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Abstract

We present a new topology optimization problem formulation for conjugate heat transfer problems based on minimizing
emperature subject to mass flow constraints on the flow of a cooling medium and show well-posedness of the continuum
roblem. A version of the problem augmented with a lower bound on the stiffness of the designs is considered in numerical
xamples loosely based on a real design case for a gas turbine part. The numerical examples indicate that the proposed problem
ormulation can be used to obtain designs which are useful from an engineering perspective.

2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Topology optimization; Conjugate heat transfer; Mass flow constraints; Stiffness constraints

1. Introduction

Topology optimization (TO) [1] is an increasingly popular tool for engineering design. Originally proposed
or solid mechanics applications [2], it has since been applied in a wide range of different physical domains as
xemplified by reviews on TO in fluid, thermal, photonic and acoustic problems [3–5]. A natural extension is to
onsider problems involving multiple physical domains, for example thermal-fluid problems [6–13], fluid–structure
roblems [14–16] and thermoelasticity [17].

In the following we present a new TO problem formulation for conjugate heat transfer problems based on
inimizing temperature subject to mass flow constraints on the flow of a cooling medium. The formulation is

enerally applicable, but the particular application we have in mind, and on which our numerical examples are
oosely based, is design of gas turbine components where effective cooling is imperative. However, beyond a certain
oint, further cooling is not necessary and the cooling medium may for example be used more effectively elsewhere
n the machine, hence the desire to limit the mass flow. For concreteness and simplicity the problem is formulated
or a rather simple temperature objective, but for example an L p-norm approximation of the maximum temperature
ould be used as an objective.

The use of a Stokes flow model below is a potential source of criticism, but we emphasize that this choice is
ot a fundamental part of the problem formulation but a convenience, which may also be a necessity for practical
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Fig. 1. Design domain with boundary conditions for flow and temperature fields. The thicker black line is a non-designable outer shell in
hich ρ = 1. Γm is the upper part of the boundary through which we wish to limit the mass flow. Left: BCs for the fluid model. Middle:

BCs for the temperature model. Right: Example of an optimized design. Black is solid material and white is void/fluid. Blue arrows indicate
(schematically) flow of cooling medium. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

engineering usage where very long run times on very powerful hardware may not be feasible. A similar motivation
was given for the use of Darcy flow in Refs. [7,8,18–20]. In these references, the permeability of the fluid was
tuned to get agreement with a Navier–Stokes (N-S) model for some reference geometry, and the performance of
optimized designs were evaluated using an N-S model. The general conclusion appears to be that simplified flow
models can produce useful conceptual designs, especially for topologies with narrow channels [8]. The Stokes flow
model has a higher computational cost than the Darcy model, but might provide more realistic velocity profiles and
thus somewhat more mature conceptual designs.

The problem formulation proposed herein is intended as a basis for further development and for that we point
o some relevant literature. In particular, there is a need for methods that yield close to discrete-valued solutions
hile retaining length-scale control of both solid a fluid phases [21,22], and detection and removal of “islands”,

.e. material regions disconnected from the main structure and any supports [23,24]. Depending on the boundary
onditions, more advanced flow models may also be required and in this regard we mention some recent work on
stationary) Navier–Stokes with turbulence models [25–27]. Other issues of practical interest is the conversion to
AD models [28,29] or other formats [30] and, as indicated by the rather complex designs presented below, the
otential need to use additive manufacturing [31–38].

. The basic mathematical model

We present first the state problem and then the design problem. Standard notation is used for function spaces
nd so on (see e.g. [39,40]). We consider (for definiteness) the density-based approach to TO [1,41], so the design
s described by a scalar field ρ which should ideally only take values 0 (void/fluid) or 1 (solid material) in the

design domain Ω . To make the presentation easier to follow we consider already here a concrete 2D example in
Fig. 1, with all symbols explained in Sections 2.1 and 2.2. Pressure (traction t) is applied on the top side (Γm) to
drive a limited amount of cooling medium through the domain to cool the outer walls (thick black lines) which
are subject to thermal convection by hot gas with temperature T∞. In the solution illustrated in the right there is
one big, long channel and one smaller, short channel going from inlet to outlet and running near the hot walls. The
setup is loosely based on a real design problem for a guide vane inside a gas turbine, and 3D versions are treated
in detail in Section 4.

2.1. Design parametrization and state problems

The design domain Ω ⊂ Rd , d = 2 or 3, is a bounded, connected and open set with Lipschitz boundary Γ and

outward normal n (cf. Fig. 1). A subset of Ω is non-designable and filled with solid material; this set is denoted

2
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Ω f i x . Flow is only allowed in the bounded set Ωint = Ω \ Ω f i x which we assume to be open, connected and
having a Lipschitz boundary Γint . The temperature in Ω is given by a linear stationary boundary value problem

ith temperature (T = T0 on ΓT ), heat flux (q ·n = 0 on Γq ) and convection (q ·n = αT (T −T∞) on ΓαT ) boundary
onditions on three disjoint boundary parts. Following [42], the flow is governed by the equations of incompressible
tokes–Brinkman flow with velocity (u = 0 on Γu) and traction (σ n = t on Γt ) boundary conditions. The design is
escribed by a function ρ ∈ L∞(Ω , [0, 1]), from which a regularized design ρ̃ ∈ L∞(Ω , [0, 1]) is obtained through
completely continuous operator S, for example a linear filter [43,44] followed by some form of projection [21],

r a non-linear filter [45,46]. Here completely continuous means that ρn
∗

⇀ ρ [in L∞(Ω )] implies S(ρn) → S(ρ)
lmost everywhere (a.e.) in Ω .

The flow velocity u ∈ V ≡ {H1(Ωint ) | div u = 0 a.e., u = 0 on Γu} is governed by∫
Ωint

α(ρ̃)u · v dV +

∫
Ωint

2µε(u) : ε(v) dV =

∫
Γt

t · v dA, ∀v ∈ V , (1)

here ε(u) =
1
2 (∇u + ∇uT), µ > 0 is the viscosity, and the inverse permeability (cf. [42] but note that in that

reference, ρ = 0 corresponds to solid material),

α(ρ̃) = α − α(1 − ρ̃)
1 + q

1 − ρ̃ + q
, (2)

here α ≫ 0, so that ρ̃ = 0 (fluid) implies α = 0 and ρ̃ = 1 (solid material) implies α = α. The parameter
> 0, with larger values giving higher penalization of intermediate density values in (0, 1) with an appropriate

optimization problem formulation.
The temperature T ∈ V (T0) ≡ {H 1(Ω ) | T = T0 on ΓT } is governed by∫

Ω

k(ρ̃)∇T · ∇ T̃ dV +

∫
Ωint

c(u · ∇T )T̃ dV +

∫
ΓαT

αT T T̃ dA =

∫
ΓαT

αT T∞T̃ dA, ∀T̃ ∈ V (0) (3)

where u = u(ρ) is the solution to (1). The thermal conductivity

k(ρ̃) = k f + (ks − k f )g(ρ̃) (4)

with the constants k f > 0 and ks (k f < ks < ∞) being the conductivity of fluid and solid, respectively, and
g : [0, 1] → [0, 1] a continuous function. The convection coefficient c > 0 is taken to be constant (not depending
on ρ); this works because, with α large enough, u ≈ 0 in any solid parts of Ωint , thus making the convection term
negligible there. The heat transfer coefficient αT > 0 in (3) is also taken to be constant.

The main issue for showing well-posedness of the state problems is to establish coercivity (and thus the positive
efiniteness of the stiffness matrix in a conforming finite element method) of the bi-linear forms over V and V (0)
espectively for all feasible designs.

For the flow problem (1), coercivity follows from Korn’s inequality and the non-negativity of α in (2).
For the temperature problem, coercivity follows by first using the Poincare’ inequality and αT > 0 to get the

stimate (in which c1 is a positive constant)

aT (ρ, u; T, T ) =

∫
Ω

k(ρ̃)∇T · ∇T dV +

∫
Ωint

c(u · ∇T )T dV +

∫
ΓαT

αT T 2 dA

≥ c1k f ∥T ∥
2
H1(Ω) +

∫
Ωint

c(u · ∇T )T dV . (5)

o bound the last term from below we first use appropriate versions of partial integration and the product rule
cf. [47, Theorem 3.8]) to write it as∫

Ωint

c(u · ∇T )T dV = −
1
2

∫
Ωint

c(∇ · u)T 2 dV +
1
2

∫
Γint \Γu

c(u · n)T 2 dA (6)

ecalling the boundary condition on u. Since ∇ · u = 0 a.e., the first integral on the right vanishes, but in view of
he fact that most numerical methods will not satisfy this condition exactly it is of interest to see that coercivity
olds in the more general case where we only have ∥∇ · u∥ ≤ c , as long as the constant c ≥ 0 is small
L2(Ωint ) div div

3
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enough. Substituting (6) into (5) and using Cauchy–Schwartz gives

aT (ρ, u; T, T ) ≥ c1k f ∥T ∥
2
H1(Ω) −

1
2

∫
Ωint

c(∇ · u)T 2
+

1
2

∫
Γint \Γu

c(u · n)T 2 dA ≥

c1k f ∥T ∥
2
H1(Ω) −

c
2
∥∇ · u∥L2(Ωint )∥T 2

∥L2(Ω) +
1
2

∫
Γint \Γu

c(u · n)T 2 dA,

here ∥T 2
∥L2(Ω) < ∞ is well-defined due to the embedding of H 1(Ω ) into L4(Ω ). Since T ∈ L4(Ω ) it holds that

T 2
∥L2(Ω) = ∥T ∥

2
L4(Ω)

≤ c24∥T ∥
2
L2(Ω)

for some constant c24 < ∞. Therefore, using ∥∇ · u∥L2(Ωint ) ≤ cdiv we get

aT (ρ, u; T, T ) ≥ c1k f ∥T ∥
2
H1(Ω) −

c
2

cdivc24∥T ∥
2
H1(Ω) +

1
2

∫
Γint \Γu

c(u · n)T 2 dA =(
c1k f −

c
2

cdivc24

)
∥T ∥

2
H1(Ω) +

1
2

∫
Γint \Γu

c(u · n)T 2 dA, (7)

rom which coercivity follows if cdiv < 2c1k f /(cc24) and u · n < 0 implies T = 0. The latter is satisfied in
ur numerical examples where we have prescribed temperature on the inflow boundary. In the continuous case
e have ∇ · u = 0 a.e., so cdiv = 0, and for any well-behaved numerical method cdiv can be made arbitrarily

mall by adjusting parameters and/or refining the mesh. In practise, the main source of numerical difficulties in the
emperature problem is therefore that while the bi-linear form is coercive, the coercivity constant can become very
mall in the convection-dominated case, leading to large errors in the solution unless extremely fine meshes are
sed [47]. A common remedy, employed also herein (see Section 4.1), is to use a stabilization method.

Knowing that the bi-linear forms are coercive (and continuous), well-posedness of the state problems follow
rom the Lax–Milgram lemma. Since the solutions to the state problems are unique we may treat them as functions
f the design, i.e. u = u(ρ) and T = T (ρ) ≡ T (ρ, u(ρ)). We remark that for stationary Navier–Stokes flow, which
ight be considered a natural next step to increase the realism of the model, uniqueness is only guaranteed under

ery restrictive assumptions; cf. [48, Theorem 2.2, p. 287].

.2. The design problem

The design problem is to minimize the temperature on ΓαT subject to an upper bound m on the mass flow of
an incompressible fluid or gas with density ρg > 0 into the domain Ω over the boundary part Γm ; cf. Fig. 1. In
mathematics, the problem reads:

min
ρ∈L∞(Ω,[0,1])

∫
ΓαT

αT T∞T (ρ) dA

s.t.
∫
Γm

ρgu(ρ) · (−n) dA ≤ m,

(8)

where the minus sign in front of n in the mass flow constraint is there because n is the outward normal and we
wish to limit the mass flow into the domain. Note that there is no explicit volume constraint in (8), we only require
that ρ be between 0 and 1 in Ω . Instead a lower bound on the amount of solid material is implied by the mass
flow constraint. For design of guide vanes in an industrial gas turbine, weight is actually not a major concern, but
if needed an explicit constraint on the allowable mass can be added. We also note that if it was not for the internal
convection term in (3), the objective would be what is quite commonly, in the literature on TO for thermal problems,
referred to as “thermal compliance”.

We now consider some theoretical properties of the design problem (8).

2.2.1. Monotonicity of the mass flow
Intuitively, the mass flow in (8) is such that the more material, the smaller the mass flow. This intuition is correct

and can be made precise as follows: Assume Γm = Γt or that t ≡ 0 in Γt \ Γm and let a and ℓ denote the bi-linear
nd linear form defined by the left and right-hand sides in (1). Furthermore, assume that the traction is of the form

t = −tn for a constant t > 0. Then the left-hand side in the mass flow constraint can be written as
4



C.-J. Thore, J. Lundgren, J.-E. Lundgren et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115334

N
e

s

m
m
c

2

w
o
c
l
s
c
fl
o
f

o
B

w

L
{

s

r

m(ρ) ≡ −

∫
Γm

ρgu(ρ) · n dA =
ρg

t

∫
Γt

(−tn) · u(ρ) dA =

ρg

t

∫
Γt

t · u(ρ) dA = −
2ρg

t
min
v∈V

[
1
2

a(ρ, v, v) − ℓ(v)
]

. (9)

ow consider two designs ρ1 and ρ2 such that ρ2 > ρ1 a.e. in Ω , i.e. roughly that ρ2 has more material than ρ1 in
very point. Then

a(ρ2; v, v) − a(ρ1; v, v) =

∫
Ωint

(
α(ρ2) − α(ρ1)

)
∥v∥

2 dV ≥ 0,

ince α is (monotone) increasing. Since an optimal v will not be identically zero, it follows that

m(ρ2) = −
2ρg

t
min
v∈V

[
1
2

a(ρ2; v, v) − ℓ(v)
]

< −
2ρg

t
min
v∈V

[
1
2

a(ρ1; v, v) − ℓ(v)
]

= m(ρ1),

eaning that the mass flow is smaller for the design ρ2 which has more material. In agreement with intuition, the
ass flow thus decreases as the amount of material increases. This means, loosely speaking, that the mass flow

onstraint in problem (8) wishes to increase the amount of material until the mass flow is below m.
A positive consequence of the monotonicity property is that one can in practise always find a feasible initial

point by just adding material until the constraint is satisfied (with the small caveat that the mass flow can never be
exactly zero since the maximum inverse permeability α < ∞). We remark that the monotonicity result can probably
be generalized in various ways, for example by not assuming a constant traction t .

.2.2. Existence of a solution
We show here, essentially following the direct method of calculus of variations [49,50], that problem (8) is

ell-posed in the sense of having at least one solution. In the proof we make use of the regularization via the
perator S giving the design ρ̃ as described at the beginning of Section 2.1, and it appears that the regularization
annot be dispensed with even if the interpolation function g for the thermal conductivity in (4) is taken as a
inear function. This is in contrast to the pure flow problem of Borrvall and Petersson [42], for which existence of
olutions could be shown without regularization.1 The difference is that whereas they tried to maximize the fluid
ompliance, i.e.

∫
Γt

t · u(ρ) dA, thus requiring upper semi-continuity (or equivalently, lower semi-continuity of the
uid potential), we here need lower semi-continuity (in the appropriate sense) since we enforce an upper bound
n the fluid compliance. An intuitive motivation for the need for regularization is that a design with infinitely thin
eatures may be an effective way to stop or reduce flow

Below we will make use of the basic fact that a functional ℓ of the form

ℓ(·) =

∫
Γs

tr(·)v dA, (10)

is linear and continuous on H 1(Ω ). Here Γs is a measurable subset of Γ , tr(·) : H 1(Ω ) → L2(Γ ) is the trace
perator [39, Section 7.4], and v ∈ L2(Γ ). The linearity of ℓ is immediate from the linearity of the trace operator.
oundedness, and thus continuity, then follows using Cauchy–Schwartz and the fact that tr(u) ∈ L2(Γ ):

|ℓ(u)| ≤

∫
Γ

|tr(u)v| dA ≤

(∫
Γ

tr(u)2 dA
)1/2 (∫

Γ

v2 dA
)1/2

≤ c∥u∥H1(Ω),

here c = c(v) < ∞ and the last inequality follows from a standard trace theorem [39, Theorem 6, p. 240].
The proof of the main Theorem 3 makes use of two lemmas.

emma 1. Let the sequence {ρn}, ρn ∈ L∞(Ω , [0, 1]), tend weakly∗ in L∞(Ω ) to ρ ∈ L∞(Ω , [0, 1]) and let
Tn = Tn(ρn)} and {un = un(ρn)} be corresponding solutions to the state problems (3) and (1). Then there is a
ubsequence of densities and corresponding states such that the latter converge weakly to some T = T (ρ) and

u = u(ρ) respectively.

1 Papadopoulos and Suli [51, Theorem 3] recently showed that, at least for some instances of this problem, optimal designs reside in H1

ather than just L∞ in parts of the design domain.
5
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Proof. The complete continuity of S implies that ρ̃n = ρ̃(ρn) → ρ̃ = ρ̃(ρ) a.e. in Ω .2 By the coercivity of the
espective bi-linear form and the boundedness of the respective right-hand side, we find that ∥un∥H1(Ωint ) ≤ c and
Tn∥H1(Ω) ≤ c for some c < ∞. Therefore we can extract a subsequence of states converging weakly to some

u ∈ H1(Ωint ) and T ∈ H 1(Ω ), respectively [52, Theorem 5.14-4]. Since V and V (T0) are weakly closed it follows
hat u ∈ V and T ∈ V (T0). Due to the compact embedding of H 1(Ωint ) into L4(Ωint ), which follows from the
obolev embedding theorem and the fact that d = 2 or 3, we may then extract a further subsequence such that the
elocities converge strongly in L4(Ωint ). It remains to show that the limits T and u satisfy the equations of state.

For the subsequence just described we now add and subtract terms to get, with ℓ(T̃ ) the right-hand side of (3)
nd T̃ ∈ V (0) arbitrary,

|aT (ρ, u; T, T̃ ) − ℓ(T̃ )| = |aT (ρ, u; T, T̃ ) − aT (ρn, un; Tn, T̃ )| =⏐⏐⏐ ∫
Ω

k(ρ̃)(∇T − ∇Tn) · ∇ T̃ dV +

∫
Ω

(k(ρ̃n) − k(ρ̃))∇Tn · ∇ T̃ dV +∫
Ωint

c ((u − un) · ∇Tn) T̃ dV +

∫
Ωint

cu · (∇T − ∇Tn)T̃ dV +

∫
ΓαT

αT (T − Tn)T̃ dA
⏐⏐⏐. (11)

he first, fourth and fifth terms on the right tend to zero by the weak convergence of Tn to T in H 1(Ω ). For the
hird term, we have by Hölder’s inequality,

|

∫
Ωint

c ((u − un) · ∇Tn) T̃ dV | ≤ c∥u − un∥L4(Ωint )∥∇Tn∥L2(Ω)∥T̃ ∥L4(Ω),

hich tends to zero by the strong convergence of un to u and the fact that {∇Tn} is weakly convergent,
ence bounded in L2(Ω ). Finally, for the second term in (11), we note that ((k(ρ̃n) − k(ρ̃))2

||∇ T̃ ||
2

∈ L1(Ω ),
(k(ρ̃n) − k(ρ̃))2

||∇ T̃ ||
2

≤ ((ks − k f )2
||∇ T̃ ||

2 and that ((k(ρ̃n) − k(ρ̃))2
||∇ T̃ ||

2
→ 0 a.e. due continuity of the

unction g in (4) which gives point-wise convergence of the conductivities, and the a.e. boundedness of ||∇ T̃ ||
2.

hen Cauchy–Schwartz inequality and the Lebesgue dominated convergence theorem give that

|

∫
Ω

(k(ρ̃n) − k(ρ̃))∇Tn · ∇ T̃ dV | ≤ ∥(k(ρ̃n) − k(ρ̃))∇ T̃ ∥L2(Ω)∥∇Tn∥L2(Ω) → 0. (12)

ecalling (11) we have thus shown that

|aT (ρ, u; T, T̃ ) − ℓ(T̃ )| → 0,

.e. the limiting state T satisfies the temperature problem (3) for the limiting u. That this u is in fact the solution
u = u(ρ) to (1) is proved similarly, making use of the fact that the subsequence {un} also converges strongly in
L2(Ωint ). □

Having established Lemma 1 we can now prove

emma 2. Let

H =
{
ρ ∈ L∞(Ω , [0, 1]) |

∫
Γm

ρgu(ρ) · (−n) dA ≤ m
}

denote the feasible set in (8). Then for every sequence {ρn}, ρn ∈ H, there is a subsequence converging weakly∗ in
L∞(Ω ) to some ρ ∈ H.

Proof. Consider a sequence {ρn}, ρn ∈ L∞(Ω , [0, 1]), such that ρn
∗

⇀ ρ. Then since ρ is measurable [53, Theorem
0, p. 68] and satisfies ρ ∈ [0, 1] a.e. [54, Lemma 3.1], we have ρ ∈ H. From this sequence of densities we may
ccording to Lemma 1 extract a subsequence such that the corresponding velocities u(ρn) converge weakly to a
partial) solution u(ρ) to the state problem. Being a sum of functionals of the type (10), the mass flow functional
s in the dual of H1(Ω ), hence weakly continuous so that∫

Γm

ρgu(ρ) · (−n) dA = lim
n→∞

∫
Γm

ρgu(ρn) · (−n) dA ≤ m.

2 For this proof, convergence of a subsequence would suffice, but the cited regularization techniques [43,44,46] all give convergence of
the entire sequence.
6
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The limiting design ρ thus satisfies the mass flow and box constraints and therefore belongs in H. □

With Lemmas 1 and 2 at hand we can now prove

heorem 3. The design problem (8) has at least one optimal solution.

roof. Let {ρn}, ρn ∈ H, be a minimizing sequence. Since H is bounded in L∞(Ω ) we may by the sequential
anach–Alaoglu theorem and Lemma 2 extract a subsequence converging weakly∗ to some ρ ∈ H. From

his subsequence we extract a further subsequence such that T (ρn) converges weakly to T (ρ). Since φ(·) =

ΓαT
αT T∞(·) dA is a continuous linear functional on H 1(Ω ), hence weakly lower semi-continuous, it follows that

imn→∞ φ(ρn) ≥ φ(ρ), and thus that ρ ∈ H is a solution to (8). □

. Extension to include mechanical design criteria

Real-world problems essentially always include design criteria related to mechanical properties such as stiffness
nd strength of a component. Having the numerical example in Section 4, with geometry and boundary conditions
oosely resembling a guide vane, in mind, we consider adding to problem (8) a stiffness constraint for a combination
f a thermal expansion load and the relative movement of the support regions. Mathematically the constraint takes
he form

ℓs(ρ, T (ρ); us(ρ)) − ⟨λ(ρ), u0⟩Γus ≤ c (13)

here the first term is the compliance of the thermal expansion load (with ℓs defined in (17)), us(ρ) ≡

us(ρ, T (ρ, u(ρ)) is the displacement, and λ(ρ) ∈ H−1/2(Γus ) is the reaction load arising due to the prescribed
isplacement u0 on Γus . Here ⟨·, ·⟩Γus is the duality pairing between H−1/2(Γus ) and H1/2(Γus ), and the minus sign
n front of this term reflects the fact that a stiffer structure will give larger reaction loads.

The displacement satisfies the following state problem: Find us ∈ V s(u0) ≡ {v ∈ H1(Ω ) | us = u0 ∈ H1/2(Ω )}
uch that

as(ρ; us, v) = ℓs(ρ, T (ρ); v), ∀v ∈ V s(0). (14)

e assume isotropic, linear elasticity with thermal strain

ε0(T ) = α0(T − Tre f )I, (15)

here α0 [1/K] is the thermal expansion coefficient, Tre f is a given reference temperature and I is an identity
atrix. The bi-linear form in (14) is taken as

as(ρ; us, v) =

∫
Ω

[
Emin + gs(ρ̃)(E − Emin)

]
Dε(us) : ε(v) dV, (16)

n which Emin > 0 and E > Emin is the Young’s modulus of void/fluid and solid material respectively; the fourth-
rder constitutive tensor D depends on the Poisson’s ratio; and gs : [0, 1] → [0, 1] is a continuous, monotone
ncreasing function. The load-term in (14) is given by

ℓs(ρ, T (ρ); v) =

∫
Ω

g2(ρ̃)α0 E(T (ρ) − Tre f )DI : ε(v) dV, (17)

here T (ρ) is the solution to the thermal state problem (3). The penalty function g2 may be different from the
unction gs in (16) in order to avoid appearance of spurious “gray” regions observed in other problems with
esign-dependent loads; for example self-weight [55,56].

Let Hs be the set of all ρ ∈ H such that (13) holds. Existence of solutions to problem (8) augmented with the
tiffness constraint (13) then follows by replacing H in Theorem 3 by Hs and making use of the following lemma:

emma 4. For every sequence {ρn}, ρn ∈ Hs , there is a subsequence converging weakly∗ in L∞(Ω ) to some
∈ Hs .

roof. The left-hand side in the stiffness constraint (13) can be expressed in terms of the potential energy J as

ℓs(ρ, T (ρ); uS(ρ)) − ⟨λ(ρ), u0⟩Γus = −2 min J (ρ, T (ρ); v), (18)

v∈V s (u0)

7
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where J (ρ, T (ρ); v) =
1
2 as(ρ; v, v) − ℓs(ρ, T (ρ), v). To conclude the proof we now show weak∗ sequential lower

semi-continuity of the function ρ → − minv∈V s (u0) J (ρ, T (ρ); v). Since the feasible set in the minimization problem
in (18) does not depend on ρ, we can for this purpose use the argument of Bonnans and Shapiro [57, p. 261] provided
that for a fixed v ∈ V s(u0), J (·, ·; v) is weakly∗ sequentially continuous on H. To see that this is the case, let {ρn} be
a sequence in H converging weakly∗ to some ρ ∈ H. Then the corresponding filtered designs converge point-wise,
nd the assumed continuity of the penalty functions gs and g2 in (16) ensures point-wise convergence to gs(ρ̃)
nd g2(ρ̃), respectively. It follows that as(ρn; v, v) → as(ρ; v, v) by applying the Lebesgue dominated convergence
heorem. For the load-term in the potential energy, defining for brevity C = α0 E DI : ε(v) ∈ L2(Ω ), we get

|ℓs(ρ, T (ρ), v) − ℓs(ρn, T (ρn), v)| ≤

|

∫
Ω

[g2(ρ̃) − g2(ρ̃n)](T (ρ) − T (ρn))C dV | + |

∫
Ω

[g2(ρ̃n) − g2(ρ̃)]Tre f C dV |. (19)

he second integral on the right tends to zero by a direct application of the Lebesgue dominated convergence
heorem. Using Cauchy–Schwartz, the first integral is bounded by

|

∫
Ω

[g2(ρ̃) − g2(ρ̃n)](T (ρ) − T (ρn))C dV | ≤ ∥(g2(ρ̃) − g2(ρ̃n))C∥L2(Ω)∥T (ρ) − T (ρn)∥L2(Ω) → 0,

here the convergence follows using the Lebesgue dominated convergence theorem and the fact that {T (ρ)−T (ρn)}
s weakly convergent (to 0) in L2(Ω ), hence bounded in that space (cf. (12)).

Having thus shown that J (·, ·; v) is weakly∗ sequentially continuous, it follows [57, p. 261] that ρ →

minv∈V s (u0) J (ρ, T (ρ); v) is weakly∗ sequentially lower semi-continuous and thus that

−2 min
v∈V s (u0)

J (ρ, T (ρ); v) ≤ lim inf
n→∞

−2 min
v∈V s (u0)

J (ρn, T (ρn); v) ≤ c,

.e. the stiffness constraint is satisfied by the limiting design ρ. □

The proof-technique used for Lemma 4 could also be employed to handle the mass flow constraint since this
can be written in terms of a minimization problem; see (9). This is not the case for the objective function in (8)
however, since due to the internal convection it cannot be written in terms of a minimization problem.

4. Numerical examples

4.1. Implementation and discretization

As optimization solver we use the Method of Moving Asymptotes (MMA) [58]. Derivatives are computed using
the adjoint method [59]. Due to the fluid–thermal–solid coupling there are four adjoint problems that need to be
solved: two for the objective function and two for the stiffness constraint involving the thermal strain. We use
conforming, eight-noded, tri-linear FEs for the temperature, flow and displacement, and an element-wise constant
approximation ρh of the design. A linear density filter [43] is used for regularization and the filtered density ρ̃h is
taken to be element-wise constant. Galerkin/Least-squares stabilization with the parameter chosen as in Ref. [60,
p. 57] is used for the temperature. For the flow problem we use a penalty-approach with reduced integration on the
penalty-term to avoid locking [61]. The penalty approach is convenient for the problem sizes treated herein as it
allows for the use of Cholesky-factorization in the flow problem and reuse of the factors for two adjoint problems.
Due to the internal convection, the stiffness matrix in the temperature problem is non-symmetric and we have found
it most efficient to solve this problem using the iterative method GMRES with an algebraic multigrid preconditioner
as implemented in the code AMGCL [62]. The elasticity problem is well-behaved and amenable to solution by the
conjugate gradient (CG) method as discussed below.

4.2. Set-up and parameters

We present here designs obtained from FE discretized versions of problem (8) augmented with the stiffness bound
(13). The set-up for the numerical examples is illustrated in Fig. 2 and is meant to (very) loosely represent a guide
vane. The box-shaped design domain is subjected to convection on four sides. Cooling air is driven by an input

traction on the top and allowed to exit via a rectangular outlet region, 1.2 × 9.6 [cm], centred on the side x = 0.

8
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Fig. 2. Setup for the numerical examples. Hot gas (yellow arrows) with temperature T∞ heats the sides of the domain via convection. The
uid velocity is prescribed to zero on the boundary except at the top and the outlet at the back. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

he displacement is prescribed to zero on the bottom (z = 0), and u0 ̸= 0 along the top edges. The lower and upper
arts of the box are attached to the inner and outer stator, respectively, and the non-zero prescribed displacement
odels the relative movement between the stators. An outer non-designable shell around 2 [mm] thick is given.
As for the parameters in the physics models we have chosen data which, except for the viscosity, corresponds

oughly to what one can expect in a real guide vane. In the fluid model we have viscosity µ = 1 [kg/(ms)],
ncompressibility penalty 109 [kg/(ms)] and traction t = 400 [kPa]. To reduce the risk of ending up in poor local

minima we use continuation on α and q in (2). The (dimensionless) parameter q is started at 0.01 and then increased
to 0.1 in the second continuation step. In order to prevent flow through solid parts we use relatively large values of α,
starting with α = 108 [kg/(m2 s)] and then increasing to α = 109 and α = 1010 in the second and third continuation
step. Regarding the viscosity we remark that turbulence may lead to an effective (non-uniform) viscosity which
is orders of magnitude higher than the inherent viscosity of the fluid. In this case the fluid is compressed air
with an inherent viscosity of 10−4

− 10−5 [kg/(ms)], so even compensating for turbulence the chosen value may
be unrealistically high. Setting a much lower value, however, requires much finer meshes, and may also lead to
designs with very small channels which may be difficult to manufacture and/or prone to clogging by soot or dust
particles.

In the thermal model we set conductivities ks = 10.2 [W/(m K)] and k f = 0.031 [W/(m K)]. The density and
specific heat of the cooling air is taken as 5 [kg/m3] and 1001 [J/(kg K)] respectively, and the heat transfer coefficient
αT = 3500 [W/(m2 K)]. The temperature on the top of the domain is set to T0 = 673 [K] and the temperature of the
hot gas on the sides is set to T∞ = 1373 [K]. The boundary condition q · n = 0 at the outlet (Fig. 2) is motivated
by assuming that immediately after the outflow, the temperature is still roughly that of the cooling air, hence the
temperature gradient in the normal direction should be zero (noting that according to Fourier’s law, q = −k(ρ̃)∇T ).

The Young’s moduli in (16) are taken as 10−9 and 1 [N/m2] respectively (for this example, an absolute value
in the range 180–220 [GPa] is reasonable, but since the Young’s modulus enters linearly on both sides in the
mechanical state problems its value is immaterial); the Poisson’s ratio as 0.32; and prescribed displacement u0 as
10−6 [m] in the negative x-direction. The thermal expansion coefficient and reference temperature in (15) are taken
as α0 = 13.9 · 10−6 [K−1] and Tre f = 299 [K] respectively.

We present in the following some examples of designs obtained for various values of the mass flow bound m in
(8) and the stiffness bound c in (13). The mass flow bounds are expressed as a fraction of the mass flow obtained
9



C.-J. Thore, J. Lundgren, J.-E. Lundgren et al. Computer Methods in Applied Mechanics and Engineering 400 (2022) 115334

c
a
e
D

c
o

4

s
s
m
a
m
f
o
l
t
s

d
l
a

w

for an empty domain and the stiffness bound as a fraction of the stiffness obtained for a domain completely filled
with material. As initial guess for the design we use in all cases ρh = 1 which satisfies the mass flow and box
onstraints. For the design filter we set a radius of 3 [mm]. The mesh consists of 100 × 15 × 120 elements, giving
total number of degrees of freedom (DOFs) of around 430, 190 and 570 thousand for the flow, temperature and

lasticity problem respectively. Symmetry around the plane y = 1.5 [cm] is exploited to reduce the number of
OFs.
The interpolation functions g and gs in (4) and (16) are taken as linear, i.e. g(ρ) = gs(ρ) = ρ. It is possible to

hoose these according to the SIMP or RAMP methods, but in our examples the model could be kept simple with
nly the function α in the Brinkman-term in (1) being non-linear.

.3. Results

Fig. 3 shows three optimized designs, thresholded at ρ̃h = 0.5, with a mass flow fraction of 0.005 and different
tiffness fractions. (Recall the use of symmetry around the plane y = 1.5 [cm]). Coloured lines have been
uperimposed to indicate the direction and speed of the flow (red is maximum and dark blue minimum). The
aximum speed is around 20 [m/s]. Temperature distributions are shown in the bottom row. All three designs have

n inlet hole at the top near the front (x = 10 [cm]) and multiple smaller outlets in the back (x = 0). The right-
ost design has an additional inlet hole around the centre of the top. The left-most design with the highest stiffness

raction (0.75) contains more solid material than the other two designs. Notice that there are two different types
f mechanical loads involved here: the reaction load from the prescribed displacement and the thermal expansion
oad. As for the reaction load, it is monotone in the amount of solid material, i.e. the more solid material we have,
he larger the compliance ⟨λ(ρ), u0⟩Γus . For the thermal expansion loading the situation is more difficult to assess:
olid material contributes to increased stiffness and to increased loading.

Fig. 4 shows additional views (in the form of STL files imported into the software FreeCAD) of the middle
esign from Fig. 3. The design is quite complex with a combination of channels of various sizes. The walls of the
arger channels, for example the one at the bottom magnified in Fig. 5, are rough with small bumps, arches, ridges
nd other features which might cause turbulence and thus improve heat transfer.

The iteration histories for the objective and constraints in the bottom row of Fig. 6 show smooth convergence
ith jumps when α and q are increased. Our experience is that it is important to let the optimization converge to

quite high accuracy before switching to the next continuation step. In this case the switch was made every 400:th
MMA iteration, but an adaptive scheme could also be employed. Default settings was used for the MMA [58]
except for the second and third continuation step, where the parameter asyinit was changed from 0.5 to 0.1 to
reduce oscillatory behaviour seen mainly in the last continuation step. The oscillations can be reduced further by
using even more conservative settings or/and finer meshes. Oscillations of this sort are not a practical issue in our
implementation however, since in a given continuation step we always take as final output from MMA the feasible
design with the lowest objective function value found in the optimization process.

Fig. 7 shows histograms of the filtered densities for the designs in Fig. 3. The densities are predominantly around
0 or 1 with some intermediate values due to the linear filter. If desired, so-called Heavyside projection [21] can
be used to enforce designs to be even closer to discrete-valued. Our experience is however that this can lead to
the appearance of very small features in the optimized design which may be undesirable. As illustrated next, such
features (islands here) may arise anyway, but to a lesser extent.

Fig. 8 shows designs obtained for a mass flow fraction of 0.0025. Compared to the designs in Fig. 3, the inlet hole
on the top has become somewhat smaller. A notable feature in the middle and right designs in Fig. 8 is the islands,
shown as darker element in the bottom row. Islands may arise when rounding off a design to 0 or 1, but in particular
for the right-most design, removing the islands, which together consists of around 3000 elements, led to an increase
of the mass flow of around 3 percent, suggesting that at least some of these islands are not merely an artefact of
the post-processing but actually plays at least a small role in keeping down the mass flow. For the left-most design,
the small island near the outlet region consists of 8 elements, and removing it caused no appreciable impact on the
mass flow. No islands were formed in the designs in Fig. 3 where we allowed for a higher mass flow.

The problem studied herein has a large number of parameters whose value can affect the optimized designs. One
such parameter is the thermal conductivity ks . Fig. 9 shows two designs obtained with the same parameter values
except for k = 10.2 [W/(m K)] (left) and k = 30 [W/(m K)] (right). The differences are somewhat subtle (and as
s s
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Fig. 3. Top row: Optimized designs with flow. Stiffness fraction 0.75 (left), 0.5 (middle), and 0.25 (right). Mass flow fraction 0.005. Bottom
row: Temperature, going from minimum (turquoise) to maximum (light yellow). Dimensions in [cm]. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. An optimized design. Left: Solid domain. Middle: Fluid domain. Right: Fluid domain slightly smoothed and slightly transparent.
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Fig. 5. Close-up of the lower part of the design, slightly smoothed for better visibility.

Fig. 6. Objective and constraint function values versus MMA iteration for the designs in Fig. 3.

Fig. 7. Density distributions for the designs in Fig. 3. Stiffness fraction (left to right) 0.75, 0.5, and 0.25.
12
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F
(

Fig. 8. Top row: Designs with mass flow fraction 0.0025. Stiffness fraction (left to right) 0.75, 0.5, and 0.25. Bottom row: Highlighted
elements forming islands.

always in TO it can be difficult to tell whether a change is fundamental or just a result of ending up in a different
local minimum), but the design with higher conductivity appears to have more solid material near the top where
the temperature is lower than on the sides of the domain. An exhaustive study of the impact of variations of model
parameters is interesting but beyond the scope of the present paper.

4.4. Additional comments on the implementation

On a computer equipped with two 16-core Intel Xeon 6130 CPUs, 96 GB RAM and an NVIDIA Tesla T4 GPU,
the time required to obtain one of the designs in Figs. 3 and 8 was around 8 h, almost all of which was spent
on solving the state problems. The time for solving the fluid state problem once using Cholesky factorization was
roughly 14 [s]. For finer meshes the penalty approach may be impractical as it essentially cannot be treated with
iterative linear solvers, but we note that to use an iterative solver one must consider the much larger and indefinite
mixed formulation of the problem with both velocity and hydrostatic pressure as unknowns. In addition, with a direct
solver the factorization of the stiffness matrix can be reused for the (here two) adjoint systems whose solution-time
then becomes negligible (<0.5 [s]), whereas similar reuse of information is hardly possible with an iterative solver.

or the given mesh, the thermal problem was small enough that the OpenMP-parallelized version of the solver

GMRES) was faster than the GPU-version. The number of GMRES iterations was in the order 15–30, i.e. very
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Fig. 9. Designs for different values of the thermal conductivity. Left: ks = 10.2 [W/(m K)]. Right: ks = 30 [W/(m K)].

ew, to reach a relative tolerance in ℓ2-norm of less than 10−12. For the elasticity problem, the CG method with a
PU-version of incomplete Cholesky factorization (cusparse ilu0) as preconditioner was much faster than direct

solvers and OpenMP-parallelized versions of the CG. The total time for assembling and solving the elasticity state
problem at the final MMA iteration 1200 (the number of CG iterations increase as the design becomes increasingly
black-and-white) was around 2.3 [s] for 1100 CG iterations to reach a relative tolerance in ℓ2-norm of less than
10−12. We remark that with a smaller filter radius and/or a lower-quality FE mesh the number of CG iterations are
likely to increase.

5. Concluding remarks

We have presented a new problem formulation for TO based on minimizing temperature subject to mass flow
bounds and showed that the problem formulation is well-posed. The numerical examples suggest that it can give
reasonably-looking designs that are close to binary-valued (to the extent allowed by the density filter).

The optimization problem formulation itself is generally applicable, but the numerical examples are loosely based
on a set-up for design of the interior of a guide vane. Since a simple flow model (Stokes) and a quite high viscosity
was used one may wonder about the realism of the presented designs. Preliminary simulation results based on the
Navier–Stokes equations coupled with various turbulence models indicate that designs with such large channels as
those seen above will have a too low pressure drop to be used as actual guide vane designs (the simulations were
carried out with prescribed velocity at the input and the pressure drop estimated by comparing the traction at the
inlet(s) and the outlets). Designs with smaller channels should be achievable by using lower mass flow bounds
and viscosity combined with smaller filter radii and finer FE meshes (to avoid clogging by e.g. soot particles the
diameter of the channels cannot be much smaller than one millimetre). Towards this end we are currently working
on an MPI-parallelized implementation based on the work of Aage et al. [63].

The presented problem formulation is intended as a basis for further developments. In addition to the development
of validation methods for optimized designs and tuning of model parameters based on advanced flow models, we
mention for example that methods for preventing island formation, either by additional mechanical load cases or

through thermal load cases [23], and more explicit length-scale control can be added for increased practical value.
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