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Special partial matchings (SPMs) are a generalisation of 
Brenti’s special matchings. Let a pircon be a poset in 
which every non-trivial principal order ideal is finite and 
admits an SPM. Thus pircons generalise Marietti’s zircons. 
We prove that every open interval in a pircon is a PL 
ball or a PL sphere. It is then demonstrated that Bruhat 
orders on certain twisted identities and quasiparabolic W -sets 
constitute pircons. Together, these results extend a result 
of Can, Cherniavsky, and Twelbeck, prove a conjecture of 
Hultman, and confirm a claim of Rains and Vazirani.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

A special matching on a poset is a complete matching of the Hasse diagram satisfying 
certain extra conditions. The concept was introduced by Brenti [5]. For eulerian posets, 
an equivalent notion was also independently introduced by du Cloux [9]. Their main 
motivation was to provide an abstract framework in which to study the Bruhat order 
on a Coxeter group. Namely, every non-trivial lower interval in the Bruhat order admits 
a special matching. Thus, Bruhat orders provide examples of zircons, posets in which 
every non-trivial principal order ideal is finite and has a special matching. Beginning 
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with Marietti [22], zircons have been the focal point of a lot of attention; see, e.g., [7,15,
23]. Notably, (the order complex of) any open interval in a zircon is a PL sphere; this is 
essentially a result of du Cloux [9, Corollary 3.6], which is based on results from Dyer’s 
thesis [10]. Reading [25] provided a different proof.1

In [1], two of the present authors generalised the special matching concept to special 
partial matchings (SPMs), which are not necessarily complete matchings satisfying sim-
ilar conditions. Generalising zircons, let us say that a pircon is a poset in which every 
non-trivial principal order ideal is finite and admits an SPM. These notions, too, are orig-
inally motivated by Coxeter group theory: the dual of the Bruhat order on the fixed point 
free involutions in the symmetric group is a pircon [1]. This is generalised considerably 
in Section 7, where it is demonstrated that the Bruhat order on the twisted identities 
ι(θ) is a pircon whenever the involution θ has the so-called NOF property. Moreover, 
Bruhat orders on Rains and Vazirani’s [24] quasiparabolic W -sets (under a boundedness 
assumption) form pircons. In particular, this applies to all parabolic quotients of Coxeter 
groups.

We investigate the topology of posets with SPMs. Our first main result roughly states 
that an SPM provides a way to “lift” the PL ball or sphere property from a subinterval; 
this is Theorem 6.1. It follows that every open interval in a pircon is a PL ball or 
a PL sphere, which is our second main result. In particular, this proves a conjecture 
from [16] on Bruhat orders on twisted identities, and confirms a claim from [24] about 
quasiparabolic W -sets.

The overall proof strategy is inspired by that of Reading’s aforementioned proof in 
[25]. Roughly, if P is a poset with minimum ̂0, maximum 1̂, and an SPM M , we prove that 
P can be obtained from the interval [0̂, M(1̂)] using certain modifications. Investigating 
the effect of these modifications on the poset topology forms the technical backbone of 
the paper.

The remainder of the paper is structured in the following way. In the next section, 
we recall basic definitions and review some useful results from the literature. Then, 
in Section 3, we prove a couple of elementary lemmas that later serve as the main 
topological tools. In Section 4, ways to locally modify posets, including a version of 
Reading’s “zippings” from [25], are studied. It is shown that these modifications preserve 
the PL ball or sphere property. After that, in Section 5, we recall the definition of an SPM 
and prove that a poset which admits an SPM can be obtained from one which in some 
sense is easier to understand, using the modifications studied in the previous section. 
Combining the results of the previous two sections, the main results follow essentially at 
once; this is the content of Section 6. In Section 7, we explain how examples of pircons 
are provided by Bruhat orders, first on twisted identities and second on quasiparabolic 
W -sets in Coxeter groups. The implications of our second main result in these contexts 
are discussed. Finally, in the last section, we raise some open questions.

1 Although Reading worked in the context of Bruhat orders, his proof is valid in the more general zircon 
setting.
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2. Preliminaries

In this section, preliminary material on posets (partially ordered sets) and topology 
of simplicial complexes is gathered.

2.1. Posets

Let P be a poset. If P contains an element denoted 0̂ or 1̂, it is assumed to be a 
minimum or a maximum, respectively, i.e., x ≥ 0̂ and x ≤ 1̂ for all x ∈ P . The proper 
part of P is then P = P − {0̂, ̂1}.

Standard interval notation is employed for posets. Thus, if x, y ∈ P , then

[x, y] = {z ∈ P | x ≤ z ≤ y},

with the induced order from P , and similarly for open and half-open intervals.
An order ideal J ⊆ P is an induced subposet closed under going down, i.e., x ≤ y ∈

J ⇒ x ∈ J . The complement of an order ideal is called an order filter. An order ideal is 
principal if it has a maximum. For principal order ideals, the notation P≤y = {x ∈ P |
x ≤ y} is convenient. Similarly, P<y, P≥y, and P>y are defined in the obvious way.

Suppose every principal order ideal in P is finite. If, for any y ∈ P , all maximal chains 
(totally ordered subsets) in P≤y have the same number of elements, P is called graded. 
In this case, there is a unique rank function, i.e., a function rk : P → {0, 1, . . .} such that 
rk(x) = 0 if x is minimal, and rk(y) = rk(x) + 1 if y covers x.

Suppose π : P → P ′ is an order-preserving map of posets. Then π is called an order 
projection if for every ordered pair x′ ≤P ′ y′ in P ′ there exist x ≤P y in P such that 
π(x) = x′ and π(y) = y′. In particular, any order projection is surjective. We construct 
the quotient Fπ as follows. The elements of Fπ are the fibres π−1(x′) = {x ∈ P | π(x) =
x′} for x′ ∈ P ′. A relation on Fπ is given by F1 ≤Fπ

F2 if x ≤P y for some x ∈ F1 and 
y ∈ F2. This is a partial order if π is an order projection. We then call Fπ the fibre poset. 
It is isomorphic to P ′:

Lemma 2.1 ([25, Proposition 1.1]). If π : P → P ′ is an order projection, then Fπ and 
P ′ are isomorphic posets.

2.2. Simplicial complexes

Throughout the present paper, all simplicial complexes are finite. By convention, the 
empty set is considered to be a simplex of every non-void simplicial complex. Given 
an (abstract) simplicial complex Δ, we shall denote its geometric realisation (defined 
up to linear homeomorphism) by ‖Δ‖, a polyhedron in some real euclidean space. The 
simplices of Δ are sometimes called its faces, and maximal faces are referred to as facets.
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For a face σ ∈ Δ, the subcomplex

lkΔ(σ) = {τ ∈ Δ | σ ∩ τ = ∅ and σ ∪ τ ∈ Δ}

is the link of σ.
If V is a set of vertices of Δ, the deletion of V in Δ is the subcomplex

delΔ(V ) = {σ ∈ Δ | σ ∩ V = ∅}.

The join Δ ∗ Δ′ of two simplicial complexes Δ and Δ′ is a new simplicial complex 
defined (up to isomorphism) as follows. Suppose the vertex sets of Δ and Δ′ are disjoint 
(otherwise, first replace Δ′, say, with a suitable isomorphic copy), and let

Δ ∗ Δ′ = {σ ∪ τ | σ ∈ Δ and τ ∈ Δ′}.

If F is a finite family of finite sets, cl(F) denotes the simplicial complex generated by 
F , i.e.,

cl(F) = {σ | σ ⊆ F for some F ∈ F};

it is called the closure of F .
Let σ ≺ τ indicate that σ ⊂ τ and dim σ = dim τ − 1. If σ ≺ τ and τ is the 

unique face (necessarily a facet) of Δ which properly contains σ, then the modification 
Δ ↘ Δ − {σ, τ} is an elementary collapse. A simplicial complex Δ is collapsible if 
Δ ↘ · · · ↘ ∅. Forman’s discrete Morse theory [11] provides a convenient method to 
establish collapsibility. The formulation in terms of matchings which we use here is due 
to Chari [8]; see also Forman [12].

A complete matching on Δ is a function μ : Δ → Δ which satisfies μ2 = id and either 
σ ≺ μ(σ) or μ(σ) ≺ σ for all σ ∈ Δ. Then μ is acyclic if

σ0 ≺ μ(σ0) � σ1 ≺ μ(σ1) � · · · ≺ μ(σt−1) � σt

with σ0 �= σ1 implies that σt �= σ0.

Lemma 2.2 (Forman [11]). A simplicial complex is collapsible if it has an acyclic com-
plete matching.

Given a finite poset P , its order complex Δ(P ) is the simplicial complex whose faces 
are the chains in P . In order to prevent proliferation of brackets when taking order 
complexes of poset intervals, we shall write Δ(x, y) instead of Δ((x, y)), Δ[x, y) instead 
of Δ([x, y)), and so on.
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2.3. PL topology

Next, some notions from PL topology are reviewed. We refer to, e.g., [13] or [26] for 
this and much more information.

Suppose Δ and Δ′ are simplicial complexes. A continuous map f : ‖Δ‖ → ‖Δ′‖
is piecewise linear, or PL, if its graph is a euclidean polyhedron. This is equivalent to 
there being simplicial subdivisions Δ̃ and Δ̃′ of Δ and Δ′, respectively, such that f is a 
simplicial map of the corresponding triangulations of ‖Δ‖ and ‖Δ′‖.

Say that Δ and Δ′ are PL homeomorphic if there exists a PL homeomorphism f :
‖Δ‖ → ‖Δ′‖ (it follows that f−1 is also PL).

A PL d-ball is a simplicial complex which is PL homeomorphic to the simplicial 
complex Δd whose only facet is the d-dimensional simplex. A PL (d − 1)-sphere is a 
simplicial complex which is PL homeomorphic to the simplicial complex obtained by 
removing the facet from Δd. In the PL category, balls and spheres behave as expected 
with respect to joins:

Lemma 2.3 ([13, Lemma 1.13]). Let Bd denote a PL d-ball and Sd a PL d-sphere. Then 
Bk ∗Bl ∼= Bk ∗ Sl ∼= Bk+l+1 and Sk ∗ Sl ∼= Sk+l+1, where ∼= means PL homeomorphic.

In particular, the cone over a PL d-ball or a PL d-sphere is a PL (d + 1)-ball, since a 
cone is a join with the 0-ball.

A PL d-manifold is a d-dimensional simplicial complex satisfying that, for all k ≥ 0, 
the link of every k-dimensional face is a PL (d − 1 − k)-ball or sphere. If Δ is a PL 
d-manifold, its boundary ∂Δ is the simplicial complex whose facets are the (d − 1)-
dimensional faces of Δ that are contained in only one facet of Δ. PL d-balls are PL 
d-manifolds with PL (d − 1)-spheres as boundaries. PL d-spheres are PL d-manifolds 
without boundaries. Every link in a PL sphere is a PL sphere. Moreover, a sphere cannot 
be a proper subcomplex of another sphere of the same dimension.

If P is a finite poset with 0̂ and 1̂, every link in the order complex Δ(P ) is a join of 
order complexes of open intervals in P . Hence, by Lemma 2.3, Δ(P ) is a PL manifold if 
and only if P is graded and Δ(x, y) is a PL ball or sphere for every interval (x, y) �= (0̂, ̂1)
in P .

As we shall see, the next lemma opens up for inductive arguments. However plausible 
it seems, the first statement would be false without the PL condition.

Lemma 2.4.

(i) If Δ1 and Δ2 are PL d-balls and Δ1∩Δ2 is a PL (d −1)-ball contained in ∂Δ1∩∂Δ2, 
then Δ1 ∪ Δ2 is a PL d-ball.

(ii) If Δ1 and Δ2 are PL d-balls with Δ1 ∩ Δ2 = ∂Δ1 = ∂Δ2, then Δ1 ∪ Δ2 is a PL 
d-sphere.



260 N. Abdallah et al. / Advances in Mathematics 348 (2019) 255–276
For a proof of (i), see [13, Corollary 1.28]. A proof of (ii) can be found in [21].
Although the second sentence of the following result is rarely stated explicitly, it 

follows from, e.g., the first part of Hudson’s proof; see [13, Theorem 1.26].

Lemma 2.5 (Newman’s theorem). The closure of the complement of a PL d-ball embedded 
in a PL d-sphere is a PL d-ball. Moreover, the two balls have the same boundary.

In particular, the deletion of a single vertex v in a PL d-sphere is a PL d-ball, since 
it is the closure of the complement of a cone over the link of {v}.

Lemma 2.6 ([13, Corollary 1.27]). If A is a PL d-ball and F is a PL (d −1)-ball contained 
in ∂A, then any PL homeomorphism ‖F‖ → ‖Δd−1‖ extends to a PL homeomorphism 
‖A‖ → ‖Δd‖.

Lemma 2.7 (Whitehead [28]; see also [26, Corollary 3.28]). A collapsible PL manifold is 
a PL ball.

3. PL topological tools

In this section, we develop elementary PL topological machinery that will serve as our 
toolbox in the proofs of the main results.

Let 2 denote the totally ordered, two-element set {α, β} where α < β.

Lemma 3.1. If P is a finite poset with 0̂ and 1̂, then Δ(P × 2 − {(0̂, β)}) is collapsible.

Proof. We shall apply Lemma 2.2. For brevity, let Q = P × 2 − {(0̂, β)}. Given a chain

C = {(x1, γ1) < (x2, γ2) < · · · < (xm, γm)} ⊆ Q,

put (xm+1, γm+1) = (1̂, β), and let j be the smallest index such that γj = β. Define 
p(C) = (xj , α). Observe that C ∪ {p(C)} is a chain in Q, and that p(C ∪ {p(C)}) =
p(C) = p(C − {p(C)}). Therefore,

μ(C) =
{
C ∪ {p(C)} if p(C) /∈ C,
C − {p(C)} otherwise

defines a complete matching μ on Δ(Q). Now, if C0 ≺ μ(C0) � C1 ≺ μ(C1) for chains 
C0 �= C1, then C1 has fewer elements than C0 with β as the second component. Hence 
μ is acyclic. �
Lemma 3.2. Suppose P is a finite poset with 0̂ and 1̂. If Δ(P ) is a PL d-ball (a PL 
d-sphere), then Δ(P × 2) is a PL (d + 1)-ball (a PL (d + 1)-sphere). In either case, 
Δ(P × 2 − {(0̂, β)}) is a PL (d + 1)-ball.
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Proof. Let R = P × 2 and Q = R − {(0̂, β)}. We induct on d, all assertions being clear 
when d = 0.

For p ∈ P , we have the following two poset isomorphisms:

Q<(p,γ) ∼=
{
P≤p if γ = α,
P≤p × 2 − {(0̂, β)} if γ = β,

and

Q>(p,γ) ∼=
{
P≥p × 2 if γ = α,
P≥p if γ = β.

Moreover, Q<(1̂,α)
∼= P . The induction assumption therefore implies that all links of 

non-empty faces in Δ(Q) are PL balls or spheres. Hence Δ(Q) is a PL (d + 1)-manifold. 
Now Lemmas 2.7 and 3.1 imply that Δ(Q) is a PL (d + 1)-ball.

Next observe that

Δ(R) = Δ(Q) ∪ Δ
(
R≥(0̂,β)

)
.

Both complexes in the union are PL (d +1)-balls; the latter is isomorphic to a cone over 
Δ(P ). Furthermore, we have

Δ(Q) ∩ Δ
(
R≥(0̂,β)

)
= Δ

(
R>(0̂,β)

)
,

which is contained in the boundaries of both balls. On the other hand, this intersection is 
isomorphic to Δ(P ). The desired conclusions about Δ(R) now follow from Lemma 2.4; 
in the case when Δ(P ) is a sphere, the hypotheses of Lemma 2.4 are fulfilled since a 
sphere cannot be a proper subcomplex of another sphere of the same dimension. �

We shall frequently find the need to modify simplicial complexes by replacing balls 
with other balls. The following two statements describe circumstances under which the 
topology is left unchanged.

Lemma 3.3. Suppose Δ, A, and A′ are PL d-balls such that A ⊆ Δ and A′ ∩Δ = ∂A′ =
∂A. Then (Δ −A) ∪A′ is a PL d-ball.

Proof. Let C be a cone over ∂Δ whose apex v is disjoint from A′ and Δ. By 
Lemma 2.4(ii), S = Δ ∪ C is a PL d-sphere. Put a = cl(S − A), which is a PL d-ball 
with ∂a = ∂A by Lemma 2.5. Since A′ ∩Δ = ∂A′ = ∂A, Σ = a ∪A′ is a PL d-sphere by 
Lemma 2.4(ii). Hence,
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delΣ({v}) = (Δ −A) ∪A′

is a PL d-ball. �
Lemma 3.4. Let Δ be a simplicial complex. Suppose A and A′ are PL d-balls and F
is a PL (d − 1)-ball such that A ⊆ Δ and F ⊆ ∂A ∩ ∂A′. If both cl(Δ − A) ∩ A and 
cl(Δ −A) ∩A′ are contained in F , then Δ and (Δ −A) ∪A′ are PL homeomorphic.

Proof. There is a PL homeomorphism ϕ : ‖F‖ → ‖Δd−1‖. By Lemma 2.6, it extends 
to PL homeomorphisms ϕ1 : ‖A‖ → ‖Δd‖ and ϕ2 : ‖A′‖ → ‖Δd‖. Let ψ = ϕ−1

2 ◦ ϕ1. 
Then ψ : ‖A‖ → ‖A′‖ is a PL homeomorphism whose restriction to ‖F‖ is the identity 
map. Obviously, Δ = cl(Δ −A) ∪A. Moreover, (Δ −A) ∪A′ = cl(Δ −A) ∪A′ because 
cl(Δ −A) ⊆ (Δ −A) ∪ F . Now define f : ‖Δ‖ → ‖(Δ −A) ∪A′‖ by

f(x) =
{
ψ(x) if x ∈ ‖A‖,
x if x ∈ ‖ cl(Δ −A)‖.

Then f is a well-defined PL map because cl(Δ − A) ∩ A ⊆ F , and the same holds for 
f−1 since cl(Δ −A) ∩A′ ⊆ F . �
4. Zippings and removals

In [25], Reading introduced the concept of a zipper in a poset. We restrict his definition 
somewhat.

Definition 4.1 (Reading [25]). Let P be a finite poset with 0̂ and 1̂, and distinct elements 
x, y, z ∈ P . Call (x, y, z) a zipper if

(i) z covers only x and y,
(ii) z = x ∨ y, where ∨ denotes join (supremum), and
(iii) [0̂, x) = [0̂, y).

The zipper is proper if z �= 1̂.

Definition 4.2 (Reading [25]). Given P with a partial order ≤ and a proper zipper 
(x, y, z), let P ′ = (P − {x, y, z}) 

⊎
{x′}, and define a partial order ≤′ on P ′ by x′ ≤′ x′

and

• a ≤′ b if a ≤ b,
• x′ ≤′ a if x ≤ a or y ≤ a, and
• a ≤′ x′ if a ≤ x (or, equivalently, a ≤ y),

for all a, b ∈ P − {x, y, z}.
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The fact that ≤′ is a partial order on P ′ is [25, Proposition 4.1]. We say that P ′ is 
the result of a zipping in P . The effect is that P ′ is obtained from P by identifying the 
elements x, y, and z; they become the element x′. Reading proved that this preserves 
PL spheres:

Theorem 4.3 ([25, Theorem 4.7]). If P ′ is obtained from P by zipping a proper zipper 
and Δ(P ) is a PL d-sphere, then so is Δ(P ′).

We shall prove a similar result for PL balls. In contrast to spheres, balls have bound-
aries. This causes complications that can be overcome by imposing additional restrictions 
on zippers. A version which suffices for our needs is the content of the next definition.

Recall that a coatom in a poset with 1̂ is an element covered by 1̂.

Definition 4.4. A zipper (x, y, z) is clean if it is proper, and for some coatom c there 
exists a poset isomorphism ϕ : [x, ̂1] → [x, c] × 2 such that ϕ(z) = (x, β).

Theorem 4.5. If P ′ is obtained from P by zipping a clean zipper and Δ(P ) is a PL d-ball, 
then so is Δ(P ′).

Proof. Suppose Δ(P ) is a PL d-ball and (x, y, z) is a clean zipper in P . Let Δxyz be the 
simplicial complex whose facets are the maximal chains in P containing x or y (note that 
this includes all that contain z), and let Δ′

x′ be the simplicial complex whose facets are 
the maximal chains in P ′ containing x′. By the definition of a zipping, Δ(P−{x, y, z}) =
Δ(P ′ − {x′}) and delΔxyz

({x, y, z}) = delΔ′
x′ ({x′}). Hence,

Δ(P ′) = Δ(P ′ − {x′}) ∪ Δ′
x′ (4.1)

= Δ(P − {x, y, z}) ∪ Δ′
x′

= (Δ(P ) − Δxyz) ∪ delΔxyz
({x, y, z}) ∪ Δ′

x′

= (Δ(P ) − Δxyz) ∪ delΔ′
x′ ({x

′}) ∪ Δ′
x′

= (Δ(P ) − Δxyz) ∪ Δ′
x′ .

That is, Δ(P ′) is obtained from Δ(P ) by removing Δxyz and inserting Δ′
x′ . Our goal is 

to apply either Lemma 3.3 or Lemma 3.4 with Δ = Δ(P ), A = Δxyz, A′ = Δ′
x′ , and (if 

needed) F = delΔxyz
({x, y, z}) = delΔ′

x′ ({x′}). The hypotheses must be verified.
Even though it originally concerns the situation when Δ(P ) is a sphere, the appro-

priate part of Reading’s proof of [25, Theorem 4.7] shows that Δxyz is a PL d-ball also 
in our situation.2

2 One invokes Lemma 2.4(i) using that Δxyz is the union of the PL d-balls Δ(0̂, x] ∗Δ(x, ̂1) and Δ(0̂, y] ∗
Δ(y, ̂1) whose intersection is the PL (d − 1)-ball Δ(0̂, x) ∗ Δ[z, ̂1), which is contained in the boundaries of 
both.
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Next we observe that delΔxyz
({x, y, z}) ⊆ ∂Δxyz. Indeed, since z = x ∨y, the cleanness 

of (x, y, z) implies that every facet C in delΔxyz
({x, y, z}) contains some w which covers 

exactly one of x and y, say x. Hence, C extends uniquely to a facet in Δxyz, namely by 
adding x.

Claim. If Δ(y, ̂1) and Δ(0̂, x) are PL spheres, delΔxyz
({x, y, z}) is a PL (d − 1)-sphere. 

Otherwise, delΔxyz
({x, y, z}) is a PL (d − 1)-ball.

Let us assume this claim for now and turn to its proof later.
Suppose first that delΔxyz

({x, y, z}) is a sphere. Since it cannot be a proper subcom-
plex of another (d − 1)-sphere, delΔxyz

({x, y, z}) = ∂Δxyz. Since Δ′
x′ is a cone over 

the PL sphere delΔ′
x′ ({x′}) = delΔxyz

({x, y, z}) with apex x′, Δ′
x′ is a PL d-ball and 

delΔxyz
({x, y, z}) = ∂Δ′

x′ . By Lemma 3.3 and (4.1), Δ(P ′) is a PL d-ball.
Now suppose delΔxyz

({x, y, z}) is a ball. Since Δ′
x′ is a cone over this ball with apex 

x′, Δ′
x′ is a PL d-ball with the PL (d −1)-ball delΔ′

x′ ({x′}) = delΔxyz
({x, y, z}) contained 

in its boundary. Observe that

cl(Δ(P ) − Δxyz) ∩ Δxyz ⊆ Δ(P − {x, y, z}) ∩ Δxyz = delΔxyz
({x, y, z})

and

cl(Δ(P ) − Δxyz) ∩ Δ′
x′ ⊆ Δ(P ′ − {x′}) ∩ Δ′

x′ = delΔ′
x′ ({x

′}).

Lemma 3.4 now shows that Δ(P ) and (Δ(P ) − Δxyz) ∪ Δ′
x′ are PL homeomorphic. By 

(4.1), Δ(P ′) is a PL d-ball.

It remains to verify the claim. Define Δ = Δ(y, ̂1), A = Δ[z, ̂1), and A′ = Δ((x, ̂1) −
{z}). Observe that

delΔxyz
({x, y, z}) = Δ(0̂, x) ∗ ((Δ −A) ∪A′).

By Lemma 2.3, the claim follows if Δ and (Δ − A) ∪ A′ are PL homeomorphic. There 
are two cases:

Case 1: Δ is a PL k-sphere. In this case, Δ(z, ̂1) and Δ(x, ̂1) are spheres, the former 
because it is a link in Δ(y, ̂1), the latter by Lemma 3.2 because [x, c] ∼= [z, ̂1] with c being 
the coatom of Definition 4.4. Hence, A and A′ are PL k-balls, and ∂A = ∂A′ = Δ(z, ̂1) =
Δ ∩ A′. By Lemma 2.5, cl(Δ − A) is a PL k-ball, and thus Lemma 2.4(ii) implies that 
cl(Δ −A) ∪A′ = (Δ −A) ∪A′ is a PL k-sphere, as desired.

Case 2: Δ is a PL k-ball. We shall apply Lemma 3.3 or Lemma 3.4, the latter with 
F = Δ(z, ̂1). Again, there is a coatom c such that [x, c] ∼= [z, ̂1]. By Lemma 3.2, A′ is a 
PL k-ball, as are A and Δ, whereas F is either a PL (k− 1)-ball or a PL (k− 1)-sphere. 
Since A is a cone over F , F ⊆ ∂A. Consider a maximal chain C in (z, ̂1) with minimum 
w (let w = 1̂ if (z, ̂1) is empty). Then ϕ(w) = (v, β) for some v ≤ c which covers x, where 
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ϕ : [x, ̂1] → [x, c] × 2 is the poset isomorphism provided by Definition 4.4. The only way 
to extend C to a maximal chain in (x, ̂1) − {z} is to add v. Hence F ⊆ ∂A′.

If F is a sphere, we have F = ∂A = ∂A′ since a sphere cannot be a proper subcomplex 
of another sphere of the same dimension. Lemma 3.3 then shows that (Δ −A) ∪A′ is a 
PL k-ball.

If, instead, F is a ball, we observe that

cl(Δ −A) ∩A ⊆ Δ((y, 1̂) − {z}) ∩ Δ[z, 1̂) = Δ(z, 1̂) = F

and

cl(Δ −A) ∩A′ ⊆ Δ((y, 1̂) − {z}) ∩ Δ((x, 1̂) − {z}) = Δ(z, 1̂) = F.

Thus, Lemma 3.4 implies that (Δ −A) ∪A′ is a PL k-ball. The claim is established. �
In addition to zippings, we shall find the need for another way to modify posets which 

also preserves PL balls.

Definition 4.6. Let P be a finite poset with 0̂ and 1̂. An element z �= 1̂ is called removable
if z covers exactly one element x, and for some coatom c there exists a poset isomorphism 
ϕ : [x, ̂1] → [x, c] × 2 such that ϕ(z) = (x, β).

If z ∈ P is removable, we shall refer to P−{z} as obtained by a removal. Alternatively, 
in analogy with zippings, we may consider P − {z} as being obtained by identifying x
and z. Removals produce balls from PL balls or spheres:

Theorem 4.7. Suppose z ∈ P is removable. If Δ(P ) is a PL d-ball or a PL d-sphere, then 
Δ(P − {z}) is a PL d-ball.

Proof. Let x and c be as in Definition 4.6. Since Δ(x, c) is a PL ball or sphere, Δ((x, ̂1) −
{z}) is a PL ball by Lemma 3.2. If x = 0̂ we are done, so suppose x > 0̂. Then Δ(P ) is a 
ball since the link of {z} is a cone with apex x and therefore not a sphere. Let Δx be the 
simplicial complex whose facets are the maximal chains in P containing x. We shall apply 
Lemma 3.4 with Δ = Δ(P ), A = Δx, A′ = delΔx

({z}), and F = delΔx
({x, z}). Since 

Δx is a cone over lkΔ(P )({x}), A is a PL d-ball satisfying F ⊆ ∂A. Furthermore, F =
Δ(0̂, x) ∗Δ((x, ̂1) −{z}), which is a PL (d − 1)-ball by Lemma 2.3, and A′ is a cone over 
F , hence a PL d-ball with F in its boundary. Finally, cl(Δ −A) ∩A′ ⊆ cl(Δ −A) ∩A ⊆ F

because every chain which contains z or x is contained in Δx. By Lemma 3.4,

(Δ −A) ∪A′ = (Δ(P ) − Δx) ∪ delΔx
({z}) = Δ(P − {z})

is PL homeomorphic to Δ = Δ(P ). �
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5. Special partial matchings

The following definition is taken from [1].

Definition 5.1. Suppose P is a finite poset with 1̂, and let � denote its cover relation. 
A special partial matching, or SPM, on P is a function M : P → P such that

• M2 = id,
• M(1̂) � 1̂,
• for all x ∈ P , we have M(x) � x, M(x) = x, or x � M(x), and
• if x � y and M(x) �= y, then M(x) < M(y).

The terminology comes from the fact that an SPM without fixed points is precisely a 
special matching as defined by Brenti [5].

For special matchings, the following important lemma is essentially due to Brenti; 
see [5, Lemma 4.2], which is, however, stated under a gradedness assumption. A proof 
without this assumption appears in [15]. We provide here a different proof which is valid 
also for SPMs.

Lemma 5.2 (Lifting property). Suppose that P is a finite poset with 1̂, and M is an SPM 
on P . If x, y ∈ P with x < y and M(y) ≤ y, then

(i) M(x) ≤ y,
(ii) M(x) ≤ x ⇒ M(x) < M(y), and
(iii) M(x) ≥ x ⇒ x ≤ M(y).

Proof. It suffices to prove (i) and (ii) because together they imply (iii).
Consider a saturated chain x = x0 � x1 � · · · � xk = y. By the definition of an SPM, 

for each i < k, either M(xi) < M(xi+1) or M(xi) = xi+1.
(i) We either have M(x0) < M(x1) < · · · < M(y) ≤ y or M(x0) < M(x1) < · · · <

M(xi) = xi+1 ≤ y for some i < k.
(ii) We either have M(x0) < M(x1) < · · · < M(y) or M(y) > M(xk−1) > · · · >

M(xi+1) = xi ≥ x ≥ M(x) for some i < k. �
Next, a fundamental construction is described. It presents a poset with an SPM as 

the image of an order projection of a poset which in an appropriate sense is easier to 
understand. This extends Reading’s corresponding construction for Bruhat intervals [25, 
Section 5].

Let P be a finite poset with 0̂ and 1̂. Assume M is an SPM on P , and define π :
[0̂, M(1̂)] × 2 → P by
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(p, γ) �→
{
M(p) if γ = β and p � M(p),
p otherwise.

It is readily checked that the fibres of π are as follows:

π−1(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(M(p), β)} if p � M(1̂),
{(p, α)} if p < M(p),
{(p, α), (p, β)} if p = M(p),
{(p, α), (M(p), β), (p, β)} if M(p) < p ≤ M(1̂).

(5.1)

Lemma 5.3. The map π is an order projection. In particular, P is isomorphic to the fibre 
poset Fπ.

Proof. For brevity, define Q = [0̂, M(1̂)] × 2. First we show that π : Q → P is order-
preserving. Suppose (p′, γ′) ≤ (p, γ) in Q. The only non-obvious case to consider is when 
π((p′, γ′)) = M(p′). Then, if π((p, γ)) = M(p), M(p′) ≤ M(p) follows from the lifting 
property since p < M(p) in this case. If, instead, π((p, γ)) = p we have M(p) ≤ p because 
γ = β. Hence, lifting yields M(p′) ≤ p, as desired. Thus π is order-preserving.

Now assume p′ ≤ p in P . We have to produce q′ ∈ π−1(p′) and q ∈ π−1(p) such that 
q′ ≤ q in Q.

• If p ≤ M(1̂), we may use q′ = (p′, α) and q = (p, α).
• If p � M(1̂) and M(p′) ≥ p′, use q′ = (p′, α) and q = (M(p), β); lifting first implies 

M(p) < p and then p′ ≤ M(p).
• Finally, if p � M(1̂) and M(p′) < p′, we may take q′ = (M(p′), β) and q = (M(p), β); 

here lifting first yields M(p) < p and then M(p′) ≤ M(p).

Thus π is an order projection. By Lemma 2.1, P and Fπ are isomorphic. �
The previous lemma describes a poset with an SPM as a fibre poset. Next, we show 

that the fibre poset can be constructed from the domain of the order projection using 
modifications that change the topology in a controlled manner. This is analogous to 
Reading’s [25, Theorem 5.5].

Theorem 5.4. Let P be a finite poset with 0̂ and 1̂. If M is an SPM on P , then P can 
be obtained from [0̂, M(1̂)] × 2 by a sequence of clean zippings and removals.

Proof. Again, let Q = [0̂, M(1̂)] ×2. Suppose F1, . . . , Ft is a linear extension of the fibre 
poset Fπ of the order projection π : Q → P . This means that

Fk � x ≤ y ∈ Fl ⇒ k ≤ l. (5.2)
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Consider the sequence of posets Q = P0, P1, . . . , Pt = Fπ
∼= P , where Pi is obtained 

from Pi−1 by identifying the elements of Fi. More precisely, as sets,

Pi =
(
Q−

i⋃
j=1

Fj

)
∪ {F1, . . . , Fi},

and the order on Pi is given by a ≤Pi
b if and only if (i) a, b ∈ Q and a ≤Q b, (ii) a = Fk, 

b ∈ Q, and x ≤Q b for some x ∈ Fk, or (iii) a = Fk, b = Fl, and x ≤Q y for some x ∈ Fk

and y ∈ Fl.
Clearly, Pi

∼= Pi+1 if |Fi+1| = 1. It suffices to prove that Pi+1 is obtained from Pi by 
a removal if |Fi+1| = 2 and by a clean zipping if |Fi+1| = 3.

Suppose first |Fi+1| = 2, so that Fi+1 = {(p, α), (p, β)} for some p = M(p). We must 
show that (p, β) only covers (p, α) in Pi. By (5.2), all other elements below (p, β) in 
Pi are of the form Fk, k ≤ i. Suppose (p, β) covers Fk. Then there exists (p′, β) ∈ Fk

such that p covers p′ in P . Since M is an SPM, M(p′) ≤ p′, which, by (5.1), implies 
(p′, α) ∈ Fk. Hence (p, α) >Pi

Fk, which is the desired contradiction.
The conditions on removable elements that are left to check involve only the structure 

of the order filter generated by (p, α). By (5.2), this order filter in Pi is equal to the 
same order filter in Q. In Q, however, the conditions are obvious (as the coatom c, take 
(M(1̂), α)).

Second, assume |Fi+1| = 3 with Fi+1 = {(p, α), (M(p), β), (p, β)}; in particular, this 
means that M(p) < p ≤ M(1̂). We have to show that ((p, α), (M(p), β), (p, β)) is a 
clean zipper in Pi. That (p, β) only covers (p, α) and (M(p), β) in Pi is shown in the 
same way as when |Fi+1| = 2. Next, let us verify that (p, α) and (M(p), β) are above 
the same elements. By (5.2), only fibres Fk, k ≤ i, need to be considered. So, suppose 
Fk <Pi

(p, α). That is, there exists (p′, α) ∈ Fk with p′ < p.

• If M(p′) < p′, (M(p′), β) ∈ Fk. The lifting property asserts that M(p′) < M(p). 
Therefore, Fk <Pi

(M(p), β).
• If M(p′) ≥ p′, lifting implies p′ ≤ M(p). Hence, (p′, α) <Q (M(p), β) so that, again, 

Fk <Pi
(M(p), β).

Now, suppose instead Fk <Pi
(M(p), β).

• If (p′, α) ∈ Fk for some p′ ≤ M(p), then (p′, α) <Q (p, α) and Fk <Pi
(p, α).

• Otherwise, (5.1) shows that {(M(p′), β), (p′, α)} ⊆ Fk holds for some M(p′) ≤ p′

and M(p′) < M(p). Then the lifting property yields p′ < p. Thus, (p′, α) <Q (p, α)
and Fk <Pi

(p, α).

The conditions on clean zippers that remain to be verified involve only the structure 
of the order filter generated by (p, α) and (M(p), β). As before, the conditions hold in 
Q, hence in Pi by (5.2). �
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6. Main results

Combining the material of the previous two sections, we obtain strong topological 
statements about posets with special partial matchings. These assertions, which are 
recorded in this section, form our main results.

Theorem 6.1. Let P be a finite poset with 0̂ and 1̂, and suppose M is an SPM on P . 
If Δ(0̂, M(1̂)) is a PL d-ball, then Δ(P ) is a PL (d + 1)-ball. If Δ(0̂, M(1̂)) is a PL 
d-sphere, then Δ(P ) is a PL (d + 1)-ball or a PL (d + 1)-sphere; the latter holds if and 
only if M is actually a special matching.

Proof. It follows from Lemma 3.2 that Δ
(
[0̂,M(1̂)] × 2

)
is a PL (d + 1)-ball (sphere) 

if Δ(0̂, M(1̂)) is a PL d-ball (sphere). According to Theorem 5.4, a sequence of clean 
zippings and removals converts [0̂, M(1̂)] ×2 into P . Moreover, removals are used precisely 
when M has fixed points; this follows from the proof of Theorem 5.4.

By Theorems 4.3, 4.5, and 4.7, Δ(P ) is a PL (d +1)-ball or sphere, the latter occurring 
precisely when Δ(0̂, M(1̂)) is a sphere and M has no fixed points, i.e., is a special 
matching. �

Let us now formally define the notions of zircons and pircons, which were discussed 
in the introduction. Given a poset P , recall that P≤x = {y ∈ P | y ≤ x}.

Definition 6.2. A poset P is a zircon if, for every non-minimal element x ∈ P , the order 
ideal P≤x is finite and admits a special matching.

Actually, Marietti [22] originally defined zircons in a slightly different way. His defini-
tion and Definition 6.2 are, however, equivalent; see [15, Proposition 2.3]. It is obvious 
how to generalise this to the SPM setting:

Definition 6.3. A poset P is a pircon if, for every non-minimal element x ∈ P , the order 
ideal P≤x is finite and admits an SPM.

Clearly, zircons are pircons. Recall from the introduction that all open intervals in 
zircons are topological spheres. This characterises zircons among pircons:

Theorem 6.4. Suppose P is a pircon and x < y in P . Then Δ(x, y) is a PL ball or a PL 
sphere. Moreover, there exist x < y in P such that Δ(x, y) is a ball if and only if P is 
not a zircon.

Proof. First, observe that every principal order ideal P≤y has a unique minimum. Indeed, 
the lifting property shows that every minimal element in P≤y also belongs to P≤M(y), 
where M is an SPM on P≤y. The observation now follows by induction on the cardinality 
of a longest chain in the ideal.
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Let 0̂ be the minimum of P≤y. Using similar induction, we may assume Δ(0̂, M(y))
is a PL ball or sphere. By Theorem 6.1, Δ(0̂, y) is a PL ball or sphere, too. The same 
holds for Δ(x, y) since it is a link in Δ(0̂, y).

For the final statement, we know that open intervals in zircons are spheres. On the 
other hand, if P is not a zircon, some P≤y admits an SPM with fixed points. Theorem 6.1
then shows that Δ(0̂, y) is a ball, where again 0̂ is the minimum of P≤y. �
7. Pircons in Coxeter group theory

In this section, we demonstrate how Theorem 6.4 can be applied to certain posets 
appearing in Coxeter group theory. Acquaintance with the basics of this theory, as ex-
plained for example in [3] or [17], is assumed.

7.1. Twisted identities

As a first application, we shall prove [16, Conjecture 6.3]. The reader may consult [16]
for context. Here we only describe the necessary ingredients for the statement and its 
proof.

Let (W, S) be a Coxeter system with an involutive automorphism θ. Define two subsets 
of W as follows. The set of twisted involutions is

I(θ) = {w ∈ W | θ(w) = w−1},

and the set of twisted identities is

ι(θ) = {θ(w)w−1 | w ∈ W}.

It is clear that ι(θ) ⊆ I(θ).
Say that θ has the no odd flip, or NOF, property if sθ(s) has even or infinite order 

for every s ∈ S with s �= θ(s).3 For any X ⊆ W , let Br(X) denote the subposet of the 
Bruhat order on W which is induced by X. The identity element e ∈ W is the minimum 
in Br(W ), hence in Br(ι(θ)).

The poset Br(I(θ)) is always graded; denote its rank function by ρ. Whenever Br(ι(θ))
is graded, its rank function is the restriction of ρ. Furthermore, Br(ι(θ)) is graded if θ
satisfies the NOF property [16].

When W is of type A2n+1 and θ is the unique non-trivial involution, [1, Theorem 4.3]
shows that Br(ι(θ)) is a pircon. This is generalised substantially in the next result. The 
main proof ideas are, however, the same.

Theorem 7.1. If θ has the NOF property, then Br(ι(θ)) is a pircon.

3 This means that θ does not flip any edges with odd labels in the Coxeter graph.
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Proof. Choose w ∈ ι(θ) and s ∈ S such that ws < w in the Bruhat order. For x ∈
Br(ι(θ))≤w, put M(x) = θ(s)xs. We shall prove that M is an SPM on this (finite) order 
ideal.

Observe that

M(x) =
{
ϕ(x) if ϕ(x) ∈ ι(θ),
x otherwise,

where the map

ϕ(x) =
{
xs if M(x) = x,
M(x) otherwise

is a special matching on Br(I(θ))≤w by [14, Theorem 4.5]. Hence, M preserves Br(ι(θ))≤w

by the lifting property applied to ϕ.
It follows from [16] that for x ∈ Br(ι(θ)),

M(x) = x ⇒ ϕ(x) > x. (7.1)

Therefore, the second property of an SPM (see Definition 5.1) holds, and the first and 
third properties are readily checked. It remains to verify the fourth.

Suppose x � y in Br(ι(θ))≤w and M(x) �= y. Since Br(ι(θ)) has the induced rank 
function of Br(I(θ)), x � y in Br(I(θ))≤w, too. We have to show that M(x) < M(y). 
Since ϕ is a special matching, this is obvious if M(x) �= x and M(y) �= y. Apart from 
some trivial cases, we thus have to consider (1) M(x) = x and M(y) < y, and (2) 
M(x) > x and M(y) = y. However, we shall see that both cases are impossible.

In the former case, by (7.1) we have ϕ(x) > x �= ϕ(y) < y, which contradicts the 
lifting property. In the latter case, (7.1) implies ϕ(y) � y. Since ϕ(y) � ϕ(x), too, we 
have a contradiction because according to [16, Lemma 4.5], under the NOF assumption, 
an element in I(θ) − ι(θ) can cover at most one twisted identity in Br(I(θ)). �
Remark. In general, Theorem 7.1 is false without the NOF assumption. For example, 
suppose W is of type A4 with generating set S = {s1, s2, s3, s4} such that s1s2, s2s3, and 
s3s4 have order 3, and all other generator pairs commute. Let θ be the unique non-trivial 
involution of (W, S), mapping si to s5−i. Define w = s2s1s3s2s4s3. One readily checks 
that Br(I(θ))≤w is isomorphic to the rank 3 boolean lattice, and that Br(ι(θ))≤w is 
obtained from Br(I(θ))≤w by removing the rank 2 element s2s3s2. The resulting poset 
does not admit an SPM, hence Br(ι(θ)) cannot be a pircon.

In light of Theorem 6.4, Theorem 7.1 immediately implies the following result, which 
is the previously mentioned conjecture.
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Corollary 7.2 ([16, Conjecture 6.3]). Suppose θ has the NOF property and let I be an 
open interval in Br(ι(θ)). Then Δ(I) is a PL ball or a PL sphere.

Remarks.
1. Can, Cherniavsky, and Twelbeck [6] established Corollary 7.2 for W of type A2n+1

using shellability methods.
2. It follows from [16, Theorem 4.12] that Δ(I) is a sphere precisely when I is full, 

meaning that it coincides with an interval in Br(I(θ)), i.e., I = {x ∈ ι(θ) | u < x < w} =
{x ∈ I(θ) | u < x < w} for some u, w ∈ ι(θ).

3. The remark after Theorem 7.1 shows that Br(ι(θ)) is not a pircon if W is of 
type A2m, m ≥ 2, with θ �= id. It is, however, an open question whether the open 
intervals are PL balls or spheres. This is not true for arbitrary W and θ. For example, 
as shown in [16, Example 4.7], if W is of type Ã2 with θ �= id, there are intervals in 
Br(ι(θ)) which are not even graded.

7.2. Quasiparabolic W -sets

Our second application concerns quasiparabolic W -sets as introduced by Rains and 
Vazirani [24] as a context to which many nice properties of parabolic quotients extend. 
Let us recall some crucial definitions and results from [24]. The reader should consult 
the original source for much more background and motivation.

Again (W, S) denotes a Coxeter system. Say that X is a scaled W -set if X is a (left) 
W -set equipped with a function ht : X → Z such that |ht(sx) − ht(x)| ≤ 1 for all x ∈ X

and all s ∈ S. An element x ∈ X is called W -minimal if ht(x) ≤ ht(sx) for all s ∈ S. 
Say that X is bounded from below if the function ht is bounded from below.

Let T = {wsw−1 | w ∈ W, s ∈ S} denote the set of reflections.

Definition 7.3 ([24, Definition 2.3]). A scaled W -set X is called quasiparabolic if it sat-
isfies the following two properties.

(1) For all t ∈ T and x ∈ X, if ht(tx) = ht(x), then tx = x.
(2) For all t ∈ T , x ∈ X, and s ∈ S, if ht(tx) > ht(x) and ht(stx) < ht(sx), then 

tx = sx.

Lemma 7.4 ([24, Corollary 2.10]). Each orbit of a quasiparabolic W -set contains at most 
one W -minimal element.

Suppose now that X is quasiparabolic with a W -minimal element x0. Assume, without 
loss of generality, that ht(x0) = 0. If y ∈ X with ht(y) = k, then s1 · · · skx0 is a reduced 
expression for y if y = s1 · · · skx0 for some si ∈ S. All elements in the orbit of x0
have reduced expressions [24]. Rather than taking the original definition of Rains and 
Vazirani, we use the following result as our definition of the Bruhat order ≤ on X.
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Definition 7.5 ([24, Theorem 5.15]). Let y = s1 · · · skx0 be a reduced expression. Then

x ≤ y ⇐⇒ x = si1 · · · sijx0 for some 1 ≤ i1 < · · · < ij ≤ k.

In particular, elements in different W -orbits are incomparable. Although not obvious 
from Definition 7.5, the Bruhat order is a partial order on X, which we denote by Br(X); 
it is graded with rank function ht [24]. In particular, W -minimal elements are minimal 
in the Bruhat order.

Again there is a “lifting property”:

Lemma 7.6 ([24, Lemma 5.7]). Suppose x, y ∈ X and s ∈ S. If x ≤ y and sx � sy, then 
sx ≤ y and x ≤ sy.

Theorem 7.7. If X is a quasiparabolic W -set bounded from below, then Br(X) is a pircon. 
In particular, the order complex of every open interval in Br(X) is a PL ball or a PL 
sphere.

Proof. Suppose z ∈ X is a non-minimal element. Since X is bounded from below, there 
is a minimal element x0 < z. By Lemma 7.4, x0 is in fact unique since elements in 
different W -orbits are incomparable. Hence Br(X)≤z = [x0, z]. By Definition 7.5, [x0, z]
is finite. Choose a reduced expression s1 · · · skx0 for z. For x ∈ [x0, z], let M(x) = s1x. 
We shall prove that M is an SPM on [x0, z].

• For all x ≤ z, s1s1x = x. Thus M2 = id.
• Since ht(s1z) = ht(s2 · · · skx0) = k − 1, M(z) � z. Lemma 7.6 thus shows that 

M(x) ≤ z for all x ≤ z.
• For all x ≤ z, s1x and x are comparable by [24, Remark 5.2], and |ht(s1x) −ht(x)| ≤ 1. 

Hence, M(x) � x, M(x) = x, or x � M(x).
• Suppose x � y ≤ z and M(x) �= y. Then s1x �= y, x �= s1y, and s1x �= s1y. By 

Lemma 7.6, we either have s1x < s1y, or else s1x < y and x < s1y. In the latter 
case, s1x ≯ x, so s1x ≤ x < s1y. Hence, in either case, M(x) < M(y). �

The topological conclusion of Theorem 7.7 is implied by [24, Theorem 6.4], which 
claims CL-shellability of the intervals. Unfortunately, the proof of that result has turned 
out to be flawed; see the discussion in [6].

A familiar example of a quasiparabolic W -set is the parabolic quotient W J , J ⊆ S, 
which consists of the minimal length representatives of the left cosets of the parabolic 
subgroup WJ in W ; the result of the action of w ∈ W on x ∈ W J is given by the 
minimal length representative of (wx)WJ . In this setting, the topological conclusion of 
Theorem 7.7 was established by Björner and Wachs [4] using shellability techniques.

Other examples include several instances of ι(θ) (with W acting by twisted conjuga-
tion, i.e., the result of the action of w on x is given by wxθ(w−1)), including the odd rank 
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type A case [24]. In fact, it seems possible that ι(θ) is always a quasiparabolic W -set 
with this action whenever θ has the NOF property; if so, Theorem 7.1 would be a special 
case of Theorem 7.7. We neither know of a proof nor of a counterexample.

8. Open questions

We conclude the paper with a couple of questions that suggest themselves naturally.
Clearly, all zircons and pircons have rank functions.4 Indeed, the rank of an element 

x equals the dimension of the ball or sphere Δ(0̂, x) plus two, where 0̂ is the unique 
minimal element below x; the uniqueness was shown in the proof of Theorem 6.4.

Let Z be a zircon with rank function rk. For a non-minimal element z ∈ Z, let Mz

denote a fixed special matching on Z≤z. Given an induced subposet P ⊆ Z and p ∈ P , 
define

M ′
p(x) =

{
Mp(x) if Mp(x) ∈ P ,
x otherwise.

Suppose M ′
p is an SPM on P≤p for every non-minimal element p ∈ P . If, moreover, the 

restriction of rk to P is the rank function of P , call P an induced pircon of Z.
It follows from the proof of Theorem 7.1 that every pircon of the form Br(ι(θ)) is an 

induced pircon of the corresponding zircon Br(I(θ)). Similarly, Br(W J) is an induced 
pircon of Br(W ) for any J ⊆ S.

Question 8.1. Is every pircon an induced pircon of some zircon?

A common way to establish topological consequences such as those of Theorem 6.4
is to prove shellability. Beginning with Björner [2], there are several variations of lex-
icographic shellability; see, e.g., Wachs’ survey [27]. Under this umbrella are gathered 
several similarly flavoured combinatorial methods that can be used to establish shella-
bility of order complexes by means of certain labellings of the posets.

Concerning zircons, the following question is known to have an affirmative answer for 
Br(W ) in arbitrary type [4], as well as for Br(I(θ)) in types A, B, and D [19,18,20]. For 
other pircons, it has been established for Br(W J) [4] and for Br(ι(θ)) in type A of odd 
rank [6].

Question 8.2. Is every interval in every pircon lexicographically shellable?

In case both the previous questions turn out to have affirmative answers, one may 
speculate that even more could be true. The aforementioned result from [6] can be 

4 For zircons, the existence of a rank function is part of Marietti’s [22] original definition; see the discussion 
after Definition 6.2.
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interpreted in the following way. For W of type An, Incitti [19] established lexicographic 
shellability of Br(I(θ)) by producing an EL-labelling of this poset. When n is odd and 
θ �= id, Can, Cherniavsky, and Twelbeck proved that the restriction of this labelling to 
the induced pircon Br(ι(θ)) is an EL-labelling, too.

Question 8.3. Is it true that every induced pircon has an EL-labelling which is induced 
from an EL-labelling of the corresponding zircon?
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