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Abstract

Portfolio managers have a great interest in detecting high-performing stocks
early on. Detecting outperforming stocks has for long been of interest from a
research as well as financial point of view. Quantitative methods to predict stock
movements have been widely studied in diverse contexts, where some present
promising results. The quantitative algorithms for such prediction models can
be, to name a few, support vector machines, tree-based methods, and regression
models, where each one can carry di↵erent predictive power. Most previous re-
search focuses on indices such as S&P 500 or large-cap stocks, while small- and
micro-cap stocks have been examined to a lesser extent. These types of stocks
also commonly share the characteristic of high volatility, with prospects that
can be di�cult to assess. This study examines to which extent widely studied
quantitative methods such as random forest, support vector machine, and lo-
gistic regression can produce accurate predictions of stock price directions on a
quarterly and yearly basis. The problem is modeled as a binary classification
task, where the aim is to predict whether a stock achieves a return above or
below a benchmark index. The focus lies on Asian small- and micro-cap stocks.
The study concludes that the random forest method for a binary yearly predic-
tion produces the highest accuracy of 69.64%, where all three models produced
higher accuracy than a binary quarterly prediction. Although the statistical
power of the models can be ruled adequate, more extensive studies are desir-
able to examine whether other models or variables can increase the prediction
accuracy for small- and micro-cap stocks.

Keywords: Machine Learning, Classification, Classification Trees, Random
Forest, Support Vector Machine, Logistic Regression, Stocks, Stock Market,
Fund Management, Asset Management, Investments, Asia, Small Cap, Micro
Cap.



Sammanfattning

Portföljförvaltare har ett stort intresse av att upptäcka högpresterande ak-
tier tidigt. Detektering av högavkastande aktier har länge varit av stort in-
tresse dels i forskningssyfte men ocks̊a ur ett finansiellt perspektiv. Kvantita-
tiva metoder för att förutsäga riktning av aktiepriset har studerats i stor ut-
sträckning där vissa presenterar lovande resultat. De kvantitativa algoritmerna
för s̊adana prediktionsmodeller kan vara, för att nämna ett f̊atal, support vec-
tor machines, trädbaserade metoder och regressionsmodeller, där var och en
kan bära olika prediktiv kraft. Majoriteten av tidigare studier fokuserar p̊a
index s̊asom S&P 500 eller storbolagsaktier, medan små- och mikrobolagsak-
tier har undersökts i mindre utsträckning. Dessa sistnämnda typer av aktier
innehar ofta en hög volatilitet med framtidsutsikter som kan vara sv̊ara att
bedöma. Denna studie undersöker i vilken utsträckning väletablerade kvan-
titativa modeller s̊asom random forest, support vector machine och logistisk
regression, kan ge korrekta förutsägelser av små- och mikrobolags aktiekursrikt-
ningar p̊a kvartals- och årsbasis. I avhandlingen modelleras detta som ett binärt
klassificeringsproblem, där avkastningen för varje aktie antingen är över eller un-
der jämförelseindex. Fokuset ligger p̊a asiatiska små- och mikrobolag. Studien
drar slutsatsen att random forest för en binär årlig prediktion ger den högsta
noggrannheten p̊a 69,64 %, där samtliga tre modeller ger högre noggrannhet
än en binär kvartalsprediktion. Även om modellerna bedöms vara statistiskt
säkerställda, är det önskvärt med fler omfattande studier för att undersöka om
andra modeller eller variabler kan öka noggrannheten i prediktionen för små-
och mikrobolags aktiekursriktning.

Nyckelord: Maskininlärning, Klassificering, Klassificeringsträd, Random For-
est, Support Vector Machine, Logistisk Regression, Aktier, Aktiemarknad, Fondförvaltning,
Investeringar, Asien, Småbolag, Mikrobolag.

Svensk titel: Prediktering av aktiekursriktningen för asiatiska småbolagsaktier
med maskininlärning
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1 Introduction

The Introduction section includes Background, Project Purpose and Problema-

tization, Research Questions, Scope and Delimitations and Literature Review.

1.1 Background

The predictability of the stock market has been discussed for a long time. For
many years, the E�cient Market Hypothesis (EMH) was the most established
theory within finance. The EMH implies that abnormal returns cannot be
gained by looking at historical price movements [1]. However, various studies
have rejected the EMH and suggested that security return may actually be pre-
dictable [2][3]. Hence, di↵erent methods have been studied to predict future
prices and detect high-performing stocks to one’s advantage. However, stock
price forecasting is still viewed as a challenging task given the non-stationary,
volatile and noisy characteristics of the stock market. Unexpected events and
news such as catastrophes, political tensions, or business conduct may all im-
pact the predictability of financial time series. Also, over time the relationship
between a financial time series and another linked variable could change [4][5].
Altogether this makes stock price prediction one of the most di�cult tasks
within time series forecasting.

Forecasting stock prices or stock price directions accurately has major impor-
tance for both financial market participants and researchers. Namely, stock
market prediction provides an opportunity to gain high profits and minimize
risks associated with investments. From the perspective of financial partici-
pants, finding accurate forecasting methods may improve investment perfor-
mance significantly, and is therefore critical for developing a competitive edge.
Consequently, there has been an upward trend in financial market participants
investing in technology that can be integrated into investment processes [6].
This has particularly shed light on big data and statistical learning models as a
complement to fundamental and technical analysis, and an increasing number of
asset managers, such as Handelsbanken Fonder AB, have sought to incorporate
these techniques in their investment processes [7].

Handelsbanken Fonder AB is a well renowned fund manager in Sweden and
are currently investigating the business case for starting an Asian micro- and
small-cap equity fund as a new o↵ering to their private and institutional in-
vestors. To ensure that such a product is attractive, the portfolio managers
want to support their investment decisions with a quantitative model which
could help identify the Asian small- and micro-cap stocks which will potentially
outperform their index.
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1.2 Purpose and Problematization

Handelsbanken Fonder AB’s value o↵erings comprise actively managed equity-
fixed income- and multi-asset mutual funds. They are currently o↵ering funds
ranging from global equity funds to mutual funds with specific sector-, regional-
or company-size focus. In order to meet the demand of various investors and
further increase their competitive advantage, Handelsbanken seeks to comple-
ment its current o↵erings with new financial products. In particular, they are
considering a new Asian equity fund, restricted to micro- and small-cap stocks.

The main responsibility of a portfolio manager is to invest clients’ capital in se-
curities with the aim to gain excess returns. In other words, they make decisions
about acquiring and divesting assets based on analysis of companies’ financial
statements and their future outlook. Therefore, the daily tasks of Handels-
banken’s equity portfolio managers involve screening, research, and evaluation
of potential investments. Although the majority of their equity funds are lim-
ited to a certain region, the associated stock universe may still be broad and an
extensive amount of work may be required to discover the stocks that may out-
perform their benchmark index. In order to make the investment process more
e�cient, Handelsbanken wishes for a quantitative model which can separate
such stocks from other investments in the Asian small and micro cap universe.
Additionally, to get a further insight into the market characteristics, Handels-
banken wants to investigate what factors may define outperforming Asian small-
and micro-cap stocks, and whether these variables can be used as leading in-
dicators to detect stocks that yield an excess return compared to a benchmark
index early.

Most stock market predictive models as of now are not specifically aimed at
micro- and small-caps, which in general have unique risk and volatility char-
acteristics compared to companies with a large market capitalization, mainly
related to default risk, according to Switzer [8]. Developing a predictive model
for the micro- and small-cap stocks is thus both interesting and useful for in-
vestors. Further, most studies primarily focus on forecasting only one national
index, rather than an entire region as Asia [9]. Thus, limiting the scope to the
geographical area requested by Handelsbanken Fonder (Asia excluding Japan)
could also contribute to further research topics as Asia is an emerging market,
drawing attention from many equity investors. It is therefore deemed relevant
for the field to investigate a predictive stock price direction model for micro- and
small-cap stocks in Asia. In line with Handelsbanken Fonder’s investment strat-
egy, this thesis investigates quarterly and yearly predictions using quantitative
and fundamental analysis.

1.3 Research Question

The purpose of this study is to develop a classification model that for the geo-
graphical region Asia early on can identify an outperforming stock when given
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financial metrics and macroeconomic variables, in the category micro- and small-
cap. In this study, an outperforming stock is defined as one that yields an excess
return compared to the benchmark index, described in the following section. In
order to solve this task properly, the supporting questions (RQ) are:

• RQ 1: Which model(s) can predict and identify outperforming Asian

small- and micro-cap stocks on a quarterly- and one-year basis?

• RQ 2: Which financial metrics (company-specific and macroeconomic in

variables) are identified by the models as having significant importance

when detecting an outperforming stock for Asian small- and micro-cap

dataset?

1.4 Scope and Delimitations

The geographical region is exclusive to Asia excluding Japan due to the afore-
mentioned request by Handelsbanken Fonder. In particular, the study focuses
on countries in Asia in which Handelsbanken is interested to invest in, which are
China, Hong Kong, India, Indonesia, Malaysia, Philippines, Singapore, South
Korea, Taiwan, Thailand, and Vietnam. Lastly, the study is restricted to small-
and micro-cap stocks. Since there is no strictly defined market capitalization
range for small- and micro-cap stocks, the companies in the sample are chosen
such that their market values range between the smallest and the largest bench-
mark index constituent’s market capitalization. Since the market capitalization
category of outperforming stocks may have had changed during the chosen time
period in this study, the upper limit is set to somewhat larger than the one of the
benchmark index. The resulting range is USD 20-9,500 million as of 2020-12-31.

1.5 Limitations

The data that this thesis aims to test is from the software that can be ac-
cessed from Handelsbanken Fonder’s computers, which in this case is Bloomberg.
Thus, the data is limited to what is o↵ered by the data vendor. Nevertheless,
Bloomberg is one of the largest financial data vendors, with fundamental data
on approximately 85,000 companies. The amount of data collected is also lim-
ited by the monthly downloading limit of the Bloomberg license. Thus, the
number of stocks and variables included are constrained to the data access.

1.6 Literature Review

1.6.1 Machine Learning in Stock Price Prediction

Asset price forecasting opposes the E�cient Market Hypothesis (EHM), one of
the most well-known principles of finance. The theory suggests that all available
information of an asset is incorporated in its market price, implying that one
cannot gain abnormal returns by analyzing past asset prices and returns [10].
Since the release of the EMH, researchers have found EMH anomalies and have
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hence tried to find ways to early identify investments that may produce higher
return than the market average. In recent years an increasing number of studies
have tried to utilize statistical techniques and algorithms to model asset price
movements and returns, as these can help to identify patterns in data [11][12].

Time-series forecasting and Machine Learning (ML) are two major methods that
have been studied for predicting stock prices. Time series forecasting involves
choosing a model for prediction based on past values [13]. Inter alia, Autoregres-
sive integrated moving average (ARIMA) [14], Exponential Smoothing and Gen-
eralized autoregressive conditional heteroskedasticity model (GARCH) [15] are
models that have been tested for stock price and stock volatility forecasting [16].
ARIMA has been one of the most widely used stock price forecasting models as
it utilizes the underlying information in a variable’s previous (lagged) values and
past errors and it has especially shown to be robust and e↵ective in short-term
prediction of time series [17]. However, ARIMA has shown limitations when
forecasting nonlinear data such as prices, since it is a linear model. To combat
the problem, more recent studies have examined Machine Learning techniques
such as decision trees (CART) [18], Support Vector Machines (SVM)[19] and
Artificial Neural Networks (ANN) [20][9]. Hiransha, M et al evaluated various
neural networks, including Long Short Term Memory (LTSM), Multi-Layer Per-
ceptron (MLP), and Convolutional Neural Network (CNN), for predicting stock
prices of five selected large-cap stocks from NSE and New York Stock Exchange
(NYSE). The 400 days prediction results were compared to an ARIMA forecast
and it was shown that all neural networks outperformed ARIMA. It was sug-
gested that univariate models such as the ARIMA failed to capture underlying
market dynamics [21]. Qian, XY compared the precision of ARIMA to several
ML algorithms such as Logistic Regression (LR), SVM, and MLP in predicting
the price direction of three stock indices. All ML algorithms reached a higher
prediction precision than ARIMA, and the SVM models outperformed all other
models [22].

Using ML methods for price prediction has gained attention over the past 20
years due to their ability to manage large amounts of data. These methods have
been especially useful for stock price and stock price direction prediction which
are tasks requiring an extensive amount of data. The data sets are generally too
complex for non-ML techniques to handle, meaning that useful information may
not be fully utilized [23]. Various models have been examined to predict the
stock price direction. Wang, H evaluated 10 di↵erent data mining techniques for
predicting the price direction of the Hang Seng Index (HSI) using open price,
low price, high price, the exchange rate between HKD and USD, and S&P 500
index closing price. The highest predictive performance was displayed by SVM
and Least-squares SVM (LS-SVM), which are both algorithms without priori
assumptions about the data. K-nearest neighbors (KNN) and the tree-based
classification were ranked the lowest in terms of predictive ability, although all
approaches yielded a hit ratio over 79% on the out-of-sample data [24]. Gupta,
M et al attempted to predict the one-day ahead prices of companies within the
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Banking and Financial sector in the National Stock exchange 50 index (NIFTY
50), using a Backpropagation Neural Network (BPNN) with both historical
prices as well as macroeconomic factors as input. The suggested model was
considered satisfactory for short-term stock index prediction [25]. Generally,
ANN models have shown to have strong performance in one day ahead index
prediction using closing, opening, lowest, and highest index value [26]. However,
in another application of BPNN on financial time series prediction, the method
was outperformed by SVM [27]. One major challenge of neural networks is that
they are prone to overfitting and especially in tasks with high complexity [28].

More extensive comparisons between models have also been carried through.
Ballings, M et al compared various ensemble methods including Random Forest
(RF), AdaBoost, and Kernel Factory with single classifier methods such as Neu-
ral networks, LR, SVMs, and KNN for predicting the direction of one year ahead
stock prices. Macroeconomic factors, as well as yearly fundamentals data for
5767 listed companies, were used as predictors. The results presented that RF
had the best predictive performance in terms of median AUC, followed by SVM
[29]. Similarly, single classifiers including LR, MLP, and CART were compared
to ensemble classifiers such as bagging in quarterly stock return prediction. The
experiment covered the Taiwanese stock market and used 19 financial ratios and
12 macroeconomic variables as independent variables, resulting in the ensemble
methods producing the most accurate predictions [30]. In addition, other stud-
ies concluded that the ensemble classifier RF performed the best, with slightly
higher accuracy than SVM for short- and long-term stock price direction pre-
diction [31][32]. Ensemble methods have been notably popular since they have
low variance. However in another study where Linear Discriminant Analysis
(LDA), LR, ANN, RF and SVM were examined, it was found that SVM and
RF outperformed the other models, although SVM was marginally better than
RF [4]. Huang, W et al evaluated SVM by comparing its performance to LDA,
Quadratic Discriminant Analysis (QDA), Elman BPNN, and a Randon Walk
model (RW) for predicting the direction of the NIKKEI 225 index of Japan on a
weekly basis. Also here, the highest hit ratio on the out-of-sample was produced
by SVM [33]. Generally, SVM has shown to yield high classification accuracy
in financial data applications [34][35]. This can be explained by the general-
ization property of SVM, meaning the SVM adapts well to unseen input data
and avoids over-fitting since it uses the structural risk minimization principle.
Furthermore, the SVM has desirable properties such as sparse representation
and its ability to find global optima [36][37], in contrast to models such as the
BPNN for which the gradient descent have led to a local optimum in several
cases [38]. This is because training an SVM is done by solving a convex quadratic
programming problem which always leads to a global optimum being found [39].

Put together, this literature review indicates that there is yet no established
model for stock prediction, which can further serve as a basis for investment
decisions. This study aims to test random forest, support vector machine, and
logistic regression in order to provide some insight on which algorithms are ad-
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equate for Asian small cap stocks in terms of prediction accuracy, as di↵erent
models have proven di↵erent predictive powers based on which context they are
applied to. In particular, these three algorithms, especially random forest and
SVM, have shown strong performance in previous research depending on the
application.

1.6.2 Financial Ratios in Stock Price Prediction

Financial ratios are commonly analyzed to assess a company’s performance and
financial health. For example, financial ratios have been utilized in financial
prediction tasks such as forecasting non-performing loans [40], financial distress
and bankruptcies [41]. In the same way, statistical learning techniques can be
used to model the relationship between financial ratios and future stock price
direction. Prior to finding an appropriate model for stock price prediction, one
must find a set of financial ratios that may a↵ect future stock prices and thus can
serve as explanatory variables for predicting future stock performance. Several
previous studies have attempted to identify the relationship between di↵erent
financial ratios and stock returns. Anwaar, M conducted a panel regression
to see the e↵ect of the five financial ratios: earnings per share (EPS), quick
ratio (QR), return on assets (ROA), return on equity (ROE), and net profit
margin (NPM) on stock returns. The study was performed on stocks listed on
the London Stock Exchange, FTSE-100 Index, over the period 2005-2014 [42].
The results showed that ROA and NPM had a significant positive relationship to
stock returns while QR and ROE had no significant impact. Moreover, EPS had
a significant negative impact on stock returns. However, Emamgholipour, M et
al found that high EPS a↵ected stock returns of the current year positively. Ad-
ditionally, they observed that price-to-earnings (P/E) and price-to-book (P/B)
demonstrated significant negative e↵ects on stock return of current and subse-
quent year [43]. Another study carried out a panel data analysis to examine
the relationship between stock returns and current ratio (CR), earnings yield
(EY) and NPM, on stocks listed on the Istanbul Stock Exchange for the period
2008 to 2016. Here, both EY and NPM had a significant positive relationship
to stock returns. Two di↵erent methods, Parks Kmenta and Beck-Katz were
used for this task in order to verify that the results are consistent [44]. Ho-
barth, L investigated the correlation between 17 financial variables and stocks’
performance of US-listed firms during a period of 19 years. Summarized, the
results suggested that companies with low book-to-market ratio (B/M), e�cient
working capital, high equity and low debt level, low total assets value, and high
EBIT margin had higher stock returns [45].

Numerous studies have also covered this subject on Asian stock markets. For
instance, it was found that there is a significant negative correlation between
asset growth and future stock returns in several Asian markets including China,
Hong Kong, Indonesia, Malaysia, Singapore, South Korea, and Thailand [46].
Moreover, by using regression it was seen for Indonesian manufacturing stocks
that profitability ratios (NPM and ROE), asset turnover and P/B were strong
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determinants of the market-adjusted stock returns [47]. The predictability of
stock returns was tested for Malaysian stocks over the period 2000 to 2009 us-
ing dividend yield (DY), EY and B/M as independent variables. The study
applied the generalized least squares (GLS) method since the GLS manages
heteroskedasticity and autocorrelation more e�ciently compared to ordinary
least squares (OLS). Ultimately, it turned out B/M had the highest predictive
power, although at a 5% significance level all three financial ratios demonstrated
predictive power [48]. Bayesian Model Averaging has also been used to study
the future stock return predictability using financial information including DY,
B/M, EY, default risk premium, monthly rate of three-month treasury bill, term
premium, inflation rate, and tern spread. The data set consisted of historical
data from 2001 to 2011 for 439 stocks listed on the Stock Exchange (SET).
By determining posterior probabilities it was concluded that B/M, default risk
premium and inflation rate were the most relevant predictors, although there
were stronger predictors for large-cap stocks compared to small-cap stocks [49].
Experimental studies have also been made on the Hong Kong stock market us-
ing 17 HSI constituents. Multiple regression analysis was applied to find test
the significance of 20 financial variables on stock returns, where the indepen-
dent variables included ROA, ROE, DY, CR, QR, EPS, EPS ratio, P/E, P/B,
price-to-sales (P/S), market capitalization, net profit growth, dividend per share
(DPS), debt-to-equity (D/E) and return on capital employed (ROCE). The
number of independent variables was reduced to five with factor analysis, and
thereafter it could be seen that market capitalization and P/B were positively
correlated to stock returns while EPS, DY, and P/S was negatively correlated
[50].

Moreover, machine learning techniques have also been used for the same pur-
pose. Delen, D et al tried a two-step approach, first applied explanatory factor
analysis to identify the underlying dimension of a large set of financial mea-
sures, and thereafter used predictive modeling to find the relationship between
the measures and firm performance. The experiment was performed on Turkish
listed public companies with historical data covering 2005 to 2011, with four
di↵erent decision tree algorithms. The earnings before tax-to-equity ratio ap-
peared to be the leading indicator in every decision tree model, followed by
the sales growth rate in the CART model and NPM [51]. Predictive models for
micro- and small-cap stocks are as mentioned more complex in their nature, but
models such as the Fama-French have been developed to explain the anomalies
of these smaller stocks [52]. The model includes value, size, profitability, and
market factors which in some studies have proved useful when combined with
other machine learning methods [9].

Clearly, a wide range of financial variables have been explored in previous stud-
ies, but the results vary across the literature. Furthermore many studies have
primarily focused on a national stock index, and have addressed only a few finan-
cial ratios. In contrast, this research paper aims to assess an extensive amount
of variables, for stocks belonging to several countries. In addition, many dif-
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ferent statistical methods have been used to examine the relationship between
financial variables and future stock prices. As this study aims to predict the
direction of stock prices using selected machine learning algorithms, these al-
gorithms will also be applied when studying the association between financial
metrics and stock returns. This background assures that previous research has
indeed concluded the existence of predictive power between financial measures
and price direction for stocks, which further states the relevance of them for this
study.

Altogether, the novelties provided in this study are compared to the above
presented literature review 1) research on prediction of stock price direction for
small-cap stocks in contrast to previous studies which mostly conduct forecast-
ing on large-cap stocks and indices 2) coverage of multiple regions rather than
examining only one national index and its stock constituents.

2 Financial Background

This section aims to provide definitions of some central concepts and terminology

that are used in this study and is related to the stock market.

2.1 Stocks and the Stock Market

A stock is a financial security that gives the owner (commonly called share-

holder) of the security a share of ownership of the company. Usually, a stock
gives the shareholder the right to vote on shareholders’ meetings. Also, a com-
pany may choose to pay dividends, in other words, cash payments, to its share-
holders. The stocks of publicly-held companies are traded on stock exchanges,
and the prices are determined by supply and demand. Investors can gain profits
from stocks either by receiving dividends or by buying stocks at a certain price
and sell them at a higher price. However, stocks are seen as risky investments as
can yield negative returns as well. Thus, it has been of interest for investors to
analyze companies’ financial performance and try to predict their future stock
prices [53].

2.2 Stock Index

A stock index is a measure of a group of selected stocks or a specific segment
of the stock market. Some of the most well known indices include Dow Jones
Industrial Average (DJIA), S&P 500, and MSCI World. A stock index is deter-
mined by the prices of the stocks included in the index and the most common
type of calculation is weighting each stock by its market capitalization. Thus an
index corresponds to the performance of a group of stocks and its movements
indicate changes in investors’ sentiment, the prospects of the economy, and the
constituent firms’ financial health. Furthermore, there are various classifications
for stock indices, for example global (S&P Global 1200 Index, MSCI World),
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regional (FTSE Asia Pacific Index, MSCI EM Latin America and national (the
OMX Stockholm in Sweden, the British FTSE 100 Index, and the Chinese CSI
300 Index), industrialization level (developed, emerging and frontier market in-
dices) or sectoral indices. Stock indices are commonly used by investors to follow
the stock market movements. Particularly, in asset management businesses, in-
dex performances are regularly compared to the returns of actively managed
mutual funds, as the latter is aimed to outperform a specific benchmark index
[54].

2.3 Fundamental Analysis and Technical Analysis

Fundamental Analysis and Technical Analysis are two common approaches for
assessing the future performance of stocks. Fundamental analysis involves esti-
mating companies’ intrinsic value and evaluating their long-term financial health
by analyzing their financial statements, financial ratios, macroeconomic factors,
and industry trends. When making an investment decision, the intrinsic value
is compared to the market value.

In technical analysis, future stock price movements are forecasted by exam-
ining patterns in historical data such as past prices and trading volumes. In
contrast to fundamental analysis, one does not take into account the underlying
business of the company. Another major di↵erence is that technical analysis is
mostly used for short-term price movement prediction and trading while fun-
damental analysis is often applied for mid- and long-term investment horizons
[7]. As this study aims to predict in mid to long term, the data set will mainly
reflect variables typically used in fundamental analysis.

2.4 Other terminology

Multiple financial variables that are used in this study are derived from the fi-

nancial measures presented below. The theory in this section is based on [53].

• Market capitalization: The value of a company’s outstanding shares
in total, also called equity value. Obtained by multiplying the number of
shares outstanding with the price at which the company’s share is traded.
Stocks are often grouped by their market value, for example, small-cap,
mid-cap and large-cap stocks.

• Enterprise value (EV): The EV reflects the total value of a company, in
the sense that it does not only take into account the market capitalization
but also adds the net debt to it. The enterprise value is obtained by EV
= Market capitalization + Net debt.

• Net debt: Indicates the financial liquidity of a company, by showing how
much debt a company has left if its debt is paid with its liquid assets. The
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net debt is defined as Short term debt + Long term debt - Cash and cash
equivalents.

• Valuation ratios: show the relationship between a company’s value (ei-
ther equity value or enterprise value) to a fundamental measure from the
income statement (e.g. revenue, EBIT, or net income). They reflect the
price one must pay for the stock given a company’s sales or profit, and thus
give an indication of whether a company might be under or overvalued.
Common valuation ratios include:

Price to Earnings ratio (P/E) =
Share price

Earnings per Share
,

Price to Sales ratio (P/S) =
Share price

Revenue per share
,

EV/EBIT =
Enterprise value

EBIT
.

• Profitability ratios: can be used to measure how well, during a given
period, a company can generate profit compared to for example revenue,
shareholders’ equity, or assets. Thus, it reflects how e�cient a company is
in using its assets or revenues. Profitability ratios can be further divided
into margin ratios and return ratios. Example of some margin ratios are:

Operating margin (EBIT Margin) =
Operating income (EBIT)

Revenue
⇥ 100,

Net income margin =
Net income

Revenue
⇥ 100,

and return ratios:

Return on equity (ROE) =
Net income

Shareholders’ equity
⇥ 100,

Return on invested capital (ROIC) =
Operating income⇥ (1� Tax rate)

Invested capital
⇥ 100,

Return on assets (ROA) =
Net income

Total Assets
⇥ 100.

• Liquidity ratios: are important ratios as they help to evaluate if a com-
pany will be able to pay its short-term debt obligations with its liquid or
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currents assets. Two of the most common liquidity ratios include:

Current ratio =
Current assets

Current liabilities
,

Quick ratio =
Cash and cash eq. + Accounts receivable + Marketable securities

Current liabilities
.

• Leverage ratios: show the relative amount of debt a company has taken.
It reflects the company’s ability to pay its long-term debt obligations, and
thus also gives an indication of the financial health of a company. A widely
used leverage ratio is:

Debt to equity ratio =
Total debt

Total equity
.

• Dividends: Are payments that a company gives to its shareholders. To
compare dividends across di↵erent companies, there are ratios such as:

Dividend yield =
Dividend per share

Share price
,

Dividend payout ratio =
Total dividends paid

Net income
.

3 Mathematical Background

This chapter aims to establish terminology and describe the theoretical back-

ground and mathematical concepts for the methods applied in this research. In-

cluded are the mathematical models used as well as metrics to evaluate the final

models. Vectors will be marked in bold and observed values are in lower case

letters.

3.1 Machine Learning

Machine Learning (ML) is a field within Artificial Intelligence and Data Sci-
ence, focusing on developing computer programs that can learn and improve
through new experience by automation. One of the major benefits of ML mod-
els is that they have proven to e�ciently identify patterns in large data sets
and multi-dimensional data. The ability of ML algorithms to learn from their
environment has made ML applicable in many various fields such as finance,
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marketing, medicine, engineering, and transportation. Also, as ML-based mod-
els are fed with new data they generally become more e�cient and accurate.
Yet, the use of ML models also comes with challenges. Mainly they have shown
limited prediction accuracy in various applications due to their susceptibility to
the input data. For example, erroneous results may be produced when models
are trained with insu�cient, incomplete, or biased data sets [55, p.1]. Some ML
techniques are also prone to overfitting which makes the model less responsive
to new input data, but various solutions have been introduced to deal with this
issue [56].

3.2 Supervised Learning

The four approaches in ML are supervised learning, unsupervised learning,
semi-supervised learning, and reinforcement learning. Supervised learning is
a machine learning approach where the training is conducted on labeled data.
Observations with the true responses are used for training a model, which aims
to predict or classify the correct outcomes when inputted with new unseen data.
Thus, the purpose of supervised learning is to model the relationship between
explanatory variables and the response variable(s). A supervised learning al-
gorithm intents to find the unknown function f that can map the predictor or

feature space X =
⇥
X1, X2, . . . , Xp

⇤T
to the output space Y , such that

Y = f(X), f 2 F

where F denotes function space.

The data set on which the model is trained consists of a set of observations,
where each observation i, i = 1, . . . , N , is a tuple (xi, yi). Hence, a training set
with N observations can be denoted as T =

�
(x1, y1), (x2, y2), . . . , (xN , yN )

 

where for the i:th observation, xi is a vector of p features and yi is the corre-
sponding label [57, p.21]. The training data is generally assumed to be indepen-
dent and identically distributed (i.i.d). Using the training set, the underlying
function f can be estimated to f̂ so that

Y ⇡ f̂(X).

Supervised learning problems can be divided into classification and regression.
Therefore, in a supervised learning task, the choice of model highly depends on
the type of problem, and there are algorithms designed for classification and
regression respectively. In classification Y is categorical, meaning that an ob-
servation can be assigned to one specific class among a discrete number of K
di↵erent classes, where K � 2. If the output Y is a quantitative variable and
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can take on numbers in the real value space IR, it is referred to as a regression
problem [57, p.28].

This thesis focuses on binary classification, meaning it aims to predict which
class an observation belongs to, among two classes. Here, the response variable
is a binary random variable Yi with the output space Y 2 {Excess, Not Excess} .
The random explanatory variable Xi 2 IRp represent fundamental information
such as revenue, profit margin and other financial metrics about stock i.

3.2.1 Parametric vs Non-parametric Models

Furthermore, di↵erent learning algorithms are built on di↵erent assumptions.
Generally, statistical learning models can be divided into parametric models and
non-parametric models. Parametric models assumes the form of the function f ,
where f depends on a finite number of parameters ��, representing the informa-
tion in the data. Consequently, rather than estimating the functional form of f ,
the problem is simplified to only estimating the coe�cients �� =

⇥
�0,�1, . . . ,�p

⇤
.

The drawback of parametric models is that they are constrained to the pre-
determined function which may be far away from the correct f , leading to the
risk of generating inaccurate predictions. In contrast, non-parametric models
do not assume anything about the distribution and parameters of f , allowing
the model to find an approximation of f which is more adjusted to the obser-
vations. Although non-parametric approaches are higher in flexibility, they can
become very complex as the number of parameters is not definite. Also, since
the entire functional form of f has to be approximated, non-parametric models
usually require a larger training set [57, pp. 21-23].

3.3 Support Vector Machines

The support vector machine (SVM), also referred to as support vector machines
(SVMs), is a classification model which extends the support vector classifier
by enabling enlargement of the feature space using kernels to allow finding a
linear boundary for classes in a higher dimension, if such cannot be found with
the existing features. Thus when the relationship between the predictors and
response variable is nonlinear, the SVM allows combating this nonlinearity [57].
SVM is developed for binary classification but has been developed to allow for
more than two classes. For better intuitive understanding the mathematical
theory for the SVM will be presented for a binary classification model. We
denote two observations as xi and xi0 in which the inner product of the two
observations are

< xi,xi0 >=
pX

j=1

xijxi0j .

By this the linear SVM can be defined as per [57],
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f(x) = �0 +
nX

i=1

↵ixxi.

3.3.1 Separating Hyperplanes

The support vector machine is derived from the idea of separating linear hyper-
plane in the feature space. For two classes, y1 and y2, where each response yi

is assigned one of the classes based on the separating hyperplane

{x : f(x) = xT
� + �0 = 0}, ||�|| = 1,

which in turn classifies based on

yi =

⇢
1, f(xi) > 0

�1, f(xi) < 0
, yif(xi) > 0 8i.

The points which lie on f(x) = 0 thus lie on the hyperplane and the opti-
mization problem will target finding the best separating hyperplane farthest
from the training points, i.e. the largest margin M between the training points
T = {yi,xi}ni=1 in the two classes [58].

Therefore, the optimization problem to find a linear separable hyperplane with
the training points on the correct side of the hyperplane can be formulated as

max
�0,�,||�||=1

M

s.t. yi(�
Txi + �0) � M 8i. (1)

The above equation has no solution for M > 0 when the classes are not linearly
separable. To allow for some miss classification in order to find a good enough
margin, a soft margin is used by changing the optimization constraints.

max
�0,�,||�||=1,✏

M

s.t. yi(�
Txi + �0) � M(1� ✏i),

✏i � 0,
nX

i=1

✏i  C.

(2)

Here, C is a non-negative tuning parameter seen as a penalty for the allowed
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misclassification and M the smallest distance from the hyperplane to the train-
ing observations [57]. If C = 0 the optimization problem does not allow for
misclassification. ✏i is introduced as a slack variable that tells where the ith
observation is located in relation to the hyperplane and margin, and is propor-
tional to the amount of which the classification yi is on the wrong side of the
margin. If ✏i = 0 8i then none of the predictors violate the margin.

The optimization problem above is better known as the support vector clas-

sifier and is appropriate when finding a good enough linear separator for the
classes. Instead, the support vector machine allows an enlargement of the fea-
ture space for the predictors in order to find a separating hyperplane in the en-
larged space. As an example, the basis function hm(xi) = (h1(xi), . . . , hM (xi))
can transform the feature space from IRp to IR2p, meaning that translating the
linear decision boundary found in the enlarged feature space would translate
to a quadratic decision boundary with the original p predictors. The new non-
linear function will instead decide the class of yi according to sign(f̂(xi)) where
f̂(xi) = h

T (xi)� + �0.

3.4 Decision Trees and Random Forest

Decision trees are non-parametric tree-liked models for decisions, used in both
regression and classification problems. Decision tree models use splitting rules
to segment the predictor space into several distinct regions. By learning deci-
sion rules deducted from the training data, decision tree models aim to predict
the response variable value. These models have been widely used in many ML
applications due to their interpretability. Yet, they tend to be lack robustness,
meaning they can be sensitive to variations in the data as small changes in
the data can change the resulting tree significantly. To combat this problem,
ensemble methods such as Bagging, Boosting and Random Forest have been
introduced.

In the context of this study, the following sections will focus on classification

trees rather than regression trees. Random forest will be the main focus of this
study but in order to understand the random forest classifier, the concepts of
classification trees and bagging and will be explained first.

3.4.1 Classification Trees

Classification trees are applied when predicting the category or class of an ob-
servation. Broadly, the classification process starts from the root node (top) of
the tree where an observation is assigned to a sub-space according to a split rule.
Thereafter, the observation reaches another decision node where the predictor
space is again divided into sub-spaces and an observation is branched by another
split rule, and so on. Each split rule consist of a threshold tj for a predictor
variable Xj , for example Xj < tj and Xj � tj for the left and right branch of a
node respectively. In other words, the observation continues getting assigned to
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di↵erent sub-spaces of the predictor space at the internal nodes, which are the
nodes in between the root node and the terminal nodes. This continues until
reaching the leaves (terminal nodes) of the tree where the outcome is predicted.

The development of a classification tree can briefly be described as follows:
First the p-dimensional predictor space is partitioned into J disjoint regions
R1, R2, . . . , RJ , through recursive binary splitting. The predictor space com-
prises the possible values of the predictors X1, X2, . . . , Xp. When a new obser-
vation is assigned to a region Rj , the observation will be classified according
to the be the most commonly occurring class, also called majority class, of the
training data in that particular region Rj .

The recursive binary splitting starts from the top of the tree and then contin-
uously stratifies the predictor space, where each split yields two new branches
one level down on the tree. A predictor Xj and a cutpoint s is chosen by the
algorithm so that the predictor space is divided into two regions

�
X|Xj < s

 

and
�
X|Xj � s

 
by using a node impurity measure Qm(T ) as criterion, such as

the misclassification error which the proportion of the training observations in
region m which do not belong to the most commonly occurring class.

In mathematical terms, let p̂mk denote the share of training observations be-
longing to class k in the m:th region. Then p̂mk can be represented by:

p̂mk =
1

Nm

X

xi2Rm

I (yi = k) , (3)

where I (·) is the indicator function, Rm represents region m and Nm is the
number of observations in that region. Then observations x 2 Rm are classified
according to:

k(m) = argmax
k

p̂mk. (4)

The are various measures that can be used by the algorithm to select the best
split. Some node impurity measures Qm(T ) that are commonly chosen for
splitting the predictor space are Misclassification error, Gini index and Cross-

entropy which are defined as follows:

Misclassification error:
1

Nm

X

i2Rm

I
�
yi 6= k(m)

�
= 1� p̂mk(m), (5)

Gini index:
X

k 6=k0

p̂mkp̂mk0 =
KX

k=1

p̂mk (1� p̂mk) , (6)

Cross-entropy: �
KX

k=1

p̂mk log p̂mk. (7)
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As mentioned the predictor space can be divided into the regions
�
X|Xj < s

 

and
�
X|Xj � s

 
at a given node such that the split minimizes the misclassifica-

tion error. Yet, when growing a classification tree, Gini index and cross-entropy
are often selected over misclassification error for evaluating the quality of a split.
The Gini index and cross-entropy are di↵erentiable and thus more suitable for
numerical optimization. Additionally, compared to misclassification error, the
cross-entropy and the Gini index have a higher sensitivity to node purity. If the
values of the p̂mk:s are close to 0 or 1 the Gini index and cross-entropy will be
near 0. This means that a small value of the Gini index or cross-entropy indi-
cates that node m is pure. When dealing with a large data set, the Gini index
may be more beneficial as the cross-entropy contains the more computationally
expensive logarithm calculation. Note that the recursive binary splitting algo-
rithm is greedy, as it at each step of the process makes the best split for that
step rather than also considering the future steps when determining the best
split [58, pp. 309-310].

3.4.2 Bagging

As mentioned before, one of the main drawbacks of decision trees is their high
variance, meaning that they are sensitive to variations in the training data in
the sense that a change in the data could yield an entirely di↵erent optimal
decision tree. Bagging, short for Bootstrap aggregation, is used for decreasing
the variance of a decision tree. Bootstrapping is equivalent to doing random
sampling with replacement. The idea is to resample observations from a single
data set to obtain several simulated data sets and make inferences about the
corresponding population.

Suppose one has a a set of n independent random variables Z1, . . . , Zn with

mean Z̄ and variance �
2
Z . The variance of the mean Z̄ is thus �2

Z
n , showing that

taking the average of a set of random variables or observations leads to a smaller
variance. In the same way one could develop several distinct decision trees using
di↵erent training sets and take the average of the predictions of the models in
order to lower the variance and consequently improve the prediction accuracy
of a model. Now assume a training set T =

�
(x1, y1) , (x2, y2) , . . . , (xN , yN )

 

is used to fit a model and the prediction f̂(x) is obtained by an input x. The
bagging method first generates bootstrap samples from the original training set
and for each bootstrapped training set T ⇤

b , b = 1, 2, . . . , B, a model is fitted

which provides a prediction f̂
⇤b(x). In a regression setting the average of the

predictions is thereafter calculated, which is given by:

f̂bag (x) =
1

B

BX

b=1

f̂
⇤b(x). (8)
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For classification with a classifier Ĝ(x), class k is assigned to x according to the
majority vote:

Ĝbag(x) = argmax
k

p̂k(x), k = 1, 2, . . .K, (9)

where p̂k(x) is the proportion of trees assigning class k to the input x, defined
as:

p̂k(x) =
1

B

BX

b=1

I

n
f̂
⇤b(x) = k

o
. (10)

In cases when there are particular predictors which a↵ect the response vari-
able strongly, the trees often become similar and highly correlated since such
predictor tends to placed at the root node for the majority of the trees. Taking
the average of correlated trees results in a lower reduction in variance compared
to averaging uncorrelated trees. That is, the impact of bagging will not be as
significant as supposed to, when dealing with correlated trees.

3.4.3 Random Forest

Random Forest is an ensemble learning method that has been introduced as an
enhancement of bagging. Random forest decorrelates the trees by allowing to
choose one predictor out of a random subset of m  p predictors when con-
structing a split, instead of choosing from all p features. At each split, a new
random sample of m predictor is obtained. By only letting a subset of the pre-
dictors be candidates for each split, the problem of producing similar trees is
avoided. On average p�m

p splits will not use a certain predictor meaning that
the strong predictor cannot be used as top split in all trees.

The test error of a bagged or random forest model can be estimated by the
out-of-bag (OOB) error. Recall that in bagging (and hence also in random for-
est), bootstrapped subsets of the observations are used to fit multiple trees.
In each bootstrap sample T ⇤

b , b = 1, 2, . . . , B, approximately one third of the
observations are not used, which are called OOB samples. For each xi in the
training set, aggregate the votes solely over those trees that are fitted on boot-
strap training samples T ⇤

b that do not contain xi. This can be referred to as
the OOB classifier. One can obtain an OOB prediction for each observation
xi, i = 1, 2, . . . , N , by using the corresponding OOB classifier and taking the
majority vote. Thereafter, by computing the misclassification error for these
predictions, one obtains the OOB error.

When applying the random forest algorithm, there are several parameters for
which a value must be set. To start with, the number of predictors that are
considered at each split must be chosen. Setting a large predictor subset size
m increases the chance of picking the predictors carrying the most information,
but may also increase the correlation between the trees. Thus, when having
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many correlated predictors, a small m is more beneficial. Most commonly m

is chosen such that m ⇡ p
p. Furthermore, the number of trees B is relevant,

particularly for the variance of the model, as a large number of trees will de-
crease the variance and improve the prediction. More precisely, the OOB error
can be shown as a function of B, where the OOB error decreases as B grows.
Nevertheless, using many trees comes with a higher computational time and
as the number of trees increases the OOB error will decrease at a slower rate.
Thus, the value of B should be chosen such that is su�ciently large for the OBB
error to converge [57, pp. 317-321].

3.4.4 Variable Importance in Random Forest

In random forest, the are several approaches for obtaining variable importance
measures, for instance, the Gini importance (also called the Mean decrease in

node impurity). As mentioned before, at each split the optimal split is selected
using a criterion such as the Gini index, or better known as Gini impurity. The
Gini impurity measures the likelihood that an observation is mislabelled if it is
randomly classified according to the distribution of class labels in the data set.
It reflects how impure a node is, where a node is called pure if all observations
belong to one specific class.

It is possible to see how much the impurity of a split decreases for each fea-
ture. To obtain a feature importance measure, one looks at how much the Gini
impurity decreases for a feature Xj at a split, in each tree where the feature
was used, and then takes the average over the trees. Repeating this procedure
for each feature j = 1, . . . , p, yields the relative feature importances [57, p.319].

3.5 Logistic Regression

Logistic Regression is a parametric method which classifies an observation by es-
timating the posterior probability of the observation belonging to a certain class,
rather than predicting the response variable Y itself. The algorithm uses the
logistic function ⇡(X) to map the outcome of the regression to the interval [0, 1].

Consider a binary classification problem with p features X =
⇥
X1, X2, . . . , Xp

⇤T

and a response variable Y 2 {0, 1}. Then the conditional probability that an
observation xi belongs to class 1 is given by:

⇡(xi) = P (Y = 1 | Xi = xi) =
e
�0+�>xi

1 + e�0+�>xi
. (11)

Hence, for the probability of Y = 0:

P (Y = 0 | Xi = xi) = 1� P (Y = 1 | Xi = xi) =
1

1 + e�0+�>xi
, (12)

where �0 is the intercept and � =
⇥
�1, . . . ,�p

⇤T
are the regression coe�cients.
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The parameter are usually estimated by the maximum likelihood method, which
is explained in section 3.5.1. If the obtained probability P (Yi = 1 | Xi = xi) is
equal to or higher than a predetermined cuto↵ value c, observation xi is assigned
to class 1. Hence, the prediction ŷi for the i:th observation can be expressed as:

ŷi =

⇢
1, if ⇡(xi) � c,

0, if ⇡(xi) < c.
(13)

The logistic function always takes the form of a an S-shaped distribution func-
tion. However, if a monotone transformation of ⇡(xi) is linear in xi the deci-
sion boundaries will be linear as well. In logistic regression, the logit or log-odds
transformation is used, which here is a monotone transformation. By calculating
the log-odds log[p/(1� p)] one can derive:

log

✓
⇡(xi)

1� ⇡(xi)

◆
= �0 + �>xi, (14)

which is linear in xi. In addition, equation 14 is also the inverse of the lo-
gistic function.

Logistic regression is frequently used in supervised learning tasks since it is
easy to implement and interpret. In addition, the feature importance can be
inferred from the estimated coe�cients. As shown, logistic regression produces
linear boundaries and thus it may produce inaccurate results for non-linearly
separable data.

3.5.1 Fitting the Logistic Regression Model

The regression parameters �0,�1, . . . ,�p are unknown and can be estimated
with the training set using maximum likelihood. Let ✓ = {�0,�} and assume
the training set consists ofN observations (x1, y1) , (x2, y2) , . . . , (xN , yN ). Then
one obtains the conditional probabilities:

⇡ (xi;✓) := P
�
Y = 1 | X = xi;✓

�
=

e
�0+�T xi

1 + e�0+�xi
, i = 1, . . . , N. (15)

The maximum likelihood estimation (MLE) is performed by first constructing
the likelihood function and then finding estimates ✓̂ of ✓ which maximize the
likelihood function. In the case where the response variable is binary, the prob-
ability can be modeled by a Bernoulli distribution. The likelihood function can
then be expressed as follows:

L (✓) =
NY

i=1

⇡ (xi;✓)
yi
�
1� ⇡ (xi;✓)

�1�yi
. (16)
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Since the logarithm is a monotonic function, the same value of ✓ is obtained
by maximizing the likelihood function as by maximizing the log-likelihood. To
simplify the maximization problem the log-likelihood is used, which changes
products to sums:

l (✓) =
NX

i=1

h
yi log ⇡ (xi;✓) + (1� yi) log

�
1� ⇡ (xi;✓)

�i

=
NX

i=1


yi

⇣
�0 + �>xi

⌘
� log

⇣
1 + e

(�0+�>xi)
⌘�

.

(17)

To find the values ✓ = {�0,�} for which the log-likelihood function is maximized,
one has to di↵erentiate l (✓) with respect to the p + 1 parameters and set the
derivatives to zero:

@l(�0,�)

@�0
=

NX

i=1

�
yi � ⇡ (xi;✓)

�
= 0, (18)

@l(�0,�)

@�j
=

NX

i=1

xij

�
yi � ⇡ (xi;✓)

�
= 0, j = 1, . . . , p. (19)

This gives p + 1 equations which are non-linear in ✓. The equations are tran-
scendental and do not have closed-form solutions. Therefore, it is usually solved
numerically using the Newton-Raphson method. The first step then is to calcu-
late the second derivatives:

@
2
l(✓)

@✓@✓> = �
NX

i=1

xix
>
i ⇡ (xi;✓)

�
1� ⇡ (xi;✓)

�
. (20)

Let ✓(n) be the approximation of ✓ obtained from a new Newton iteration, and
✓(n�1) from the previous iteration,

✓(n) = ✓(n�1) �
 
@
2
l(✓(n�1))

@✓@✓>

!�1
@l(✓(n�1))

@✓
. (21)

The iteration continues until the algorithm converges to an estimate ✓̂ (although
convergence is not guaranteed) [58, pp. 19-21].

3.6 Model Evaluation Metrics

When developing machine learning models, a central part of the process is to
evaluate the performance of the models. There are various evaluation metrics
that can be used to measure the accuracy, check the robustness, and compare
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the di↵erent models. This section presents the evaluation models that are used
in this study.

3.6.1 Confusion Matrix

A confusion matrix is a K ⇥K table (where K is the number of classes) that
shows the number of correctly classified and misclassified observations. It is
commonly used in classification tasks with data sets where the true values are
known. Going forward, the focus of this section will be on the binary case, in
other words, when the confusion matrix is 2⇥ 2.

The table displays the actual and predicted values and categorizes observa-
tions into true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN). For a classification setting with classes 1 (outperforming
stocks) and 0 (underperforming stocks) the above terms could be described as
follows:

• TP: Observations the model predicts to class 1, and do actually belong
to class 1.

• TN: Observations the model predicts to class 0, and do actually belong
to class 0.

• FP: Observations the model predicts to class 1, but in reality belong to
class 0.

• FN: Observations the model predicts to class 0, but in reality belong to
class 1.

There are two types of misclassifications, FP and FN, which are typically re-
ferred to as Type I error and Type II error respectively. An illustrative confusion
matrix is presented below.

Predicted
1 0

A
ct
u
al 1 TP FN

0 FP TN

Depending on the task, the relevance of these two errors varies a lot, as one or
both of these errors may lead to severe outcomes in some cases. For instance,
in stock price direction prediction, classifying an actual underperforming stock
as an outperformer could lead to a significant loss of money. Consequently, it is
of necessity to obtain a low number of false positive observations in this experi-
ment. On the other hand, classifying an outperforming stock as underperformer
means missing out on a potentially successful investment, which is particularly
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negative for portfolio managers, whose main goal is to reach a higher return
than an index. Hence, it is of interest to focus on both errors in this paper.

From the four items in the confusion matrix other measures can be calculated
such as accuracy, sensitivity, precision and recall, which are defined as:

Accuracy =
TP + TN

Total Population
=

no. of correct classifications

Total Population
, (22)

Precision =
TP

TP + FP
, (23)

Recall =
TP

TP + FN
, (24)

F-measure =
(1 + �)2 · Recall · Precision

�2 · Recall + Precision
. (25)

The accuracy is simply the proportion of correct classifications. Precision is
the percentage of correctly classified positive observations out of all observa-
tions that have been predicted positive. Recall measures the share of correctly
predicted positive observations out of all positive observations in the dataset.
Precision and recall are in particular beneficial when evaluating a classification
model that has been trained on imbalanced data, but the di↵erent measures
provide di↵erent information. For example, if the aim is to correctly classify
as many outperforming stocks as possible then one wants the FN to be as low
as possible, implying that the recall must be high while the precision could
be lower. Conversely, if one seeks to minimize the number of underperforming
stocks that are misclassified, the FP needs to be as low as possible, while one
can allow for some FN. That is, a high precision is more important compared
to recall. Lastly, the F-measure considers both precision and recall, but incor-
porates a factor �, such that the recall is as � times as important as precision
[59].

3.6.2 Kappa Statistic

Kappa Statistic, known as Cohen’s Kappa, is a statistic that takes into con-
sideration that a correct classification occurring by chance. The calculation is
comparing the observed agreement or accuracy, to the expected agreement or
accuracy that is presented by pure guess. The Kappa Statistic is measured from
1 to -1, where 1 is a perfect agreement, 0 what can be expected from a pure
guess, and -1 that it is worse than the pure guess. In general, a value above
0.2 shows fair agreement in prediction and actual value [60]. The calculation is
presented below with a matrix to exemplify
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Actual 1 0 total

Predicted

1 A C m

0 B D k

total n p q

where q = A + B + C +D and m, k, n, p are the sums for their respective row
or column. Then

pe =
nm
q + pk

q ,

p0 = A+D
q .

Then the Kappa Statistic can be calculated as

Kappa =
p0 � pe

1� pe
. (26)

3.6.3 Receiver Operator Characteristic Curve

The receiver operator characteristic (ROC) curve is another evaluation tool for
classification models. The ROC curve is presented in a two dimensional graph
with the True Positive Rate (TPR) on the y-axis and the False Positive Rate

(FPR) on the x-axis. The ROC curve shows the relative trade-o↵s between ben-
efits and costs, represented by the true positives and false positives respectively.
The coordinate (0,0) in a ROC graph implies that there are never positive
classifications, meaning that there are no false positive errors nor true posi-
tives. Similarly, the coordinate (1,1) represents the scenario where only positive
classifications are produced. Lastly, the best classification is reflected by the
coordinate (0,1). The closer a classifier is to the northwest corner of the ROC
space, the better it is considered. A ROC curve on the diagonal line y = x,
also called line of no discrimination, corresponds to a classifier that randomly
guesses.

The evaluation of a discrete classifier (classifier that directly predicts the class),
is presented as a single point in the ROC graph. However, in many applications
probabilistic classifiers such as logistic regression are used, which produce the
class probability rather than directly the class decision itself. For these clas-
sifiers, a probability threshold value c is set, such that if a (binary) classifier
predicts a higher value than the threshold, an observation is assigned to a cer-
tain class, and otherwise to the other class. The ROC curve plots the TPR and
FPR at di↵erent probability thresholds, meaning that the TPR and FPR can
be written as functions of c:

TPR(c) =
TP (c)

FN(c) + TP (c)
=

FP (c)

No. of positives

= 1� FN(c)

No. of positives
= 1� FNR(c),

(27)
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FPR(c) =
FP (c)

FP (c) + TN(c)
=

FP (c)

No. of negatives
, (28)

where the TPR is equivalent to recall and the FPR is called specificity.

3.6.4 Area Under Receiver Operator Characteristic Curve

Models can also be evaluated using the area under receiver operating curve

(AUC). It is a measure of classifier performance and it close to 1 if the per-
formance is good, meaning that the model is classifying almost all observations
correctly, and close to 0 if the performance is poor. The AUC can be determined
by calculating the area under the ROC curve by trapezoidal integration, using
the equations (28) and (27) :

AUC =
X

i

{[1�(1�TPR(c)i)⇥�FPR(c)]+
1

2
[�TPR(c)⇥�FPR(c)]}, (29)

where
�FPR(c) = FPR(c)i � FPR(c)i�1, (30)

and
�TPR(c) = TPR(c)i � TPR(c)i�1, (31)

as provided by [61].

3.7 Confidence Interval

In classification, the classification error is derived from the sample data set used
when fitting a model. However, the sample error c"N is not necessarily represen-
tative of the true error "N , meaning the error that would have been obtained
using the entire population. To deal with this, one can construct a confidence

interval (CI) for the classification error. A CI provides a range of values, in
which the true value of an population parameter likely lies. A population pa-
rameter is a parameter value calculated on an entire population, rather than
from a sample. Computing the CI for a statistic allows for generalization of the
results to any other sample data set and the full population.

Let N be the number of observations and r be the number of incorrect classifi-
cations. Given a binary response variable Y , r can be seen as binomial random
variable:

r ⇠ Bin(q,N). (32)
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For su�ciently large N , the binomial distribution can be approximated by a
normal distribution:

r ⇠ Bin(q,N) ⇡ N (Nq,Nq(1� q)), (33)

where, q̂ is estimated as:

q̂ =
r

N
⇠ N

✓
q,

q(1� q)

N

◆
. (34)

The CI can then be calculated using a Z-distribution:

CI1�↵ = p̂± z↵/2

r
q̂(1� q̂)

N
(35)

where ↵ is the chosen confidence level.

4 Methodology

The Data and Methodology section describes what data has been selected, how

the data has been preprocessed, what mathematical models have been chosen and

lastly how the models are trained and evaluated.

4.1 Research Outline

The methodology for this research paper can be summarized in figure 1.

Figure 1: Methodology for Thesis
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The goal of this study is to examine the statistical predictive power of three
machine learning methods, random forest, SVM, and logistic regression, with
the use of financial and macroeconomic variables. In order to do so, an initial
dialogue with the Asset Management team at Handelsbanken was held to pin
which variables are of interest, as well as a literature review. These variables
were downloaded from a Bloomberg terminal where the variables could have
unit USD (for example market capitalization), percentage (for example EPS
growth or return on equity), or unitless ratios (for example P/E). Some vari-
ables were transformed to percentage change since this is assessed to yield more
relevant information, which will be described in table 1. All variables were then
standardized using built-in functions in Python. The same variables were used
for the yearly and quarterly prediction models. To also see the variance of the
data, the largest principal components were visualized, with the responses (1
for excess return, 0 for not excess return) labeled for the observations. Limited
mathematical analysis was conducted with the principal component graphics as
it is done solely to visualize part of the data. The models are then trained,
tested, optimized, and tested for statistical power. Only then are final conclu-
sions drawn.

4.2 Data Collection

The observations start from the period 12/31/2010 to 12/31/2020, with quar-
terly intervals with data from the last day of each quarter. The initial sam-
ple contains quarterly figures for 1110 stocks which correspond to a total of
45,797 observations. The data comprises closing prices, 35 financial variables
for each company, and 6 macroeconomic variables. The data is collected from
a Bloomberg terminal and as mentioned before, the collection is focused on
countries in Asia. For an observation to qualify, it needed to fulfill both of the
following criteria:

• Based in one of the following countries: China, Hong Kong, India, Indone-
sia, Malaysia, Philippines, Singapore, South Korea, Thailand, Taiwan and
Vietnam.

• Have a market capitalization between 20 and 9,500 million USD.
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Figure 2: Geographical location of countries included in scope

The upper limit for market capitalization is set higher than the largest con-
stituent’s market value in the benchmark index, in order to capture those that
previously have been small-cap stocks but grown to be mid- or large-cap.

All variables are described in table 1 below. The chosen range of the data
set depends on several factors. Firstly, a ten-year period was used in order to
decrease the risk of building a model on a too small data set. Secondly, to make
the model adapted to the characteristics of the current stock market, 2020-12-31
was chosen as the end date, as it was the most recent quarter with companies’
financial statements released. Furthermore, the frequency of the data was set
to quarterly to avoid short-term fluctuations in stock prices, since the goal of
this study is to predict on a quarterly and one year basis. Also, the majority
of the companies included in the data set report their financial statements on a
quarterly basis, hence for a fundamental analysis-based prediction task it comes
naturally to use quarterly data sampling.

The initial data collection process was mainly focused on acquiring data for
as many observations as possible. This is especially important as the financial
data coverage was incomplete for small-cap companies in Asia. Thus, many
observations may potentially be deleted in the data cleaning stage, leading to
the risk of ultimately obtaining an insu�cient amount of observations. Further-
more, it has been suggested that a balanced data set improves the classification
accuracy of machine learning algorithms. More precisely, when there is a mi-
nority class in the training data, meaning there are only a few observations
belonging to a specific class, a model tends to perform poorly in labeling the
observations to this class [62]. Thus, the 45,797 observations are a results of a
number of stocks being excluded in order to obtain a more balanced data set.
Every 45,797 observations is then labeled, once for the quarterly dataset and
one for the yearly dataset, based on the price direction of the following quarter
and year. This means that the last observation for the quarterly dataset and
the 4 last observations for the yearly dataset for one company was labeled NaN,
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as the label is given based on the return in the following quarter or year. Those
having an excess return compared to the benchmark index are labeled as Excess
(1) and those having a return under the benchmark index were labeled as Not
Excess (0). To determine whether the stock yields an excess return it was com-
pared to the MSCI AC Asia ex Japan Small Cap Index during the same period,
also obtained from Bloomberg’s database.

4.3 Selection of Variables

The initial selection of financial variables was based on the results of previous
research on what financial factors a↵ect stock price movements. This is comple-
mented by interviews held with portfolio managers of Handelsbanken Fonder, to
get further knowledge of what the main influences on stock returns are, as well
as understanding which variables they wish to examine. Predominantly, the
factors that are connected to stock prices can be divided into macroeconomic
variables, company- and stock-specific variables, investors’ sentiment, political
events, and other news and events. This study will focus on quantitative factors,
namely selected company-specific variables and a few macroeconomic variables.
As opposed to other experiments on stock price prediction, this study will also
include analysts’ sales and stock price (target price) forecast and revisions. The
stock market is said to be forward-looking and the expected future sales of com-
panies are commonly used as a component when valuing stocks. Thus, stock
price movements and returns may be influenced by analyst sales and target price
revisions [63].

Company-specific factors are those related to individual stocks such as financial
ratios, liquidity, debt management policies, momentum factors and valuation
metrics. These can facilitate understanding the financial stability, the growth
outlook, and the future value of a company, and consequently relevant to use
when making predictions about whether certain investments will potentially
yield high returns or not [26]. Furthermore, macroeconomic factors are included
as there have been shown that changes in the overall economy of a country in-
fluence the market conditions and thus, also the growth and revenue outlook of
companies [64]. The macroeconomic variables chosen in the study are limited
to variables that are mainly global or cover the entire region of interest, that is
Asia excluding Japan. For instance, 3M interest rate and GDP were found on
an Asia ex. Japan basis and was thus included, in contrast to variables such
as unemployment rate, which were only found on a national level. However,
since money supply has shown to have a significant influence on the Asian stock
market [65], the money supply in China was included to serve as an indicator
for the entire region. The China money supply is represented by the variable
names Big4banks, M1 China and M2 China in table 1. All other variables used
in this study are also presented in table 1 and some of the key concepts and
variables are further explained in the Financial Background in section 2.
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4.4 Preprocessing Data

4.4.1 Data Transformation

Certain variables in this study are naturally expressed in absolute values but
can be more appropriate to present in percentage change in order to make
observations from a company with a market capitalization of 2 billion USD
and another with 100 million USD more comparable. Two such examples of
variables that are originally expressed in absolute values are net income and
revenue, which are transformed to percentage changes from the last period.
Meanwhile, financial ratios such as P/E, EBIT margin, and cash conversion
are by definition expressed in relative terms and are comparable across di↵erent
companies, and can thus be kept in their original form. However, there are some
exceptions when transforming the data. For instance, market capitalization is
in its original form expressed in absolute values but is both transformed into
percentage change to make companies comparable and also kept in its original
form (absolute value in USD) to capture company sizes. Moreover, since some
data values can go from negative to positive, such as economic value added,
percentage change cannot be calculated. For these types of observations the
delta (absolute change) is taken instead. The percentage change (%�) and
delta (�) are calculated as follows:

%� =
xt � xt�1

xt�1
⇥ 100, (36)

� = xt � xt�1. (37)

In table 1 below, a summary is shown. The ’format’ column shows if the vari-
ables have been transformed into percent/delta change or been kept in their
original form, or both. Original means in the format they were originally down-
loaded from Bloomberg, which can be in USD, percent change from last period,
or ratios. When a % is seen in the ’format’ column, it means it was transformed
from its original form to percental change from last quarter or year, for the
quarterly and yearly dataset respectively. Note that T12M is an abbreviation
for trailing 12 months which refers to a company’s financial data for the previ-
ous 12 consecutive months.

Features - Yearly and Quarterly Prediction
Name Format Comment

Market capitalization Original and %
Revenue Growth Original

Revenue 5y Avg Growth Original
Net Income Margin

T12M
Original and % original USD
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Net Income Margin (Q) Original original
Net Income Growth Original

EBIT Margin Original
EBIT Growth Original and %

Cash Conversion T12M Original
Cash Conversion (Q) Original
Dividend Payout Ratio Original If data not available,

replace with 0
EV/EBIT Original

P/E Original
P/B Original
P/S Original

Free cash flow (FCF)
YIELD

Original

Return on Equity Original
Return on Invested

Capital
Original

Return on Assets Original
Debt/Equity Original
Current Ratio Original
Quick Ratio Original

Earnings per Share (EPS)
T12M

Original Sum of the most recent
12 months, four quarters,

two semiannuals, or
annual earnings per share

(EPS)
EPS Growth Original and % Percentage increase or

decrease of earning before
extraordinary items by

comparing current period
with same period prior
year. Calculated as:

(EPS before XO Items -
EPS before XO Items

same period prior year) *
100 / EPS before XO
Items from same period

prior year/
Est. EPS 12M Forward Original

ISM PMI Original
M1 China (Money

supply)
Original

M2 China (Money
supply)

Original

31



3M interest rate Asia ex.
Japan

Original 3 month interest rate

GDP Asia ex. Japan Original and %
Big4Banks (Money

supply)
Original Balance Sheet of China’s

4 largest banks
(Commercial Bank of

China, China
Construction Bank Corp,

Agricultural Bank of
China, Bank of China

LTD)
Revenue T12M Original and %
Revenue (Q) %

Net Income T12M %
Net Income (Q) %

Cash from Operations
T12M

%

Cash from Operations
(Q)

%

Estimated sales %
Target Price Delta and % Delta : share price -

target share price. Target
price, (fair value)

provided by the analyst
covering the stock.

Economic Value Added Original and Delta Delta : EVA current
period - EVA previous

period
Revenue T12M %

Table 1: Features for Yearly and Quarterly Prediction. Original Format is when no alteration was
made. % is when the variable is altered to percentage change from last year or quarter. Delta is
when the variable was altered to di↵erence between last year or quarter

4.4.2 Feature Scaling

As a next step in the data transformation process, all features are standardized
using the Python package StandardScaler from https://scikit-learn.org
which applies the following formula to each feature vector j = 1, . . . , p :

x
0
ij =

x
0
ij � x̄j

�j
, i = 1, . . . , n, (38)

where xij is the original value for the i:th observation’s j:th feature, x̄j is the
mean of the j:th feature vector and �j is the standard deviation of that feature
vector.
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Feature scaling is crucial in order to allow for comparability across the data
set, since the features are often in di↵erent scales. In particular, without fea-
ture scaling, features with values that are of higher magnitude could dominate
the predictions while the features with lower magnitude have less contribution
to the response variable. Feature scaling is especially important for distance-
based algorithms (such as SVM) and gradient descent-based algorithms (such
as logistic regression) [57, p.165].

4.4.3 Data Cleaning

The total number of observations before any type of preprocessing is 45,797.
A large number of data points were considered in the first step since many
values were missing and had insu�cient data, which would mean that a large
proportion needed to be dropped. The final datasets used for the quarterly and
yearly prediction are described more extensively below.

4.4.4 Data Cleaning for Quarterly Prediction

For the quarterly prediction, each observation has a label based on if the fol-

lowing quarter resulted in an excess return. For example, in table 2, 2021 Q1
has the label 1, meaning that in 2020 Q2, the stock beat the benchmark index.
The variables that have been transformed into percentage change are however
backward-looking and are the percentage change from the previous quarter. Af-
ter this initial preprocessing, all NaN are dropped. This resulted in a total
of 4,001 final observations with 46.91% of the labels having excess return, and
53.09% not excess return. The data set was deemed balanced and not in further
need of sampling methods to reduce imbalance. As described in table 1, some
variables are included in two di↵erent formats, for example, absolute value and
percentage change. The resulting number of variables was then in total 47. An
illustrative example for the quarterly dataset is shown in table 2. The same
logic holds for the yearly dataset.

Date Excess Market Cap(USD) Market Cap(%�) P/E M1 China
2020 Q1 1 100 NaN 3.2 21.2
2020 Q2 0 120 0.20 3.3 23.3
2020 Q3 1 100 -0.17 2.4 25.4
2020 Q4 NaN 90 -0.10 4.6 30.0

Table 2: Illustrative dataset for the quarterly prediction, for one company with data only for 2020,
after data transformation. Note that the Excess label for the last quarter will be NaN, as well as
the first entry for variables that are transformed to percental change from the previous quarter.

The training sample will contain 70% of the observations selected at random,
and the fitted model will be tested on the remaining 30% of samples. The three
models will be fitted on the training set and evaluated on the test set, and then
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be subject to hyperparametertuning. All models will after training, testing and
hyperparametertuning be statistically evaluated.

4.4.5 Data Cleaning for Yearly Prediction

The proportion of returns in the data that are excess is 43.0%. The dataset is
concluded to be balanced enough to rule out class balancing methods. After
dropping the NaN values there are a total of 6,490 observations. The response
variable for the prediction is binary: 1 for excess and 0 for not excess, and is
forward-looking, meaning that for each observation, the algorithm assigns the
label 1 or 0 depending on if there was an excess return 12 months after the
current quarter. For the variables that have been transformed into percentage
change, the algorithm compares percent change compared to 12 months before
the quarter of the observation. There are in total 47 variables.

The training sample will contain 70% of the observations selected at random,
and the fitted model will be tested on the remaining 30% of samples. The
three models will be fitted on the training set and evaluated on the test set.
The models will be fitted with no tuned parameters, and subsequently undergo
hyperparametertuning in order to evaluate the improvement in performance.

4.5 Model Development and Evaluation

4.5.1 Model Selection

Since the purpose of this study is to predict future excess returns, the focus
shall be on supervised learning techniques. Furthermore, as seen in the litera-
ture review, support vector machine is commonly used in stock price direction
prediction due to its attractive properties, such as generating a sparse solu-
tion that is globally optimal. Additionally, the SVM generalizes well to unseen
data, meaning that it avoids overfitting to the training data. The random forest
has also proven to perform well and on occasions be the top performer, which
makes of interest for this study. Moreover, the logistic regression model is com-
mon in most previous research and will be of interest since it is a pure linear
discriminant, and hence its performance after hyperparameter tuning can indi-
cate whether the data is linearly separable. Since this research paper will also
examine feature importance, we exclude blackbox models such as the neural
networks where the structure of the functions cannot be evaluated. In contrast
to neural network models, tree-based models and logistic regression provide a
visible structure and the feature importance can be obtained with several mea-
sures and statistics.

Furthermore, the purpose of this model is not to predict exact returns on a
quarterly and yearly horizon and shall focus on stock price direction relative to
the benchmark index. Therefore, regression models are excluded since the stock
price direction prediction is modeled as a classification problem, where the aim
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is to predict whether a stock will achieve excess return or not. Excess return can
be defined as the di↵erence between the return of a stock and the index return
for a specific period. The labels will then be based on if this di↵erence is nega-
tive or positive. With the above reasoning, and with support in the Literature
Review in section 1.6.1, the focus will be on three models:

• Support vector machine (SVM)

• Logistic regression

• Random forest classifier (RF)

4.5.2 Visualization of Data Using Principal Components

Before fitting the models a graphical representation of the data is conducted us-
ing principal components. Principal Component Analysis (PCA) is a renowned
and widely applied method for reducing the dimensionality in a data set, as it
summarizes the information in a large data to a new lower-dimensional data
set consisting of the principal components. The principal components are lin-
ear combinations of the original variables and are uncorrelated. Furthermore,
the principal components are constructed such that the first few ones repre-
sent most of the variation in the original data set. Hence, besides being a
dimensionality reduction method, PCA can serve as a useful tool for visualizing
high-dimensional data in a 2- or 3-dimensional space. This allows for analyzing
the characteristics and properties of the data. In this experiment, PCA plots
will be used as an aid to view and examine the distribution of the classes, rather
than training the models on a PCA-transformed data set [66, pp. 78-79].

4.5.3 Model Fitting and Computational Program

The computational program used to fit the models was exclusively Python. For
the support vector machine, the kernel applied yields di↵erent possibilities of ex-
panding the feature space. A study on financial data found that the polynomial
kernel resulted in slow training and also worse results than for the radial kernel
[67]. When a polynomial kernel was applied to the dataset to be evaluated in
this study, the Python program ran for over 40 minutes with no result, whereas
the radial kernel would yield results in under a minute. Thus this study also
excluded the polynomial kernel, and consider the radial basis only.

4.5.4 Cross Validation and Hyperparametertuning

After the models have been fitted, each model performance will be cross vali-
dated, with the number of folds being restricted to computational power. Hy-
perparametertuning will be conducted with built-in functions in Python, with
supplementary written code to target specific parameters. Moreover, python
has for each of the three models also built-in parameter values with aliases,
which were used in this study. The number of features in the models will
be denoted p. For logistic regression, there are di↵erent solvers, methods, to
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find the optimal regression parameters described in Section 3.5, for example
’netwton-cg will use the netwon method’, lbgfs will use the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno Algorithm, and liblinear uses automatic
parameter selection. For the SVM ’rbf’ is the radial kernel. The gammas
can be either ’auto’ which will set the value to 1

p or ’scale’ which sets value to
1
p ⇥ 1

variance(p) . For the random forest, one can set the algorithm to perform
bootstrapping by either ’True’ or ’False’. The number of features considered
per split is set to ’sqrt’, meaning

p
p features are considered per split. For

full documentation one can refer to https://scikit-learn.org. The cross
validation will be used again when finding the optimal hyperparameters in the
hyperparameter space for each model, to increase statistical reliability.

4.5.5 Statistical Testing

As a final step, each model will be statistically evaluated in order to deter-
mine whether the models actually posses predictive power. Statistical tests are
conducted to assure that the models are properly trained with adequate data
preprocessing and that their performances statistically can be proven di↵erent
and also show mathematical rigidity. This will be done by:

• Calculating the standard deviation of recall and precision of the models
using cross validation.

• Conducting a hypothesis test to determine if the models are performing
significantly di↵erently.

• Constructing a confidence interval for the model errors using cross valida-
tion.

5 Results

As described in figure 1, The first step in the analysis is to visualize the variance
of the data through PCA to examine the separability of the binary classes. After
this step, the models are subject to model fitting and statistical evaluation.

5.1 Quarterly Prediction

5.1.1 Principal Components Analysis

The result of the first 4 PCA components in figure 3, labeled with their re-
spective class, shows little sign of the two classes being clearly separable by the
principal components, as bulk data for the classes mainly follow the same pat-
tern. The argument holds when visualizing the first principal component with
the second, and the third principal component with the fourth.
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Figure 3: First four Principal components with labeled binary classification

(a) PCA 3D Visual (b) PCA 3D Visual

Figure 4: 3D Visual of Classes with 3 Largest Principal Components

The 3D visual in figure 4 of the first three principal components further assures
that there are no clear signs of the classes being separable in the third dimension
when using the components with the largest variances. The findings suggest a
linear decision boundary would perform poorly. This initial PCA analysis shows
that classes 1 and 0 mostly follow the same distribution in their variance. Below
the results from the three fitted models are presented and evaluated in how well
they can distinguish between the binary classes.
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5.1.2 Support Vector Machine

The SVM was fitted with a radial kernel. The default setting of the tuning
parameter C is set to 1. The confusion matrix from this run is presented below
in figure 5. The main diagonal shows the correct classifications, and shows
that the model correctly classified 482 out of 644 observations as not excess
return. The model correctly classified 244 out of 557 observations as having
excess returns.

Figure 5: Confusion matrix quarterly prediction SVM

The metrics from this first run are presented in table 4. The initial model has
poor recall performance, which means false negative rate is high. Recall ideally
should be higher for the purpose of detecting stocks that yield excess return,
meaning a high number of true positives and a low number of false negatives.
The precision metric does perform better, which also is desirable in order to not
label an actual underperforming stock as an excess yielding stock.

The SVM is tuned in order to optimize the performance, and the focus shall be
to improve recall. This is done by tuning the hyperparameters in a 5 fold cross
validation. Using the GridSearchCV package in Python, the hyperparameters
are tuned by testing a total of 1⇥2⇥10 combinations. The results indicate an
optimal performance of the model with parameters set to those seen in table 3.
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Parameter Parameter Space Optimal Parameter
Kernel rbf rbf
gamma auto, scale auto
C 1,2,3,4,5,6,7,8,9,10 10

Table 3: Optimal Hyperparameters for SVM, Quarterly Prediction

The optimized model is cross validated 10 folds and presents an increase in recall
and F1 score, for a small decrease in accuracy and precision. Since the large
increase of recall, the metric of the correctly classified true positives in relation
to false negatives, comes from a small decrease in overall performance, the model
is deemed as improving its performance from the hyperparametertuning.

Metric Initial SVM Model Model with tuned hyperparameter
Accuracy 60.45 % 59.85 %
Precision 60.01 % 59.20 %
Recall 43.81 % 52.00 %
F1 50.57 % 54.30 %

Table 4: Results for SVM metrics before and after hyperparametertuning

Since the classification is occurring in the enlarged feature space with a radial
kernel, the feature importance cannot be evaluated.

5.1.3 Random Forest

The next model evaluated was the random forest. Figure 6 is the confusion
matrix for the initial run with no parameters tuned.
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Figure 6: Confusion matrix quarterly prediction random forest

The results indicate an accuracy of 61.64%. The metrics for the classification
are presented in table 6.

To optimize the results the hyperparameters are tuned a 3 fold cross validation is
conducted 100 times, for 100⇥2⇥12⇥3⇥3⇥1 combinations of hyperparameters.
The algorithm built runs an exhaustive search to find a model with low vari-
ance and improved performance. It shall also test to see if Bagging (bootstrap
aggregation) will significantly improve the model. The results from searching
the hyperparameter space are seen in table 5.

Parameter Hyperparameter space Best hyperparameters
Number of estimators 200 to 2000 with spacing 10 800
Max depth 10 to 120 with spacing 10 50
Minimum samples per split 1,2,10 2
Minimum samples per leaf 1,2,4 2
Bootstrap True, False False
Max Features sqrt sqrt

Table 5: Hyperparameters for the Random Forest model - Quarterly Prediction
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The optimized model is run with a 10 fold CV and presents an accuracy of
62.61%. The classification report of the optimized model is presented below.

Metric Initial Random Forest Model Model with tuned hyperparameter
Accuracy 61.64 % 62.62 %
Precision 64.31 % 65.71 %
Recall 53.20 % 62.44 %
F1 55.04 % 61.00 %

Table 6: Results for quarterly prediction with Random Forest metrics before and after hyperparam-
etertuning

The most influential features are extracted from the cross validated optimized
model and are seen below in figure 7. The variables are scored through Gini
impurity-based feature importance.

Figure 7: Random forest feature importance based on Gini’s Index

Net income growth, net income trailing 12M, EPS growth (%) are found to
be the three most influential variables while P/E and dividend payout ratio is
presented as the least influential variable. In general, the fundamental variables
are seen to be more important to the random forest model than the macro
variables.
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5.1.4 Logistic Regression

The next model to be presented is the logistic regression. The first run with
no tuned hyperparameters presents an accuracy of 56.86%. The model was
set to have maximum iterations 100,000 due to it not converging, with one
reason possibly being seen from the initial PCA analysis since there seems to
be no clear linear decision boundary from the first principal components. The
confusion matrix is presented below in figure 8.

Figure 8: Confusion matrix quarterly prediction logisic regression

The confusion matrix show poor performance in detecting accurate classifica-
tions of excess yielding stocks, worse than the previous models tested above.

In order to see if the parameters can be tuned to improve the accuracy score, a
10 fold CV is repeated 3 times with 3⇥1⇥5 di↵erent combinations of parame-
ters. These are shown in table 7.
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Parameter Hyperparameter Space Best Hyperparameters
solver newton-cg, lbfgs, liblinear newton-cg
penalty l2 l2
c value 100, 10, 1, 0.1, 0.01 0.1

Table 7: Hyperparameters for the Logistic Regression model - Quarterly Prediction

With these tuned hyperparameters, the results show an accuracy of 56.90%.
The metrics scores from the optimized hyperparametertuning show an insignif-
icant improvement from the initial model. Table 8 shows the results for the
metrics before and after the tuned and cross validated hyperparameters.

Metric Initial Logistic Regression Model Model with Tuned Hyperparameters
Accuracy 56.86 % 56.90 %
Precision 56.40 % 56.70 %
Recall 52.20 % 52.30 %
F1 51.09 % 51.11 %

Table 8: Results for quarterly prediction with Logistic Regression metrics before and after hyper-
parametertuning

The feature importances are extracted from the optimized logistic regression
model and seen below in figure 9.
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Figure 9: Feature importance for quarterly prediction - logistic regression

To understand if any variables can be concluded statistically significant, the
p � values are calculated. The results in table 9 show only two variables have
a value below 0.05 a significance level ↵ = 0.05.

Feature p� value

Market Cap Absolute 0.000
Revenue (Q) 0.015

Table 9: Statistical Significance of Variables, Significance Level ↵ = 0.05 - Logistic Regression
Quarterly Prediction

5.1.5 ROC Curve and AUC

All three models are now compared using the receiver operating characteristic
curve (ROC curve). The dashed red line indicates the threshold for a model is
a random guess. One can see that the random forest model seems to perform
best out of the three with an AUC of 0.66. The ROC curves for all classification
models are plotted after a 10 fold cross validation on the test set.
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Figure 10: ROC curves for the three optimized models with AUC scores - quarterly prediction

From the ROC curve it is seen that all 3 models possess predictive power as the
model’s ROC curves lie above the dashed red line which indicates the random
guess. The graph shows the tradeo↵ between the true positives and the false
positives. The AUC represents how well the models distinguish between the
two classes and is the probability that a randomly chosen positive observation
is ranked higher than a randomly chosen negative observation. Since the ROC
curves are above the red dashed line and AUC � 0.5 the models are able to
distinguish the excess and not excess return. It is however not a fair conclusion
to say that the models are performing well, as the ROC curve would ideally
be close to the northwest corner of the graph, which means a high rate of true
positives for a small rate of false positives.

5.2 Statistical Testing of Models

5.2.1 Standard Deviation and Confidence Interval of Models

The models are run with a 10 fold cross validation where thereafter the standard
deviations, �, and error confidence intervals with ↵ = 0.05 are calculated.
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Models � recall � precision Error Confidence Interval
Random Forest 0.0640 0.0613 0.381 +/- 0.0022
Logistic Regression 0.0621 0.0437 0.425 +/- 0.0015
SVM 0.0579 0.0667 0.417 +/- 0.0020

Table 10: Standard Deviation and 95% Error Confidence Intervals - Quarterly Prediciton

Table 10 demonstrates that the standard deviations for recall and precision
is low, indicating that the result is not at random for each iteration. The
confidence intervals indicate that the error rates seem to be bound and not at
random. This assures that the model has been properly trained.

5.2.2 Kappa Statistic

Model Value
Random Forest 0.228
SVM 0.174
Logistic Regression 0.127

Table 11: Kappa Statistic for Quarterly Prediction.

The Kappa Statistic indicates that the values are not close to one for the mod-
els. However, they assure that the models are trained to predict better than
completely at random as they are greater than 0. The metric also indicates
that the random forest is the only algorithm with a kappa > 0.2 which indi-
cates fair agreement of predictions. This is in line with what is observed from
other statistical metrics, that random forest is performing better than the other
models.

5.2.3 Hypothesis Test

To test whether the models are performing di↵erent, a hypothesis test is done
at a level of ↵ = 0.05. The hypothesis are as follows

• H0 : The performance of the two di↵erent models is not significantly
di↵erent

• H1 : The performance of the two models is significantly di↵erent

The tests are conducted pairwise with and the results are presented in table 12
with the p� value, t� statistics for each test conducted.
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Models p� value t� statistic Reject H0

Random Forest vs. SVM 0.012 4.777 YES
Random Forest vs Logistic Regression 0.009 12.785 YES
SVM vs Logistic Regression 0.267 -1.248 NO

Table 12: Hypothesis Test ↵ = 0.05

Concluding from the results above, it is shown that statistical significance be-
tween the model performances can be determined when comparing random for-
est to the other two. A statistically significant di↵erence in performance between
the SVM and logistic regression cannot be seen. It can therefore be said that
the random forest model is performing best out of the three models in terms of
accuracy, precision, recall, AUC, error rate and Kappa Statistic.

5.3 Yearly Prediction

Similar to the previous section, the results in the section begin with a principal
component analysis to visualize variance of data. Thereafter the results for the
binary models are shown after training, model fitting and analysis, followed by
statistical testing.

5.3.1 Principal Components Analysis

Figure 11: Principal component analysis with labeled binary classes

Initial inspection of a PCA analysis in figure 11 shows that ’not excess’ returns
seem to have a higher variance along the axes with the principal component in
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both figures. The not excess return, in the figure where the first and second
principal components are visualized, also shows slightly higher variance along
the first principal component. Visualizing the principal components in 3D as
seen in figure 12 also shows this pattern.

(a) PCA 3D Visual (b) PCA 3D Visual

Figure 12: 3D Visual of Classes with 3 Largest Principal Components

5.3.2 Support Vector Machine

Figure 13: Confusion matrix yearly prediction with SVM
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The confusion matrix shown in figure 13 for the initial model with a radial ker-
nel presents an accuracy of 60.82%. The metrics for the run are presented in
table 14.

In order to see if the model can be improved the parameters are tuned a 5
fold cross validation is conducted. The performance of the model is optimized
for C= 8, gamma = scale. The optimal hyperparameters are stated below in
table 13. The performance of the model is improved in regards to accuracy of
almost 4%, and the results are seen in table 14.

Parameter Parameter Space Optimal Parameter
Kernel rbf rbf
gamma auto, scale scale
C 1,2,3,4,5,6,7,8,9,10 8

Table 13: Optimal Hyperparameters for SVM, Yearly Prediction

Metric Initial SVM Model Model with Tuned Hyperparameters
Accuracy 60.82 % 64.30 %
Precision 58.20 % 63.10 %
Recall 44.33 % 53.00 %
F1 50.33 % 64.91 %

Table 14: Results for yearly prediction with SVM before and after hyperparametertuning

5.3.3 Random Forest

The confusion matrix of the initial run with the random forest algorithm is
presented in figure 14. The model performs well in classifying those observations
that do not have excess return, but performs less accurately when predicting
those that have excess return.
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Figure 14: Confusion matrix yearly prediction with random forest

The initial model with no tuned parameters presents an accuracy of 68.26%.
The classification report is presented below in table 16.

In order to see if the performance can be improved the hyperparameters are
tuned with a 3 fold cross validation due to the large complexity of combina-
tions. To optimize the results the hyperparameters are tuned with a 3 fold
cross validation, conducted 100 times, for 100⇥2⇥10⇥3⇥3⇥1 combinations of
hyperparameters. These combinations will make up the hyperparameter space
in which the best combinations will be found. Table 15 presents the results.

Parameter Hyperparameter Space Best Hyperparameters
Number of estimators 200 to 2000 with spacing 10 1000
Max depth 10 to 120 with spacing 10 80
Minimum samples per split 1,2,10 10
Minimum samples per leaf 1,2,4 1
Bootstrap True, False False
Max Features sqrt sqrt

Table 15: Hyperparameters for the Random Forest model - Yearly Prediction

The accuracy of the optimized model is 69.64% with the metrics presented be-
low.
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Metric Initial Random Forest Model Model with Tuned Hyperparameters
Accuracy 68.30 % 69.64 %
Precision 68.10 % 69.20 %
Recall 66.20 % 68.10 %
F1 59.90 % 68.00 %

Table 16: Results for yearly prediction with Random Forest before and after hyperparametertuning

The optimized model’s feature importance is examined and show in figure 15.
The random forest model recognizes the market capitalization, Revenue 5y Avg
Growth, and EPS trailing 12 months as the top 3 influential variables, closely
followed by Debt/Equity ratio. Dividend payout is the least influential variable.

Figure 15: Random forest feature importance - optimized model
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5.3.4 Logistic Regression

Figure 16: Confusion matrix logistic regression

Logistic regression presents an accuracy of 58.50%. The model performs well
under the previously presented models. However, a hyperparameter tuning is
conducted to aid in assessing the overall quality of data preprocessing. The
hyperparameters tuned are the same as for the quarterly prediction and the
optimized model parameters are presented in table 17.

Parameter Hyperparameter Space Best Hyperparameters
solver newton-cg, lbfgs, liblinear liblinear
penalty l2 l2
c value 100, 10, 1, 0.1, 0.01 0.1

Table 17: Hyperparameters for the Logistic Regression model - Yearly Prediction

The optimized results indicate an accuracy of 58.51% when cross validated,
and 60.93% as the highest score. The metrics for the tuned model are shown in
table 18.
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Metric Initial Logistic Regression Model Model with Tuned Hyperparameters
Accuracy 58.50 % 58.51 %
Precision 51.84 % 52.12 %
Recall 35.53 % 35.30 %
F1 42.17 % 42.10 %

Table 18: Results for yearly prediction with Logistic Regression before and after hyperparameter-
tuning

The feature importances from the optimized model are found, after a 10 fold
cross validation, as seen in figure 17.

Figure 17: logistic regression feature importance

The performance of the logistic model has so far proven worse than the other
two. A statistical test for the features shows which ones significantly contribute
to the model. The significance test was done with significance level ↵ = 0.05.
The significant variables are shown in table 19.

53



Feature p� value

Market Cap Absolute 0.000
Revenue Growth 0.032
P/B 0.073
P/S 0.005
ISM PMI 0.000
M1 China 0.000
Revenue T12M 0.022
Net Income T12M 0.045

Table 19: Significalt variables - Logistic Regression Yearly Prediction with significance level ↵ =
0.05.

5.3.5 ROC Curve and AUC

The ROC curves of the three optimized models are all plotted after a 10 fold
cross validation on the test set, and it is seen that the random forest model is
outperforming the other two with an AUC score of 0.77. All of the curves are
however above the dashed red line which indicates they perform better than a
random guess. The ROC curve also shows that the random forest model yields
a true positive rate (TPR) of around 0.6, for a false positive rate (FPR) of
0.2, while logistic regression yields around 0.3 TPR for a 0.2 FPR. This initial
analysis shows that the random forest classifier is performing best.

Figure 18: ROC curves for the optimized models wih AUC scores
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5.4 Statistical Testing of Models

5.4.1 Standard Deviation and Confidence Interval of Models

The confidence intervals of the mean errors are constructed through a 10 fold
cross validation, with ↵ = 0.05. The 95% confidence intervals and standard
deviation for the models are presented in table 20.

Models � recall � precision Error Confidence Interval
Random Forest 0.05950 0.03950 0.3359 +/- 0.0010
Logistic Regression 0.05126 0.05269 0.4123 +/- 0.0013
SVM 0.04510 0.05308 0.3713 +/- 0.0016

Table 20: Standard Deviation and Error Confidence Intervals - Yearly Prediciton

All three models present a bound error rate and also a low standard deviation,
which assures that the models have been properly trained and do not produce
metrics at random.

5.4.2 Kappa Statistic

Model Value
Random Forest 0.363
Support Vector Machine 0.277
Logistic Regression 0.127

Table 21: Kappa Statistic for the 3 models - Yearly Prediction

The Kappa Statistic shows improvement compared to the quarterly prediction
for random forest and support vector machine as indicated by the metrics, and
an insignificant change for logistic regression. The Kappa Statistic reassures
that the yearly prediction algorithms do seem to exhibit more predictive power
compared to the quarterly prediction and that the SVM and random forest
present fair agreement in predictions.

5.4.3 Hypothesis Test

To assess the statistical quality of the models, a hypothesis test at level ↵ = 0.05
is done to examine of the models are performing di↵erently with statistical sig-
nificance. The tested hypothesis are

• H0 : The performance of the two di↵erent models is not significantly
di↵erent

• H1 : The performance of the two models is significantly di↵erent
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Models p� value t� statistic Reject H0

Random Forest vs. SVM 0.003 8.786 YES
Random Forest vs Logistic Regression 0.001 7.025 YES
SVM vs Logistic Regression 0.004 -5.046 YES

Table 22: Hypothesis Test ↵ = 0.05

It can be shown that all three models are performing statistically di↵erent at
significance level ↵ = 0.05. This implies that the random forest model is the
best performing model.

6 Discussion

This study was novel in two ways, that a majority of research papers focus on
mid to large-cap stocks, and that the geographical area was covering for the
prediction was multiple countries in the Asian region rather than one. The
results have been presented for yearly and quarterly prediction, for the binary
case of the stock yielding an excess return or not compared to the index MSCI
AC Asia EX Japan. The models have been tested in multiple di↵erent aspects
in order to determine their statistical significance. None of the models show
high variance or a tendency to perform well at random, which is further assured
through cross validation. The models have also been evaluated with multiple
metrics, some being accuracy, precision, recall, and F1. None of the metrics
show high variance and a 95% confidence interval could be constructed.

The best model performing model among the quarterly and yearly prediction is
in both the yearly and quarterly case the random forest model, followed by the
support vector machine. The random forest prediction on a yearly basis shows
an accuracy of 69.64% after hyperparametertuning and cross validation. With
the dataset for this study and the subsequent findings, it can be concluded that
the models perform better when predicting the small- and micro-cap stocks on
a yearly time horizon compared than a quarterly, possibly because the bulk of
the data for the quarterly dataset shows more variance in the PCA analysis
compared to the yearly dataset, which can increase the di�culty in predict-
ing the outcome. These results might also indicate that the chosen variables
are more suited for a yearly prediction horizon. Similar conclusions are drawn
when predicting one-year stock movement (up, down) in the research article by
Ballings et. al (2015), where the random forest model was the top performer,
followed by the support vector machine [29]. In line with their conclusion, the
findings from here would also support that the SVM and random forest model
are adequate candidates when predicting stock price direction.

From this study, it can also be concluded that the models perform di↵erently in
all cases except in the quarterly case between SVM and logistic regression, and
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that the models show room for improvement when tuning the hyperparameters.
For the quarterly prediction, it could be stated that the random forest model
performed better, but that the ROC curve still shows the tendency of a close re-
lationship between TPR and FPR tradeo↵. The collected data for this research
purpose indeed had a high variance, also in line with a general characteristic for
micro- and small-cap stocks. The maximum excess return of all observations
in the quarterly observations was 346.9%, and the minimum excess return was
-53.9% and for the yearly observations the numbers were 954.5% and -976.5%
respectively. The abnormal behaviour of these stocks can have contributed to
the algorithms having di�culty in finding patterns for classifying the data.

The random forest and logistic regression model also present which features
are the most influential and significant. However, the poor performance from
the logistic regression gives little incentive to draw general conclusions. For
quarterly prediction, the random forest places the top three influential variables
as net income growth, net income trailing 12M, and EPS growth in percent,
whereas the logistic regression model shows no statistical significance for these
variables at a significance level of ↵ = 0.05. For the yearly prediction models, the
random forest and logistic regression model align in placing market capitaliza-
tion in terms of USD value as one of the most significant variables. The random
forest model further identifies EPS trailing 12M as an influential variable, which
aligns with previous studies by Anwaar, M and Emamgholipour [43][42]. How-
ever, these studies were seen to present conflicting results in whether it has a
positive or negative impact. Debt/Equity is also found by the random forest
to be an influential variable, which Hobarth, L also concluded in his research
[45]. The feature importances highlighted in the results show some alignment
with previous research, and limited similarities between the logistic and random
forest model, which makes it desirable to investigate the feature importance fur-
ther in order to draw a conclusion. Suggestions will be discussed in the final
section of this study.

7 Conclusion

Three di↵erent models were tested on a binary classification problem for stock
price direction of Asian small- and micro-cap stocks. The random forest model
performs superior in both the quarterly and yearly prediction and it is seen that
there is a statistical significance in the performance di↵erence compared to the
logistic model and support vector machine. The statistical testing of the models
in all cases assures that the data has been trained in a manner to reduce model
variance. This is promising as it indicates that machine learning models can be
appropriate for this type of dataset. We have also seen that all three models
show room for improvement in their statistical performance, which suggests
that the performance possibly further can be enhanced with the use of di↵erent
variables or preprocessing techniques that were out of the scope for this research.
This study also concludes that the models in general perform better on a yearly
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prediction horizon compared to a quarterly, which is also suggested by the visual
results of the PCA plots where the quarterly dataset shows a greater variance
in the bulk of the data. The conclusions for the feature importance are deemed
inconclusive but show some similarities with previous research done. However,
since the performance of the yearly random forest model is found the best among
the three considered, the results from the three most influential variables can
indicate that market capitalization, revenue 5 year average growth and EPS
trailing 12M are interesting to investigate further. With the results presented
above, the answers to the research questions can be presented as follows:

• RQ 1 The best model among the three for the dataset in this study, after
hyperparametertuning and cross validation, was found to be the random
forest model for a yearly price direction prediction, with an accuracy of
69.64%. Random forest was found best also for quarterly prediction, with
an accuracy of 62.62%.

• RQ 2 The results were inconclusive, as the logistic regression and random
forest model do not align in identifying the influential variables. However,
as the random forest model presents the best performance for yearly pre-
diction, its results after cross validation and hyperparametertuning indi-
cate that market size (USD), revenue 5 year average growth (%) and EPS
trailing 12M can be candidates for the three most influential variables,
but are subject to further testing and investigation.

8 Future Research

When calculating if the observation yields an excess return or not, this study
compares for the quarterly prediction the next quarter on the last day, and for
the yearly prediction the last day of the fourth following quarter. For future
purposes, to reduce the impact of day-specific events, it can be of interest to
instead calculate the average return for the last week of the quarter.

Another topic neglected in this study is look-ahead bias. This study assumes
that all information is available on the last day of the quarter, when there ac-
tually could have been a delay in when this information was available. This
could potentially lead to overconfidence in the prediction results. Some studies
have been carried out to evaluate the e↵ect look ahead bias has on performance.
Jenke, R et. al use a Monte Carlo study to eliminate look-ahead bias [68]. Ba-
quero, G et al. also suggest weighing procedures in order to account for the
look-ahead bias, where they found around 3.8% overestimation when evaluating
hedge fund performance with time series data [69].

As the purpose of this study furthermore was not to assess predictability for
di↵erent or specific company sectors, it can for the future also be relevant if the
model is improved when excluding certain sectors or limiting the observations
to only one sector. For example, some studies have considered only predicting
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banking and financial sectors such as one by Vikalp, R et al. [25].

Another suggestion for future research on small- and micro-cap stocks can be
to remove stocks that have abnormally high or low excess returns. Removing
extreme values or outliers has been seen to improve results in classification and
regression techniques, although it cannot be generalized as common practice for
all datasets [57].
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