains the lowest score is then chosen. This process is then iterated, where a
minimum of data points per leaf can be set to decide when to stop iterating. Repeating this
process then yields the limit values of A, B, and C that give the best predictions. In the case
where there are several input variables, which is the standard situation, the penalty function
score is simply compared between the input variables to again chose the limit with the lowest
score across all input variables. When all the decision trees have been trained, the average
output of all decision trees is chosen as the main output of the RandomForestRegressor, as

can be seen in Figure

RandomForestRegressor

Input

Decision Tree 1 Decision Tree 2 Decision Tree 3

%-val1 X-val2 X-vala X-vals x-wel1 ‘ X-val2 ‘ X-vala X-valt X-wvel1 A-Val2 X-vala K-Vl

Output Tree 1 QOutput Tree 2 Qutput Tree 3

|

Majority Vote
l Qutput

Figure 2.6: An illustration of the RandomForestRegressor algorithm structure.

Feature Selection

A large part of ML algorithm performance lies in selecting the right features that contain rel-
evant information in regard to the target signal. The importance of doing so is widely known
and discussed by V. Kumar et Al. in [7]. This is especially important if the data set contains
hundreds of features to choose from. Many features contain information of a similar type,
and some features may even contain information that is completely irrelevant to the ML al-
gorithm. This is discussed by PE. Pintelas in where different qualities of features are
discussed, and furthermore how these features are categorized, selected, and evaluated. The
methods of selection can prove to be of big importance when selecting features as they can
affect computational time, correlation, and general effectiveness. The previous master thesis
report also discussed the difficulties when trying to choose the most relevant features,
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as many signals are closely correlated to each other. Using two features that are highly cor-
related to each other might be needless. In addition to this, a majority of features can have
a low correlation to the target signal, making it harder to properly choose the right features.
This suggests that looking more into physical and reasonable connections between features
and target signals can be the way to go. The topic of feature selection is also examined by I.
Guyon and A. Elisseeff in [5], showing results that using two features that are highly correlated
with each other gives no more information to the ML method. However, using features that
are anti-correlated to each other can help model performance. Additionally, it is also impor-
tant to remember that choosing the right subset of features is more important than finding
single relevant features. A feature that can seem irrelevant alone might be of great use when
combined with other features.

New ways to tackle the problem of feature selection and thus reduce the dimensions of the
training set is to use ML algorithms to select the proper features. A. Verikas et Al. present
results in that shows improved accuracy in predictions when choosing features by using
a feedforward neural network. In addition to this, R. Weber et Al. present in methods that
utilize the Support Vector Machine types of ML algorithms to find the most optimal features.
Even though the implementation of this type of approach might be out of scope for this thesis,
it presents a possible area for future work.

Balancing Data

Research shows that ML algorithms perform poorly when being trained on imbalanced data
sets [14]. A lot of collected data generally contains information from similar environments
and positions, which can boost the performance of these conditions. On the other hand, the
algorithm’s predictive power is significantly reduced when presented with minority data.
Training algorithms on data sets that contain very few instances of certain types of data points
usually produces biased ML algorithms that have a higher predictive accuracy over the ma-
jority of data, but poorer predictive accuracy over the minority types of data.

An important step that can boost overall ML algorithm performance is data balancing. When
an ML algorithm is trained on imbalanced data sets it is easy to overfit the model since data
is not always naturally distributed evenly among the different features. When using 10-cross
validation to evaluate an imbalanced dataset versus a balanced dataset Y. Yao, et al. [22]
found that the balanced dataset exhibits a 42% improvement over the imbalanced data. The
model trained on the balanced training set also performed much better using a leave-one-
out validation when discovering new parameters, (in this case predicting the abilities of new
alloys). The earlier master thesis project presented results suggesting that balancing the
data would not improve prediction results. However, their results did not improve due to
a faulty implemented balancing. This was later fixed by Saab, as an improved balancing
algorithm was developed which boosted ML algorithm performance.

2.5 Anomaly Detection

The area of finding worrying and unusual patterns in flight data with the help of ML algo-
rithms is something that can be used with good results to increase security [10]. Research has
been conducted which reveals that patterns can be found in flight data that would otherwise
go under the radar, highlighting the potential of the subject [9] [15]. To describe a central
topic of this thesis of finding anomalies in flight data, a thorough description of anomalies
and anomaly detection is first presented here. As described shortly above in the background,
Section an anomaly can be defined as when flight data deviates from the prediction in-
terval for an extended time. That is, temporary spikes in the flight data which deviate from
the prediction interval for a short period are not considered anomalies. The previous mas-
ter thesis implemented this effect by introducing an accumulated sum, which alarms for an
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2.5. Anomaly Detection

anomaly if this accumulated sum exceeds a manually set threshold. This allows for anomaly
alarms only if the area between the prediction interval and deviating data is significant. The
predicted values from the ML algorithms can differ from the real values due to many rea-
sons. A poor training set for the ML algorithms, faulty data balancing, or differences due to
uniqueness in aircraft parts. As each component is hand-built the overall fuel system proper-
ties can change drastically from aircraft to aircraft. This is where the use of a trained residual
model comes into play. The use of a residual model is great for diagnostics, and by training
it with ML algorithms and adding a prediction interval it can handle model inadequacy as
well.

By looking at the residual in Figure 2.7] there is a difference of a little more than 20%
at around 1500 seconds, which at first thought might be an anomaly. This is not the case
however as we can see by the trained model shown in the right-hand plot of Figure 2.7} The
trained model along with its prediction interval shows that this difference in the residual is
expected at that certain working point, which means that it is in fact not an anomaly. Again,
it is when the residual is outside of the prediction for an extended period of time and not
coinciding with the trained model that we can start to suspect an anomaly. In addition to
this, there can be several reasons if FD were to be classified as an anomaly that needs to
be taken into consideration. Thus, anomaly detection should be regarded as an alarm that
indicates something unusual, rather than the direct classification of an anomaly. The alarm
could also be triggered by e.g. poor ML algorithm training, or something faulty in the RM.

Data from flight nmbr: 1124 Data from flight nmbr: 1124

Residual fuel mass - tank t3
Residual fuel mass - tank t3

w0
- .

— r=measured-simulated
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Figure 2.7: Left figure showing the measured flight data residual of the fuel mass. More
specifically, the difference between measured and simulated fuel mass. The figure to the
right shows the added prediction interval and predicted residual, generated by the neural
network and RandomForestRegressor.
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Method

The main objective of this master thesis is to explore the possibilities of improving anomaly
detection in the fuel system of Gripen E. This is done by gaining new knowledge about the
three chosen target signals, flight data, and the ML algorithms of the RMs to improve the DM
in needed areas. Hopes are that improving the DM to generate more accurate simulation data
can facilitate anomaly detection, and is a central part of this thesis. The thought is to make it
easy to develop a new anomaly detection model of an arbitrarily chosen signal of the Gripen
E by following the steps presented in this chapter.

The method procedure does not only aim to gain more information about the fuel system
behavior, but it is also of interest to acquire a better DM as well as data processing procedure
to favor and make more accurate ML-algorithm predictions. Whether improved simulation
data favors ML algorithm predictions is a central topic of the thesis. In addition to this,
another problem of interest is the balance between improving the DM and ML algorithm
conditions.

The thesis work carried out is divided into two parts with the first part managing the RMs be-
ing done in Jupyter Notebooks where methods, ML algorithms, and data processing are done in
Python using open-source packages such as Pandas, Numpy, Scikit-learn and Keras/Tensorflow.
Secondly, the DM which contains a simulation model of the fuel system as a whole is used to
generate simulated data of the interesting flight data signals.
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3.1 General Method: Training the RMs to predict 7(¢) and I(t)

The main work of the project to gain knowledge about how to improve anomaly detection
is done in Jupyter notebooks to investigate #(t) and I(t). The three signals of investigation
are the fuel mass in tank 2 Yyeqs fi (f), transfer pump outlet pressure Yimeas,pr(t) and flow
Yimeas, fI (t), and are chosen such that information about different properties in the signals can
be investigated. It is believed that the outlet pressure possesses vastly different behavior than
the flow, and the fuel mass possesses accumulated effects that can reveal modeling flaws.
This is an important aspect to consider if the same procedure is done with new signals and
to also use the information from already investigated signals. To handle each specific target
signal, a corresponding RM for each signal is implemented. The RMs consist of one Jupyter
Notebook each and handle all the data pre-processing, filtering, ML algorithm training, and
model evaluation for each corresponding signal. More specifically, a neural network is used
in each RM to generate predictions of 7(t) using a specified subset of flight data, chosen by the
set of signal features. Additionally, a RandomForestRegressor is used to generate a prediction
interval estimation I(t). Looking at systematic deviations between simulated and measured
data are then used to improve the Dymola submodels generating each of the three target
signals, to acquire more accurate simulation data.

An overview of all the procedures done to handle data can be seen in Figure Most pro-
cedures to find improvement areas of the DM are also done in the notebooks, where signal
investigation exposes situations and environments where the models are faulty. Flaws in the
DM, in this case, can be thought of as situations where the simulated signal is very inaccurate.
Corresponding RM flaws is shown where 7(t) heavily deviates from the measured residual
r(t). A majority of the code in the notebooks is aimed at facilitating the training of ML al-
gorithms to make the prediction of the residuals more accurate, but also to see where ML
algorithms are inaccurate and where the Dymola model needs improvement.

Dymola y sim
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Figure 3.1: Overview of the method to develop a model generating 7(¢) and I(t).

Training & Evaluation data

The first step in the process is to split the data set into a training set and an evaluation set.
The training set is chosen to contain flights with data of great variety, consisting of data from
different environments and settings such as altitude, velocities, and flying angles. This is to
facilitate and prepare ML algorithms for a variety of flights and is thought to reduce the risk of
having flights misclassified as anomalies when being presented with more unique situations.
It is of great importance to only include flights with no anomalies in the training data, as
ML algorithms otherwise might learn to predict the anomalies making large deviations in the
data go under the radar. Secondly, eleven test flights should be chosen to evaluate model
settings. The test flights are chosen such that the initial five flights were nicer, meaning that
the pilot flew controlled and calm resulting in flight data that is commonly seen in the training
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data. The following five flights are messier, which results in more uncommon sequences of
flight data. In addition to this, two flights that contain clear anomalies are also chosen to
verify that anomalies in the flight data still are classified as so. If possible, it is preferable to
have additional flights containing anomalies for verification but as anomalies in flight data
are sparse, this might not always be possible. Having a variety in the evaluation set of flights
is important as it is preferred to verify that ML algorithms learn all the corner cases, and so
that unique flights where the pilot flies tougher do not get misclassified as anomalies.

Filtering & Data cleaning

Before the data is used to train ML algorithms, a few steps need to be taken to pre-process
the data and add specific signals not present in the data set. The processing steps that are
performed in this project work and steps that also need to be considered when creating a
model for an arbitrarily chosen signal from the fuel system of Gripen are listed as follows.

¢ Filling in missing data points of the dataset by either removing the data row or by
artificially creating valid data points. Several methods to do this are discussed in [4],
but the method used here is simply to remove the data row.

¢ Lowpass filtering of the measured and simulated signal before the residual is created.
It is important to adjust the Butterworth LP filter parameters to suit the signal of choice
so that a good representation of the signal is acquired.

* Add residual signals between measured and simulated target signals to the dataset.

* Removing non-interesting parts of the data. For example, the first seconds of a flight
where the aircraft stands still might contain noisy, generally misleading information in
the data. This data can be left out to not skew the data set. In this project, the first 60
seconds of all flights are removed.

Note that these steps need to be revised when developing a model in Jupyter Notebooks
for a new target signal, as signal properties differ a lot. Some signals might require unique
filtering due to stochastic processes which can skew data and not give an accurate represen-
tation of the signal. This is important since it highlights the uniqueness of each signal and
the properties that come with each signal, and shows that each signal needs to have its own
model with a thought-through signal processing procedure.

Feature Selection

The data set containing information from test flights consists of approximately 120 features
(signals) which consist of both binary and numerical values. Training the ML algorithms on
all available signals would be a cumbersome and time-consuming process. To properly train
the ML algorithms there is a need for a reduced set of features. The features should be chosen
such that ML algorithms can find connections between flight data of the reduced feature set
and the target signal. This is something that needs to be reconsidered for each target signal as
every signal possesses different behaviors. Each target signal chosen in this project is unique
and has properties that differ from one another. To gain a suggestion of which kind of feature
to choose, a linear correlation between features in the data set and the target signal can be
done. This is done in this project by using the Pandas function .corr(), which generates a linear
correlation matrix for all the signals listed in the data set. However, most thought to choose a
suitable set of features is done by thinking about reasonable connections between signals in
the data set and the target signal. Note that this process is done in an iterative way, where trial
and error reveals a lot of what the ML algorithms learn from different sets of features. The
procedure consists of adding or removing certain features in order to re-train ML algorithms
to see how it affects 7(¢) and I(t). The process can also help exploit weaknesses and strengths
of the RMs, and a lot of information is gained by the choice of features.
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Adding Artificial Signals

The addition of artificial signals is one important step to facilitate ML algorithm training.
Adding a self-built signal can contribute to information that is lost due to filtering, or add
new information by highlighting patterns in the data that are known. Building a helpful
artificial signal is tricky and needs to be well thought out. For example, the previous thesis
project added the aircraft’s vertical and horizontal angles 6 and ¢ which were calculated
from the measured accelerations in the aircraft. Oftentimes there is a pattern in data that
can be exposed to ML algorithms by adding the artificial signal. There is no direct guide on
how to build a well-working artificial signal as each signal has unique properties, but it is a
possibility that needs to be considered when working with a new model. When an artificial
signal is built, it is simply added to the data set when training ML algorithms. The signal
needs to be added to the test flight data as well.

Data balancing

To counteract the uneven distribution of data points in the training data the data set needs
to undergo balancing. What is meant by this is that data points from certain flight environ-
ments and settings are overrepresented, resulting in the ML algorithms focusing too much
on commonly occurring types of data and not on sparse data. This will result in poor pre-
dictions when being presented with test data that is rare in the data set. To obtain a more
balanced data set stratified sampling can be used, a technique used to modify unequal distri-
butions to create balanced data sets. If the quantity of rare data is insufficient, the method
tries to increment the size of rare samples to balance the data set by randomly copying rare
data points. If some type of data is overrepresented in the data set the same method can be
used to randomly select data points to remove. The procedure as a whole is called stratified
sampling and combines the usage of oversampling and undersampling to balance the data
set. Although stratified sampling mostly contributes to a better balance to improve ML algo-
rithm performance, it is important to also consider the loss of information that comes with
removing data points, something that can be costly when trying to train ML algorithms.

The method of stratified sampling was developed in the previous thesis project, and refined
by Saab to accurately balance the data set according to a set of chosen balancing features.
The balancing is done with three features in this project. The stratified sampling method uses
both oversampling and undersampling to balance out the dataset by dividing the samples
into bins. Bins represent different ranges of values, and the bin discretization values are user
chosen. The same number of samples are randomly picked from each bin. A sample may be
picked more than once. By re-choosing the same samples several times from the same bin
the number of rare data points can be increased. All the data points chosen from each bin
are then combined into one set, representing the balanced data set. Three parameters decide
the balancing. Firstly the features chosen to balance around, secondly the bin discretization
values, and lastly, the number of samples to be chosen from each bin. To avoid the risk of
having a single data outlier alone in one bin being re-chosen a maximum limit of how many
times a single data point can be chosen is set. This could otherwise skew the data set if a faulty
data point is chosen. When choosing the set of features to balance around, it is important to
only consider signals which represent the unequal distribution of data. If the signal chosen
already is equally distributed across the relevant levels, there is nothing to gain. By setting the
maximum bin size and maximum times a sample can be re-chosen together with the choice
of features a more equal balanced dataset can be acquired.

Generation of Target Signal Residuals and Prediction Interval

The target signals used are generated by taking the difference between the measured and
simulated signal of choice, creating the target signal residual.
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V(t) = ]/meus(t) - ysim(t) (3.1)

A neural network is used to obtain the predicted target signal 7(t), trained with a set of care-
fully chosen features and r(t) as the target signal. A RandomForestRegressor is used to generate
the predictions of r.(t) seen in Equation[3.2} where 7, (t) is the predicted output from the algo-
rithm. This is used as a prediction interval for the measured residual signal r(t). To train the
RandomForestRegressor, the same set of features are used as when training the neural network
but together with ,(t) as a target signal. The RandomForestRegressor is used to exploit the fact
that a positive target signal is used, removing the difficulties that come with extrapolation.

I(t) = Pe(t),  re(t) = (P(t) —r(t))? (32)

Average Prediction Interval

In order to see how all the listed areas of improvement affect the performance of models, and
more specifically on ML algorithm predictions it is possible to analyze the resulting changes
of the prediction interval I(t) and the predicted residual #(t). This is also a method to expose
weaknesses and strengths in the model, as faulty anomaly classification and large prediction
intervals can reveal in what types of situations the model struggle. On the other hand, very
accurate predictions and a small prediction interval point toward a very accurate model,
where the strengths of the model can be extracted. To get a numerical value to use for the
comparison of different flight settings, three numerical measurements were implemented to
map a score to each model setting. The first one measures the average prediction interval per
data point.

1
Ifwg = N Z ‘I“PPW(t> - Ilower(t)| (3.3)
Fx

Where N is the total number of data points in-flight data F denoted with flight number X,
and I;pper and Ijoyr are the upper and lower prediction interval limits respectively. The sum
runs over all the data points in the data set Fx. Note that the score I;,¢ only can be used to
compare different settings of the same flight, and the score cannot be used to compare results
from different flights with each other.

Average Predicted - Measured Residual Score

In addition to the average prediction interval score, an average predicted-measured resid-
ual score is also calculated, which in short is the average difference between the predicted
residual 7(f) and the measured residual r(f).

oo = 30 20 17(6) — r(0) (3.4)

Where 7(t) is the predicted residual output from the neural network, and r(t) is the measured
residual between flight and simulation data. This score gives a sense of on average, how
accurate the predictions are compared to the measured values.

Average Simulated - Measured Signal Score

Lastly, a score showing how accurate the simulated data is compared to the measured data is
used and is in a similar fashion as I,y and 7404 an average difference between the simulated
and measured target signal.
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1
Yavg = 57 Z |Ymeas () — Ysim (£)] (3.5)
Fx

The scores are used as an indication of whether changes made, features selected, filtering, etc
improved the model accuracy and can as earlier mentioned only be used to compare data
from the same flight. In this case, a smaller value of the scores would indicate a greater
accuracy. The ideal score would be zero, as the predictions then perfectly would follow the
measured data. Important to note is that the scores need to be considered as one part of
the puzzle and that other aspects of the results also need to be considered. For example,
the results would be bad if a majority of flights were misclassified even though an average
smaller prediction interval could be seen. It is beneficial to see trends in the results of several
flights, but one needs to keep in mind that single flights can reveal a lot of information about
model weaknesses and strengths.

Anomaly Detection & Analysis of Results

As the central goal of this thesis project is to improve anomaly detection, here is the part
where it is made sure that the anomaly detection model actually is improved. To decide
what should be classified as an anomaly and not, a threshold has to be set in each RM that
decides the maximum area of deviation the measured residual can accumulate. This needs
to be overlooked for each signal, as each signal greatly differs in magnitude. A rule of thumb
is to not let temporary spikes be classified as anomalies (as they are in fact, not anomalies),
but extended periods of deviation should be alarmed for. This threshold is manually set in
each RM after a reasonable value is decided. Note that all the previously discussed subjects
contribute to improved anomaly detection in a way that the model becomes more accurate.

Additionally, it is desirable to expose flaws and highlight well-performing areas of the DM,
where analysis of the results plays an important role in the preparation of good quality dis-
cussion and conclusions. To improve the DM, each of the mentioned steps above is worked
with in an iterative way, taking necessary actions to remedy exposed flaws. It is of great im-
portance to look at several flights containing a great variety in flight data, so that corner cases
can be covered. Work is done in a way that analyzes results both by looking at trends of all
the test flights, but also by looking at individual flights to expose certain situations where the
model fails. It has to be assured that a very small fraction of the flights are misclassified as
anomalies, and accurately predicted as non-anomaly-containing flights. Only then do better
predictions and a smaller prediction interval make the model better. It can be of great use to
look into the data of when the model predictions are very accurate with a small prediction
interval as this shows the strengths. On the opposite, regions where 7(t) heavily deviates
from r(t) and where I(t) is large can indicate where the models need improvement.
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3.2 General Method: Improving Dymola Model

To go into detail about a general method to find improvement areas in the DM, and imple-
ment such areas in Dymola, this section covers the method used to specifically find and build
more accurate simulation submodels in Dymola. A complete model of the fuel system in
Gripen is implemented in Dymola, where existing submodels of the system generate simula-
tion data of the transfer pump outlet pressure, transfer pump outlet flow, and the fuel masses
of different tanks (Only the fuel mass in tank 2 is used in this project). These signals are only
some of the outputs of the fuel system DM. This improvement stage aims to find situations
where the simulated signal deviates from the measured and the reason behind this deviation.
The end goal is to reduced the magnitude in r(t) as a result of smaller deviations between
Ysim (1) and Yumeqs (£). If the right control signals in the aircraft can be linked to behaviors in
the measured target signal, it is easy to reproduce the signal in DM as the control signals are
easily accessed there. A great way of finding the links between target and control signals is
to plot the signals over each other and compare the binary values of the control signals to
stabilization levels in the target signal. Linear correlation is also used to suggest the most
relevant control signals. Ideally, one wants to find direct connections between binary control
signals in the data set such as tank valve signals and the target signal, where direct connection
to the target signal is easy to determine. It can also be beneficial to analyze the connections
of measured signals such as altitude and fuel consumption to see correlations, but the direct
correlation between the target signal and these types of measured signals is harder to detect
visually. Below, the iterative working method is visualized, as can be seen in Figure

Step 1
Train the RMs to predict - Identify systematic modelling
£(t) and I(t) errors and the situations
where they arise. Translate
f these errors into information
about what needs to improve
Simulate new data in Dymola in the Dymola model.
Did the improvements make Improve the Dymola model in
any difference in the data? identified areas.

Figure 3.2: Working method used to develop and refine the Dymola model generating simu-
lated target signals.

The procedure of finding connections between measured data of the target signal and control
signals in the data set can be tricky and heavily relies on an extensive investigation phase
where signals of interest are plotted and analyzed. By using logical gates the patterns seen in
the data can be modeled to create an improved Dymola model. Figure3.3|shows an overview
of the steps taken to investigate and improve the DM.
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3.2. General Method: Improving Dymola Model

Continue to
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Notebooks
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Areas ymoia data more accurate?

Target Signal

Figure 3.3: Process of improving the Dymola model generating the simulated signals of the

transfer pump outlet pressure, transfer pump outlet flow, and fuel masses.
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Results

This chapter presents the results. Initially, a brief overview of the results is presented together
with the investigated and improved areas. General results regarding the fuel system as a
whole are also presented here. Following this comes the presentation of in-detail results of
model improvements done in the transfer pump outlet pressure RM, transfer pump outlet
flow RM, and fuel mass of tank 2 RM. This includes work done to improve conditions for
ML algorithms, signal and data processing, an improved DM corresponding to each target
signal, and a black box analysis for each of the target signals to better understand how the
ML is trained. Figures include illustrations of how the improved DMs simulating the given
target signal perform, and the accuracy of ML predictions when compared to the measured
signal residual.
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4.1 General Fuel System Results

This section presents the general results and improvement areas of the fuel system models,
which gives an overview of what areas have been investigated and improved. Results con-
sist of three improved Dymola models generating simulated signals of the transfer pump
outlet pressure Yy, p,(t), the transfer pump outlet flow Yy, £1(), and the fuel mass in tank
2 Ysim,fm(t). A lot of focus is put into signal processing and ML algorithms, where one in-
dividual notebook is developed to analyze each signal residual. This results in three dif-
ferent Residual Models. Each notebook investigates properties and behavior in the residual
r(£) = Ysim(t) — Ymeas(t) of each target signal to find improvement areas in the DM, and
detect anomalies in measured data. The three models are developed in Jupyter notebooks in
Python. Each model contains methods to filter, pre-process and balance the data set. Code to
investigate interesting signals of the data set and train ML algorithms is also present in the
models. An overview of the improvement areas can be seen in Figure[4.T]

Dymola

RMs (Jupyter notebooks)

Figure 4.1: An overview of improvements made in Dymola and the Residual Models imple-
mented in Jupyter notebooks.

Data Balancing

Two different sets of features are used when balancing the data set in order to best represent
the data before training ML algorithms. When balancing the data set in the outlet pressure
and flow RMs, the transfer pump valve command signal is used as a balancing feature in-
stead of the fuel mass in tank 2, which is used when balancing in the fuel mass RM. This is
motivated by the result that ML algorithms of transfer pump outlet pressure and flow are
heavily dependent on the transfer pump valve command when predicting their correspond-
ing target signal. The features used when balancing the data set of each model are listed
below, together with the bin limit resolutions.

List of Features Data Balancing: Fuel Mass Tank 2

¢ Vertical flying angle 6 [Degrees] - Bin size of 5 ranging in between [-25, 25]
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4.1. General Fuel System Results

e Static surrounding pressure [kPa] - Bin size of 20 ranging in between [20, 120]

* Measured fuel mass in tank 2 [Kg] - Bin size of 50 ranging in between [50, 600]
List of Features Data Balancing: Transfer Pump Outlet Pressure & Flow

e Vertical flying angle 6 [Degrees] - Bin size of 5 ranging in between [-25, 25]

e Static surrounding pressure [kPa] - Bin size of 20 ranging in between [20, 120]

e Transfer pump valve command signal [4 different levels] - Bin size of 1.5 ranging in
between [1, 6]
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Figure 4.2: Pre-balanced distribution to the left and post-balanced distribution in data of
chosen features used in the transfer pump outlet pressure and flow RMs when balancing the
data set.
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4.1. General Fuel System Results

Signal Variation due to Wear & Component Degeneration

An important finding is the variation of the inspected transfer pump outlet pressure signal.
As every part in the aircraft is unique the performance is affected should one part be replaced,
either as a consequence of the uniqueness of the part or due to component degeneration. This
is illustrated in Figure[d.3|where the pressure for a few tanks in the aircraft is presented before
and after the exchange of a new transfer pump. The general level of pressure in the tanks
increases significantly after the old transfer pump is replaced, which is one aspect that needs
to be taken into consideration when modeling. This can be seen as a weakness of the system
that can cause problems both for machine learning algorithms and when trying to model the
signal. It can be cumbersome for ML algorithms to learn data patterns if level differences
up to 20 kPa in the target signal can be seen for the same type of control signals, which most
likely will result in poorer predictions and a larger prediction interval. This is troublesome for
ML algorithm training as the same type of input signals in the training data can be connected
to an output signal which greatly varies. In regards to modeling the signal, this phenomenon
makes it almost impossible to create a static model in Dymola that simulates an accurate
simulation signal, unless this degeneration effect can be implemented into the model. This
is due to the structure of the DM, and the control signals of the DM that build the simulated
output.
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Figure 4.3: Illustration of the general level deviation in the transfer pump outlet pressure.
Clusters show the general level of pressure for each tank in an aircraft. The red line marks a
point in time when the transfer pump was replaced, and it is possible to see a level difference
in outlet pressure between the old and new transfer pumps.

ML Algorithms and Hyper parameters

The machine learning algorithm used in the RMs is a neural network for predicting the tar-
get signal residual 7(f), and a random forest regressor to predict the variance of the neural
network prediction error, (7#(t) — r(t))2. The neural network uses two hidden layers, with the
first hidden layer having a size of 8 artificial neurons and the second layer size of 4 artificial
neurons. The neural network is implemented with the hyperbolic tan function as an activa-
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4.1. General Fuel System Results

tion function for the hidden layers, and the random forest regressor uses the mean squared
error as a penalty function.

A small grid search was done to see whether more suitable hyperparameters of the neu-
ral network could be found. This included trying the logistic sigmoid function and the rectified
linear unit function as activation functions. Additionally, these changes were combined with
different amounts and sizes of the hidden layers. Three layer settings were tested, first to
three hidden layers with the corresponding sizes of [40, 40, 40], and then to two and one hid-
den layers with sizes [80, 40] and [50] respectively. Each of the parameters is set in the func-
tion call. However, none of the investigated hyperparameter settings showed no improved
results. Thus, the previous settings of using the hyperbolic tan function and hidden layers of
8 and 4 are used. The process of in-depth investigation of ML algorithm hyperparameters is
considered out of scope for this thesis, which explains the not so throughout hyperparameter
search.

Anomaly Detection

A central aspect when improving the model is the ability to correctly detect anomalies in
measured flight data. A lot of focus has been put into making ML algorithms more accurate
and shrinking the prediction interval I(t) for given test flights, but this effect would have
no meaning if normal flights are incorrectly classified as anomalies. Thus, after each model
change in both the RMs and DM for each target signal the ability to accurately detect anoma-
lies is tested in 11 selected flights, where sets of flights are representing a variety in flight
conditions. Test flights include two flights with numbers 1175 and 1201 that contains anoma-
lies in the outlet pressure, and the same two flights plus an additional flight with number
1081 that contains anomalies for the outlet flow and fuel mass in tank 2. Temporary spikes
of data outside the prediction interval are thus tolerated. Overall results show that only one
flight is misclassified as an anomaly for the outlet flow and fuel mass, flight number 1091.
The remaining flights are all correctly classified both in regards to anomaly detection and not
detecting any anomalies when none were present. Table |4.1|shows all the tested flights for
each target signal with the corresponding result with all the total improvements done in each
RM and DM. For each flight, whether the flight data contains an anomaly is first answered
by Yes/No. Secondly, Yes/No shows if the data is predicted to contain an anomaly or not.

To accurately represent flight test data in a variety of conditions, the flights selected for testing
ML algorithms and model performance are chosen such that some are easier and some are
tougher. The first five flights listed in Table can be considered easier, where the pilot has
flown relatively easily, not pushing the aircraft to do anything extraordinary. In terms of data,
this means that the transfer pump and aircraft are not under any stress and most of the data
in test flights are common in the training data. Flights 1081, 1086, 1088, and 1091 contain
data from where the aircraft is flown in a tougher manner, having a higher fuel consumption,
and general data which is rarer in the training set. Flights 1175 and 1201 contain data that
classify as anomalies, in the sense that something broke or heavily deviated to unnatural
measurements. This is also true for flight 1081 for the outlet flow and fuel mass.
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Anomaly Predictions Outcome, Flight 39-9
Flight Nbr || TP Outlet Pressure TP Outlet Flow Fuel Mass T2
1044 No/No No/No No/No
1047 No/No No/No No/No
1048 No/No No/No No/No
1052 No/No No/No No/No
1055 No/No No/No No/No
1081 No/No Yes/ Yes Yes/ Yes
1086 No/No No/No No/No
1088 No/No No/No No/No
1091 No/No No/No No,/ Yes
1175 Yes/Yes Yes/ Yes Yes/ Yes
1201 Yes/ Yes Yes/ Yes Yes/ Yes

Table 4.1: Results of the anomaly detection algorithm for the three target signals investigated.
Whether the flight data contains an anomaly is first answered by Yes/No. Secondly, Yes/No
shows if the data is predicted to contain an anomaly or not. The only wrong prediction is
highlighted in red.
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General List of Improvement Areas

Presented below is a general list of the procedures followed in each notebook. When finding
ways to improve the RMs, and lastly also the DM, these were the main steps that were re-
occurring in each notebook. The steps listed are generally followed in each RM, with a few
exceptions. Each procedure exception from the list together with additional steps are pre-
sented for each RM in the sub-chapters below. Generally, the RM settings mostly differ in
the selection of features, data filtering, and the addition of artificial signals. The signal anal-
ysis and implementation of the improved DM is also a unique process as each target signal
possesses different properties.

1. Low pass filtering of sy, () and Yimeas (t).

2. Feature selection for the training of ML methods - Choosing suitable and relevant fea-
tures.

3. Feature selection for data balancing in preparation to train Neural Network and Ran-
domForestRegressor - Choosing features that are of importance and have a good repre-
sentation of the uneven distribution in data.

4. Creation of an artificial signal - Adding self-built signals to help Neural Network and
RandomForestRegressor predictions.

5. Data balancing - Editing of the data balancing to get a more evenly distributed data set.
6. Implementation of improved DM - To acquire more accurate simulation data.

7. Analysis of result scores - Model score to compare different settings and improvements
of DM as well as changes made in RM.

8. Analysis of target signal, RM, and DM results to exploit weaknesses and strengths of
said models.

Results show that it is of great importance to redo the following steps for each new target
signal, as the signals differ a lot in behavior and each setting needs to be revised. Especially
the last step, as different patterns in data can reveal the best way to model each signal in
Dymola. Additional steps that are introduced mainly come from the signal investigation,
and are implemented due to certain effects that come with certain signals.

32



4.2. Results: Transfer Pump Outlet Pressure

4.2 Results: Transfer Pump Outlet Pressure

This section presents results in the analysis of the transfer pump outlet pressure when looking
at the outlet pressure residual 7,,(t) of the transfer pump as the target signal. The section
shows results from both an improved simulation model implemented in Dymola, as well
as improvements that are done in the pressure RM (implemented in Jupyter notebooks). The
resulting RM includes processes such as signal pre-processing, filtering, data balancing, and
the addition of an artificially built signal to help ML methods. In addition to this, features
used for both ML methods as well as their impact on ML predictions are shown.

Improvement Areas of the Transfer Pump Outlet Pressure

The RM of the outlet pressure follows the general steps listed in Section[4.T} with the addition
of two steps which are listed below. The steps are done in preparation for training of the
neural network as well as the RandomForestRegressor to get the most accurate predictions of
the outlet pressure residual 7,,(t) and a reasonable small prediction interval I, (t). Features
of relevance are chosen such that the general behavior of 7, (t) is accurately mapped by the
ML algorithms, as well as picking out certain features to cover corner cases in flights. An
artificial signal is also added to the data set and the data set is balanced to obtain a more
evenly distributed data set. At last, the target signal along with carefully chosen control
signals are studied which laid the ground for the improved Dymola model. Lastly, the two
steps listed below are added between steps 5 and 6 in the List of Improvement Areas, as can be
seen in Section {11

* Pre-processing of data set - Removing data points when transfer pump is not active.

* Pre-processing of the outlet pressure Vyueas,pr(t) - Filtering out outliers.

These additional steps are motivated by the fact that the outlet pressure is not relevant unless
the transfer pump is active. This is decided by a signal that represents the transfer pump
valve command level, which has four set levels. The valve command can be 0, 1.75, 2.75,
and 5, and is representative of the level of flow that is provided by the transfer pump. Thus,
the data set which contains data from where the valve command is 0 is cut out, resulting in
a data set that only contains data from the other valve command levels. In addition to this,
a stochastic signal behavior was seen in the measured outlet pressure just at the beginning
and end of each active region ( where the valve level is not zero). It is believed that this
stochastic behavior comes naturally when the transfer pump turns on and off, introducing
random measurements of the outlet pressure as the signal lags behind the transfer pump
valve position. This caused spikes in 7, () which motivates the second additional step, which
removes these data points of stochastic properties. If not removed, the stochastic behavior
would have been caught by the ML algorithms, being trained to model the wrong patterns.

List of ML Features

Below is a list of the features used to train ML algorithms to predict the outlet pressure of
the transfer pump, 7, (t). The features displayed are carefully chosen to facilitate the train-
ing of the ML algorithms. Linear correlation analysis of the features available together with
the outlet pressure was also conducted and helped when choosing the listed features. The
linear correlation analysis was merely used as something to suggest interesting features. The
features listed below make up the set used when training ML algorithms in the pressure RM,
and are displayed with a short motivation of why they were chosen.

* Target signal - residual of outlet pressure 7, (t) [kPa] - Self explanatory. Included to
train ML prediction output.
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4.2. Results: Transfer Pump Outlet Pressure

Static surrounding pressure [kPa] - As the aircraft can fly on vastly different altitudes,
the surrounding pressure can differ a lot. This is believed to have some sort of impact
on the internal transfer pump pressure.

Pressure of fuel system before transfer pump [kPa] - It is reasonable to think that
changes in the pressure before the transfer pump can affect the outlet pressure of the
transfer pump.

Temperature of fuel to engine feed [C] - It is known that temperature and pressure
are closely linked. A higher temperature results in a higher pressure if the volume is
kept constant.

Vertical flying angle [Degrees] - Different angles of the aircraft could expose geometric
variations which could affect the outlet pressure.

Vertical acceleration [m1/s%] - Vertical acceleration is often time linked to high fuel
combustion in the engine due to certain pilot maneuvers. If the transfer pump is very
active, data on the vertical acceleration could be connected to the transfer pump outlet
pressure.

Transfer pump valve command signal [4 different levels] - Crucial signal as the trans-
fer pump outlet pressure is believed to be closely linked to how the transfer pump
behaves in general.

Fuel consumption [Kg/s] - A higher fuel consumption results in a more active transfer
pump, something that affects the outlet pressure.

Aircraft velocity [Mach] - Higher aircraft velocities results in a more active transfer
pump.

Fuel mass in central drop tank [Kg] - It could be seen that fuel drainage of the drop
tank had an effect on the outlet pressure, and including this feature could cover corner
cases otherwise classified as anomalies. This was due to drainage of fuel in the drop
tank when there was little to no fuel left, causing great drops in the transfer pump
outlet pressure.

Tank Valve command signal for tanks 1,2,3,6, Right/Left-wing and central drop tank
[On/off] - Each tank has a different geometry, and due to differences in parts and inter-
connections between tanks, changes in volume these binary signals are included.

Artificial signal describing the dynamic behavior in the transfer pump - described in-
depth in section Effect of filtering and Addition of Artificial Signal

To illustrate the importance of choosing a suitable combination of features the predictions

of the outlet pressure residual for two different sets of features are displayed below in Fig-
ure[d.4 The right figure contains all the listed features, and the left figure shows predictions
when signals for tank valve command signal for tanks 1,2,3,6, Right/Left wing, central drop tank
and tranfer pump valve command signal are not included. This also shows that ML algorithms
learn a lot by having information about different tank valve commands together with the
transfer pump valve command signal. The results seem to show that by adding the binary
signals indicating when fuel is taken from certain tanks, the prediction accuracy of the neural
network increases. In addition to this, the included features also seem to reduce the predic-
tion interval to a reasonable level while still not misclassifying any anomalies.
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Figure 4.4: Old features (left) and updated features (right). The predicted residual 7y, (t) in
green, measured residual 7, (t) in black and the prediction interval I, (t) in light green.

To show the effect numerically by adding the Tank Valve command signal for tanks 1, 2, 3, 6,
Right/Left wing and Tranferpump valve command signal signals as features, nine test flights are
chosen and their corresponding Average Predicted - Measured Residual and Average Prediction
Interval are presented below in Table This is to see how the resulting predictions and
prediction intervals are affected by the choice of features. As can be seen, the prediction
interval for each flight heavily decreased indicating that ML algorithms benefit from the listed
signals as features. The average difference between the predicted outlet pressure residual and
the measured residual also heavily decreased, meaning that the neural network was more
accurate in predictions with the new feature set. Note that the flights presented here do not
contain any anomalies and are also predicted as so.

Transfer Pump Outlet Pressure Data, Flight 39-9

- Average 7y (t) - 1, (t) Average I (t)
Flight Nbr Original Features Updated Features Original Features Updated Features
1044 15.71 3.53 42.81 29.41
1047 14.10 3.53 78.53 26.49
1048 14.23 3.27 51.47 26.16
1052 13.69 3.55 69.49 25.90
1055 22.18 3.72 71.97 26.47
1081 17.73 5.95 73.72 32.76
1086 9.55 3.68 83.46 29.66
1088 14.63 5.35 59.30 30.95
1091 16.76 4.27 69.50 30.73

Table 4.2: Columns showing the residual and prediction interval scores when adding tank
valve command signal for tanks 1, 2, 3, 6, Right/Left wing, drop tank and transfer pump
valve command signal in the set of features, compared to using the original feature set.

What can be seen in Table[.2)is a large reduction in the average difference between the mea-
sured and predicted residual signals. In addition to this, the prediction interval is more than
halved for a majority of the flights tested. This points toward more accurate predictions of
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rpr(t) and more precise ML algorithms as the prediction interval is reduced. Similar im-
provements can be seen across all the flights, so the updated feature set seems to facilitate
predictions for all the different test flights, even though different flying data are present in
the data.

Effect of Signal filtering and Addition of Artificial Signal

This section presents the effect of adding an artificial signal to the data set and filtering out
early outliers of the target signal. The artificial signal is built to help ML algorithms predict
the outlet pressure residual by representing the dynamic behavior of the transfer pump. This
property is lost when the data set is cleared of data from when the transfer pump valve level
is zero. When the zero regions are removed, information about when the pump is active and
not is lost. The signal is built by concatenating a series of impulse responses of a second-order
LTI system whenever the pump is turned on. The coefficients of the LTI system were chosen
arbitrarily in a way that made the impulse response decay reasonably fast. More focus was
not put into the choice of LTI system, as it was sufficient enough to introduce a dynamic
behavior in the artificial signal. This is illustrated in Figure where the original transfer
pump valve level signal is shown together with the artificial signal. The right-hand figure
shows the signal after the zero region is removed, and how the artificial signal indicates
when the transfer pump is turned on.

Artificial Signal Artificial Signal
10 - 1.0 -
0.8 - 08-
0.6 - 0.6 -
0.4 - 0.4-
0.2 - 0.2-
00- —— 0.0-
300 400 500 600 700 800 66U 62‘5 6%0 67‘5 760 72‘5 75‘0 77‘5
Transferpump Valve Level Transferpump Valve Level
175 - 1.825 -
1.50 - - 1.800 -
125 1775 -
100 1.750 -
0.75
1725 -
0.50
1.700 -
0.25
1675 -
0.00
300 400 500 600 700 800 600 625 650 675 700 725 750 775
time [s] time [s]

Figure 4.5: Illustration of the transfer pump valve level and the artificial signal before and
after regions where the transfer pump is turned off was removed. As can be seen to the right,
information is lost as the transfer pump valve level mostly is constant.

Another part of the signal pre-processing is to remove outliers of the measured transfer pump
outlet pressure. The measured data outliers resulted from removing the zero regions of the
data, as the pressure signal suffered from a stochastic behavior just as the pump turned on.
This resulted in a set of data points that heavily deviated from the rest of the data just at
the start of each active region of the transfer pump. An active region is referred to in this
case as the region when the transfer pump valve level is non-zero. As these data points had
a stochastic behavior a decision was made to remove these, resulting in the term filtering
of outliers. The filtering is made in a way that removed the first and last three data points
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right as the pump is turned on, and the difference between the non-filtered and filtered outlet
pressure signal is shown in Figure[4.6]
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Figure 4.6: Transfer pump outlet pressure before (left) and after filtering of outliers. Clusters
of the signal can be seen due to only considering data points when the transfer pump is active,
and the regions between the clusters are from when the transfer pump is not active.

The effect of adding the artificial signal and the filtering of outliers made it easier for ML
algorithms to predict the outlet pressure residual, and the resulting impact can be seen in
Figure[£.7] The original setting predictions can be seen to the left, and the results of adding
the artificial signal together with early outliers filtering can be seen to the right. Note that
all the features listed in List of ML features were used when generating these predictions, that
is the updated feature set. What can be seen in Figure [f.7]is that the spikes in the measured
residual are removed, due to the filtering of outliers. In addition to this, 7, (t) more accurately
follows 7,,(t) and the prediction is overall reduced meaning that ML algorithm predictions
are more precise. This can also be seen in the numerical values of Table

Data from flight nmbr: 1086 Data from flight nmbr: 1086
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Figure 4.7: Predictions of the transfer pump outlet pressure residual with (right figure) and
without (left figure) the addition of the artificial signal and filtering of early outliers. In black,
rpr(t) and 7y, (t) in green. I, (t) is seen in light green.
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Note that both the effect of filtering outliers and adding the artificial signal generally im-
proved the scores of both the predicted residual and the prediction interval. The effect seen
from each procedure seems to contribute equal much, but only the total improvement is pre-
sented here. Thus, it is beneficial to include both procedures in the RM. In the same fashion as
for the updated features, the same nine test flights are investigated and their corresponding
Average Predicted & Measured Residual and Average Prediction Interval is again analyzed to eval-
uate how the resulting predictions and prediction intervals are affected by the changes made.
The features used when generating this data are all the features listed in List of ML Features,
presented earlier in this subsection. The flights presented here do not contain any anoma-
lies and are accurately predicted as so. When looking at the numerical scores presented in
Table both the average r,(t) - 7,(t) and the average I, (t) are reduced in general. How-
ever, this mostly holds for flights that are of the kinder type. The last five flights seen in
Table where the pilot flew in a tougher manner are of mixed results, where flights 1081,
1086, and 1091 show a larger prediction interval. Flight 1091 also recorded larger deviations
in the predicted residual. This shows vulnerabilities in the model when being presented
with more sparse data, which could be a result of e.g. bad data balancing. This could also
be improved by gathering more flight data of said situations. However, the scores seem to
generally have increased when looking across all the flights, which can be seen as a model
improvement.

Transfer Pump Outlet Pressure Data, Flight 39-9

- Average 7pr(t) - pr(t) Average I (t)
Flight Nbr No filt, No AR-sig | Filt, AR sig No filt, No AR-sig | Filt, AR sig
1044 3.53 2.97 2941 19.51
1047 3.53 2.75 26.49 18.67
1048 3.27 2.97 26.16 19.20
1052 3.55 3.16 25.90 20.69
1055 3.72 2.80 26.47 19.22
1081 5.95 5.88 32.76 36.79
1086 3.68 2.61 29.66 31.37
1088 5.35 4.04 30.95 25.01
1091 4.27 6.53 30.73 33.14

Table 4.3: Columns illustrating the measurement scores of the test flights when filtering out
outliers and adding the artificial signal.

Implementation and Effect of Improved Dymola Model

This section presents the results of when the improved Dymola model is used to simulate the
transfer pump outlet pressure and the effect that the improvements have on the ML algorithm
predictions. The thought behind improving the DM is to facilitate ML predictions by creating
a more smooth measured residual signal. As can be seen in the left plot of Figure the
simulated signal (in blue) is not very representative of the measured data (red). One factor
that is believed to improve the anomaly detection and accuracy in the RM was to gain a more
representative simulation signal.
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Original Dymola Model: Transfer Pump Outlet Pressure

Data from flight nmbr: 1044 Data from flight nmbr: 1044

120 -

100 -

80 -

60 -

40 -

—60 -

Outlet Pressure Residual [kPa]

—80 -

-100 -

—— From Fuel model — r = measured-simulated
—— Measured in aircraft _120 - —— Trained model
Expected interval Prediction interval (trained)

0 100 200 TIn}]CéU[S] 400 500 600 0 100 200 Tmiﬂeﬂ[S] 400 500 600
Figure 4.8: Illustration of the simulated data from the original DM to the left. The blue line
showing the simulated data heavily deviates from the measured data in red. However, the
ML algorithm predictions seen to the right in green are still accurate.

By achieving a more accurate simulation signal larger deviations in the residual can be
avoided, resulting in easier signal behavior of the target signal outlet pressure residual. The
process of improving the pressure sub-model of the DM is done by comparing the outlet
pressure of features in the training set. Signal analysis between the outlet pressure and all the
features used to select the training set revealed connections between stabilization levels in the
outlet pressure and the tank valve commandos of different tanks. Generally, describes
the resulting output pressure.

f(xl (t>/x2(t)rx3(t)rx4<t)) = ysim,pr<t) (4~1)

Where x1(t),x2(f), x3(t) and x4(t) represent control signals in the aircraft, in this case, the
binary tank valve command levels of tanks 1,2 and 3, and the transfer pump valve command
level. In Figure two different stabilization levels in the pressure are seen at 300-400s
depending on whether the tank valve command of tank 2 or tank 3 is active (binary value 1).
In addition to this, a connection between the transfer pump valve command and the outlet
pressure was found. It could be seen that a more active transfer pump, where the valve
command level generally is higher results in higher outlet pressure. The transfer pump valve
command signal together with the tank valve command levels of tanks 1,2 & 3 is then used
to implement the improved DM. A basic structure of the resulting DM simulating the outlet
pressure can be seen below.

e If the transfer pump valve command signal < 2.5, set output pressure to 65 kPa.

If the transfer pump valve command signal > 2.5, set output pressure to 100 kPa.

If tank 1 valve command is zero, decrease output pressure by 20 kPa.

If tank 2 valve command is one, increase output pressure by 5 kPa.

If tank 3 valve command is one, decrease output pressure by 5 kPa.
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Tranferpump outlet pressure
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Figure 4.9: Illustration of how the transfer pump outlet pressure depends on which tank is
being active. Note the different levels of pressure depending on whether tank 2 or tank 3 is

being used, from 300-400s.

Figures showing data from the improved DM are seen below together with how the im-
provement affected ML algorithms. The features listed in List of ML Features presented earlier
in this subchapter are used together with the added artificial signal. Filtering of outliers is
also applied here. It can be seen that the ML algorithm predictions are accurate for both the
improved and original DM settings and that ML algorithms perform well even when the sim-
ulation data does not accurately reflect measured flight data. This can be seen by comparing
the right-hand figures between Figure .8 and Figure
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Improved Dymola Model
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Figure 4.10: Data from the improved Dymola model. Ygjy, - (t) (blue) and Yimeas,pr(t) (red)
to the left. The measured outlet pressure residual r,,(t) (Black) together with the predicted
outlet pressure residual 7, (t) (Green). The prediction interval can be seen in light green.

This effect is also seen in the tougher flights, e.g flight 1091 as can be seen in Figure .12]and
Figure[£.11} This suggests that emphasis, in this case, should be focused on improving ML al-
gorithm conditions such as feature selection, filtering, and addition of artificial signals rather
than improving the DM. Improving the DM does not facilitate anomaly detection either, as
the ML algorithms heavily rely on the ML algorithm’s performance.

Original Dymola Model: Transfer Pump Outlet Pressure

Data from flight nmbr: 1091
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—— Measured in aircraft
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Figure 4.11: Data from the original Dymola model. ys;, - (f) (blue) and ymeas pr(t) (red) to the
left. The measured outlet pressure residual r,,(t) (Black) together with the predicted outlet
pressure residual 7, (t) (Green). The prediction interval can be seen in light green.
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Improved Dymola Model: Transfer Pump Outlet Pressure
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Figure 4.12: Data from the improved Dymola model. ys;y, - (f) (blue) and Yimeas,pr(t) (red) to
the left, where the improved simulation signal can be seen. The measured outlet pressure
residual 7, (t) (Black) together with the predicted outlet pressure residual 7, (t) (Green). The
prediction interval can be seen in light green.

Below the results are seen for the original and the improved Dymola model, with the features
listed in List of ML features together with the artificial signal and filtering of early outliers.
Results show that improving the Dymola model does not decrease the average prediction
interval. Improving the Dymola model rather makes the average prediction interval slightly
larger. The same trend is also seen for the average difference between the predicted and
measured residuals, where the results indicate that the neural network has a harder time
predicting the outlet pressure after the Dymola model is improved. Lastly, a table showing
the difference between measured and simulated outlet pressure for both the original and
improved Dymola model is presented, giving numerical values for the changes made.

Data of Original & Improved DM: Transfer Pump Outlet Pressure, Flight 39-9

- Average 1y (t) - pr(t) Average I (t)
Flight Nbr Original DM Improved DM Original DM Updated DM
1044 297 3.96 19.51 21.41
1047 2.75 3.48 18.67 20.78
1048 2.97 3.33 19.20 22.18
1052 3.16 3.73 20.69 21.55
1055 2.80 3.47 19.22 20.08
1081 5.88 5.47 36.79 34.07
1086 2.61 3.67 31.37 24.25
1088 4.04 4.34 25.01 26.07
1091 6.53 5.89 33.14 31.83

Table 4.4: Columns illustrating the measurement scores of the test flights when comparing
data from the original and improved DMs.
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Average Ymeas,pr(t) - Ysim,pr (t): Tank 2, Flight 39-9

Flight Nbr Original Dymola Model Improved Dymola Model
1044 66.32 4.16

1047 65.01 3.05

1048 65.91 3.62

1052 65.54 3.78

1055 63.71 3.63

1081 55.46 11.95

1086 63.85 4.10

1088 52.35 9.68

1091 54.93 6.95

Table 4.5: The average difference between simulated and measured flight data of the outlet
pressure. The right columns gives a numerical value for the improved Dymola model. Fig-
ures of the improved dymola model in flights 1044 and 1091 can be seen in Figures[#.10]and

Figure .12}
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Anomaly Detection of Outlet Pressure

Here the results are presented showing how anomalies are detected in flights. To accurately
detect anomalies, an algorithm is implemented to detect when the measured outlet pressure
significantly deviated outside the prediction interval for an extended period of time. The al-
gorithm uses an accumulated sum described more in detail in Section 2.5 and alarms for an
anomaly when this accumulated deviation sum exceeds a set threshold. The algorithm cor-
rectly predicts the first nine test flights listed in Table 4.1|as non-anomalies, and the remain-
ing two flights that contain anomalies are also accurately predicted as anomaly-containing
flights. Note that thanks to the accumulated sum, temporary spikes in the measured data are
allowed, not triggering the anomaly detection alarm. Figures of anomaly containing flights
1201 and 1175 are seen in Figure [f.13]and Figure [£.15 where the red area marks anomaly re-
gions. The model settings used here are from the improved DM, with added artificial signal
and the filtering of early outliers.

Anomaly Flight 1201: Transfer Pump Outlet Pressure

Data from flight nmbr: 1201 Data from flight nmbr: 1201

I
|

‘ 20 -

—40 -

Qutlet Pressure Residual [kPa]

—— From Fuel model — r = measured-simulated
—— Measured in aircraft —— Trained model
Expected interval ! \‘l‘r -100 - Prediction interval (trained)
0 100 20 0 560 0 100 200 300 00 500
Time [s] Time [s]

Figure 4.13: The anomaly detection algorithm clearly indicates where an anomaly is detected.
Data is from a flight where the transfer pump broke mid-air, forcing the pilot to return to the
base. Note that the prediction interval is fairly constant, making the large deviation in the
measured residual easy for the anomaly algorithm to detect.

It is of interest to see how the prediction interval behaves around the anomaly regions in
flights. Ideally, the prediction interval would be unchanged in the anomaly regions, clearly
marking that the data deviate from normal patterns. This can be seen in Figure where
the prediction interval is relatively constant between 200-500s, but a large (non-anomaly) de-
viation is covered up and followed by ML algorithm predictions, as opposed to the anomaly
right after 500s. Additionally, figures showcasing anomaly flight 1175 are seen in Figure[£.15)
where a large deviation in the measured data is seen mid-flight. The reason for this anomaly
is unfortunately not known.
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Zoomed in Anomaly Flight 1201: Transfer Pump Outlet Pressure
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Figure 4.14: This figure clearly shows the constant prediction interval, which follows the
deviation in the measured residual right before 300s. However, the deviation right after 500s
is not tracked and is thus classified as an anomaly.

Anomaly Flight 1175: Transfer Pump Outlet Pressure
Data from flight nmbr: 1175 ‘ Data from flight nmbr: 1175
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Figure 4.15: Another anomaly containing flight, where a large deviation is seen for an ex-
tended period of time. The reason for the anomaly is unknown. Although the prediction
interval grows larger during the deviation, the anomaly is still detected with a good margin.
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4.3 Results: Transfer Pump Outlet Flow

This section presents the results obtained when studying the outlet flow signal of the transfer
pump. The main thought behind investigating the flow was not only to improve the RM for
better anomaly detection but also to obtain an improved DM as the outlet flow DM is closely
linked to the fuel mass DM. As the transfer pump outlet pressure and flow possess very
similar properties, only the differing results obtained when studying the flow are presented.
In short, the results of the outlet flow RM and the improved DM again show that the choice
of features plays an important role in the ML algorithm’s performance. As opposed to the
outlet pressure, adding an artificial signal does not seem to improve the results. In a similar
fashion to the outlet pressure, improving the DM of the flow does not seem to improve the
overall ML algorithm performance.

List of Improvement Areas Studied

The areas investigated and improved follow the same pattern as the transfer pump outlet
pressure, as the two signals are closely related and possess similar properties. What differs
from the flow procedure as compared to the outlet pressure procedure is that no filtering
of outliers is needed, as the flow does not suffer from the same stochastic behavior as the
pressure. A more in-depth investigation of the features was also conducted, as the results
from the outlet pressure showed the importance of using the right set of features. More focus
was put into refining the accuracy in the DM, as the outlet flow model in DM is closely linked
to the fuel mass DM. Thus, the main reason for improving the outlet flow DM was to obtain
better simulation data of the fuel mass in tank 2, which is presented in the next sub-chapter.
This was also a motivation to develop the most accurate flow model possible.

List of ML Features

Here, the results of using four different sets of features for the ML algorithms are presented.
The performance when using the different settings can be seen in Table 4.6l and Table
Initially using features listed in feature set one, a few selected signals were chosen that were
believed to have a connection to the outlet flow and thought to facilitate ML algorithm train-
ing. The selection is also based on linear correlation analysis between signals in the data set
and the outlet flow, which gave a suggestion of which signals to select. More features were
then added in feature set two, investigating the impact of adding the fuel consumption and
aircraft velocity on the predicted residual and the prediction interval. Lastly, tank valve sig-
nals for specified tanks together with the transfer pump valve command signal were added.
Results showed that slightly less accurate predictions were obtained when using feature set
II, as compared to feature set I. Thus, the additional feature set IV shows the results of feature
set III, without the fuel combustion and aircraft velocity. Analyzing different sets of features
was of great use when looking into what signals ML algorithms can benefit from, making it
possible to reveal signals which contained a lot of information about target signal behavior.

Feature Set I

* Target signal - residual of outlet flow 7 (¢) [Kg/s] - Self explanatory. Included to train
ML prediction output

e Static surrounding pressure [kPa] - Same as for outlet pressure.
e Temperature of fuel to engine feed [C] - Same as for outlet pressure.
* Vertical flying angle [Degrees] - Same as for outlet pressure

e Vertical acceleration [11/52] - Same as for outlet pressure
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* Volume of fuel tank 2 [L] - Fuel volumes are closely linked to the flow, as drastic
changes in the fuel volume can indicate deviations in the flow. E.g. if the volume in
tank 2 decreases rapidly, this could motivate a spike in the outlet flow.

¢ Volume of fuel tank 3 [L] - Same as for volume in fuel tank 2.

* Measured fuel mass in drop tank [Kg] - Same as for volume in fuel tank 2.

Feature Set II
e Plus features listed in feature set |

* Fuel consumption [Kg/s] - It is believed that the fuel consumption should be closely
linked to the fuel flow through the transfer pump, as the transfer pump supplies the
engine with fuel.

o Aircraft velocity [Mach] - Greater aircraft velocities creates a larger engine need for
fuel, and could thus be linked to an increase in the outlet flow, as the outlet flow supplies
the engine with fuel.

Feature Set I11
e Plus features listed in feature set [ and II

* Tranferpump valve command signal [4 different levels] - The increased activity of the
transfer pump should result in a larger outlet flow.

e Tank Valve command signal for tanks 1,2,3,6, Right/Left-wing and drop tank
[On/off] - As the outlet pressure residual predictions improved a lot by including these
signals, it is thought to help here as well due to the similarities of the flow and pressure.

Feature Set IV
o Plus features listed in feature set I
e Tranferpump valve command signal [4 different levels] - See feature set III.

e Tank Valve command signal for tanks 1,2,3,6, Right/Left-wing and drop tank
[On/off] - See feature set III.

Numerical Results for Different Sets of Features

Results show that feature set three perform the best in regards to making predictions more
accurate and shrinking the prediction interval, indicating that a lot of information about the
flow can be gained by including these features when training ML algorithms. Only a slight
score reduction can be seen across most flights when using feature set 1I, as compared to
feature set I, with the exception of flight 1086 where the average prediction interval more than
doubled. This suggests that the fuel consumption and aircraft velocity present information
that makes it tougher for ML algorithms, which is an interesting result. In addition to this,
flight 1086 can contain interesting information on the velocity and fuel consumption, and
highlight data patterns that are rare or deviate from normal signal behavior. What is clear
is that flight 1086 contains information on the fuel consumption or velocity that more than
doubles the prediction interval. Another interesting detail is that feature set IV generally only
performs slightly worse than feature set I1I, and the difference of 1086 between the two feature
sets is not as large as between feature set I and II. Although ML algorithms with feature set
IV perform well, feature set Il seem to perform slightly better in general and are used in the
next steps. This can also be seen in Figure illustrating the results of the four different
feature sets for flight 1088.
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Outlet Flow: Average If(t), Flight 39-9
Flight Nbr Feature Set I Feature Set 11 Feature Set 111 Feature Set IV
1044 0.932 1.133 0.534 0.602
1047 1.228 1.233 0.530 0.485
1048 0.905 1.031 0.538 0.691
1052 0.721 0.882 0.508 0.510
1055 0.686 0.740 0.448 0.472
1081 1.139 1.189 0.794 0.848
1086 0.884 1.747 0.675 0.771
1088 1.075 1.087 0.723 0.686
1091 0.793 1.138 0.702 0.801

Table 4.6: Results showing the average prediction interval I5(t) for four different sets of
features used when training the ML algorithms in the transfer pump outlet flow RM.

Interestingly enough, when looking at Table [£.7] the numerical differences between feature
set I and II are small. Most predictions are even slightly better for feature set II. In regards to
flight 1086, no large difference in scores can be seen there, which is a bit confusing. The scores
between feature set III and IV are also very similar, but both scores outperform the ones of
feature set I and II by far. As the average prediction interval is slightly smaller for feature
set III, it can still be seen as the most favorable feature set even though the similar results
between feature set III and IV here.

Outlet Flow: Average rf(t) - 77(#): Flight 39-9
Flight Nbr Feature Set I Feature Set II Feature Set III Feature Set IV
1044 0.147 0.146 0.079 0.074
1047 0.109 0.095 0.054 0.052
1048 0.144 0.131 0.063 0.074
1052 0.089 0.073 0.054 0.054
1055 0.115 0.086 0.054 0.052
1081 0.316 0.337 0.198 0.199
1086 0.169 0.162 0.082 0.083
1088 0.210 0.223 0.111 0.124
1091 0.170 0.228 0.125 0.126

Table 4.7: Results showing the average residual difference for four different sets of features
used when training ML algorithms of the transfer pump outlet flow RM.
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Figure 4.16: Illustration of how the different feature sets affect predictions of the residual and

the prediction interval.
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Addition of Artificial Signal

This section presents the results of adding an artificial signal to the data set, thought to help
ML algorithm predictions. Feature set III is used when generating these predictions. The
same artificial signal shown in Figure f.5]is added, intending to show the dynamic behavior
of the transfer pump, indicating when the pump is active and not. This information is lost
when the data of the non-active regions of the transfer pump is removed. However, results
show that adding the artificial signal does not help ML algorithms. Neither the prediction
interval nor the difference between predicted and measured residual changes significantly,
indicating that the artificial signal does not supply any additional information. This can be
seen as a general trend in all the listed test flights of Table

Addition of Artificial Signal: Transfer Pump Outlet Flow, Flight 39-9

- Average 1y (t) - pr(t) Average I (t)
Flight Nbr No AR-signal With AR-signal No AR-signal With AR-signal
1044 0.079 0.084 0.534 0.542
1047 0.054 0.057 0.530 0.458
1048 0.063 0.077 0.538 0.651
1052 0.054 0.057 0.508 0.486
1055 0.054 0.046 0.448 0.438
1081 0.198 0.187 0.794 0.766
1086 0.082 0.076 0.675 0.700
1088 0.111 0.118 0.723 0.597
1091 0.125 0.114 0.702 0.707

Transferpump outlet flow [kg/s]

Table 4.8: The resulting scores for each of the nine test flights, showing the effect of adding
an artificial signal to the data. Numerical values show that the prediction accuracy does
not change significantly, meaning that the artificial signal does not contribute any additional
information to ML algorithms.

With and without the addition of Artificial Signal: Transfer Pump Outlet Flow
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Figure 4.17: Results without artificial signal added to the left, and results with an added
artificial signal to the right. No significant difference in the prediction accuracy can be seen.
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Implementation and Effect of Improved Dymola Model

Here, figures and tables showing the effect of improving the Dymola model simulating the
transfer pump outlet flow are shown. The total improved flow DM can be seen in Figure[£.18}
and shows the overall structure of how the control signals are connected to produce the outlet
flow. Results from these simulations are done with features listed in feature set three, and
without the artificial signal. Results show that improving the Dymola model simulating the
transfer pump outlet flow does not facilitate ML algorithms of the outlet flow RM, but it does
give a much more accurate simulation signal which can be beneficial in other contexts.

SERVO_Y1_CMD

SERVO_Y2_Cl

T11_CLOSED_CMD

T2O_CLOSED_CMD

T30_CLOSED_CMD
o T

€OV_CLOSED_CMD

Figure 4.18: An overview of the implemented and improved flow DM. Control signals of tank
valve command levels of tanks 1,2,3 and drop tank together with the transfer pump valve
level (upper left) can be seen to the left. Binary signals can be seen in pink, and numerical
signals in blue.

Accuracy scores of the prediction interval and predicted residual flow are shown in Table[£.9]
In regards of the average rp,(t) - 7,(t), scores are mostly unchanged with the exception of
flight 1086 and 1088. Flight 1088 shows a reduction of 37% in the average difference be-
tween measured and predicted residuals, which is a great improvement compared to other
presented test flight results. Flight 1088 shows a reduction of 14%, which also suggests that
improving the DM might help the accuracy of 7,,(t) output. In regards to the average pre-
diction interval, the results are mixed. Flights 1044 and 1088 show a better score, meanwhile,
flight 1052 shows an increase of 41% in the average prediction interval. It is hard to decide
whether improving the DM improves the results, as various flights with different types of
flight data perform both better and worse. In this case, it might be worth considering other
beneficial aspects of improving the DM when analyzing the scores.
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Effect of Improving Dymola Model: Transfer Pump Outlet Flow, Flight 39-9

- Average 1y (t) - pr(t) Average I, (t)
Flight Nbr Original DM Improved DM Original DM Improved DM
1044 0.079 0.075 0.534 0.509
1047 0.054 0.052 0.530 0.538
1048 0.063 0.055 0.538 0.608
1052 0.054 0.049 0.508 0.720
1055 0.054 0.048 0.448 0.446
1081 0.198 0.191 0.796 0.859
1086 0.082 0.052 0.675 0.747
1088 0.111 0.096 0.723 0.605
1091 0.125 0.119 0.702 0.743

Table 4.9: Resulting scores when using simulated data from the improved flow DM, com-
pared to the original DM. As can be seen from the columns, the average prediction interval
and difference between 7,,(t) and rp,(t) are mostly unchanged even after implementing the
improved DM.

Table shows how much the improved DM reduces the average difference between
Ymeas,f1(t) and Ysip s1(t). The first five flights show a great reduction, meanwhile, the last
four flights are improved but not as much. However, the scores are generally much better
when using the improved DM.

Average Yuseas,f1(t) - Ysim,p1(t): Transfer Pump Outlet Flow, Flight 39-9
Flight Nbr Original Dymola Model Improved Dymola Model
1044 0.370 0.085
1047 0.372 0.060
1048 0.349 0.061
1052 0.358 0.067
1055 0.388 0.060
1081 0.399 0.249
1086 0.357 0.076
1088 0.358 0.105
1091 0.281 0.137

Table 4.10: The average difference between simulated and measured flight data of the outlet
pressure. The right columns gives a numerical value for the improved Dymola model.

Figure[£.19)and Figure £.20]show how the improved DM affects the ML algorithm prediction
accuracy. As can be seen in the figures and from Table 4.9} ML algorithms perform very well
even with the original DM simulated flow, although a small improvement in the scores can
be seen from Table [£.9]
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Original Dymola Model: Transfer Pump Outlet Flow
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Figure 4.19: Simulated outlet flow y; i, (t) (red) and measured outlet flow yseqs f1(#) from
the original DM to the left. The corresponding measured residual 7 (t) and the predicted

Improved Dymola Model: Transfer Pump Outlet Flow
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Figure 4.20: Simulated outlet flow y; iy (t) (red) and measured outlet flow Vyueqs f1(t) from
the improved DM to the left. The corresponding measured residual 74(t) and the predicted

residual 7 (t) to the right.
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Anomaly Detection of Transfer Pump Outlet Flow

This subsection shows results from the anomaly detection algorithm. Figures from two flights
containing anomalies are presented, when simulating data using feature set three and the
improved Dymola model. Note that data at 400s in flight 1081 seen in Figures and Fig-
ure[4.23|does classify as an anomaly for the outlet flow and fuel mass, but not in the transfer
pump outlet pressure. A large spike in the flow can be seen, where a flow of 8 kg/s is mea-
sured. This is an anomaly as the flow can not reach such levels, indicating that there might be
something wrong with the flow measuring equipment. The additional anomaly flight 1175
can be seen in Figure where something happens in the aircraft between 300-400s.

Anomaly Flight: Transfer Pump Outlet Flow
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Figure 4.21: Data from an anomaly during flight 1175, where the measured data clearly de-

viates from the prediction interval during period 320-400s. The reason for the anomaly is
unknown.
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Anomaly Flight: Transfer Pump Outlet Flow
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Figure 4.22: Data from anomaly containing flight 1081, where a significant deviation in the
flow appears at 400s. The red area marks the anomaly alarm.
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Figure 4.23: Zoomed in figures of the anomaly in flight 1081. Note that the small spikes
around 340s are not classified as anomalies, but the larger, more extended spike at 400s is

classified as an anomaly.
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4.4 Results: Fuel Mass Tank 2

This section presents the results achieved when analyzing the fuel mass of tank 2, and when
investigating the fuel mass residual 7, (t) to develop the corresponding RM. Properties in
the fuel mass such as the accumulated effects of the signal make up vastly different signal
behavior. The consequences of these accumulated effects on the ML algorithms are of extra
interest to investigate and gain information about, as these properties are not present in the
transfer pump outlet flow and pressure. Difficulties in modeling these effects in DM are also
presented. The DM simulating the fuel masses is closely linked to the DM which simulates
the transfer pump outlet flow presented in Section[£.3} and the improvement of the fuel mass
DM model can be seen as a by-product of the improved outlet flow DM. However, the results
of using an improved fuel mass DM simulating a more accurate signal of the fuel mass in tank
2 are presented in the following results. Results show that the tank 2 fuel mass RM is highly
sensitive to the choice of features used and that they have to be chosen with great thought to
achieve a good quality in ML predictions. In addition to this, data balancing has a significant
impact on the ML algorithms and creates an unwanted stochastic behavior that was removed
in this project. Lastly, results from the improved fuel mass DM show mixed results, where a
slight improvement can be seen in a reduced average difference between 7¢,,(t) and 7z, ().
On the other hand, the average prediction interval is generally unaffected by the improved
DM simulated fuel mass.

List of Improvement Areas Studied

The areas of improvement follow the general list presented in Section [£.T} with the addition
of two steps that are thought to take care of aggravating behavior in the model. First, a
stochastic behavior in the RM is seen mainly due to the data balancing. Efforts were made to
remove this stochastic effect so that the DM model improvements and effects of other changes
to the RM could be investigated without random results. In addition to this, the previous RM
only LP-filtered the measured fuel mass. LP-filtering comes with a shift in data, which is
thought to complicate ML algorithm training. This is also looked into. An additional feature
evaluation is also made, as the fuel mass signal suffers from accumulated effects making it
difficult for ML algorithms to make accurate predictions.

* Additional feature selection investigation.

e Investigation of stochastic behaviour in data balancing - removing stochastic behaviour
for improvement analysis.

* Investigation of effects in displacement due to Low-pass filtering of target signal.

Choice and Effect of ML Features

The features used to train ML algorithms of the tank 2 fuel mass RM are listed below. As
opposed to the features used when training the transfer pump outlet pressure and flow, these
features are chosen with extra caution as the fuel mass RM showed to be very sensitive to
which features were included. One important aspect when choosing features are the fact that
the target signal - fuel mass of tank 2 is an accumulated signal possessing different properties
than the outlet pressure and flow.

* Target signal - residual of fuel mass in tank 2 7, (f) [kg] - Self explanatory. Target
signal needed to train ML algorithm predictions.

* Residual of fuel mass in tank 3 and 6 [kg] - Residual of fuel levels of closely connected
tanks were thought to reveal general data deviations in the fuel mass, that could be
traced back to the tank 2 fuel mass residual.
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Temperature in engine feed tank [C] - Higher temperatures have an effect on material
properties, which could affect the general fuel system behaviour.

Temperature tank 1 (collector tank) [C] - Higher temperatures have an effect on mate-
rial properties, which could affect the general fuel system behaviour.

Vertical flying angle [Degrees] - Different flying angles could reveal measurement er-
rors in the aircraft tanks, that could be learned by ML algortihm training.

Horizontal flying angle [Degrees] - Different flying angles could reveal measurement
errors in the aircraft tanks, that could be learned by ML algortihm training.

Artificial signals from previous work - Three signals representing accumulated errors
that build up due to faulty measurements in the in- and out flow. The signals are built
on a structured model for the flow as a function of the pressure, allowing the accumu-
lated effects to be modelled when the corresponding tank valve is open. The thought
behind this pressure and flow connection is inspired by Bernoullis equation, and was
developed by Saab. Thus, the signals wont be discussed more in-depth as the authors
of this thesis are not responsible.

Command signals to start jet pumps from tanks 2,3 and 6 [Binary] - The jet pumps can
drain fuel even when the transfer pump is not active, which affects the fuel mass in all
the tanks. If the command signal to start a jet pump is active, the fuel mass is reduced
which is a pattern ML algorithms could learn.

More features were also tested, but with little success. Including a larger set of features of-

tentimes resulted in worse predictions, and many flights were misclassified as anomalies. All
listed features from the transfer pump outlet flow and pressure were tested. Including a great
portion of features such as fuel consumption and flight velocity resulted in large fluctuation
in the prediction interval, causing a lot of flights to be misclassified as anomalies.
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Illustration of Bad Feature Selection: Fuel Mass Tank 2
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Figure 4.24: Illustration of two different flights, where the transfer pump valve level, tank
valve commands of tanks 1,2,3, 6 and fuel combustion as features resulted in worse predic-
tions, misclassifying flights as anomalies.
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In addition to this, using the transfer pump valve level and tank valve commands of tanks
1,2,3, and 6 as features resulted in worse predictions where again, misclassification of anoma-
lies was experienced. This is interesting as these features helped ML algorithm accuracy of
the transfer pump outlet pressure and flow. The listed artificial signal included in the feature
set was implemented in a previous master thesis and greatly benefits the ML algorithm pre-
dictions. In this thesis another signal for covering accumulated effect was created. This signal
could be created since this data set now contained measurements from the jet pumps of the
tanks. However, adding a signal to track accumulated errors from the jet pumps proved to
have varying effect and not be a consistent improvment.

Low-Pass Filtering of Simulated Fuel Mass

One investigated procedure in the fuel mass RM is that only the simulated fuel mass pre-
viously is low-pass filtered. This is suspected to skew prediction accuracy as the low-pass
filtering comes with a data-shift in the filtered signal, that creates a time gap between the
measured and simulated fuel mass. The data shift that comes with signal filtering is thought
to obstruct the ML algorithm accuracy, and the results of low-pass filtering both the measured
and simulated fuel mass are seen in Table In addition to this, the removal of spikes in
the simulated data due to the low-pass filtering is also thought to facilitate ML algorithm
training.

Effect of Low-Pass Filtering: Fuel Mass Tank 2, Flight 39-9

- Average 7y (t) -, (t) Average I (t)
Flight Nbr Non. Filt Filtered Non. Filt Filtered
1044 6.92 6.45 59.37 59.81
1047 8.43 8.01 48.64 37.98
1048 9.05 8.70 57.52 58.75
1052 3.66 3.90 41.88 33.01
1055 15.52 1441 60.87 62.03
1081 13.96 14.03 68.88 56.93
1086 8.59 10.14 58.51 52.45
1088 8.00 8.09 56.57 51.33
1091 11.36 11.11 50.39 49.57

Table 4.11: Numerical scores showing the results for the test flights, with and without low-
pass filtering of the simulated fuel masses for tank 2,3, 6 and wing tanks.

Looking at Table[f.1T} no general results can be drawn from the numerical scores. The results
are mixed. While some flights seem to benefit from the filtering such as flights 1047 and 1052
where the average prediction interval is reduced, flights 1048 and 1055 record an increased
prediction interval although not as large. The average r,,(t) and 7,,(t) difference is mostly
unchanged for all test flights. However, as the data shift that comes with low-pass filtering is
a fact, the low-pass filtering is included in the RM.

Data Balancing and Removal of Stochastic Behaviour

One flaw detected when analyzing the tank 2 fuel mass in the RM was a stochastic effect
that came as a consequence of the data balancing, where the balancing process of picking
data points from the different bins included a random choice of data points in the bins. As
the ML algorithms are very sensitive to deviations in the training data, a consequence of the
stochastic data balancing is that the predictions differed significantly each time the procedure
was redone. Below, three different figures showing 77, (t) and 7, (t) for the same fuel mass
RM settings can be seen. The predictions and the prediction interval greatly differ each time,
where only one of the flights is correctly classified as a non-anomaly containing flight. The
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stochastic effect of the data balancing made it difficult to analyze results from different model
settings. This is resolved by saving the indices of one data balancing, thus freezing one data
balancing procedure. The same indices representing the balanced data set are then used again
when re-running the notebook.

Fuel Mass Tank 2: Three different Data Balancing Versions

Data from flight nmbr: 1044 Data from flight nmbr: 1044 Data from flight nmbr: 1044

Residual fuel mass [kg] - tank t3
Residual fuel mass [kg] - tank t3

al (trained)

2000 3000 4000 5000 3000 4000 5000 o
Time [s] Time [s] Time [s]

Figure 4.25: Three different prediction outputs of the same flight when re-runnig the fuel
mass RM with the same settings. This shows the stochastic behaviour of the data balancing,
making it tough to analyze different model settings, something that is crucial when develop-
ing the fuel mass RM.

This effect also reveals the importance of balancing the data correctly, and that a faulty bal-
ancing can damage model accuracy and skew information gained about the fuel system. Not
having accurate data balancing can also make ML algorithms misclassify anomalies in flights.
This is resolved by re-doing the data balancing procedure until a desirable distribution is
gained. Not the best solution, but further improving the data balancing is out of scope for
this thesis.

Implementation and Effect of Improved Dymola Model

A central area of investigation is the improvement of the fuel mass DM generating Vs, (t),
and how a more accurate simulation signal and thus smaller fuel mass residual signal affects
ML algorithm predictions. The improved DM simulating the fuel mass is mostly a result of
improving the transfer pump outlet flow part of the DM, as the two are closely linked in
Dymola. As the fuel mass is an accumulated signal, results show that making the perfect
model is cumbersome. The effects of a small error early on in the flight remain during the
whole flight period and make it difficult for the ML predictions. In addition to this, subparts
of the fuel mass DM of jet pumps in the fuel system that can transfer smaller amounts of fuel
remain unchanged. Small changes in the fuel mass due to the activation of jet pumps make
the simulated data more inaccurate and complicate ML algorithm training.

Results from the average measurement scores show a great variety. The average r,,(t) and
fpr(t) difference was mostly reduced, where all test flights except for flight 1055 and 1088
showed a great improvement. Flight 1081 even showed an 60 % average r,(t) and 7y, (t) dif-
ference reduction. On the opposite, the score of flight 1055 was increased by 41% and flight
1088 by 18% showing worse ML algorithm performance. As flight 1055 contained kinder
flight data, and flight 1081 data from tougher flying maneuvers, no direct differences in re-
sults could be seen between the kinder and tougher flights. However, seven out of nine test
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flights showed increased accuracy, indicating that improving the fuel mass DM might help
ML predictions. In regards of the average prediction interval, the results vastly differed from
flight to flight. Five out of nine flights showed a smaller average prediction interval, where
flight 1052 again showed the best improvement. Improvement results are again spread across

the kinder and tougher flights, so no direct connections can be seen in those regards.

Effect of Improving Dymola Model: Fuel Mass Tank 2, Flight 39-9

- Average 1y (t) - pr(t) Average I, (t)
Flight Nbr Original DM Improved DM Original DM Improved DM
1044 7.58 6.45 51.14 59.81
1047 8.55 8.01 45.36 37.98
1048 11.12 8.70 55.97 58.75
1052 6.50 3.90 47.39 33.01
1055 10.22 14.41 64.64 62.03
1081 35.03 14.03 68.99 56.93
1086 14.42 10.14 60.27 52.45
1088 6.83 8.09 46.85 51.33
1091 13.52 11.11 41.80 49.57

Table 4.12: Numerical scores showing the effect of improving the fuel mass DM. Note that the
results differ a lot, while some flight data predictions are improved and some are worsened.

Fuel Mass Tank 2: Average Yyueas,fi (t) = Ysim,fm (t), Flight 39-9

Flight Nbr Original Dymola Model Improved Dymola Model
1044 22.98 11.10

1047 15.52 11.29

1048 22.11 8.53

1052 10.91 8.40

1055 33.05 18.07

1081 14.17 14.34

1086 31.39 17.22

1088 10.26 8.77

1091 27.25 22.57

Table 4.13: The average difference between simulated and measured flight data of the fuel
mass. It can be seen that the difference between measured and simulated fuel mass has
shrunk after improving the fuel mass DM.

Results of Table show that each of the test flights with the exception of flight 1081
recorded a more accurate simulation signal of the fuel mass. This is an interesting result
as scores from Table[4.12]show that the improved DM greatly improved results in flight 1081.
However, the reason behind this is unknown but is believed to be connected to the recorded
anomaly data in the flight. Figures and show how flight 1052 was affected by the
improved fuel mass DM. A much more stable measured residual signal can be seen, and
generally a much smaller prediction interval. Left-hand plot of Figure shows that the
average simulation signal error is rather constant, which seems to benefit ML algorithm pre-
diction accuracy. In flight 1088, left hand plots of Figure and Figure show that the
simulation data only is slightly improved. However, ML prediction accuracy is worsened
where both the average prediction interval and the average difference between y,,q4, fm(t)
and Yy, £ (t) is increased.
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Figure 4.26: Simulated outlet flow gy, 11 (t) (red) and measured outlet flow 145 fm (t) from
the original DM to the left. The corresponding measured residual r fl(t) and the predicted

residual 75 (t) to the right.
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Figure 4.27: Simulated outlet flow gy, 11 (t) (red) and measured outlet flow 155 fm () from
the improved DM to the left. The corresponding measured residual 7¢() and the predicted

residual 75 (t) to the right.
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Original Dymola Model: Fuel Mass Tank 2
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Figure 4.28: Simulated outlet flow Yy, 7 (t) (red) and measured outlet flow Yyeqs, £ (£) from
the original DM to the left. The corresponding measured residual rf(t) and the predicted
residual 7 (t) to the right.
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Figure 4.29: Simulated outlet flow gy, 11 (t) (red) and measured outlet flow 155 fm () from
the improved DM to the left. The corresponding measured residual 7¢() and the predicted
residual 75 (t) to the right.
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Detection of Anomalies in Fuel Mass of Tank 2

Lastly, results showing the anomaly detection in the fuel mass of tank 2 are presented. Shrink-
ing the prediction interval would not have any effect if flights were misclassified to contain
anomalies, so it is of great importance to accurately predict non-anomaly-containing flights
as such and flights containing anomalies as anomalies. Out of the nine test flights, only flight
1091 was wrongly predicted as an anomaly. Data from the accurately predicted anomaly
flight 1081 can be seen in Figure where a large spike in the flow seen in Figure
causes the fuel mass to deviate from the prediction interval. In addition to this, the wrongly
predicted anomaly flight 1091 can be seen in Figure[#.30|where a dip in the prediction interval
causes the measured residual to differ from the prediction interval, triggering the anomaly
prediction algorithm.

Faulty Anomaly Predicted Flight: Fuel Mass Tank 2
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Figure 4.30: This is an interesting flight, as it is the only flight that was wrongly predicted
as an anomaly. Right after 2000s, a dip in the prediction interval and predicted residual can
be seen, making the measured residual deviate from the prediction interval enough to be
classified as an anomaly.
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Anomaly Flight: Fuel Mass Tank 2
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Figure 4.31: Data from anomaly flight where a clear deviation in data can be seen right at
2000s for an extended period of time, where the anomaly is marked in red.
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Figure 4.32: Zoomed in figure showing a close-up look at the anomaly. Note the small data
deviation outside the prediction interval at 1760s.
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Discussion

Analyzing flight data by using ML algorithms to detect anomalies is something that has been
thoroughly researched [6], [10], [9] with great results. Moreover, seeing how an improved
Dymola model affects anomaly detection and machine learning algorithms is something that
differentiates this thesis, and acts as one of the central discussion points of this thesis.

This project has looked into three different target signals, the transfer pump outlet pressure,
transfer pump outlet flow, and the fuel mass of tank 2, which all have vastly different proper-
ties. The variation in signal properties made it possible to explore a larger part of the Dymola
model and shows where ML algorithms shine and perform worse. A signal analysis led to a
better Dymola model of the three chosen signals. An in-depth analysis of the outlet pressure
and outlet flow signals shows that ML algorithms can be trained to both predict the corre-
sponding signal residual with great accuracy, as well as generate a precise prediction interval.
The ML algorithms of said signals can be trained to predict anomalies with great precision.
Signal analysis of the pressure and flow laid the ground for an improved Dymola model,
which after being implemented simulates significantly more accurate signals of the pressure
and flow. However, this did not facilitate the ML algorithm predictions, but other motiva-
tions for improving the Dymola model are still valid. In regards to the fuel mass, this project
highlights the problems when training ML algorithms to predict an accumulated signal. A
slight improvement of the predicted residual could be seen when generating more accurate
simulation data as a result of the improved Dymla model. Lastly, looking at the three signals
all results strongly highlight the importance of choosing the right features. In addition to
this, achieving a good balancing of the data set is also crucial, which can also be backed up
by related research of said subject [1]. This section presents an in-depth analysis of the results
obtained in Section [#, where details that stand out are debated and the results presented are
put into a context with regard to related research.

5.1 General Results

General Discussion of Fuel System Models

Generally, when comparing the original model (original RM settings and old DM) with the
total improved models (new features, filters, etc, and improved DM) the results show that the
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outlet pressure and flow RMs have been improved where the prediction intervals have been
reduced and the predicted residual is more accurate, while no false triggers of the anomaly
detection alarm have been issued. This suggests that for these signals ML algorithms can be
used with great results to both predict target signal residuals and to detect anomalies of an
arbitrarily chosen signal of the fuel system with the same properties. The method used can
then be extended to implement models of any signal of the fuel system with similar properties
as the outlet flow and pressure. On the other hand, although the Dymola model generating
the fuel mass in tank 2 has been improved, together with an improved fuel mass RM only
a slight improvement can be seen in the reduced prediction interval and decreased nominal
value. This points toward the difficulties when trying to model a signal with accumulated
properties. The fuel mass RM performance seems to heavily depend on features selected
together with the data balancing and is very sensitive to changes in said areas. However, by
improving the DM submodel simulating the fuel mass a small improvement of the predicted
residual can be seen, as shown in Table suggesting that an accumulated signal such as
the fuel mass might benefit from more accurate simulation data. To further explore this effect,
the DM could be improved to also include the jet pumps, which are not accurately modeled
in the DM as of now.

By looking at outlet flow score Table [4.6]and Table .7} as well as the outlet pressure Table
the greatest improvements can be seen by the adjusting the choice of features. As no
significant improvements in the prediction interval or the predicted residuals can be seen by
improving the DM generating the outlet flow and outlet pressure (See outlet flow Table
and outlet pressure Table[4.4), efforts should be put into altering the data set and finding the
right features rather than improving the DM. The ML algorithms show to possess such power
that there is no need to improve the DM of the flow and pressure. However, other projects or
goals could still motivate the improvement of the Dymola models where the more accurate
simulation data could be beneficial. The fact that feature selection and data preparation is of
great weight for successful ML algorithm predictions is something that is also backed by J.
Sundell & C. Tysk in the previous master thesis [20].

Feature Selection

As can be seen, by the results in Figure {4.4| and Figure feature selection is of great sig-
nificance when training the ML algorithms of the RMs. Specific features of the data set seem
to contain patterns and a lot of information that can be connected to the target signals. More
specifically the binary tank valve signals of the fuel system, together with the transfer pump
valve level seem to help the outlet flow and pressure RMs a lot. Temperatures, pressures, and
altitudes do only seem to have a slight influence on the prediction accuracy and they can be of
great use to create a base set of features, as seen in Sectionfeature set one. However, these
types of features do not seem to contain as much information relevant to the ML algorithms
as the binary tank valve levels and the transfer pump valve level. The conclusion is that the
level of pressure and flow largely depends on which tank is currently being drained and that
these valve features should be of priority when choosing features.

The observation that the feature selection of the fuel mass RM is a tricky but important step is
something also discussed by previous thesis writers in [20]. The problem seems to lie in the
accumulated properties of the fuel mass, making the fuel mass more cumbersome to predict
than the outlet flow and pressure. Different sets of features tested showed how sensitive the
fuel mass RM is, leading to a significant variance in the results of residual predictions and
the prediction intervals. Including a great portion of features such as fuel consumption and
flight velocity resulted in large fluctuation in the prediction interval. Thus, this caused a lot
of flights to be misclassified as anomalies, as seen in Figure The otherwise important
features of the transfer pump valve level and tank valve commands of tanks 1,2,3, and 6
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resulted in worse predictions which are interesting, as these features greatly improved the
results in the transfer pump outlet pressure and flow RMs.

Since the choice of features has such a large impact on the ML algorithm’s capability to ac-
curately predict the residual and create a reasonable prediction interval, it is believed that a
more sophisticated method to choose the optimal set of features could be beneficial in all the
RMs, but especially the sensitive fuel mass RM. The methods used to select the features in the
RMs have their limitations, and a linear correlation analysis together with intuitive thought
may be deficient. The importance of choosing a suitable set of features by using a more so-
phisticated method, e.g. by ML algorithms is discussed by G. Fang et al. in [3] where features
are chosen by using various ML algorithms. In addition to this, it is important to remember
that finding the right set of features can be of great significance, rather than finding single
features. This aspect does of course make the process even more cumbersome but needs to
be taken into consideration.

Level of Prediction Interval

The prediction interval is an important aspect when discussing the results. Not only does it
decide how much of a deviation is allowed before data is classified as an anomaly, but it can
also reveal important information about the DM and RM settings. Both the outlet pressure
and flow RMs generally generated smaller prediction interval with the total model improve-
ments (all improvements included), which can be seen in the figures for pump flow and
outlet pressure, Figure and Figure Generally, this can be seen as an improvement
as it indicates that ML algorithms in the pressure and flow RMs are more precise. However,
it is important to remember that shrinking the prediction interval too much also can have
negative consequences as flights can be misclassified as anomalies. On the other hand, using
model settings that make the prediction interval become too large can make the anomaly de-
tection algorithm miss anomaly flights. When looking at the general trends among test flights
in regards to the prediction interval and accuracy in anomaly detection model accuracy, it is
of great importance to always strive after a smaller prediction interval as long as none, or
a small fraction of flights are misclassified as anomalies. The prediction intervals of flights
tested from the improved pressure and flow RMs seem to be on a reasonable level, as the
interval generally is small but no flights are misclassified as anomalies. What level of predic-
tion interval is reasonable in the fuel mass RM is hard to decide, but the level of sensitivity
seen when analyzing the fuel mass can motivate a (percentually) larger prediction interval
rather than trying to acquire a smaller interval.

Difficulities of Modelling due to Part Degeneration and Faulty Measurements

One important aspect when investigating the fuel system is the fact that the system perfor-
mance is affected by part degeneration and general wear and tear that comes from hours of
flight [12]. Figure [£.3]shows that the general level of the transfer pump outlet pressure can
differ up to 20 kPa. Not only does this create difficulties when training ML algorithms, but it
also makes it tough to develop an accurate Dymola model simulating the outlet pressure, as
this dynamic degeneration behavior is cumbersome to model. If this effect is due to unique-
ness in the parts or due to wear and tear is unknown, but as the transfer pump that was put
in was new it is believed that part degeneration is the main reason for the deviation. As flight
data often is collected over some time this data deviation could result in a much greater data
variance, larger prediction intervals, and inaccurate residual predictions. This effect could
only be proved in the transfer pump outlet pressure, but it is believed that other signals in
the fuel system also suffer from the same effect since the transfer pump is such a central part
of the fuel system.
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If it is true that the effect comes with part degeneration, a method to counteract this prob-
lem could be to model this decrease in performance in Dymola, where the flight hours of the
aircraft could be included to create a model which considers the degeneration of the transfer
pump. However, it might be challenging to find such a model, and the time and energy could
be better spent elsewhere, perhaps improving various settings in the RMs to counteract this
problem.

Anomaly Detection

The use of ML algorithms to detect anomalies is a well studied area [10], [9], [15]. ] Oehling et
Al presentsin successful anomaly detection in flight data by using ML algorithms, where
detection of anomalies in the flight data revealed dangers otherwise missed. By looking at
Table[d.1} it can be seen that anomalies are detected with good precision for all test flights with
the exception of the misclassified anomaly in the fuel mass of flight 1081. When analyzing
the prediction interval of the test flights in general for all three target signals, it seems to be
the case that non-anomaly-containing flights are at higher risk of being faulty predicted as
anomalies rather than anomaly flights being missed.

There are different factors that may cause false alarms. The most likely reason is a lack of
similar data of the misclassified anomaly in the training set due to bad data balancing or just
a sparse training set, and the ML algorithms haven’t been trained to handle such data. Other
factors that could trigger false alarms include the absence of a specific feature that covers
corner cases, e.g. not including features showing measured fuel mass in the drop tank or a
bad version of the data balancing due to the stochastic behavior as seen in Figure .25 Even
though this was resolved by freezing the indices, the frozen indices could still represent a
bad version of the data balancing. The anomaly detection alarm should thus be used as an
indication that something is suspicious and needs to be looked over rather than something
catastrophic. This could instead reveal flaws in the fuel system or other kinds of information
about the system that is beneficial to know.

Another important issue is how to choose the threshold that decides if a deviation outside
the prediction interval should be classified as an anomaly or not, as seen in Section 3.1} The
threshold is manually set, and largely decided by the general magnitude of the chosen signal
(and studied anomalies). To gain a more accurate threshold level, S Kumar Jasra et Al. discuss
in [6] the ability to use an ML algorithm to set the threshold. It is also discussed whether a su-
pervised ML algorithm could be used to directly classify a set of flight data as an anomaly or
not and shows that it could be beneficial to let ML algorithms decide a reasonable threshold.
Another way to tackle the problem of anomaly detection could be to use an unsupervised
ML algorithm, perhaps some sort of clustering algorithm, instead of the supervised neural
network used in this thesis. The success of doing so is discussed by L. Li et AL in [10].

Stochastic Behaviour and Data Balancing

As can be seen in Figure a stochastic behavior in the ML predictions could be seen
when re-running the fuel mass RM with the same settings. There are three steps in the RM
training procedure that are stochastic, where data balancing is the most prominent. Training
of the two ML algorithms is also stochastic, but this was resolved by setting a seed in the
hyperparameters of the ML algorithms. Thus, the stochastic behavior can only be traced back
to the data balancing. This can be seen as a huge flaw of the model as it resulted in different
results each time the RM was re-run. In addition to this, the stochastic behavior can have
skewed results from the previous master thesis [20], making conclusions from the previous
thesis less reliable. As presented in the results, the stochastic behavior of the data balancing
was resolved by freezing the indices of one balancing procedure, saving the indices, and re-
choosing the same samples when running the notebook again. By freezing the indices the
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effect of other settings in the notebook can be distinguished, such as using different features.
The procedure also introduces an uncertainty in the results as redoing this process could
result in both better and worse predictions, depending on which data distribution is returned.

Note that the stochastic behavior of the data balancing still affects the outlet pressure and
flow RMs, but not nearly as much as in the fuel mass RM. It is unknown whether the data
balancing of the RM could be resolved by switching balancing features, but this is a possible
way of further investigating the problem. The possible improvements of balancing an im-
balanced data set are widely known and discussed by M. C. Monard et Al. in [1] where great
improvements in ML algorithm performance can be seen by balancing an imbalanced data
set. Although improving and investigating the data balancing further was out of the scope
of this thesis, its importance is known. It is certain that the data balancing heavily affects the
results of all models and could be further looked into for a better, preferably non-stochastic
balancing model. Possible data balancing algorithms are suggested by G. Lemaitre et Al in [8],
where the Scikit learn open source library can be extended to test addition balancing methods.

5.2 Discussion of Method

The thesis goal creates a tough task of finding a good investigation method as the problem
can be tackled in many different ways, thus there was no straight path to finding the optimal
method of investigation. To research the main goal of this thesis - to expose areas where the
models perform good and worse to improve anomaly detection, there was no obvious path
to follow. Model flaws were mostly discovered just by working with the DM and RMs, it-
erating different RM settings, and trying to intuitive discover ways to improve the various
sub-models. This points toward the unstructured nature of the project, which could be im-
proved by a more structured working method. Another discussion point was that a lot of
the settings tested did not make any significant difference, and a majority of changes did not
improve the results. Although that could be seen as a result in itself, it was cumbersome to
document each of the hundreds of small changes made. Generally, features were tested one
at a time and small procedure changes in the RMs resulting in unchanged performance were
not always documented. Only the settings of the most significant results were presented.
This also shows the extremely large number of degrees of freedom. Differences due to, mea-
surement errors, different features, and balancing settings creates such a large variety in flight
data which makes model flaws and strengths tough to find, and which working method that
best suits this type of problem is hard to see beforehand. Worth noting is that these results
are only valid for one type of aircraft (Gripen E 39-9) which makes general conclusions for all
Gripen E aircrafts hard to formulate. The fact that different results could be obtained when
analyzing a new aircraft is not taken into consideration in this work.

The delimitations for this work also have their ups and downsides. To increase the struc-
ture of the project, a better pre-study could have been done on selected areas. The research
question could have been stated in a way that targets specific model settings such as the data
balancing or improving the DM instead of trying to improve the anomaly detection in general.
A more elaborate related research study could have been done to suggest specific methods
that could improve certain areas, e.g. the ML method to choose a set of features. The broad-
ness of the work did make research difficult and is something to take into consideration for
future projects of a similar type.
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Conclusion

This section presents a summary of the main conclusions that are drawn from the results in
Section [ and discussed in Section [} Additionally, suggestions for future work for further
investigation are also presented.

6.1 General Fuel System Model Conclusions

This thesis presents a general method to investigate the DM of the fuel system, where
anomaly detection of the explored signals plays a central part of the thesis. In addition to
this, the level of trade-off between improving the DM and letting ML algorithms in the RMs
handle vulnerabilities of the model is also investigated. Similar work where flight data is
analyzed by ML algorithms to detect anomalies and flight hazards has been done with suc-
cess [9], [10], [15], and results introduced in this thesis also shows that anomalies can be
detected in flight data of Saab 39 Gripen with good precision. However, this thesis is differ-
entiated by the further exploration of improvement areas in the Dymola model and the previ-
ously mentioned tradeoff between improved simulation data and ML algorithms. This chap-
ter will present a summary of the purpose and goals, and highlight the main achievements
and findings of the project work. Furthermore, suggestions for future work areas where ad-
ditional effort can be put are also shown. Listed below are the main conclusions that can be
drawn from this thesis project.

e Improving the DM simulating the transfer pump outlet pressure and flow did not re-
duce the prediction interval nor increase the accuracy of residual predictions. Instead,
the biggest factors that should be considered to improve ML algorithm performance lie
in the feature selection. Data balancing and filtering do also improve said performance.
The residual of target signals of the fuel system that do not possess accumulated effects
can be predicted with great accuracy if proper preparations are done.

¢ Inregards to feature selection for the transfer pump outlet pressure and flow, tank valve
signals and the transfer pump valve level can reveal a lot of information and plays an
important role in training ML algorithms.

* A considerable difference in measured outlet pressure can be seen between a new trans-
fer pump and an older, worn-out transfer pump. Whether this effect was due to part
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6.2

uniqueness or wear and tear is still unknown. What is known is that this effect is present
in the aircraft and needs to be taken into consideration when making changes in the
DM.

Signals possessing accumulated properties where errors are allowed to build up over
time are much more challenging to predict for ML algorithms. The fuel mass is much
tougher for ML algorithms to handle, and is very sensitive to variations in the data
balancing and feature selection. An improved fuel mass DM can improve the prediction
accuracy of the predicted fuel mass residual but does not make the prediction interval
more precise. The problem is believed to lie in the accumulated properties of the fuel
mass, and similar results are expected for signals of equal properties. This area needs
more investigation before a more precise conclusion can be drawn.

The current data balancing procedure possess such a stochastic behavior that it can
significantly alter results, and make it hard to draw conclusions. The way this was
resolved in this thesis might not be the best way to tackle the problem, and additional
work should be put into this area.

Improvement Areas for Future Work

Work done in this thesis also discovered opportunities for further development, which are
believed to contain even more information about the Dymola model. The list below shows
areas that can lay the ground for future project work to gain additional information about the
fuel system model.

Trying to implement an RNN neural network, suited for time-series predictions to
tackle the problem of predicting accumulated signals.

Gathering more flight data for ML-model training - Doing this is believed to signifi-
cantly help ML algorithm prediction accuracy, as sparse data can be increased. Obtain-
ing more data on anomaly flights would increase the knowledge needed to decide a
reasonable anomaly threshold, and could possibly enable the development of super-
vised classification ML algorithms for anomaly detection. In addition to this, a suitable
ML algorithm could be developed to decide an anomaly threshold.

A more sophisticated numerical measurement could be developed to measure the ef-
fect of different settings in the notebooks to decide whether the prediction interval is
improved, or worsened. A measurement could also be developed to see how close the
measured residual r(t) are to the prediction interval I(t), to see whether flights are on
the verge of being classified as anomalies or not.

It can be seen that a new transfer pump greatly affects the general signal pressure level
investigated in this thesis. To look into and see if this is due to wear and tear or unique-
ness of parts in the fuel system, or other factors can be of great interest. In addition
to this, investigating the possibility of modeling this phenomenon in Dymola could be
done, and creates an area of further Dymola model improvement.

Results show that the features used when training ML algorithms in the models greatly
affect the performance and anomaly detection ability. Studies also show that there are
more sophisticated ML models available to tackle the problem of choosing a suitable
feature set. As there is an interest in investigating additional signals with different
properties besides the signals investigated in this project, an ML algorithm could be
used to generate the best set of features of an arbitrarily chosen signal of the fuel system.
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