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Abstract
Technological advancements and widespread adaptation of new technology in indus-
try have made industrial time series data more available than ever before. With this
development grows the need for versatile methods for mining industrial time series
data. This paper introduces a practical approach for joint human-machine exploration
of industrial time series data using the Matrix Profile, and presents some challenges
involved. The approach is demonstrated on three real-life industrial data sets to show
how it enables the user to quickly extract semantic information, detect cycles, find
deviating patterns, and gain a deeper understanding of the time series. A benchmark
test is also presented on ECG (electrocardiogram) data, showing that the approach
works well in comparison to previously suggested methods for extracting relevant
time series motifs.
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2 F. Nilsson et al.

1 Introduction

The introduction of Industry 4.0 will connect everything on the industry floor to the
cloud and the Industrial Internet of Things. Significant amounts of data are already
collected today and to some extent used in Supervisory Control And Data Acquisition
(SCADA) software for high-level monitoring and control of industrial and manufac-
turing processes. Everything on the factory floor of tomorrow will be connected and
communicating with IT systems worldwide, which will generate immense amounts
of time series data.

With this development grows the need for versatile methods for mining industrial
time series data, to find interesting subsequences in the data. The word “interesting” in
this context might mean patterns that are repeated once or several times. It could also
be patterns that occur seldomly. The terms time series motif and time series discord
have been used to define such patterns in the literature (Lin et al. 2002; Yeh et al.
2016). Motifs are defined as the subsequences with the lowest distance to their nearest
neighbors within a time series. Discords are, in contrast, the subsequences that have
the highest dissimilarity to all other subsequences. Motifs and discords in industrial
time series data can provide valuable hints on the state of a product or process, such
as: What is it doing? Is it operating as it should? Is it operating efficiently?

TheMatrix Profile (MP)method (Yeh et al. 2016), findsmotifsmuch faster andwith
fewer hyper-parameters than any previous approach. With it, it should be possible to
approach real-world large-scale industrial problems to find motifs that can help opera-
tors and machine builders to better explore and understand their processes, machines,
and products. However, there are several practical issues to deal with, e.g., limited
computing resources, variable-length motifs, finding motifs invariant of scale, warp-
ing or other kinds of issues. Some of these challenges might be solved conveniently
in an environment where a human operator (the expert) works together with a motif
discovery tool and iteratively explores the time series. This paper builds upon this
idea and proposes an approach for human-machine collaboration on time series data
exploration and analysis using the MP. The intention is to let users extract meaningful
knowledge from their time series data by discovering interesting motifs and clustering
them into (relatively) few representatives. This is done without necessarily knowing
beforehand what the data is expected to contain (e.g., in terms of class labels), which
is usually the case in real production scenarios. Several important practical issues are
encountered and discussed in this work:

• How to handle motifs of variable length or to set an appropriate size for the sliding
window required to calculate the MP.

• Industrial processes span over long periods of time and generate large data sets.
Most documented results with MP use time series with a length of up to 2 million
samples (Yeh et al. 2016; Zhu et al. 2016, 2018), which is at least five times shorter
than the industrial data sets used in this paper.

• The expert should have an active role and be able to incorporate domain knowl-
edge or provide guidance to find meaningful patterns and exclude uninteresting
subsequences.
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Practical exploration of industrial time series using the matrix profile 3

• The MP indicates where potential motifs are in the time series, but it does not tell
how many there are and whether there are groups of similar motifs. How should
relevantmotifs be extractedwhen their numbers are unknown?How should similar
motifs be grouped? Can any information be gained from these groups?

The Matrix Profile is a relatively new method, and there are few studies on real-life
industrial data that discuss the practical problems encountered with such data. This
paper is centered around three real-world case studies to investigate whether an MP-
based solution can handle the issues listed above; what other issues there are; what
the practical limitations are of the MP; and how an MP-based solution compares to
previous research where these data sets have been involved. The contributions of this
work are the following:

• The construction and evaluation of a first-generation tool for exploring time series
data in collaboration between a human expert and the MP algorithm.

• An overview of practical issues for such a tool to handle to be useful in a real-world
application.

• A demonstration of the proposed method on how to extract semantic information
from an industrial time series.

• A demonstration of the proposed method on how to detect cycles in an industrial
time series.

2 Related work

Motif discovery has been applied in many domains, from entomology, meteorology,
geology, medicine, engineering, biology, music, to finance (Mueen 2014; Torkamani
and Lohweg 2017). Motif discovery algorithms can be grouped into two categories:
exact and approximate. It is often desirable to calculate the exact motifs, but that
usually comes at the cost of increased computing complexity. Typical methods of
reducing complexity are Random Projection (Chiu et al. 2003), Piecewise Aggre-
gate Approximation (PAA), Symbolic Aggregate approXimation (SAX), and Discrete
Fourier Transform (DFT) (Mueen 2014). These representations reduce the dimension-
ality on which to calculate the motifs and thereby reduce the complexity. However,
the trade-off is typically a loss of information. Early algorithms like Enumeration
of Motifs through Matrix Approximation (EMMA) (Lin et al. 2002) use PAA to
reduce the continuous time series into a discrete set of equiprobable symbols. Later
approaches often build on SAX. One example is the MK algorithm by (Chiu et al.
2003), which converts all subsequences using SAX and then randomly projects them
into a lower-dimensional space and measures the collisions between subsequences.
The subsequence with themost collisions becomes the best motif, the onewith the sec-
ond most collisions becomes the second best, and so on. SAX has been the most cited
time series representation for a long time (Torkamani and Lohweg 2017). The most
common distance measure in motif discovery algorithms is the Euclidean distance,
although many other distance measures exist like Dynamic TimeWarping (DTW) and
Uniform scaling. The Euclidean distance’s popularity stems from it being the most
intuitive and the fastest to compute. The Euclidean distance’s main drawback is that it

123



4 F. Nilsson et al.

deals poorly with differences in amplitude, scaling, and different length subsequences.
Nevertheless, it has proven to be competitive against more advanced distance mea-
sures (Renard 2017). Also, Mueen (2014) argues that the resulting distances between
motifs are practically indistinguishable between using DTW or Euclidean distance.

In addition to the methods above, various data mining and machine learning tech-
niques have been used to discover motifs. Everything, from clustering, to Minimum
Length Descriptors and PCA to reduce the dimensionality of multivariate data into a
single time series (Tanaka et al. 2005), to image representations of motifs and Fully
Convolutional Networks. The latest significant contribution to time series motif dis-
covery is the Matrix Profile, which was first published in 2016, and is arguably the
current state-of-the-art method for motif discovery in time series.

Motif discovery methods return information about where motifs are located in a
time series and the location of a motif’s nearest neighbor. Information about groups of
similar motifs or how many motifs there are in each group can be provided by motif
enumeration methods like Set Finder, Scan MK (Bagnall et al. 2014), and HubFinder
(Yoshimura et al. 2019). The main practical problem with these algorithms is that they
require hyper-parameters that are not easy to set when working with large industrial
data sets. Set Finder and Scan MK require the user to select a threshold radius that
dictates how motifs are merged into clusters. This threshold has been documented to
be sensitive and difficult to set (Yoshimura et al. 2019). HubFinder does not require
a radius but the user must decide how many motif categories to extract by setting a
hyper-parameter K (Yoshimura et al. 2019). Unfortunately, on industrial data sets that
potentially contain several years of process data, it is not easy to know in advance how
many motif categories to extract.

Keogh and Lin (2005) show that clustering time series subsequences is meaning-
less. However, the paper explains that this meaninglessness results from the way the
overlapping subsequences are extracted via a sliding window. Instead of attempting to
cluster every subsequence, including trivial matches, the authors suggest a potential
solution to cluster subsequences meaningfully: first, running a motif detection algo-
rithm to extract an initial set of promising subsequences, and then clustering only these
subsequences. The approach we propose in this paper is in line with this solution.

The proposed method described in Sect. 4 does not require the user to define a
radius or decide how many patterns to extract beforehand. Instead, it relies on a joint
human-machine exploration process where new knowledge is created systematically.

3 Data

Three industrial data sets are used in the experiments and comparisons, all collected
from real-world processes. We also use a medical time series from the MIT-BIH
Arrhythmia Database1, for the purpose of comparing with other motif enumeration
algorithms on labeled data.

1 https://archive.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm
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Practical exploration of industrial time series using the matrix profile 5

3.1 The oil purification data set

The Oil Purification (OP) data set contains data from an oil separation process where
oil is separated from dirt and unwanted particles. This data set is not labeled and there
are no known faults or deviations. The process is precisely repeated with two different
types of patterns on two different time scales. There are no missing data in this data
set. The data consists of 3 signals from a centrifugal separator machine, sampled at 1
Hz, spanning a period of 3,380 hours (∼ 141 days).

3.2 The water treatment data set

TheWater Treatment (WT) data set contains data collected from freshwater treatment
equipment. The data set is semantically labeled since data is collected from the transi-
tions between states in thewater purification process. The goal is to see if the semantics
of the state transitions can be seen in the motifs extracted from the time series. The
different state transitions are labeled in the data set. The data is not continuous; the
time series are segments from the state transition periods. The data consists of 1,244
hours (∼ 51 days) recorded over 13 month.

3.3 The city bus fleet data set

The City Bus Fleet (CBF) data set contains 8,750 hours (∼ 365 days) of air pressure
data for a compressed air circuit sampled at an average sampling rate2 of 3.6 Hz from
19 different city buses in actual operation. The data has many periods with missing
values, but it also contains annotations of interesting events like component failures
and workshop visits. The air compressor is a key component that is expected to break
very seldomly, but if it breaks the bus is impossible to operate. The signal amplitude
is expected to be stationary but the frequency varies depending on how much the
pressurized air is used. This data set has been used by Fan et al. (2015, 2016, 2020)
to predict compressor failures and maintenance needs.

3.4 The ECG arrhythmia data set

The MIT-BIH Arrhythmia Database is available on PhysioNet and contains excerpts
from 47 subjects of two-channel ambulatory Electrocardiogram (ECG) recordings
(Moody and Mark 2001). We use the signal for subject 106 to compare with previous
motif finding studies (Yoshimura et al. 2019). This subject’s data has 1507 normal
beats and 520 premature ventricular contractions. The upper signal (the modified limb
lead II) is used as the univariate time series.

2 The sampling is uneven and varies between buses.

123
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4 Methodology

This section describes the steps in the proposed human-machine iterative workflow
for exploring large industrial time series. First, a short introduction to the MP is
provided, followed by some insights from working with it. Then, the first step of the
proposed approach, called GAME (Gaussian AssistedMotif Extraction), is presented.
This is followed by the presentation of the second step, called IUSE (Iterative User-
Assisted Refinement), for improving the motif groups produced by GAME. Finally,
the metadata structure produced by IUSE is described, and a summary of the proposed
approach is provided.

The proposed process works on top of a pre-calculated MP. The user can therefore
use any suitable MP algorithm. Motifs are extracted and, with the aid of the user,
grouped into semantically meaningful groups. The first step is to do a rough estimation
of the distribution of the MP values. This enables the extraction of groups of patterns
from the time series and does not require the user to set a threshold such as “get the
top 10 best motifs”. The second step is to group the extracted motifs, with assistance
from the user, into semantically meaningful clusters. This creates an annotation data
structure that can be used either as is to segment the time series, or in further data
mining efforts.

4.1 TheMatrix Profile

The Matrix Profile is a metadata structure of nearest neighbor distances between
subsequences in a time series T . It was introduced in (Yeh et al. 2016) and over 20
additional MP-related publications have been released since. The MP is fast, easy
to compute, and memory efficient; it can be calculated in as little as O(n2) time
(Yeh et al. 2016; Zhu et al. 2018). The simplest way of calculating the MP is by
sliding a window of lengthm across the n-length time series and calculate the distance
between this subsequence and all the other m-length subsequences. This produces a
two-dimensional matrix of distances. The MP is then produced by saving the smallest
distance in each column, excluding the trivial matches (i.e., the self-matches). The
indices of theminimumvalues are also saved in aMatrix Profile Index (MPI). Together,
the MP and the MPI store the distance to and the location of the closest matching
subsequence to every subsequence. The MP’s simplicity allows the calculations to be
easily distributed across hardware to further accelerate the computation.

The memory efficiency of the MP algorithms depends on the implementation.
The entire O(n2) distance matrix cannot be stored in memory since it would require
hundreds of gigabytes of memory even for medium sized time series. Different imple-
mentations of theMPalgorithmsmanage thememorydifferently,which is an important
aspect to consider when selecting the MP algorithm based on the application. How-
ever, the resulting MP only occupies O(n) memory which is quite manageable even
for very large amounts of data. All MP publications and related material can be found
on the MP home page3.

3 https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
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Practical exploration of industrial time series using the matrix profile 7

Fig. 1 A histogram of values from a Matrix Profile calculated using sensor data from the Oil Purification
data set

TheMPdistances are z-normalized, whichmeans that sections of datawith constant
values will cause division by zero type of errors if they are longer than theMPwindow
length. Depending on the implementation, the result might be a NULL or NaN value
inserted in those index positions in the MP. Depending on the programming language,
this might be interpreted as a very low, or a very high number, or both. Almost constant
values, i.e. sections with very small variances, tend to push the distance value high.
In situations where the user is looking for discords, simply looking for the indices
with the MP’s largest values will return near-constant sections. This is particularly a
problem in the case of sensor data, where it is common that the sensor monitoring a
constant phenomenon produces a jittering signal jumping between one or two points
from the mean value. Near constant sections of data can also result in the opposite
problem, that the distance is pushed low, since flatter sections can have very good
matches to other low variance subsequences. In our experience, single spikes in the
distribution of the MP often occur around zero and the MP max value, like in Fig.
1, which is a histogram of the MP values calculated on data from the OP data set
described in Sect. 3. The spikes close to zero and above 17 result mostly from either
null-sequences or low variance sequences. If a user uses the global minimum of the
MP to get a motif, or the global maximum to get a discord, the results will mostly be
uninteresting. This is not an unknown problem, for example the latest version of the
MERLIN tool for anomaly detection takes measures to avoid these (Nakamura et al.
2020).

The values in theMP say nothing about the frequency of amotif;motifs and discords
are only about similarity and dissimilarity to the closest matching subsequence, not
about the frequency of occurrence. A motif can have a very good match even if it
only happens “once in a blue moon”, i.e. very seldomly. A rare motif is thereby not
equal to a discord. Similarly, the MP value says nothing about the shape of the motif,
only the distance to the most similar subsequence. This means that two subsequence
pairs with similar pair-wise distances do not have to be similar motifs. A similarity
or dissimilarity between pairs can only be discovered by comparing the motif pairs to
each other.

The length m of the sliding window must be set before the MP is computed. The
MP is capable of capturing motifs that are a bit shorter than the sliding window (Yeh
et al. 2016), thus the window length should be at least the length of a potential pattern.
This requires some domain knowledge about the data, but it is usually enough to do
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8 F. Nilsson et al.

a rough estimation since the MP is forgiving when it comes to window size. It can
be beneficial to try a few different window sizes to find one that best corresponds to
expected patterns in a time series.

A more systematic approach to estimating m can be to calculate the Pan-Matrix
Profile suggested by (Madrid et al. 2019). It is a two-dimensional structure containing
nearest neighbor information for window sizes between a lower and an upper thresh-
old, which essentially involves sliding several windows of different sizes across the
data. This has also been the approach of other methods like the k-Best Motif Dis-
covery (kBMD) (Nunthanid et al. 2012). The (obvious) downside with this is a high
computational cost. The kBMD algorithm has, according to (Nunthanid et al. 2012),
a time complexity that is “quite high”. The Pan-Matrix Profile algorithm, on the other
hand, has a time complexity ofO(n2r), where r is the number of window sizes, which
is similar to calculating one MP per window size with state of the art MP algorithms
(Zhu et al. 2018).

4.2 Getting the topmotifs

Getting the top k motifs is probably the first approach one thinks of whenworkingwith
theMP. Algorithm 1, returns the indices for the k lowest values in theMP, excludingm
points before and after the motif. The algorithm can easily be changed to find discords
by changing lines three and four to argmax and negative infinity. The problem with
this “top k” approach is how to set k so that all relevant motifs are found. The issues
mentioned earlier mean that this is very difficult and often the outcome is a large
number of uninteresting motifs (or discords).

An alternative to the “top k” approach is to do a rough estimation of the MP data
distribution using a Gaussian distribution. Then, based on the mean, and standard
deviation for that Gaussian, one can calculate the standard score, Equation 1, for all
points in the MP. Essentially, this is what GAME (described in Sect. 4.3) does.

z = x − μ

σ
(1)
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Practical exploration of industrial time series using the matrix profile 9

Fig. 2 Three Matrix Profiles (top row) and their corresponding distributions of values (bottom row). The
left column is an example of an MP with clear discords, the right column is an example with clear motifs,
and the middle column is an MP of uniform noise (i.e. no discords or motifs)

Motifs can then be extracted from the MP by selecting all values with a value one,
two, or three standard deviations away from the mean. Retrieving all points with a
negative z-score of -2 or less would return roughly the top 2% of the best matching
subsequences in the time series.Going two standarddeviations in the opposite direction
would similarly yield the top 2% of the worst matching subsequences. Admittedly, it
cannot be expected that the distribution of MP values will be Gaussian, but, as will be
shown later, the core concept can be used on an arbitrary distribution.

4.3 Gaussian AssistedMotif Extraction (GAME)

The first step in GAME is to do a rough estimation of the density distribution by
constructing a histogram of the MP values. To illustrate this, Fig. 2 shows three types
of MPs from synthetic data, together with histograms of their values. Time series with
random noise data will have bell shape distributedMP values. Time series with distinct
discords tend to have right-skewed distributions. Time series with distinct motifs will
have left-skewed distributions.
MP values from real data will be distributed according to varying mixtures of these
three basic types. The z-normalized distance in the MP depends on the number of
samples m in the time window so the position of the bell shape will depend on this.

The number of bins used to construct a histogram of the MP is set automatically
using the Freedman-Diaconis rule (Freedman and Diaconis 1981), as shown in Equa-
tion 2:

number of bins =
⌈
max(MP) − min(MP)

h

⌉

h = 2
IQR(MP)

3
√
n

(2)
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10 F. Nilsson et al.

where n is the Matrix Profile length, and the IQR is the interquartile range defined as
the difference between the 75th and 25th percentiles of the data (i.e., the respective
values below which 75% and 25% of the distribution lies).

The top row of Fig. 3 shows the distributions of MP values for two industrial time
series. They are not Gaussian distributions, but the distributions can be approximated
well using aGaussianMixtureModel (GMM). TheGMMfit is done by first finding the
peaks in the distribution and then applying the expectation-maximization (EM) algo-
rithm (Dempster et al. 1977). The peaks are found by passing the bin heights through
a Savitzky-Golay filter (Savitzky and Golay 1964) using a third-order polynomial to
generate a smoother curve, and then using a “watershed” type of algorithm based on
persistent homology (Huber 2021). The Python implementation of the peak detection
algorithmwas taken fromStefanHuber’s web-page 4. The results of the peak detection
step are shown in the middle row of Fig. 3, where the grey shows the density distri-
bution (histogram) outlined with a blue edge, the red lines are the smoothed curves,
and the dotted black vertical lines are the found peaks. The EM algorithm is then
applied with the found number of peaks±k components, and the best fit is determined
using Akaike’s information criterion (Akaike 1974), AIC = 2k − 2 ln (L̂). Where k
is the number of components and L̂ is the maximum value of the GMM’s likelihood
function. The GMM with the lowest AIC score is used in the next step. The bottom
row in Fig. 3 shows examples of the Gaussians found for the distributions in the top
row of Fig. 3.

TheGMMis used to estimate how likely it is that each point in theMP is drawn from
the distribution of a certain Gaussian component, and each point is assigned to its most
likely Gaussian. Extraction is done by retrieving all, or part, of the points belonging
to a specific Gaussian component. Gaussian components further to the right in the
distribution will contain subsequences with a longer distance to their closest match,
i.e. discords, and Gaussian components further to the left will contain subsequences
with a shorter distance to their closest match, i.e. motifs. Subsequences assigned to
the Gaussians in the center are usually neither motifs nor discords. Quickly traversing
the Gaussians and visualizing the motifs will give the user an initial intuition about
where the motifs are and what they look like. This is then improved throughout the
processes that follow (GAME and IUSE).

Nearby points in the MP likely have similar values and would end up in the same
Gaussian cluster. The points are grouped into blocks of consecutive indices to avoid
retrieving duplicates of the same subsequences but with slight offsets. Motifs are
extracted from each block similarly toAlgorithm 1 until each block is empty.Measures
are taken so that motifs extracted from different blocks do not overlap in time.

Up to this point, a data set of potentially millions of points has been reduced to a
few thousand interesting subsequences, which is much more manageable. However,
reviewing thousands of motifs can still be overwhelming, even though it is a great
reduction in size from theoriginal tens ofmillions of points. Thenext step is therefore to
group themotifs so they can be presented to the user. The number of clusters (or groups)
to consider at this stage is subjective since it depends on the interpretation, need,
and interest of the user. Therefore, we don’t decide on the exact number of clusters

4 https://www.sthu.org/blog/13-perstopology-peakdetection/index.html
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Fig. 3 Histograms of the Matrix Profile calculated for two signals from an industrial data source (top
row). Three peaks were detected in each of the signals and are shown in the middle row (marked with black
lines). Both distributions could be best approximated using five Gaussian components (bottom row). Darker
magenta color indicates a higher weight in the Gaussian mixture

beforehand. Instead, we group the motifs into an initial hierarchy using agglomerative
hierarchical clustering, which is a quite fast operation on such few points, and the user
can tune the clustering with a simple slider. Later, the user can adjust the clustering
result with the help of IUSE (i.e. by merging clusters etc), as described in subsection
4.4. The idea is to generate a good starting point for the IUSE operations that follow.
An example result from such initial clustering (before using IUSE) is shown in Fig. 4.

Next, the motifs in each cluster are aligned (within the same cluster) as shown in
Algorithm 2; T is the time series, indices are the starting indices of the motifs, and m
is the motif length. The first motif is selected as the anchor motif on line 2, and all
subsequent motifs are aligned with this one. This is to avoid having the motifs drifting
into the flat sections of the data set, which might be a risk otherwise. Then, on lines
4-7, distance profiles are calculated between each motif ±m points and the anchor
motif. The adjusted index is appended to the new I ndices list on line 7 and returned
on line 9.

123



12 F. Nilsson et al.

Fig. 4 An example result of the hierarchical motif clustering

The MP values grow with the length of the window and the distribution of the
MP values therefore also changes. If the window length is very short, e.g. a few
samples, then the MP values will be very small (almost every short sample will have
a closely matching segment) and the distribution will be similar to that shown in the
left panel, bottom row, in Fig. 2. When the window length is very long, then almost
all MP values will be large, and the distribution will be similar to that shown in the
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Practical exploration of industrial time series using the matrix profile 13

right panel, bottom row, in Fig. 2. When the window length is one to a few times
the minimum motif length, then there will be visible peaks in the distribution and the
number of peaks will be stable. However, as the window length is increased, these
peaks will move rightwards. As long as the window length is not much shorter than
the minimum motif length, the result of the GAME approach is quite insensitive to
the exact value of the window length, especially since the focus is often on peaks to
the left in the distribution. Moreover, as presented by Madrid et al. (2019), the MP
Euclidean distances are typically stable around a particular subsequence length.

4.4 Iterative User-Assisted Refinement (IUSE)

In the iterative refinement step, the user takes a more active part. Figure 4 displays
an example result after agglomerative hierarchical clustering: 12 reasonably homoge-
neous clusters. After being aligned, the subsequences in the clusters end up as shown
in Fig. 5. Some of these contain what seems to be the same pattern. These can be
adjusted and merged manually by user selection, after which only six almost homo-
geneous clusters remain, see Fig. 6.

Along with the cluster assignments, patterns within a group can be differentiated
using the concept of “sub-clusters”. Sub-clusters might be used to organize patterns
in a group and keep a record of different variations of very similar patterns. This can
be useful to track how patterns change over time or used to separate deviating motifs
from themain groups. The sub-cluster labels can be extracted by applying the previous
steps again to a specific cluster. All the operations described under this section are
relatively computationally inexpensive to perform. It is therefore possible for a user
to work with IUSE in an iterative exploratory manner.

There are several places in the process where the user has the opportunity, or is
required, to contribute to the extraction and clustering process. These are described in
more detail below:

First, the user needs to set a suitable window size m for the MP calculation. The
GAME process works on top of an MP, and the MP calculation is the most expensive
step in terms of processing time. The user also needs to select which MP implemen-
tation that is best suitable for the particular problem. If “anytime” behavior is desired,
an algorithm like SCRIMP++ (Zhu et al. 2018) makes sense. This is currently the
fastest anytime algorithm to calculate the MP. If the motifs vary in length, a suitable
MP algorithm is SWAMP (Alaee et al. 2020), which calculates theMP using Dynamic
Time Warping instead of Euclidean distance.

The EM algorithm produces a GMM and the user decides which Gaussian to
explore. Depending on the density distribution and the goal for the search, this may
vary. In all examples this far, the goal has been to find motifs and the left-most Gaus-
sian is used. However, the density estimation and partitioning into Gaussians divide
the patterns into natural groups and, from a knowledge gathering perspective, the user
can benefit from traversing the groups one by one.

The user has a number of tools available once patterns are extracted via their Gaus-
sian assignments. The first one is to selectwhere to prune the hierarchical tree produced
by the agglomerative hierarchical clustering. The clustering and pruning operations are
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14 F. Nilsson et al.

Fig. 5 The aligned clusters from Fig. 4

Fig. 6 One of the last steps is to manually merge the clusters from the previous agglomerative hierarchical
clustering. In this figure, clusters 1 and 11 from Fig. 5 form cluster 1, clusters 2, 3, 6 and 7 are grouped
into cluster 2, clusters 4 and 5 are grouped into cluster 3 and clusters 8 and 10 are grouped into cluster 4.
Clusters 0 and 9 in Fig. 5 are the same as cluster 0 and 5 in this figure

123



Practical exploration of industrial time series using the matrix profile 15

Fig. 7 A graph representation of the metadata structure produced by the GAME + IUSE processes

quick enough to be used interactively. Once the tree is pruned at a point that yields few
and arbitrarily homogeneous clusters, the user has a number of available operations
such as:

• Splitting and merging clusters.
• Rearranging patterns within a cluster into different sub-clusters.
• Adjusting pattern length on the group and sub-group level.
• Merging overlapping motifs.
• Shifting the starting indices of patterns on the group and sub-group level.
• Realigning patterns to minimize the distance between patterns in a group.
• Dropping clusters, sub-clusters, or individual patterns.
• Merging sub-clusters.
• Assigning sub-clusters to different parent clusters.
• Reclassifying sub-clusters into parent clusters.
• Finding the patterns within a group that deviate the most from the others in the
same group.

Using these operations, the user can go fromwhat is presented in Fig. 4 to Fig. 5 and
further to Fig. 6. The introduction of sub-clusters allows the user to label variations
within the same cluster using the same set of tools. Sub-clusters enable the user to
track deviations, changes, and other structures within a single cluster.

4.5 A semantic data structure

The result from the previous operations is a metadata structure, shown in Fig. 7. The
data structure might not seem very efficient, but the memory consumption has proven
to be very small since only the interesting subsequences are annotated. The memory
use of this additional data structure has empirically been found to be less than 0.5%
of the memory use of the corresponding MP.

With this data structure, it is possible for the user to gain a fair understanding of the
fundamental structure of the studied time series. This data structure not only provides
the user with the most pervasive patterns, where the patterns are, and a partitioning
of them into semantic groups, it can also be used in further mining efforts to reveal
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Fig. 8 A block representation of the proposed method. The two main parts GAME and IUSE are described
under Sects. 4.3 and 4.4. GAME operates on top of a Matrix Profile, and IUSE further refines the clusters
from GAME

more about the data. These efforts can be expected to be quite fast considering the
significant reduction in data set size. A few examples illustrate this in Sect. 5.

4.6 Summary

To summarize, the proposed approach consists of two main parts illustrated in Fig.
8. The first stage (GAME) involves fitting a Gaussian Mixture Model (GMM) to the
Matrix Profile values. The GMM helps separate the Matrix Profile into logical groups
from which motifs (or discords) can be extracted without the need for a threshold.
The motifs are clustered and presented to the user. The second phase (IUSE) involves
user interaction where the user can adjust the size and alignment of the motifs, further
purify clusters, and divide clusters into sub-clusters using the operations listed above.

5 Results on real-world industrial data

In this section the proposed method is demonstrated on the industrial time series data
described in Sect. 3. Here it is shown that the IUSE method is practical for time series
exploration, i.e. it is fast, that it can be used to segment and semantically label an
unknown time series, and that it results in clusters that are homogeneous, complete,
and carry semantically meaningful information.

123



Practical exploration of industrial time series using the matrix profile 17

Fig. 9 The histogram of the Matrix Profile values (left) and the persistent peaks that were found (center).
The best-fitting Gaussian mixture according to AIC consisted of two Gaussians (right). In the center graph,
grey outlined with blue is the original distribution, red is the smoothed curve, and the peaks are marked
with the dotted black vertical lines. In the right graph, darker magenta signifies a larger weight

Fig. 10 The distortion measure and Calinsky-Harabasz score for 4 to 50 clusters of the motifs extracted
from the Oil Purification data set. The point of maximum curvature (the elbow) is located at 11 and 14 on
the x-axis

5.1 The oil purification data set

5.1.1 Finding the clusters

The results from applying the GAME step on the OP data set are shown in Fig. 9.
In the center graph, gray outlined by blue, is the original histogram, and the red line
is the Savitsky-Golay smoothed curve. The most persistent peaks are marked with
dotted black vertical lines. In the right plot, magenta signifies a larger weight (i.e.
more points). Three significant peaks are found, but the best fitting GMM using AIC
has two Gaussians, and the motifs are found in the leftmost Gaussian.

The motifs are extracted and grouped into 12 clusters (see Fig. 11). This initial
number of clusters was determined by using the elbow method described by Satopää
et al. (2011) together with two clustering score measures: the standard distortion
measure, and the Calinsky-Harabasz measure (Calinsky and Harabasz 1974). This
suggested that the optimal number of clusters lies between 11 and 14, see Fig. 10.
All numbers of clusters between 11 and 14 were then tried and 12 resulted in clusters
with good consistency within the clusters. Clustering the relatively small number
(thousands) of motifs extracted from the data set is a quick operation and can be done
repeatably until the user is satisfied with it as a starting point for IUSE.
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Fig. 11 The result of the hierarchical motif clustering on the Oil Purification data set

Once aligned, the clusters look as shown in Fig. 12. The number of clusters is then
further reduced using the IUSE step, which gives three homogeneous clusters (denoted
by the letters A, B, and C) shown in Fig. 13.

It is possible to refine the clusters further. In Fig. 13, cluster C contains two types
of motifs that are very similar to each other. The first type has just one significant
minimum within the window length, while the second type has more than one. These
could either be considered to belong to the same semantic group or be split into two
separate groups. For this illustration, they are considered to be variations of the same
motifs and split into sub-clusters. The patterns are still members of clusterC , but their
new labels are denoted as C0,C1,C2 and C3 as shown in Fig 14. Sub-clusters C0
and C1 have more than one significant minimum point, and the difference between
them is in the size of the second drop. Sub-clusters C2 and C3 only have one drop but
differ in the size of the small dip after the sharp drop.

This exploration in interaction with the user does not take very much time once
the MP is computed. The MPs used here were computed on a standard Intel Core i7-
8650U laptop (quad-core, 4.2 GHz) with 16 GB of RAM + 4 GB swap memory. With
this setup it took roughly 7 hours5 to calculate the MP using the SCAMP algorithm
(Zimmerman et al. 2019) on a time series of length ≈ 1.2 × 107. The GAME and
IUSE operations that followed each took on the order of seconds and milliseconds,
largely due to the small number of extracted motifs (around 3, 000). In total, between

5 It is likely that there would be a significant speedup if the calculations had been performed on a GPU
instead.
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Fig. 12 The aligned clusters from Fig. 11

Fig. 13 One of the last steps is to merge the clusters from the previous agglomerative hierarchical clustering
manually. The patterns from Fig. 12 can be refined and merged in to three groups of patterns. The three
groups are labeled A, B, and C
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Fig. 14 Cluster C from Fig. 13 partitioned into four sub-clusters. The patterns in sub-clusters C0 and C1
have two significant minimum point, and the difference between patterns in C0 and C1 is in the size of the
second drop. Sub-clustersC2 andC3 contain patterns with only one significant minimum and the difference
is the size of the small dip after the large drop

Fig. 15 Ahistogramof the time between repeatedmotifs in clusterC froma time series in theOil Purification
data set. Note that the scale on the y-axis is logarithmic. Motifs in cluster C repeat most frequently with an
interval of less than 90 minutes. Cluster C is the same as in Fig. 13

45 minutes to one hour were spent performing the GAME and IUSE steps, going from
an unknown time series to what is displayed in Fig. 13 and Fig. 14. Note that this is
time spent by the user “exploring” the time series, not active CPU time.

5.1.2 Using the IUSE semantic data structure

The result from the GAME and IUSE steps is a metadata structure that annotates
the time series with the starting index of the extracted motifs, motif lengths, cluster
labels, and sub-cluster labels (see Fig. 7). This data structure gives the user a fair
understanding of the fundamental structure of the time series. It provides the most
pervasive patterns, where they are, and partitions them into semantic groups.

The semantic data structure can be used to derive how often and where motifs
belonging to a cluster occur in a time series. Figures 15 and 16 show the intervals
at which the motifs in cluster C from Fig. 13 repeat. Most motifs repeat with a time
interval of one hour. Then there are both shorter and longer periods in between these
motifs. The longer periods correlate towhen themachine is shut down formaintenance.
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Fig. 16 A close up of the first 120 minutes of Fig. 15. The predominant interval between two consecutive
motifs belonging to cluster C is about 65 minutes. Note that the scale on the y-axis is logarithmic and that
the binning is different from Fig. 15

Fig. 17 A sequence containing assigned and unassigned values. The unassigned samples are marked using
a special symbol, which in this case is #

The cluster and sub-cluster labels can also be used to turn the time series, or sections
of it, into sequences of character symbols, which allows text mining methods to be
used to mine the data. Such character sequences can be created in at least two ways.
One is to create a vector of sentinel values6 with the same length as the original time
series and mark the indices representing motifs with the corresponding cluster label as
shown in Fig. 17, and mark segments that do not belong to any cluster with a dummy
variable.

Another way is to create a vector of only cluster labels and ignore the unlabeled
segments. Figures 18 to 20 show these twovectors. Figure 18only includes the assigned
symbols (cluster labels), whereas Fig. 20 includes both, and Fig. 19 shows a closeup of
Fig. 20. Each blue bar represents a motif belonging to a class. The unassigned points
are labeled as “#”, and the yellow dotted line in Figs. 19 and 20 is the same as the
yellow dotted line in Fig. 18. The figures show that there is a repeating pattern in this
data, with a small variation in the number of consecutive motifs of the same class. This
is visible in Figs. 21 and 22, which show a section of the time series with the found
motifs marked with colored bars. The symbols A, B, C correspond to the colors red,
green, and cyan, respectively. The several green and red lines at the beginning and
the end of a cycle, respectively, originate from the fact that the MP window length is
shorter than the slopes. This means that they could be used to estimate the length of
the rising and falling segments.

6 This is a slight misuse of the phrase sentinel value. In this particular case, it means a specific flag value
or dummy value signifying unlabeled data.
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Fig. 18 The cluster labels from the new semantic data structure representing the motifs from Fig. 13

Fig. 19 A closeup of Fig. 20. The blue bars correspond to points that have been assigned symbols (labeled)
(Color figure online)

Fig. 20 The same sequence of cluster labels as in Fig. 18 (yellow) overlaid on top of a sequence that includes
the unlabeled and labeled points (blue) (Color figure online)

Fig. 21 A sub-section of the time series representing one process cycle that has been segmented using the
motif clusters
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Fig. 22 A sub-section of the time series that has been segmented using the motif clusters

5.1.3 Detecting and labelling process cycles

The OP data set contains nine different signals and the motif mining results for one of
them are described above. The proposed method with GAME and IUSE was applied
to two more signals in the data set with very similar results. This is illustrated in Fig.
23, which shows how the motif symbols from the three time series are aligned in time.
The motifs in the first signal can be categorized into one of three categories (A to C)
but it can be up to seven categories (A to G) in the two remaining signals. The labels
are grouped in time with longer sections of unlabeled data in between, forming cycles.
This agrees with the observed behavior of the process. Figure 23 show eight of these
cycles, but there are a total of 130 cycles in each signal. The number of occurrences of
each unique cycle has been counted. The cycles that appeared more than once are seen
as common, while a cycle that only occurs once is seen as uncommon. The common
cycles from signal one and their counts are listed in Table 1. The uncommon cycles and
their Levenshtein edit distance, d, (Hyyrö 2001) to the most similar cycle are listed in
Table 2. All common cycles have a distance of 1 to their non-trivial closest neighbor.
As shown by their nearest neighbor index (column labeledwith nn in Table 1 and Table
2), most cycles either belong to or are neighbors to one of the top four most common
cycle types. Some cycles, like cycle 16, could be considered to have a distance of 2
to the four most common cycles. But similar results were achieved without this added
complexity; all cycles were therefore evaluated using only the distance to their nearest
neighbor.

Among the uncommon cycles listed in Table 2 one stands out; cycle 18 has an
edit distance of 12 to its closest neighbor, and it is the only cycle to have a nearest
neighbor that is also an uncommon cycle. Cycle 18 is shown in the left graph of Fig.
24. Signals two and three have been analyzed using the same methodology, and the
deviating cycle appears across all three.

In the remaining two signals,more than one sequence stand out from their neighbors
in terms of edit distance. In the second signal there is one additional deviating cycle,
but this cycle is not marked as abnormal in the other two signals. The third signal
has four deviating cycles where one is the same as in the first two signals. The three
remaining cycles were found to be the result of a discrepancy in the sampling and the
partitioning of the data.

In summary, in the OP data set, the common cycles are discovered and shown. One
significant deviating cycle is found across all three signals.Whether this and the second
deviating cycle from the second signal actually is an indication of abnormal behavior
is ultimately a question for an expert, but the first one can, with relative confidence, be
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Fig. 23 The figure displays eight cycles of symbols from the three signals in the oil data set. The time scale
on the x-axis is exactly the same as in the original time series. The symbols show a clear overlap which
indicates a strong correlation between symbols from the three signals. Signal two is mostly obscured due
to its similarity to signal three

Table 1 A table of the cycles that appear more than once in the first time series of the oil data and their
counts

Cycles that occur more than once
nr Type sequence Count nn

1 [# B B C C C C C C C C C C A A A A A A A #] 25 2

2 [# B B C C C C C C C C C C C A A A A A A A #] 21 1

3 [# B B C C C C C C C C C A A A A A A A #] 17 1

4 [# B B C C C C C C C C C C A A A A A A #] 12 1

5 [# A B C C C C C C C C C C A A A A A A A #] 8 1

6 [# B B C C C C C C C C C C C A A A A A A #] 6 3

7 [# B B C C C C C C C C C A A A A A A #] 5 1

8 [# B B C C C C C C C C C C A A A A A A A A #] 5 2

9 [# A B C C C C C C C C C C C A A A A A A A #] 4 2

10 [# B B C C C C C C C C C A A A A A A A A #] 2 1

11 [# B B C C C C C C C C A A A A A A A #] 2 3

12 [# A B C C C C C C C C C A A A A A A A A #] 2 5

13 [# A B C C C C C C C C C C A A A A A A #] 2 4

14 [# B B C C C C C C C C A A A A A A #] 2 7

15 [# A B C C C C C C C C C C C A A A A A A #] 2 5

16 [# B B C C C C C C C C C C C C C A A A A A A #] 2 10

17 [# B B C C C C C C C C C C C C A A A A A A #] 2 2

All cycles have a distance of 1 to their nearest nontrivial neighbor (the index of the nearest neighbor is
shown in the column marked “nn”). The column marked “count” shows how often the sequence appears

labeled as abnormal. In an attempt at interpreting this deviation, we had interactions
with an engineer from the company that provided the data. The conclusion was that
this deviation is likely not related to “belt slippage” or “sludge build-up problems.
Still, it can range from “something blocking the discharge of the dirt separated from
the oil”, or “someone who pushed the emergency stop button for some reason”, to a
“possible problem with the sensor(s)”.
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Table 2 A table of the cycles that only appear once in the first time series of the oil data. Cycle 18 deviates
significantly from the others with an edit distance of 12 to its nearest neighbor. The column marked “d”
shows the edit distance to the nearest neighbor

Cycles that only occur once
nr Type sequence d nn

18 [# C C C A A A A A A A B B C C C C C C C C 12 23

…C C C C C C C C C C C C C C A A A A A A A #]

19 [# A B C C C C C C C C A A A A A A #] 1 15

20 [# A B C C C C C C C C C A A A A A A A #] 1 3

21 [# A B C C C C C C C C A A A A A A A #] 1 12

22 ł[# A B C C C C C C C C C C A A A A A A A A #] 1 5

23 [# B B C C C C C C C C C C C C C A A A A A A A #] 1 10

24 [# A B C C C C C C C C C C C C A A A A A A A #] 1 9

Fig. 24 An abnormal cycle, marked in red (left panel) and two normal sequences (right panel) from the
first signal in the oil data set. The abnormal cycle has counterparts in the other two signals as well

5.2 TheWater Treatment data set

TheWT data were collected during the transitional phases between states in the water
treatment process. The data segments are labeled as one of three transitions between
states “2:2”, “2:3” and “3:2”. The GAME step resulted in 4, 386 patterns. Initial
clustering, in the same fashion as described above, and further refinement with IUSE
resulted in 42 clusterswith reasonable perceived similarities. A selection of the clusters
is shown in Fig. 25.

Comparing the cluster assignments to the true labels in the data set showed that
37 out of 42 clusters were pure, i.e., only contained patterns belonging to one state
transition, and about 92% of all patterns were assigned into pure clusters. Two types
of experiments were done to evaluate whether this is a good result, i.e., to see if the
proposed method resulted in a segmentation and clustering that reflected the true state
transitions. The first is an experiment where different ways to do the segmentation
and the clustering are used to see if a purer grouping can be achieved. The second is a
statistical hypothesis test to see if the results are unlikely to occur by random chance.
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Fig. 25 Eight out of the 42 clusters from the Water Treatment data set. The patterns in these clusters have
a high similarity. That is also true for the majority of the remaining clusters

5.2.1 Comparing clustering and segmentation results

The goal with this experiment is to check if the proposed method provides a better
segmentation into subsequences and subsequent clustering into semantic groups than
three alternative approaches described below.

1. GAME without human intervention (i.e. no IUSE). Here the subsequences result-
ing from GAME are subject to hierarchical clustering without human interaction.
This test is done to measure the effect of IUSE.

2. Using perfect information about state transitions. Longer sequences are first
extracted from the time series using the state labels. The sequences are then fur-
ther split into subsequences of length 100. The subsequences are then subject to
hierarchical clustering without human intervention. The assumption is that this
produces subsequences that cluster together into semantically pure clusters.

3. Segmenting the time series without any information. The time series is simply split
from beginning to end into subsequences of length 100. The subsequences are then
subject to hierarchical clustering without human intervention. The assumption is
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that this should produce subsequences that do not cluster together into semantically
pure clusters.

In all three cases, several break points are used in the clustering, resulting in different
numbers of clusters.

The aspect of “better” or “worse” clustering is measured with homogeneity and
completeness (Rosenberg and Hirschberg 2007). Homogeneity is the measure of how
pure the clusters are. Maximum homogeneity can be achieved by assigning each ele-
ment into its own cluster. Completeness is the measure of how few (or many) clusters
are needed to cover all patterns, and maximum completeness can be obtained by
assigning all elements to one big cluster. Usually it is difficult to achieve high homo-
geneity and high completeness at the same time; there is a trade-off between them.
It is desirable to achieve as high homogeneity as possible for a given completeness
value.

The homogeneity and completeness are shown in Figs. 26 and 27. The proposed
method (GAME followed by IUSE) achieves a higher homogeneity for the correspond-
ing completeness than the three comparison methods. Looking at the homogeneity
and completeness scores individually in Fig. 26 shows that the proposed method
beats the three baseline methods in both scores. Extracting patterns assuming perfect
information is the second runner up in homogeneity score but performs the worst in
completeness. However, the difference in completeness between the methods is quite
small. Levels of homogeneity equal to that of the proposedmethod are achieved around
100 clusters when perfect information is assumed, around 330 clusters when solely
using GAME and an equal level of homogeneity is never reached when no information
is assumed. In terms of completeness, all the baseline methods are surpassed with a
good margin.

5.2.2 Statistical evaluation

The results from the segmentation and clustering experiment above imply that there is a
connection between the labels and themotifs. However, the data set is very imbalanced
and the result could come about purely as an effect of this imbalance. The goal of this
subsection is to investigate whether this is the case or not. To do this a hypothesis test
was set up, with the null hypothesis that there is no connection between the semantics
in the transitions and the motifs. The test was carried out by computing the probability
of getting a result that is as good or better if the null hypothesis is true with the same
data set imbalance, and reject the null hypothesis if this probability is very low.

The total number of subsequences extracted from the water treatment time series
is 4, 386; where 4, 273 (97.4%) belong to the transition “2:2”, 102 (2.3%) belong
to the transition “2:3”, and 11 (0.25%) belong to the transition “3:2”. The proposed
method (GAME followed by IUSE) distributes the 4, 386 subsequences among 42
clusters, of which 37 are pure and 5 are mixed (i.e. contain patterns from more than
one transition). A total of 4, 294 motifs (97.9%) are assigned to pure clusters while
92 (2.1%) are assigned into mixed clusters

The test is done in a Monte Carlo fashion by using 4, 386 “balls” colored into three
categories with the above distribution, sorting them one million times into 42 “boxes”,
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Fig. 26 The homogeneity and completeness scores for the three baseline methods as well as the proposed
method. The human user through IUSE outperforms the three baseline methods both in terms of complete-
ness and homogeneity. The special case with one cluster and Completeness = 1 is not shown in the figure

Fig. 27 GAME in combination with IUSE scores higher in both homogeneity and completeness for all
values

with at least one “ball” in each box, and computing how often this sorting results in
at least 37 of the “boxes” being pure (i.e. containing “balls” of only one color), or
that at least 4, 294 of the “balls’ are assigned to pure clusters. The outcome of the test
is that it never happens, in one million trials. Thus, the p-value is less than 10−6. In
one million random trials, the highest observed purity was 24.6% (i.e 1, 079 patterns
were assigned into pure clusters). It was only in 15 out of the one million trials that
more than 1, 000 patterns were placed in pure clusters. It is thus safe to reject the null
hypothesis and accept that there is a connection between the semantics and the motifs
found.

Furthermore, the connection between the clustering and the semantics seems to
be strong. Figure 28 shows that getting almost 98% of the patterns sorted into pure
clusters, with only 42 pure clusters, is very unlikely to happen by chance. It is not
until the number of clusters reaches into the thousands that the likelihood for getting
almost 98% in pure clusters reaches credible levels. Each set of green, yellow and red
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Fig. 28 Each set of green, yellow and red dot represent 10,000 random allocations to x clusters (the number
of clusters are shown on the x-axis). The plot illustrates that it is very unlikely to reach close to 98% of
patterns in pure clusters if the numbers of clusters is much lower than 2,000 (Color figure online)

dots in Fig. 28 represents 10, 000 random allocations. Green, yellow and red signifies
the 95th and 99th quantile as well as the maximal fraction of patterns in pure clusters.

5.3 The City Bus Fleet data set

Two problems occurred in the bus data. The first is irregular sampling. Data samples
come at varying intervals of 1-2 seconds, but there are many periods with missing
values, some of which last up to 30 seconds. These dropouts caused many motifs
to be gathered around the sharp spikes created by the missing values. The sampling
issue could be solved by resampling the time series and removing sections with longer
dropouts. The second problem is highly varying pattern lengths. As shown in Fig.
29, the bus data consists of a sawtooth-like pattern where the length of the falling
edge varies greatly. This is normal since the data represent the air pressure, which is
not consumed at a fixed rate. This variation made it challenging to select the window
length when calculating the MP. Matching the window length to the shorter patterns
resulted in the inability to catch the longer patterns properly, andmatching the window
length to the longer periods resulted in many of the shorter patterns appearing within
one window. Finding one suitable length proved impossible.

Testing a dynamic or flexible time window for the MP computation was beyond
the scope of this paper. However, one way to deal with this problem could be the
solution presented by Madrid et al. (2019), which has a time complexity of O(n2r)
since it calculates one MP for each length in a range r . Another way could be to use
a Dynamic Time Warping (DTW) based algorithm like SWAMP, which is slower to
compute than Euclidean distance based algorithms such as SCRIMP++ and SCAMP.

Another observation on the CBF data is that there is no distinct group of motifs
that is separate from the rest of the time series segments. The MP of the air pressure
data from the buses has a basically unimodal right-skewed distribution like in Fig. 30.
This is expected for a time series that is periodic but with varying period lengths. Most
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Fig. 29 Five subsequences pulled from the bus data set. The sawtooth-like pattern present in all the sub-
sequences varies significantly in length. This causes trouble for lockstep distance metrics like Euclidean
distance (note that the last two subsequences are longer)

Fig. 30 The distribution and GMM of the bus data using the same format as Fig. 9. The distribution of the
Matrix Profile (left), the persistent peaks that were found (center) and the best Gaussian mix (Right)

of the subsequences had a medium to low distance to the closest non-trivial match
and there are only a few discords in the distribution’s right tail. The discords were
primarily significant drops of pressure, like in subsequence 4 in Fig. 29. These drops
in pressure likely correspond to draining the wet tank, which typically happens in the
beginning or end of a work shift.

There were, despite the time warping issue, some interesting findings on the city
bus data. The buses had reached an operational life of about five years, and this meant
that some of the compressors started to perform poorly and were replaced. On two
out of three buses that had a compressor replacement, it is possible to see a change in
the frequency of motifs belonging to different clusters, see Fig. 31. The change can
be seen across the different clusters and happens in conjunction with the compressor
change. The frequency score was calculated by dividing the number of motifs by
the total number of samples on a week per week basis. The vertical lines represent
workshop visits where the line in the center signifies a compressor replacement. After
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Fig. 31 The plot shows the frequency of motifs in a motif group over time. The vertical lines indicate
workshop visits. Bus 1 had its compressor replaced during week 20 and bus 2 had a compressor replacement
during week 25

each replacement, there is a persistent change in the motif frequency of the motifs
in each group. There were six groups per bus and the change could be seen across
all of the groups. While this is far from detecting or predicting a failure, it indicates
that there could be a correlation between motif and difference in behavior that a new
compressor would cause.

Table 3 summarizes, for each dataset: the motif length used, how many peaks
were found, and how many clusters were found after using GAME and after human
refinement with IUSE. The number of clusters found after using GAME, which is the
result of an hierarchical clustering, does not really affect how many clusters are left
after the human refines themwith IUSE. The number of GAME clusters is a subjective
choice that is just a starting point for IUSE.

6 Benchmark results on ECG data

The same approach as described in the previous section for the industrial time series
was applied to the ECG Arrythmia time series. A window size of 192 was used to
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Table 3 Summary of the subsequence length used, the number of peaks found, and the number of motif
clusters before and after human refinement with IUSE for each dataset

Dataset Subsequence length # Peaks # Clusters after GAME # Clusters after IUSE

OP 180 3 11 3

WT 100 4 16 42

CBF 30 4 12 11

Fig. 32 The resulting clusters from applying GAME and IUSE presented in sections 4.3 to 4.4. Clusters
0 and 1 contain labeled normal beats, clusters 2 to 5 contain labeled abnormal beats (the cluster label is
shown in the bottom right corner in the plots). The remaining clusters contain mostly unlabeled parts of
the time series. The first and third column contain all the extracted motifs overlayed on top of each other.
Columns two and four depict the average motifs in each cluster

calculate the matrix profile. TheMP histogram contained one small and one large peak
and was best approximated with four Gaussian components. Twenty GAME clusters
generated a good starting point for IUSE, which finally resulted in the eleven clusters
shown in Fig. 32.

The first clusters are quite pure, i.e. contain almost only either normal beats or
premature ventricular contraction (PVC) beats. For example, the top left cluster in Fig.
32 has 593 patterns: 590 labeled as normal and 3 labeled as PVC, which corresponds
to a cluster purity of 99.5% . However, when we reach later clusters, e.g. the fourth one
in the left column, then many of the peaks are not labeled. This is because the sections
fall between two labeled peaks, which is an issue that is not unique for our method; we
see the same with, e.g., HubFinder (Yoshimura et al. 2019). We can choose to either
ignore or include these “unlabeled” patterns in the evaluation, and we include them
since our setting is the case when a user is exploring a data set without known labels.

Figure 33 shows how the cumulative purity changes as more and more clusters are
included in the set, for the first six clusters. The x-axis is the cumulative number of
beats in the included clusters. Comparing these results to Fig. 8 in Yoshimura et al.
(2019) shows that the sample purity achieved with IUSE is competitive to that by
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Fig. 33 The cumulative purity of clusters 0 to 5 for the ECG data set, starting at 99.5% and ending at 99.6%.
Evaluation of the purity beyond six clusters is left out since most of the motifs in the remaining clusters
lack labels

Fig. 34 The annotated heartbeats projected in 2D space usingMultidimensional Scaling (MDS). The figure
indicates that there are at least two types of PVC beats, which agrees with the results in Fig. 32. The PVC
beats, type one and two, are represented by the red and yellow dots while normal beats are represented by
the blue dots (Color figure online)

HubFinder (99.4%), which in turn is better than that of other previously proposed
methods on this data.

An additional finding with IUSE is that there is more than one variant of PVC beats.
The top clusters, both left and right column, in Fig. 32 correspond to normal beats, and
the patterns in them are quite similar. The clusters in rows 2 and 3, both left and right
columns, correspond to PVC beats. Arguably, the cluster in row 3 in the right column
shows patterns with a somewhat different shape than in the other three clusters. This
is also illustrated in Fig. 34, which is a multidimensional scaling projection of the
beat patterns (extracted using the ground truth), where there appears to be at least two
clusters of PVC beats.

7 Discussion

A trial and error based exploratory approach for setting the window size was sufficient
for the OP andWT data, whereas it was impossible to find a suitable window length for
the CBF data. The MP is tolerant in terms of window size and will generally conserve
patterns shorter than or close to the length of the sliding window. Nevertheless, since
the proposed approach operates on top of an MP, it could also operate on top of a
Pan-Matrix Profile (Madrid et al. 2019) with minor modifications.

All experiments in this paper were performed using Euclidean distance-based MP
algorithms. It is possible, to some degree, to handle variable length, warped and scaled
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Fig. 35 It is documented that non-complex sections tend to be premiered in the Matrix Profile (Dau and
Keogh 2017). This leads to alignments like in the top image that finds the sought after event but includes a
disproportionate amount of the flatter sections instead of the event itself

motifs using IUSE. The MP is capable of picking up motifs that are within two-thirds
of the original window size (Yeh et al. 2016) and the user is able to shift and resize
motifs during the IUSE process. This results in some flexibility when the window size
is selected as well as some robustness to variable length motifs. However, the results
suggest that using a method based on DTW or a method capable of handling multiple
length motifs would do better under circumstances with non-stationary wavelengths
like the CBF data. A recent paper introduced the SWAMP algorithm (Alaee et al.
2020) where the MP is efficiently calculated using DTW. SWAMP has a worst-case
time complexity of O(n2m2). This can be compared to the fast SCRIMP, which is of
orderO(n2). Since GAME and IUSE operate “on top of” anyMP, it would be possible
to perform the same experiments using a DTW based algorithm like SWAMP.

Several attempts weremade to use the types of annotation vectors suggested byDau
and Keogh (2017) but with little success. The main problem when Corrected Matrix
Profiles (CMPs) were applied was motif alignment, both in the OP data and in the
CBF data. It is documented that non-complex sections tend to be premiered in the MP
(Dau and Keogh 2017). This leads to alignments issues like in the top image of Fig.
35 where the sought after event is found but the less complex areas surrounding the
motif are favored, and the event is shifted to one side.

Similar procedures were attempted on the CBF data, where the goal was to align the
motifs to the sawtooth pattern. It was generally complicated to create an annotation
vector that produced a good alignment. Additionally, several parameters had to be
tuned, which increased the difficulty. This observation does not disprove the utility of
the CMP, but it substantiates the argument for using a human-machine cooperation
as the one presented in this paper. Instead of using a very complex solution that may
be difficult to tune, the idea is to opt for letting the machine do the repetitive, time
consuming (boring) parts like motif extraction, motif discovery, and clustering, and
have the human do the more complex and trickier tasks.

Similar arguments can be made about Ostinato and the Semantic Motif Finder
algorithm. Attempts were made to use Ostinato to align motifs and discover motif
chains but fell victim to the same simplicity bias as in Fig. 35, which increased the
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complexity of the task. The Semantic Motif Finder algorithm was straightforward to
use, but the added capabilities were not needed and came at the cost of a more complex
solution. However, a semantic MP, produced by Semantic Motif Finder, could be used
since GAME and IUSE are agnostic to the specific method used to compute the MP.

In the OP data set, the common cycles are discovered and one significant deviating
sequence is found across all three signals. It is worth mentioning that a method called
CycleFootPrint (Fanaee Tork et al. 2020) has been applied to an oil purification data set
similar to the OP data used in this paper. The method has a worst-case time complexity
of O(n2). Based on the illustrations in (Fanaee Tork et al. 2020), it seems to find
patterns that are similar to the motifs found by the proposed GAME/IUSE approach.
However, making a quantifiable comparison would require further ground truth for
the oil data. The MP algorithm, SCRIMP++, used by GAME/IUSE also has a time
complexity of O(n2), but can practically compute the MP very quickly since it is an
anytime algorithm. It has been shown that SCRIMP++ converges fast and that only a
small percentage of the calculations need to be performed to get a close approximation
of the final MP (Zhu et al. 2018).

On the WT data, the proposed method manages to assign approximately 98% of
all motifs into pure clusters. Does that mean that 98% of the motifs are semantically
correlated and that the remaining 2% are not? During the exploration phase some
motifs were observed that appeared visibly very similar but were assigned to different
labels. However, the IUSE process resulted in better assignments than the case where
perfect information (the labels)was used to extract the patterns. Thus, the IUSEmethod
seems to produce very good assignments on the WT data.

Finally, there can be detectable traits that predict the need for bus compressor
maintenance in the CBF data. This has been shown in (Fan et al. 2015, 2016) using
recurrent neural networks. The impression is that this could possibly be done using a
motif finding process with the MP calculated under dynamic time warping. At least
there is a difference in motif frequencies before and after a compressor replacement
(which does not say that the motifs have predictive power).

8 Conclusion

This paper presents an approach for a human expert to work with the Matrix Profile
and motifs to analyze and explore industrial time series. The contribution is a virtually
parameterless procedure (GAME) for extracting motifs from a Matrix Profile as well
as a tool to be used by a human expert (IUSE) to enhance, cluster, and thereby extract
the semantic meaning of motifs from an industrial time series. The paper also provides
an overview of some general experiences when working with the Matrix Profile on
real-life industrial data.

The proposed method works on top of a Matrix Profile. This is important since
it allows the users to select a Matrix Profile algorithm that suits their needs. The
main reason for choosing the SCAMP algorithm to calculate the Matrix Profile here
was the ability to tile the input data during the calculation. The sizes of the data sets
vary slightly, but all of them contain about one year of sensor readings, each from a
real industrial environment. The tiling feature made it possible to perform the Matrix
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Profile calculations on a standard PC, and SCAMP was the only algorithm found that
could do this on the entire time series on the available hardware.

The calculations of the Matrix Profile took about seven hours per time series of
1.2 × 107 points. This should be compared to the approximate one hour it takes
to properly explore the time series and group motifs into semantically meaningful
clusters. The Matrix Profile calculation requires no supervision, while Iterative User-
assisted Refinement (IUSE) is an interactive knowledge-building process.

The Gaussian Assisted Motif Extraction (GAME) procedure is a novel way of
extracting motifs from a time series. It does not require the user to set a threshold
of how many motifs to extract like get top k motifs (Algorithm 1) or state of the art
methods like HubFinder (Yoshimura et al. 2019). The motifs are instead extracted
from the time series based on natural formations in the distribution of the Matrix
Profile and then presented to the user in groups. Variable-length and warped motifs
can be accounted for with the utilities of IUSE. Still, cases like the CBF data probably
require that GAME/IUSE operate on top of a DTW based or variable length capable
Matrix Profile like suggested in any of (Imani and Keogh 2019; Madrid et al. 2019;
Alaee et al. 2020).

IUSE offers an appealing solution to the motif-finding problem; let the machine
do the tedious and boring labor-intensive, repetitive work and leave the human expert
with the complex, less repetitive, and more exciting tasks. The Matrix Profile can be
calculated on data sets of industrial size. A human expert can, through IUSE, find
semantically meaningful structures in industrial time series data. IUSE operates on
top of the Matrix Profile, and the resulting data structure can be used to answer many
questions about industrial time series data, which often lack reliable ground truth. The
benchmark test on the labeled ECG time series shows that the suggested GAME/IUSE
results in an accurate separation of normal and abnormal patterns, aswell as a detection
of subpatterns, achieving a purity in line with current state of the art methods on this
time series. Human-machine exploration profits from the computational power and
endurance of a computer along with the intellect and understanding of the human
mind.
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