
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Datateknik

2022 | LIU-IDA/LITH-EX-A--22/063--SE

Anomalous Behavior Detectionin Aircraft based Automatic De-pendent Surveillance–Broadcast(ADS-B) systemusingDeepGraphConvolution and Generativemodel (GA-GAN)
- Jayesh Dinesh Kenaudekar

Supervisor : Phd. Student Suleman KhanExaminer : Prof. Andrei Grutov

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© - Jayesh Dinesh Kenaudekar

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

The Automatic Dependent Surveillance-Broadcast (ADS-B) is a key component of the
Next Generation Air Transportation System (Next Gen) that manages the increasingly con-
gested airspace and operation. From Jan 2020, the U.S. Federal Aviation Administration
(FAA) mandated the use of (ADS-B) as a key component of Next Gen project. ADS-B
provides accurate aircraft localization via satellite navigation and efficient air traffic man-
agement, and also improves the safety of thousands of passengers travelling worldwide.
While the benefits of ADS-B are well known, the fact that ADS-B is an open protocol intro-
duces various exploitable security vulnerabilities. One practical threat is the ADS-B spoof-
ing attack that targets the ground station, in which the ground-based attacker manipulates
the International Civil Aviation Organization (ICAO) address (which is a unique identifier
for each aircraft) in the ADS-B forwarded messages to fake the appearance of non-existent
aircraft or masquerade as a trusted aircraft. As a result, this type of attack can confuse
and misguide the aircraft pilots or the air traffic control personnel and cause dangerous
maneuvers.

In this project, we intend to build a robust Intrusion Detection System (IDS) to detect
anomalous behavior and classify attacks in an aircraft ADS-B protocol in real time during
air-ground communication. The IDS system we propose is a 3 stage deep learning frame-
work built using Spatial Graph Convolution Networks and Deep auto-regressive genera-
tive model. In stage 1 we use a Graph convolution network architecture to classify the data
as attacked or normal in the entire airspace of an operating aircraft. In stage 2 we analyze
the sequences of air-space states to identify anomalies using a generative Wavenet model
and simultaneously output feature under attack. Final stage consist of aircraft(ICAO) clas-
sification module based on unique RF transmitter signal characteristics of an aircraft. This
allows the ground station operator to examine each incoming message based on the Phy-
layer features as well as message data field (such as, position, velocity, altitude) and flag
suspicious messages. The model is trained in a supervised fashion using federated learning
where the data remains private to the data owner, i.e.: aircraft-ground station without data
being explicitly sent to the cloud server. The server only receives the learned parameters
for inference, thereby training the entire model on the edge, thus preserving data-privacy
and potential adversarial attacks. We aim to achieve a high precision real-time IDS system,
with very low false alarm rate for real world deployment.

Acknowledgments

I would like to express my sincere gratitude towards my examiner Professor Andrei Gurtov
and my supervisor Suleman Khan for giving me the opportunity to work on this thesis topic
and providing me with an excellent support and guidance throughout my research degree
project. I am extremely grateful and thankful for this opportunity.

Also we would like to thank Shaun Ying and Junzi Sun, for sharing with us the entire
dataset on raw IQ samples and decoded ADS-B messages to help compare our research work
against. Also, a big thank you to Ola Runeson, and team for his contribution to the openScope
simulator project and Joakim Thorn, Alex Wahlgren for their existing thesis work on detecting
ADS-B attacks using machine learning. I would also like to mention the open source tools and
frameworks that have been of extremely great help in developing and building my degree
project, firstly, to the Pytorch community and team at Meta who help maintains the library.
Additionally, I’m also grateful to the TensorFlow board and its community members for their
excellent documentation, tools and services.

Finally, I would like to acknowledge the entire team at ADIT Department, Linköping
University for their knowledge sharing and contribution to the related work.

iv

Contents

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 3
1.3 Main issues addressed by this thesis are: . 3
1.4 Research Questions . 3
1.5 De-limitations . 3
1.6 Risk Analysis . 4

2 Background 5
2.1 ADS-B Protocol Stack . 6
2.2 ADS-B Vulnerabilities . 7
2.3 Types of ADS-B attacks . 7
2.4 Proposed Methodology . 9
2.5 Why use Federated learning? . 11

3 Related Work and Limitations 13
3.1 Encryption and Authentication . 13
3.2 Challenges of nextgen: ADS-B . 13
3.3 Works Related ADS-B Using Machine Learning 14
3.4 ADS-B Spoof Attack detection based on LSTM 14
3.5 Near-Real-Time IDS for the U.S NextGen ADS-B 14
3.6 Detecting ADS-B Spoofing Attacks using Deep Neural Networks 14
3.7 Analyzing Sequences of Airspace States to Detect Anomalous Traffic Conditions 14

4 Graph Theory 16
4.1 What is a Graph? . 16
4.2 Graph representation learning . 17
4.3 Types of Graph structure data . 17
4.4 GNN . 17
4.5 Graph Convolution . 17
4.6 Graph Attention Networks (GAT) . 19
4.7 Transformer Architecture (Graph Transformer Convolution) 20
4.8 Cross Entropy . 21

v

5 Methods 22
5.1 Building a Graph Convolutional Network . 22
5.2 Part IV - Aircraft classification: using DNN . 28
5.3 Part V - Training model using Federated Learning 29

6 Results 31
6.1 Data-set Collection . 31
6.2 Hardware Requirements . 32
6.3 Attack Classification using GCN . 32
6.4 Anomaly prediction with Wavenet . 39
6.5 GAN Model . 45
6.6 Aircraft classification using DNN . 48
6.7 Federated Learning . 48
6.8 Final Summary: Best performing model . 49

7 Discussion 51
7.1 Results . 51
7.2 Method . 51
7.3 The work in a wider context . 52

8 Conclusion 53

Bibliography 54

vi

List of Figures

2.1 ADS-B Message Field . 5
2.2 Protocol stack . 6
2.3 Classification of ADS-B attacks with respect to its protocol layers 7
2.4 Attacks on ADS-B System . 8
2.5 Intrusion Detection System . 10
2.6 An illustration of the federated learning in distributed network of clients 12

4.1 Graph networks . 16
4.2 Euclidean vs Non-Euclidean . 17
4.3 Graph Convolution operation . 18
4.4 Attention weight between two nodes in graph . 20
4.5 Summary of steps in a Transformer Conv block . 21

5.1 Airspace as Graph representation . 22
5.2 Wavenet architecture . 23
5.3 Standard v/s Causal . 24
5.4 Dilated convolution . 25
5.5 Phases of four different aircrafts . 28

6.1 2 Layer Multi-Hop in GNN . 33
6.2 GCN 1,2 and 3 Model Train Loss . 34
6.3 GCN-2 Model Loss Plot . 35
6.4 GCN-2 Model Accuracy Plot . 35
6.5 GAT Model training and accuracy plot . 36
6.6 GTC Model training and accuracy plot . 37
6.7 Illustration of sliding window . 39
6.8 Predict next 20 time-steps . 40
6.9 Predict next 20 time-steps . 41
6.10 Anomaly Detection in RoC and Speed . 42
6.11 Anomaly Detection in Altitude and Latitude . 44
6.12 Absolute mean and standard deviation of all six features for predicted and real data 45
6.13 Latitude and Longitude generated v/s real . 46
6.14 Altitude and Speed generated v/s real . 46
6.15 Heading direction and rate of climb generated v/s real 47
6.16 Snapshot of Generated v/s Real samples comparison 47
6.17 Lambert conformal conic projection of airspace . 50

vii

List of Tables

6.1 Datasets . 31
6.2 Graph Convolution Network (Multi-hop layers) . 33
6.3 GCN-2 Confusion Matrix . 33
6.4 Evaluation on standardised metrics . 34
6.5 GNN Variants . 36
6.6 Training Time of GNN models . 36
6.7 Avg. Testing Time of GNN models . 36
6.8 GAT Confusion Matrix . 37
6.9 GTC Confusion Matrix . 37
6.10 Confusion Matrix . 38
6.11 Model Prediction score . 38
6.12 Training Time of GCN on IQ data . 38
6.13 Avg. Testing Time of GCN on IQ data . 38
6.14 ADS-B features analysis for attacks . 39
6.15 ADS-B Data software simulated attacks [lstm] . 43
6.16 Accuracy score for aircraft classification . 48
6.17 Training a classifier with Federated learning . 49
6.18 Summary of all attack classification models . 49
6.19 Comparison of Prediction Indicators of Different Models 49

viii

1 Introduction

1.1 Motivation

Over the previous few decades, demand for air travel has gradually increased. According to
the Federal Aviation Administration (FAA), by 2033, the number of passengers in commercial
aviation will have risen to 1.15 billion [9]. Eurocontrol predicts 1.6 billion air passengers per
year in the airspace by the early 2030s [8]. Air cargo, combat planes, and unmanned aerial
vehicles are likely to increase air traffic in the coming years. As a consequence, the number of
aircraft in the air will continue to grow, making the airspace even more congested. To provide
safe navigation and reduce the cost of air traffic control (ATC), the aviation community has
shifted from uncooperative and independent air traffic surveillance, such as primary surveil-
lance radar (PSR) and secondary surveillance radar (SSR), to cooperative and dependent air
traffic surveillance (CDS), such as ADS-B [22].

The International Civil Aviation Organization (ICAO) and the Federal Aviation Adminis-
tration (FAA) have approved ADS-B [1] as a modern implementation of SSR that is projected
to play a significant role in aviation in the near future [16]. Using the ADS-B technology, air-
craft movements may be tracked constantly and accurately in crowded airspace. An aircraft
equipped with an ADS-B transponder (transmitter-responder) is capable of obtaining its lo-
cation from the navigation satellite system and then broadcasts the aircraft’s flight number,
speed, position, and altitude at an average rate of 4.2 messages per second.

Unlike cost and accuracy, which were important factors in the development of ADS-B, se-
curity was thrown to the wayside. As a consequence, a widely used technology with severely
weakened security emerged, notably in terms of the protocol mechanism, as shown below:

No Encryption and Authentication: ADS-B Messages are broadcast in plain text, with no
authentication code or digital signature, and may therefore be replayed, modified, or falsified.

No aircraft and ground authentication: Authorized aircraft or ATC stations don’t have
to prove their identity before sending, so there’s no way to distinguish between them and
unauthorized ones. So, an unauthorized entity can add messages or change the reports of an
authorized entity.

It is reasonably easy to attack ADS-B security using off-the-shelf hardware and software
shown in the previous research [35][5][7][3]. The possibility of exploiting the ADS-B system
puts billions of passengers at risk every year. Thus academics and businesses have worked
together to find ways to address the security issue.

1

1.1. Motivation

In order to ensure secure message broadcast and avoid eavesdropping, previous research
proposed the use of encryption [4], aircraft authentication through challenge-response [20],
and message authentication [5][10]. Another method was to employ additional sensors or
nodes to validate velocity and position data as well as secure broadcast transmission. How-
ever, the most of these methods involve changes to the architecture so that key exchange or
trust can be established. Since the FAA requires all aircraft in US airspace to use ADS-B by
2020, which is already a requirement for some aircraft in Europe, and because of the strict
rules for implementing avionic systems, it is not possible to make changes to the current
protocol at this point. The ADS-B protocol was designed and developed in the early 1990s.

In this thesis, we provide an alternative security method for identifying abnormal ADS-B
messages. More specifically, our technique is intended to detect spoofed or altered ADS-B
messages that have been delivered by an attacker or compromised aircraft. The solution that
has been presented does not require any modifications or extra participating nodes and/or
sensors, and it enables airplanes to identify abnormalities in congested airspace on their own
without any assistance. Our method detects message spoofing by observing a sequence of
messages and determining their trustworthiness. Since flights between airports usually take
place via similar routes, we use and train an auto-regressive generative model (Wavenet)
based on previous (legitimate) flights for a given route. Using such a model, each aircraft can
independently evaluate received ADS-B messages and identify deviations from the legitimate
flight path.

2

1.2. Aim

1.2 Aim

The aim of this thesis is to highlight security issues in ADS-B systems and proposes a deep
learning-based intrusion detection system (IDS) for the ADS-B, which can detect attacks on
the ground side. Our IDS solution not only detects anomalies in air-ground communication
but can also classify real and ghost aircraft. Our proposed IDS is based on different deep
learning architectures, i.e., Deep Graph Convolution (DGC), Wavenet, and Generative Ad-
versarial Network (GAN). In DGC, we represent the entire aircraft as nodes in a graph and
use a message passing neural network in DGC in order to classify normal or attack mes-
sages. Similarly, we use GAN to generate (fake) attack data from real ADS-B messages such
that each aircraft with a unique ICAO address has attack data along with its normal mes-
sage data. Finally, we use Wavenet to predict the behavior of each feature given the history
of ADS-B messages. In order to distinguish between real and spoofed aircraft, we use Deep
Neural Network (DNN) for aircraft classification.

1.3 Main issues addressed by this thesis are:

1. Exploitation of the vulnerabilities of Automatic Dependent Surveillance Broadcast
(ADS-B) system.

2. Real-time time solution for highly accurate attack detection score with very low false
alarm rate for air traffic monitoring using ADS-B protocol.

3. Design end-to-end framework for identifying a variety of attacks using multiple ma-
chine learner systems stacked together.

1.4 Research Questions

The primary questions that this study sought to answer are:

1. Study various types of attacks that might be possible on ADS-B protocol?

2. Since ADS-B is a transparent protocol with very limited security measures, could an
IDS be a reasonable solution?

3. How can we prevent adversarial attacks using our proposed solution ?

4. Is there a measure to evaluate model robustness? And calculate model uncertainty ?

1.5 De-limitations

The dataset used for attack classification has been taken from the ADS-B data repository
containing flight extraction of ADS-B decoded messages which was collected and stored in
MongoDB database by Junzi Sun and team published in aerospace information systems [37].
Since this only contains real ADS-B message data, we do not have attack data for it to be used
for message classification; thus, we need to generate our own attack data from real data by
synthesizing fake data.

However, the synthesized data is not guaranteed to cover every aspect in which an in-
truder might manipulate or attack the ADS-B message data. The model we train upon might
also be biased to the dataset we use. Every operating region will have different flight charac-
teristics that need to be taken care of when deploying the model.

3

1.6. Risk Analysis

1.6 Risk Analysis

Adversarial attacks - medium

In order to secure our system further, we need to prevent our model being trained on a data
set that has been externally modified and make sure no external entity can have direct access
to the underlying data. Since the model is a representation of its data, if the data set is being
hacked or modified according to the intended purposes of the intruder, our model as well
will learn these irregularities in it. Thus, in-order to prevent this from happening we need to
train our model using decentralized federated learning, wherein no user gets direct access to
the data and only trained parameters of the model are returned to you.

Not enough data to validate - medium

Since the data set collected is highly imbalanced and limited in nature. It is hard to evaluate
the model on the provided dataset and gather a conclusive outcome. To tackle this prob-
lem, we need to augment our data sets classes with more training examples using techniques
such as generative models and over-sampling. We can use GAN or Generative adversar-
ial networks to generate new training examples and over-sample from the underlying data
distribution.

Tiny model size at the edge - high

Our goal is to package an intrusion detection system that is real time and robust to new
uncertainties. To achieve this we need to train and deploy the model at the edge or on an
aircraft rather than hosting it onto a server down at the ground station. To realize this, we
need smaller models with faster inference time that can detect anomalies in the incoming
stream of messages and identify threats if any without significant delays.

Statistical inference and likelihood estimation - low

To be more confident of our outputs obtained from the classification model. We could per-
form bootstrapping, which is sampling with replacement from the dataset and fit the model.
This experiment is done repeatedly for n number of times and the results are noted. These
results are used to make statistical conclusions such as the confidence score or skill of the
model.

4

2 Background

This section covers the relevant background on the ADS-B message protocol and briefly in-
troduces the intrusion detection system framework for continuous and real-time detection
of intrusion attacks in air-traffic communication and thereafter briefly introduces the use of
federated learning.

The ADS-B system is a crucial component of the Next Generation Air Transportation Sys-
tem that manages the increasingly congested airspace. ADS-B stands for Automatic Depen-
dent Surveillance[42]. The term automatic since it periodically transmits information with
no pilot supervision, and dependent states from which it derives its position and velocity in-
formation at each time from GPS (Global Positioning System) satellites. Air-planes broadcast
their current status once every minute through the (ADS-B) system. This ADS-B data can be
used by other planes in the vicinity as well as by the Air Traffic Controller (ATC) for planning

Figure 2.1: ADS-B Message Field

5

2.1. ADS-B Protocol Stack

and directing air borne traffic. As of this writing thesis all aircrafts in US are equiped with
ADS-B system mandated by FAA Federal Regulations.

ADS-B replaces the radar technology with satellites, bringing in major advantages. It
provides accurate aircraft localization and efficient air traffic management, and also improves
the safety of billions of current and future travelling passengers. As the position monitoring
gets more accurate, the air traffic control system will be able to handle a greater number of air-
traffic. The new NextGen ADS-B infrastructure system contains simple UHF radio stations
which are considerably cheaper to set up and maintain compared to the old surveillance radar
ground stations [16]. It also has the potential benefit of reducing maintenance and operating
costs of air traffic control system. While the benefits of ADS-B are well known, but the lack
of basic security measures like encryption and authentication introduces various exploitable
security vulnerabilities. One practical threat is the ADS-B spoofing attack that targets the
ground station, in which the aircraft-based or a ground-based attacker manipulates the ICAO
address (a unique identifier for an aircraft) in the ADS-B messages to fake the appearance of
non-existent aircraft or masquerade as a trusted aircraft. As a result, this attack can confuse
the pilots or the air traffic control personnel and cause life-threatening events.

Due to the very reason and our large scale dependence on ADS-B system as the pri-
mary mode of identifying and localizing air-crafts brings the prospects of these signals be-
ing spoofed by adversaries with malicious intentions. The events of 9/11 warns us to do the
needful to ensure the safety of all passengers travelling on board. These fateful events also
establish the fact that malicious entities are always looking for novel ways to target and in-
duce harm to society. Given the ease with which it can be spoofed, we need to ensure that
this ever important ADS-B system cannot be compromised by such attacks.

2.1 ADS-B Protocol Stack

Figure 2.2: Protocol stack

Figure 2.3 shows the air-to-ground protocol stacks of the ADS-B, the airbone segment
consists of three layers namely; airborne applications, ADS-B IN/OUT, and airborne radio.

6

2.2. ADS-B Vulnerabilities

On the other end the ground segment is also composed of three layers: the FAA applica-
tions, ADS-B server, and ground radio. Furthermore, the airbone radio has 3 sub-segments
i.e. ADS-B message assembly, frame assembly, and RF modulation/demodulation. Here the
information is taken from airbone application layer and is prepared for broadcasting, this is
done in the airbone radio layers which constructs the ADS-B message in the format shown in
fig 2.1, the constructed frames are then modulated and broadcast through the air. Finally, at
the receiver end, the data received is demodulated and extracted for ADS-B message infor-
mation and delivered to the application layer of the receiver.

2.2 ADS-B Vulnerabilities

The vulnerabilities faced by the ADS-B system are essentially derived from the broadcast
nature of radio frequency communications and the fact that messages are broadcast as unen-
crypted plain text[15][7]. This makes the aircraft operating status information prone to new
attacks by malicious attackers and easily manipulating the messages. At present, the types
of attacks that exist for the ADS-B system are mainly divided into eavesdropping, jamming,
message injection, message deletion, and message modification.

Figure 2.3: Classification of ADS-B attacks with respect to its protocol layers

2.3 Types of ADS-B attacks

Functional operations of ADS-B message protocol can be classified into two categories; ADS-
B OUT and ADS-B IN, ADS-B OUT continuously broadcasts speed, altitude, position, identity
and rate of climb. Whereas ADS-B IN is an optional service in which an aircraft with appro-
priate equipment receives the ADS-B messages and displays the information about other
operating aircraft’s in nearby region.

The former enables the aircraft to receive and display detailed information broadcast by
other aircraft operating in the same area. The latter sends the aircraft’s position information
and other additional information to other aircraft or ground station controllers at a certain

7

2.3. Types of ADS-B attacks

Figure 2.4: Attacks on ADS-B System

period, mainly including aircraft identification information, speed, heading direction, and
climb rate etc. The ADS-B protocol format is shown in Fig.2.1.

We can further classify various ADS-B attacks according to the protocol layers they com-
promise [27]. For instance, the message modification targets the message assembly, whereas
message deletion and injection attacks compromise the frame assembly sub-layer and finally
since eavesdropping and jamming attacks are usually in the physical layer they compromise
the RF modulation layer.

Jamming/Flooding

Making an aircraft disappear for a certain period of time. This scenario represents the un-
expected disappearance of an aircraft, which could be caused by a denial-of-service attack
(Dos) attack in which an aircraft is prevented from sending or receiving ADS-B messages.

Ghost aircraft (message injection)

In this attack, an evil with bad intentions injects an aircraft advancing on a legitimate route
taken from previous flights in the vicinity or nearby areas. Therefore, the values (position,
height, speed, and head direction) are correct and progress at a natural rate. The injection
is performed starting from a randomly selected point on the route. The appearance of the
aircraft in the airspace is sudden..

Aircraft spoofing attack

In this attack, an aircraft-based attacker (malicious aircraft) attempts to masquerade as a
known or trusted aircraft by spoofing the ICAO address of the original aircraft and hiding
its true identity. Since the aircraft is physically present, the masquerading attack will not be
detected even if the secondary radar surveillance system is deployed. These are also called
Impersonation attacks.

8

2.4. Proposed Methodology

Message Modification

Modifying the underlying ADS-B messages in the network channel is the most challenging
attack an attacker can perform. They need to have access to legitimate network equipment,
which is very difficult. One such approach is the Bit flipping which means that the attacker
superimposes a forged signal trying to flip the 0’s to 1’s and 1’s to 0’s.

Eavesdropping (Message interception)

Eavesdropping, also called a message interception attack, is the action of listening to broad-
cast transmissions, which is the most straightforward security vulnerability in ADS-B due to
the lack of encryption.

Replay Attacks

In this attack, the ground-based attacker records the message contents or the IQ/message
data of the received authentic ADS-B messages using the Software-defined radio device and
then re-transmits the same messages later without changing the message contents. Compared
to the message replay attack, the IQ data replay attack is made cautiously and surreptitiously,
as the recorded IQ data incorporates a lot of information about the Doppler effect, and the
transmitter characteristics (such as the carrier frequency offset), and the channel characteris-
tics are difficult to mimic otherwise.

2.4 Proposed Methodology

Recently there have been several studies on detecting and identifying spoofed ADS-B signals
[21]. Many of these methods would either require structural changes to the ADS-B protocol
(which requires us to modify the underlying protocol) or depend on specific features ex-
tracted from the ADS-B data for identification of the spoofed signals [41]. As a result, these
methods are of limited use when it comes to detecting a wide range of attacks in ADS-B data
and filtering out real from spoofed data. Although there has been recent work on automatic
end-to-end transmitter signal recognition for identifying unique transmitter signals from an
aircraft, this is particularly achieved using deep learning frameworks to identify and learn
features from an ADS-B signal. Radio-Frequency (RF) transmitters have inherent abnormal-
ities that leave their fingerprint on the transmitted signals. We extract and use these unique
fingerprints as our basis for unique ADS-B signal classification.

Moreover, today’s malicious attackers have got even smarter, with the use of autonomous
systems that make use of machine learning algorithms to learn the underlying ADS-B data
and make use of generative models to create spoofed data that follows the distribution of real
data can be a threat to our ADS-B system which can lead to adversarial attacks.

To this end, we propose a novel deep learning framework to classify attacks and identify
an anomaly in ADS-B data to cover a wide range of attacks. The proposed Intrusion Detection
is a 3-stage analysis of ADS-B message sequences. The first block performs attack classifica-
tion using a Graph convolution Network to identify hardware-based attacks (such as replay,
rebroadcasting, etc.). Suppose the ADS-B data is normally in the next stage. In that case, we
do anomaly detection, which checks for software-based attacks like Jamming, modification,
etc. Here, we use a Generative time series model called Wavenet to analyze the history of
message sequences to predict and observe anomalous features. In the final block, we have
the aircraft classification model to use the raw ADS-B signal to identify unique aircraft in
airspace, which helps detect impersonation attacks.

Attack classification introduces a novel deep graph convolutional network, representing
the entire airspace as a graph. This is a relatively new approach toward message classifi-
cation compared to previous work on ADS-B data using deep learning [5]. We use graph

9

2.4. Proposed Methodology

Figure 2.5: Intrusion Detection System

representation learning and analyze multiple aircraft at each instance in time in a given radar
(usually 370 km) rather than looking at only a single ADS-B message from each aircraft. The
advantage is that neural graph networks help the model train considerably faster and give us
a holistic view of the airspace to identify smaller granularity during attacks that are learned
concerning other aircraft operating in the nearby region.

In the following section, we introduce the relevant ideas that are used in this research.
More precisely, we introduce the idea of CNN (Convolution Neural Networks), Self Attention
mechanism, and GAN for adversarial learning and briefly touch upon federated learning
which we will use in our IDS system implementation.

Convolutional Neural Network (CNN)

In our model, 1D CNN[24] plays the role of a neural network that has one or more con-
volution layers and is mainly used for real-time detection and classification of inconsistent
aircraft behavior, which automatically detects the important features in the auto-correlated
data field. A convolution is basically a simple application of a filter to an input that results
in activation of intrinsic input features. Repeated application of the same filter over an input
results in a map of activation called a feature map, which indicates the locations and strength
of a detected feature in an input.

y[n] = x[n] ˚ h[n] =
8
ÿ

k=´8

x[k].h[n ´ k] (2.1)

where x[n] is our n input features, h[n] is the convolution filter, and y[n] is the output. *
denotes convolution. Notice that we multiply the terms of x[k] by the terms of a time-shifted
h[n] and add them up.

The main advantage of using CNN over its precursors is that it helps us automatically
detect important features without any human supervision. Or in other words, it eliminates
the need for manual feature engineering. Moreover, CNN, in general, is better than just
using a feed-forward network since CNN has an essential parameter sharing property and

10

2.5. Why use Federated learning?

performs dimensionality reduction. Because of parameter sharing in CNN, the number of
parameters is considerably reduced. Thus it is computationally efficient and detects hidden
patterns or sequences in intrusion attacks extremely well. The input to the CNN is the ADS-B
message field.

Self Attention mechanism

The Attention mechanism in Deep Learning is based on the concept of directing your fo-
cus such that the model gives greater attention to certain factors when processing the input
data. We use an attention mechanism within the input features of our message sequence, also
called the Self-Attention mechanism inspired from the paper on attention is all you need by
Vsnani[38]. Equation 2.2 shows a scaled Dot-Product Attention.

Attention(Q, K, V) = so f tmax(
QKT
a

dk
)V (2.2)

The first step in calculating self-attention is to create three vectors from the output given
by our 1D CNN layers. We create a Query, Key, and Value vectors. We represent Query and
Key as the output from the first convolution layer and Value from the second convolution
layer in the network.

The second step is to calculate a score. The score is calculated by taking the dot product
of the Query vector with the Key vector of the respective feature we’re scoring. So if we’re
processing the self-attention for the feature in position 1, the first score would be the dot
product of Query 1 and Key 1[]. The second score would be the dot product of Query 1 and
Key 2, and so on. The score determines how much focus on placed on other parts of the input
sequence as we encode a feature at a certain position. We can use a matrix of alignment scores
to show the correlation between source and target features, i.e. (query and key), as shown
in Figure 1.1. Once we have the alignment scores, the output of this result passes through a
softmax function. Finally, we perform matrix multiplication with the Values, which concludes
our self-attention calculation.

Generative Adversarial Network

Generative adversarial networks, or GANs for short, is an approach toward generative mod-
eling using deep learning. GANs are a clever way of training a generative model by framing
the problem as a supervised learning problem with two sub-models: the generator model
that we train to generate new examples, and the discriminator model that tries to classify
examples as either real (from the domain) or fake (generated). The model is inspired by
game theory. The two models are trained together in a zero-sum game, adversarial (genera-
tor model), until the discriminator model is fooled into believing that the generated examples
are real, meaning that the generator model is generating plausible examples. GANs are an
exciting and rapidly evolving area of interest, delivering on the promise of generative models
in their ability to generate realistic examples across a wide range of problem domains. But,
GANs, in general, are tricky to train since they are notorious for their instability during train-
ing, which leads to problems such as mode collapse. Although such problems are mitigated
using advanced GAN techniques such as WGAN [2]. The goal is to find the right balance
between generator and discriminator during training such that the generator can produce a
variety of new data points, whereas the discriminator is successfully able to classify at least
more than 50% data correctly.

2.5 Why use Federated learning?

Federated learning is one of the most widely deployed techniques in the context of private
deep learning introduced by Brenda McMann et al., and Google is the pioneer in this field

11

2.5. Why use Federated learning?

[25]. In simple terms, federated learning is a technique for training ML models on data you do
not have direct access to. So, instead of training a model on a server where the data resides in
FL, we send the model to the client for training and fetch the trained parameters to the server.
The whole idea of federated learning is that you as a client do not require to upload data to
the server. Instead, a model is sent to your device locally for training the ML model on your
generated data; at the end, the server receives an aggregation of all the learned parameters
from one if not thousands of client devices that take part in training a large model.

Figure 2.6: An illustration of the federated learning in distributed network of clients

This form of collaborative training, in turn, makes the final model more intelligent and
smarter. FL can be thought of as a distributed AI that is widely used today in many appli-
cations such as phone text message prediction, browser search, wearable medical devices,
predictive maintenance in automobiles, etc.

In the context of air-traffic management, we deploy a federated model to the client, i.e.,
the air-traffic controller. Thus, the ML model is trained locally on every Air traffic manage-
ment (ATM) device, and every time it learns from its data, a new, smarter version of the
model is updated to the cloud for inference to be used by other parties. Imagine the benefits
of this technique. It can enable multiple organizations across borders and countries to col-
laborate and take part in training the model without compromising data privacy. Everyone
could equally benefit from the process. Another major advantage is that FL can help signifi-
cantly reduce the bandwidth cost of uploading datasets to the cloud. Thus in this project, we
emphasize using this technique and training our model in a federated fashion.

12

3 Related Work and Limitations

In recent years, scientists have carried out related research work on the security issues of the
ADS-B system and have proposed several security measures and solutions. It is also impor-
tant to mention that there has been a significant development, and many possibilities have
been explored with this protocol by using cryptography techniques and building machine
learner systems as an IDS(Intrusion Detection System) on which we try to build upon using
the following research methods as our baseline work.

3.1 Encryption and Authentication

Strohmeier et al. [15] asked the question of whether the current implementation of ADS-B
can be encrypted, and Finke et al. [6] introduced several encryption schemes for ADS-B. In
comparison, Costin et al. [5] and Feng et al. [8] suggested public key infrastructure solutions
based on transmitting signatures and elliptic-curve cryptography. It is important to note that
some of these techniques require modifications to the current structure of the protocol by
adding a new message type for key publishing. While since the authentication information
is included in the Mode S squitters, this framework does not require a resource-demanding
public-key cryptography solution. The disadvantages of these methods are reflected in their
large overhead size caused by the retroactive key size, thus requiring more resources from
the communication channel.

3.2 Challenges of nextgen: ADS-B

In the paper Realities and challenges of next-gen air traffic management, [36] specifically
discusses ADS-B as a new technology for air traffic monitoring. It points out how next-gen
systems are crucial in successfully handling air-traffic growth and improving the safety of
worldwide passengers. It also addresses issues with the current state of ADS-B as it is being
rolled out and also important security challenges faced by ADS-B. Overall, this study intends
to help identify open research questions, thereby gathering new research interests and devel-
opments in this field.

13

3.3. Works Related ADS-B Using Machine Learning

3.3 Works Related ADS-B Using Machine Learning

The paper on Detecting ADS-B Spoofing Attacks using Deep Neural Networks [42] presents
a Spoofing Detector for ADS-B protocol, a two-stage Deep Neural Network (DNN)-based
spoofing detector for ADS-B that consists of a message classifier and an aircraft classifier
(SODA). Experimental results in the paper show that SODA detects ground-based spoofing
attacks with a precision of 99.34%, with a false positive rate of 0.43%. SODA outperforms
other prominent machine learning techniques, such as XGBoost, Logistic Regression, and
SVM. Although SODA is a very promising machine learning system, it fails to address the
feasibility of processing U.S. ADS-B messages in near real-time.

3.4 ADS-B Spoof Attack detection based on LSTM

The article proposes an ADS-B spoofing attack detection method based on an LSTM (Long
short term memory) network [40]. Experiment results indicate that this method can effec-
tively detect 10 different kinds of simulated manipulated ADS-B messages (such as) without
further increasing the complexity of airborne applications. Moreover, they state that it can
also identify the specific features under attack. This method does not require any manual
feature engineering and/or modification of the existing protocol. It has strong operability in
future practical applications in aviation systems.

3.5 Near-Real-Time IDS for the U.S NextGen ADS-B

Deep learning adoption is increasing in the cybersecurity domain and is being leveraged
in adoption toward building Intrusion detection systems for open protocols such as ADS-B.
However, studies have not focused on feasibility in the context of aviation and the required
computing resources, which the paper[30] assesses. In addition to providing a solution for
attack mitigation by packaging a machine learner into an intrusion detection system, none
of the previous works look at the feasibility of processing ADS-B messages in near realtime,
which this study addresses and lays the groundwork for other researchers in the field to work
upon.

3.6 Detecting ADS-B Spoofing Attacks using Deep Neural Networks

It performs IQ signal as message classification using DNN to classify normal or anomaly.
Further, it uses phase signal as a feature of the DNN model to identify aircraft for spoof
attacks. It uses a straightforward approach of message classification into normal or anomaly
attacks. Since the ADS-B messages are time distributed and change over time, detecting an
attack with just single message input is insufficient to get a clear picture of the attack, in
real-world data is dynamic..

3.7 Analyzing Sequences of Airspace States to Detect Anomalous Traffic
Conditions

This method uses the LSTM Encoder-Decoder network to reconstruct a fixed size input data
consisting of transformed ADS-B messages. The output is measured as reconstruction error
using cosine similarity. If the reconstruction error is high, it is identified as an anomaly. The
approach to detect anomaly is not a time series classification, but it maps input data to output
and builds a model to reconstruct the given input. It is based on the idea that if there is any
new data with the attack, the model will fail to reconstruct the input, thus giving a high error.
But this work only limits the data it is trained on. If a new input from different regions with

14

3.7. Analyzing Sequences of Airspace States to Detect Anomalous Traffic Conditions

normal ADS-B message data is fed, it can still result in a high reconstruction error since it had
not been seen before.

15

4 Graph Theory

4.1 What is a Graph?

Figure 4.1: Graph networks

Graphs are a well-known data structure and a universal language for describing complex
systems. In the most general view, a graph is simply a collection of objects (i.e., nodes) and a
set of interactions (i.e., edges) between pairs of these objects. For example, to encode a social
network as a graph, we might use nodes to represent individuals and use edges to represent
that two individuals are friends. In simple terms, A graph represents the relations (edges)
between a collection of entities (nodes).

16

4.2. Graph representation learning

4.2 Graph representation learning

Graph structured data is all around us, from natural and social sciences, from telecommuni-
cation networks to quantum chemistry. Graph representation learning is powerful because
it builds a strong relational inductive bias into deep learning architectures, which is crucial
if we want systems that can learn, reason, and generalize on such data types. This generally
means it imposes constraints on relationships and interactions among entities in a learning
process [34]. Recent developments in graph representation learning have increased their ca-
pabilities and expressive power, showing practical applications in drug discovery, 3D vision,
Traffic forecasting, question-answering, and recommendation systems.

4.3 Types of Graph structure data

Now since we have briefly explored the graph-structured data, let’s ask ourselves what task
we can perform using this graph data? Using Graph representation, we can generally do 3
types of predictions, i.e., graph level, node level, and edge level. For the graph level, we make
predictions using the entire graph space. At the node level, we predict the certain property
of each node or a new node. And for edge level, we infer or predict the presence of edges in
a graph.

4.4 GNN

GNNs are Neural networks that have been adapted to leverage the structure and properties of
graphs. It is an optimizable transformation on all attributes of the graph (nodes, edges, entire
graph) that preserves symmetries which means it is permutation invariant. The following
sub-sections explore various components needed to build a graph neural network. GNNs
follow a graph in - graph out architecture. The model accepts the graph as input, transforms
the node, edge, or global-context features into an embedding, and outputs a new graph with
new transformed features or learned embedding without changing the graph’s connectivity.
The simplest GNN is built using the message passing neural network framework proposed
by Gilmer et al., which can be approximated as graph convolution and can be seen as an
extension of convolution to graph data.

4.5 Graph Convolution

Figure 4.2: Euclidean vs Non-Euclidean

17

4.5. Graph Convolution

To understand graph convolution, let’s look at the difference between convolution opera-
tions performed on images v/s graph data. In images, a fixed kernel is applied over a region
of the input image to extract the features. Since the data points are euclidean in images, this
operation is straightforward. Whereas graph data is non-euclidean, and we just cannot apply
a fixed-sized kernel over the graph nodes, we consider each node and aggregate the node fea-
tures from its neighbor nodes connected to it by an edge. The aggregation is usually a sum or
average operation and finally updates this node feature with new compressed information.
This step is called a message passing layer, where the information from neighboring nodes
is passed into the current node. Thus, all graph nodes are passed through several message-
passing layers. These layers help construct node embeddings that contain knowledge about
other nodes and edges in a compressed embedding. The size of the embedding is a hyper-
parameter to our model. To better understand, let’s assume the following input graph at time
step t.

Figure 4.3: Graph Convolution operation

They are iteratively combining node information in a local neighborhood. This local fea-
ture aggregation can be compared to learnable CNN kernels. The more message-passing lay-
ers we add, the more hops we perform on a graph. The number of layers depends on the task
at hand. For example, if it is a small molecule, we can quickly learn about its structure using
a few layers. Furthermore, stacking too many messages passing layers in GNN can lead to
over-smoothing and require additional techniques to handle these issues. Finally, Each node
embedding contains the feature base and structural information of the nodes, which we can
eventually use to make predictions. The following equations show message passing in GNN.

hk+1
u = UPDATE(hk

u, AGGREGATE(hk
v, @v P N(u))) (4.1)

To achieve this neural message passing, use a neural network for update and aggregate
functions which can be defined as:

GNN variants: GCN by welling 2016, adding a self-loop combines update and aggregate
function into one and uses a learnable weight matrix.

18

4.6. Graph Attention Networks (GAT)

hk+1
u = σ(W(k+1)

sel f hk
u +

ÿ

vPN(u)

W(k+1)
neigh hk

v) (4.2)

The message passing layer can be further simplified to more efficient and generalizable
form by inducing sharing parameters, i.e. we collapse Wsel f and Wneigh into single W weight
matrix by adding self loops to the adjacency matrix A as follows:

Hk+1 = σ((A + I)HkW(k+1)) (4.3)

However, in order for our GNN to be seen from a convolutional perspective, the GNN
equation is slightly modified such that its adjacency matrix Â is calculated to normalize the
number of nodes in the neighborhood. Here is the final equation we make use of in our
implementation originally derived from the paper on GCN by wellings[23].

Â = (D + I)(´
1
2)(I + A)(D + I)(´

1
2) (4.4)

Hk+1 = σ((Â + I)HkW(k+1)) (4.5)

4.6 Graph Attention Networks (GAT)

As seen previously in GCN, we use the node features (X) along with a learn-able weight
matrix (W) and also the adjacency matrix (A) to represent the structure of a graph to obtain
new node embedding (H’) as indicated in the equation.

h1
i = σ(A ˚

ÿ

jPN(i)

W ˚ hj) (4.6)

Now, we extend this mechanism to leverage self-attention in GNN [39]. The idea behind
self-attention in the graph is to learn how important, for example, node[i] features are to
node[j]. This is called as attention coefficient, where it weighs the edges of a graph between
two nodes.

eij = a(Whi, Whj) (4.7)

To compute, we use node features of i and j. We apply learnable transformation using
weight matrix W. This can be seen as h1

i and h1
j, which passes through an attention mechanism

that returns the attention coefficient for both the nodes as eij. Thus, we compute the attention
score for all the edges in our graph and normalize them using a softmax function.

aij = so f tmax(eij) (4.8)

Next, let us look at how we compute the attention mechanism (a) used in equation 3.7
above. We use a shared single-layer neural network with an attention weight matrix Wa to
calculate. Our inputs to this network are the hidden features of the 2 nodes i.e. h1

i and h1
j

concatenated together before passing them to this single-layer neural network. The output of
which passes through a LeakyReLU and, finally, the softmax function at the end to normalize
the attention scores. In this case, we use Leaky ReLU to compensate for the negative values
and focus more on positive values (to emphasize positive relations between nodes) during
gradient computation instead of using just simple ReLU for better network learning.

aij = so f tmax(eij) (4.9)

So in order to incorporate this attention mechanism in GNN, we multiply each of the
neighbor nodes with the corresponding attention coefficient for that edge. This can be seen
as a linear combination of node feature vectors weighted with the importance of each node.
As a result, the important features are amplified, and the less important ones are suppressed.

19

4.7. Transformer Architecture (Graph Transformer Convolution)

h1
i = σ(A ˚

ÿ

jPN(i)

aij ˚ W ˚ hj) (4.10)

Fig 4.4 illustrates Step by step block diagram of how node embeddings are calculated with
attention weights.

4.7 Transformer Architecture (Graph Transformer Convolution)

Figure 4.4: Attention weight between two nodes in graph

GNN Transformer layer [6]: To incorporate the transformer layer into GNN, we first start
with the standard node and edge features of a graph. The attention weight is calculated
using the formula:

a(l)c,i,j =
Q(l)

c,i , K(l)
c,j + E(l)

c,i,j
ř

mPN(i) Q(l)
c,i , K(l)

c,m + E(l)
c,i,m

(4.11)

The attention weight tells us how much attention node i should pay to node j. So here,
the Q queries are transformed source node(s) i, K Keys are transformed target nodes(s) j. The
edge features are added to the target feature, and a dot product is performed between Q and
K vectors and further normalized by the size of attention head d. Finally, to perform the final
aggregation, we need to calculate the node embedding, which is done by taking the original
node embedding and multiplying it with a learnable weight matrix to obtain a new node
embedding at layer (l+1). This form a one transformer layer block in GNN consisting of c
multi-head attention and L indicating multi-hop layers in GNN.

20

4.8. Cross Entropy

Figure 4.5: Summary of steps in a Transformer Conv block

4.8 Cross Entropy

Hp(q) =
ÿ

x
q(x) log2

(
1

p(x)

)
(4.12)

KL = Hp(q) ´ H(q) (4.13)

The loss function incorporated for ADS-B message classifier training is a classic cross-
entropy loss function. Here we compare the two probability distribution of the prediction
and ground truth over the vocabulary of words. We simply subtract one from the other. This
is done using the Kullback–Leibler (KL) divergence. KL Divergence helps us measure just
how much information we lose when choosing an approximation. The equation (3) defines
the cross-entropy, which states average length to compute q(x) using distribution of p(x).
And equation (4) computes the difference as KL divergence, where Hp(q) is cross-entropy
and H(q) is the entropy function.

21

5 Methods

5.1 Building a Graph Convolutional Network

Figure 5.1: Airspace as Graph representation

Transforming ADS-B data into Graph representation

Before transforming data into graphs, first, let’s take a look at the challenges of using graphs
in machine learning. We know in a typical deep learning model, the inputs are given as a
matrix, e.g., NxD (N is the number of examples, D is the dimension or the total number of

22

5.1. Building a Graph Convolutional Network

features in the dataset) or images as a grid of values, and text as the vectorized matrix. But en-
coding graph data gets a little more complicated, and a graph consists of nodes, edges, global
context, and connectivity. Representing the nodes, for example, can be straightforward, i.e.,
we can create a node feature matrix of N nodes x F features a size of a 2D matrix. But repre-
senting the connectivity is more complicated. Perhaps the most obvious choice would be to
use an adjacency matrix to encode all the graph connections, but as the graph scales in size,
it becomes memory inefficient for large graphs having millions of nodes leads to a sparse
adjacency matrix. Another major drawback is that there may be many adjacency matrices
for a particular graph encoding the same connectivity. One example of this is shown in fig-
ure 5, And thus there is no guarantee that these different matrices would give us the same
output in a deep learning model. To counter this, one elegant and memory-space efficient
solution is to use an adjacency list that stores a tuple (i,j) such that i, j represent the nodes that
are connected using the edge k. Here the number of edges is much lower than entries in an
adjacency matrix, thereby avoiding computation and storage over disconnected parts of the
graph.

Now, in order to transform the ADS-B message data into a graph representation, we first
convert each unique aircraft having an ICAO address into a graph node or vertex figure 5.1.
In our implementation, we choose 5 different aircraft as our graph nodes. The number of
aircraft(nodes) chosen is based on the range of the radar receiving ADS-B message signals
which are typically 370 km.

Part I: Building Wavenet model - ADS-B data forecasting

Wavenet is deep autoregressive, generative model originally designed by Google Deep-
mind[31] for raw audio generation. The model can be abstracted beyond audio to apply
to any time series forecasting problem, providing a nice structure for capturing long-term
dependencies without any excessive number of learned weights.

Figure 5.2: Wavenet architecture

WaveNet is basically a fully convolutional neural network. The convolutional layers have
various dilation factors that allow their receptive field to grow exponentially with depth and

23

5.1. Building a Graph Convolutional Network

cover thousands of timesteps. The core building block of the wavenet model is the dilated
causal convolution layer. The following figure illustrates causal convolution compared to
traditional convolution. In a traditional 1-D convolution layer, we slide a filter of weights
across an input series, sequentially applying it to (usually overlapping) regions of the series.
Consider a filter width of 2 and stride 1 over a sequence of inputs. Since the output clearly
depends on the future states, we are using the future states to predict the past. Letting the
future of a sequence influence our interpretation of its past makes sense in a context like text
classification. We use a known sequence to predict an outcome, but it is not appropriate for
time series since we use the previous known states to generate future values.

p(x) =
N

ź

n=1

p(xn|x1, x2, ..., xN´1) (5.1)

Dilated (Causal) Convolutions

Figure 5.3: Standard v/s Causal

We get the proper tool to handle temporal data with the above causal convolution, but it
requires further modifications to handle long-term dependencies. As seen in the above fig
for simple causal convolution only 5 recent timestamp influence the output. We require one
additional layer for every timestamp. With our time-series data extending over long-range
time, using simple causal convolution to learn from entire history would make it way too
computationally expensive.

To overcome this, WaveNet uses dilated convolutions, which allow the output receptive
field to increase exponentially as a function of the number of convolutional layers. In each
dilated convolution layer, filters are applied such that it skips a constant dilation rate in be-
tween each of the inputs they process, as indicated in the figure. By increasing the dilation
rate multiplicatively at each layer (e.g., 1, 2, 4, 8, ...), we can achieve the exponential relation-
ship between layer count and receptive field size that we desire. In the following diagram,
you can see we now require only 4 layers to cover the 16 input sequences.

24

5.1. Building a Graph Convolutional Network

Figure 5.4: Dilated convolution

Use of Gated Activation Units

The purpose of using gated activation units is to model complex operations to induce non-
linearity. The gated activation units are represented using the following equation:

Z = tanh(W f ,k ˚ X).σ(Wg,k ˚ X) (5.2)

Where ˚ is a convolution operator, . is an element-wise multiplication operator, σ(.) is the
sigmoid activation function, k is the layer index and W f , and Wg , are weight matrix of filters,
and gate respectively.

Residual block and Skip Connections

The use of residual block and skip connections are inspired by pixel CNN architecture for
images [32]. The residual block helps train the model faster since training error does not in-
crease as we stack more layers because the residual network enables the model to learn from
deeper connections. As seen in the diagram, both residual and parameterized skip connec-
tions are used throughout the network to speed up convergence and enable the training of
much deeper models.

The only modification we make to the model is avoiding using the softmax function since
our output is not a categorical distribution but rather a time series prediction.

25

5.1. Building a Graph Convolutional Network

Algorithm 1 Wavenet Model
1: procedure WAVENET(x, f)
2: for dr in dilation-rates do
3: y[n] Ð

řN
k=1 x[k] ˚ h[n ´ k], apply 1DConv(f ilters = 16, kernel = 1)

4: for k=1 in 1 to 2 do
5: X[k] = 1DConv(f ilters = 32, kernel = 2, dilation = dr) ˚ y
6: end for
7: Z = tanh(X[1]) ˚ σ(X[2])
8: out = 1DConv(16, 1) ˚ Z
9: end for

10: out = 1DConv(128, 1) ˚ Z
11: out = 1DConv(1, 1) ˚ Z
12: end procedure
13: return out

Part II: Deep Graph Convolution Network architecture - ADS-B attack
classification

In order to build an attack classification model on graph data, we exploit the Graph Convolu-
tional Network (GCN) architecture. First, we need to transform the raw ADS-B message data
from multiple aircraft in airspace for each instance in time into graph data. To achieve this,
we use two sets of data, one containing normal ADS-B messages from various aircraft and
the other dataset containing simulated attacks on the normal aircraft data. The simulated at-
tacks are not manually performed. Instead, we use a Generative Adversarial network model
to create new fake ADS-B data for use that closely resembles the true data. Using adversar-
ial learning for fake data generation makes the underlying classification model more robust
in identifying minor tinkering in training data, thus making it more powerful in identifying
unknown attacks.

Once we have normal and attack data ready, we convert the data for all aircraft having
ICAO addresses into a graph. The nodes in a graph represent the aircraft, and the edges be-
tween them are the distance. A new graph is created every time a new set of ADS-B messages
are received from multiple aircraft in the airspace. If all the ADS-B messages in a graph are
authentic, it is classified as normal data. Whereas if the graph data contains one or more fake
ADS-B messages, it is classified as an attack in the airspace.

Our GCN architecture is a 3 layer deep convolution layer followed by a global mean pool-
ing. The convolution layers perform message passing between the nodes; a 3-layer GCN
means every node in the network receives intermixed message information from three deep
neighbor nodes connected to the initial node. The hidden layer size chosen is 64 dimensions,
and our training data is 2000 samples; 1000 are real authentic messages, and others are fake
simulated attack messages.

26

5.1. Building a Graph Convolutional Network

Algorithm 2 GCN on ADS-B data
Input X ← Decoded ADS-B message/IQ Samples
Output O ← Normal or Attack

Data Pre-processing, F : f 1, ... f 6 or F : f 1, ... f 480

Sort data based on ICAO and timestamp, X Ð SORT(X)

Apply Min-Max Scalar, X1 = X´Xmin
Xmax´Xmin

Build data-list, Data(node ´ f eatures = [a, F], edge ´ index = [2, 20], label = [1])

procedure GCN(
)

Hk+1 = σ((A + I)HkW(k+1)) , (conv1): GCNConv(6, 128)

Hk+2 = σ((A + I)Hk+1W(k+2)) , (conv2): GCNConv(128, 128)

f inal = So f tmax(Hk+2W(k+3)), (lin): Linear(in-features=128, out-features=2)

return f inal
end procedure

model, M = GCN()

for epoch in E do
for each data-item in data-list do

pred Ð M(data ´ item.x, data ´ item.edge) , forward pass
loss(pred, data ´ item.y) , calculate cross-entropy
M.update(parameters) , Update model weights

end for
end for
return Output classification, O

Part III: Simulated Attacks - Data Generation using GAN’s

To closely follow the distribution of normal authentic ADS-B messages, we make use of Gen-
erative Adversarial network[14] to learn the normal data distribution and generate fake data
or attacks. The attack data is generated for every unique ICAO address of the aircraft from
the original pool of datasets. GANs consist of two neural networks the generator, which gen-
erates fake ADS-B messages from input noise, and the discriminator, which learns to classify
if the generated data is fake or real. The entire network is trained in an adversarial fashion;
once the generator can fool the discriminator that the data generated is real and not fake, we
can then use the trained GAN for new data generation.

There are various types of GAN architectures, in our implementation we make use of the
Vanilla GAN model this is the simplest type GAN. Here, the Generator and the Discriminator
are simple multi-layer perceptrons. In vanilla GAN, the algorithm is really simple, it tries to
optimize the mathematical equation using stochastic gradient descent.

min
G

max
D

V(G, D) = Ex„pdata(x)[log D(x)] + Ez„pz(z)[log (1 ´ D(G(z)))] (5.3)

Training of GAN is a 2 step process: Our first step in training the GAN is we train our
Discriminator Network as a binary classifier to learn the distribution of existing data points.
Basically, we train the discriminator to classify if the input data points are real or spoofed.
Once the training step of the discriminator is complete, we switch to Generator Network

27

5.2. Part IV - Aircraft classification: using DNN

and generate new data from random noise. The newly generated data is again fed into the
discriminator network to classify whether it is real or spoofed. If spoofed, which means the
loss is high, the errors are then backpropagated through the network, this time is training the
Generator. The two networks are locked in a two-player minimax game defined by the value
function V(G, D) in (4), where D(x) is the probability that x comes from the real data rather
than the generated data. This completes one training cycle of GAN.

Algorithm 3 Training a Generative Adversarial Network
for epoch in (1, 5000) do

for batch in batched do
sample batch of m noise z(1), ..., z(m) from noise prior pg(z)

sample batch of m real examples x(1), ..., x(m) from data dist pdata(x)

Update discriminator, ▽θd
1
m

řm
i=1[log D(x(i))] + [log (1 ´ D(G(z(i))))]

end for
Update Generator, ▽θd

1
m

řm
i=1[log (1 ´ D(G(z(i))))]

end for
return trained GAN network to generate fake ADS-B data

5.2 Part IV - Aircraft classification: using DNN

Figure 5.5: Phases of four different aircrafts

Unlike ADS-B message classification, in the aircraft classification module, we cannot make
use of raw ADS-B data or IQ samples; instead, we need to rely on phases of the signal that are
independent for each of the claimed ICAO addresses of (aircraft) as features to avoid being
deceived by impersonation attacks. On the contrary, due to hardware impairments in radio

28

5.3. Part V - Training model using Federated Learning

devices, we notice IQ imbalance patterns, thereby providing us a method for identifying
airplanes using the onboard ADS-B transmitter’s unique signatures. Here, we refer to "IQ
imbalance" to denote the imbalance between the in-phase (I) and quadrature (Q) components
of the transmitted signal. Now to calculate the phase of kth pair of IQ samples, we use the
following formula as described in the paper [41].

ϕ[k] = tan´1(
xq[k]
xi[k]

) (5.4)

From the subject of communication theory, we have learned that phases tend to encode
both TX and RX carrier frequency offsets and Doppler shifts. To understand more clearly,
consider frequency offset △ f and phase offset △ϕ in ADS-B pass-band signal in equation
5.5, where phase ϕ(t) = 2π△ f +△ϕ As a result of which the phases encode some reach
information of the aircraft it is receiving a signal from, which we can use as a feature in our
aircraft classification step.

xp(t) » x(t)ej2π f t » x(t)ej2π(f+△ f)t△ϕ (5.5)

and, x(t) = xi(t) + jxq(t) (5.6)

5.3 Part V - Training model using Federated Learning

Federated learning is a relatively new type of learning that avoids centralized data collection
and model training. In a traditional machine learning pipeline, data is collected from different
sources (e.g., sensors, mobile, IoT devices) and stored in a central location (i.e., data center or
server). Once all data is available at the server, a single machine learning model is trained by
using this data. Because the data must be moved from the user devices to a centralized server
for building and training the model, this approach is called centralized learning.

On the other hand, federated learning is about training multiple machine learning models
on client devices and then combining the results of all trained models into a single model that
resides on a server. Thus, a model is trained on devices themselves using ground-truth data,
and just the trained model is shared with a server. The user’s data is leveraged to build
machine/deep learning models while keeping data private.

How does federated training help in securing ADS-B protocol ?

With the use of federated learning, we can enable a smarter and integrated Intrusion detection
system, which means it will give us the ability to leverage data from a variety of organizations
in a privacy-preserving manner. To understand it in more detail, consider aircraft traveling
from one region to another. Now every region has its operating rules, and the ground station
listens to the incoming ADS-B messages from every aircraft. We can then train a local model
at that ground station and send the trained model to the main server or central region. Since
collecting and sending huge amounts of data requires extra bandwidth costs and is also prone
to potential adversarial attacks on data. Thus keeping the data private to its operating ground
station and sending model parameters is a lot more efficient and feasible solution. At the
central region server, the model parameters are aggregated from all its clients (local regions)
and combined into one model using, for example, federated averaging, wherein we average
over all the client models and later send this updated new model to all the local regions. Thus
in the process, every operating region will have an updated global trained model at all times.

Steps for federated learning

Federated learning in theory is fairly simple and can be summarized in the following steps:

29

5.3. Part V - Training model using Federated Learning

Algorithm 4 Federated Averaging[29] on DNN classifier
X ← ADS-B Data
O ← Normal or Attack

Data Pre-processing, F : f 1, ... f 6

Label Encode Categorical features, X[C] Ð L(C)

Apply Standard Scalar, X1 = X´µ
σ

Convert train data to PyTorch tensor, X ← Tensor(X’)

Split data among workers, A1 ← X[a1],..,A4 ← X[a4]

initialize w0
model, M = DNN()

for epoch in E do
St Ð (select clients from K = 1,2..)
for each client k in St do

k.to(M) , send model to client
wk

t+1 Ð w ´ η ˚ ∇l(w; b) , update client weights
end for
Aggregate, wt+1 Ð

řK
k=1

nk
n ˚ wk

t+1
end for

řK
k=1 wk

t+1 Ð wt+1 Update local client with global parameters

Test the model accuracy(%) on each client, return

1. A generic (shared) model is trained server-side(global region).

2. Several clients(local ground stations) are selected for training on top of the generic
model.

3. The selected clients download the model.

4. The generic model is trained on the devices, leveraging the users’ private data, based
on an optimization algorithm like the stochastic gradient descent.

5. A summary of the changes made to the model (i.e., weights of the trained neural net-
work) is sent to the server.

6. The server aggregates the updates from all devices to improve the shared model. Up-
date aggregation is done using a new algorithm called the federated averaging algo-
rithm.

7. The process of sending the generic model to mobile devices and updating them accord-
ing to the received summary of updates is repeated.

The steps have been summarised in the article Introduction to Federated Learning by
Ahmed Gad[12].

30

6 Results

6.1 Data-set Collection

In order to create a robust ADS-B attack detection system, we leverage two forms of ADS-B
data 1) which operates on the Quadrature signals, also called I/Q data or IQ samples ex-
tracted from the receiver signal of an aircraft used during RF signal modulation. These sig-
nals contain intrinsic properties of the transmitters involved in the communication. These
unique characteristics help us distinguish the receiver signal of one aircraft from others. The
dataset has a collection of real ADS-B messages for a range of aircraft recorded using an ADS-
B antenna by Xuhang Ying and the team at the University of Washington [41]. Furthermore,
the dataset is augmented with hardware attacks such as rebroadcast, simulated, and relay
attacks. The dataset was made available to us on request by the organization.

2) Secondly, we also use the decoded ADS-B message data, to extract the meaningful fea-
tures from the ADS-B signal, such as latitude, longitude, altitude, speed, heading direction,
etc. This message data is used to perform feature analysis using the deep learning method
to detect any deviations. This dataset has been open-sourced on Github by Jing Wang, and
team [40] and is readily available to use.

Table 6.1: Datasets

IQ Samples Decoded ADS-B mes-
sages

which operates on the
Quadrature signals,
also called I/Q data
extracted from the
receiver signal of an
aircraft in RF signal
modulation

to extract the mean-
ingful features from
the ADS-B signal, such
as latitude, longitude,
altitude, speed, head-
ing direction, etc.

30,000+ consiting
of authentic, replay,
ghost-aircraft attacks
etc.

10,000 real data sam-
ples for each aircraft
(Total 20 ICAO’s)

31

6.2. Hardware Requirements

To build and train our proposed deep learning solution, we use python as the core lan-
guage to design the system and Google Colaboratory environment, which is a web Interactive
Development Environment (IDE) for python. The colab is particularly well suited for build-
ing machine learning applications as it comes with pre-installed ML packages and libraries
in the cloud that aid in the development process. In our application, we have used deep
learning frameworks such as Pytorch[33] and TensorFlow[28] to build the GCN and Wavenet
architecture, respectively, along with matrix processing library Numpy[17].

6.2 Hardware Requirements

To build and train our deep learning model we use the Google cloud co-laboratory envi-
ronment which provides us with Nvidia GPU (Tesla T4) with approximately 15,000 MiB of
memory usage for a total 6 hours of daily usage limit, which is sufficient to perform multiple
training and testing of our model for each day. We kept the model architecture to be rela-
tively simple and faster to train thus lowering the carbon foot-print of our model usage. For
example, using Convolution blocks in our architecture, the training time is significantly re-
duced over its RNN and attention based counterparts. Since CNN relies on feature extraction
mechanism the operation can be easily parallelized.

6.3 Attack Classification using GCN

In this experiment, we evaluate the performance of the GCN(Graph Convolution Network)
model and compare it against two GNN variants: GAT(Graph Attention Nets) and Graph
Convolution Transformer.

Graph data transformation using decoded real ADS-B messages

We first consider all the normal ADS-B messages of the respective aircrafts having ICAO ad-
dresses at the current timestamp and create a data list containing its node and edge features.
The node features, in our case, refer to the latitude, longitude, speed, altitude, climb rate, and
heading direction. In comparison, the edge feature is the distance between two aircraft. We
iteratively add all aircraft node and edge features for every timestamp to the data list (our
dataset consists of around 2000 ADS-B message timestamps). Next, we use the simulated
attacks generated using the GAN model for each aircraft in our dataset and append them to
our previous data list with node and edge features. Finally, we interpolate ADS-B data by
inter-mixing authentic ADS-B messages with simulated attack messages and append them to
our original data list. 80% of the items in the data list is randomly selected as our training
data and 20% is kept for testing.

To initiate model training, we split all our transformed data into 80% and 20% train and
test sets. The GCN parameters are summarized in Table II. We consider the following three
GCN models:

1. M1: one multi-hop layer with 128 nodes,

2. M2: two multi-hop layers with 64 nodes, and

3. M3: three multi-hop layers with 64 nodes per layer.

Metrics

Since our attack classifier acts as a detector, we adopt the following two metrics:

1. Detection probability (denoted as Pd): the percentage of malicious messages classified
as malicious, and

32

6.3. Attack Classification using GCN

Figure 6.1: 2 Layer Multi-Hop in GNN

2. False alarm probability (denoted as Pfa): the percentage of authentic messages classified
as malicious.

Table 6.2: Graph Convolution Network (Multi-hop layers)

GCN 1-layer GCN 2-layer GCN 3-layer
Avg. Loss 0.0881 0.0262 0.0467
Accuracy(%) 98.93 99.25 97.47

Table 6.3: GCN-2 Confusion Matrix

Pred/Real Attack Normal
Attack 204 0
Normal 3 193

33

6.3. Attack Classification using GCN

2 4 6 8 10 12 14
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n
lo

ss

GCN-1

2 4 6 8 10 12 14
Epoch

0.0

0.1

0.2

0.3

0.4

Tr
ai

n
lo

ss

GCN-3

2 4 6 8 10 12 14
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n
lo

ss

GCN-2

Figure 6.2: GCN 1,2 and 3 Model Train Loss

We first observe that a simple one-layer GCN model (M1) can already achieve excellent
performance with an accuracy of 98.93% as compared to other GNN variants. Interestingly,
we notice that adding more multi-hop layers does not further improve the accuracy either.
The best overall accuracy score of 99.25 % is reported using GCN with 2 multi-hop layers.
When we add more multi-hop layers, it leads to message smoothing, which loses informa-
tion in the process. As indicated in figure 6.1, when we add more multi-hop layers in the
GNN message passing process, the information flows from itself to its neighbors and from its
neighbors to other neighbors, thus allowing to flow the information outward into the graph
network.

Table 6.4: Evaluation on standardised metrics

Class Precision (%) Recall (%) F1-score (%)
Attack 100.0 98.55 99.27
Normal 98.47 100.0 99.23

34

6.3. Attack Classification using GCN

0 2 4 6 8 10 12
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

es

Train
Valid

Figure 6.3: GCN-2 Model Loss Plot

As observed GCN-2 produces a smooth training loss and converges to very minimum
loss withing first 5 training epochs cycle. Also, the accuracy of the model jumps above 95%
within 2 epochs.

0 2 4 6 8 10 12
Epoch

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Train
Valid

Figure 6.4: GCN-2 Model Accuracy Plot

Comparison with GAT and Graph Transformer Conv models

As we can see, when compared to advanced modified GNN architectures such as the Graph
Attention Network (GAT), which exploits the attention mechanism as described in theory
section 4.6 on GAT and the Graph Transformer Convolution architecture (GTC), they do
not seem to supersede the performance of our classical Graph Convolution network (GCN)

35

6.3. Attack Classification using GCN

Table 6.5: GNN Variants

GNN Type Avg Loss Accuracy
(%)

GCN 0.026 99.25
GAT 0.121 95.67
GTC 0.734 50.58

model. Thus we can conclude that adding more complexity does not help improve the model
performance. Instead, a simple GCN with 2 multi-hop layers was shown to perform the best
for Attack classification on our decoded ADS-B dataset. It is also important to note here that
GCN model inference time was the fastest compared to GAT and GCT models. This is due
to added complexity, such as transformer blocks, which increase training and inference time.
The training time for each of the GNN variants is shown below. Thus GCN becomes the
optimal choice for our real-time attack classification system.

Table 6.6: Training Time of GNN models

GNN Type Training
Time

GCN 3.87
GAT 11.61
GTC 29.66

Table 6.7: Avg. Testing Time of GNN models

GNN Type Inference
Time

GCN 0.033
GAT 0.044
GTC 0.123

0 2 4 6 8 10 12
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

es

Train vs Valid Losses
Train
Valid

0 2 4 6 8 10 12
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train vs Valid Accuracy

Train
Valid

Figure 6.5: GAT Model training and accuracy plot

In the above plot, we observe that GAT training loss fluctuates between epochs before it
stabilizes, but when compared to GCN loss, we do not see any smooth transition. For accu-
racy, our average is not higher than the GCN model either. As can be seen, more epochs do
not significantly help in model improvement. Instead, we observe a slight drop in accuracy
values.

36

6.3. Attack Classification using GCN

Table 6.8: GAT Confusion Matrix

Pred/Real Attack Normal
Attack 0 0
Normal 200 200

0 2 4 6 8 10 12
Epoch

0.4

0.5

0.6

0.7

0.8

Lo
ss

es

Train vs Valid Losses
Train
Valid

0 2 4 6 8 10 12
Epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Train vs Valid Accuracy
Train
Valid

Figure 6.6: GTC Model training and accuracy plot

Table 6.9: GTC Confusion Matrix

Pred/Real Attack Normal
Attack 187 0
Normal 13 200

In the GTC loss graph, the model leads to over-fitting, thus increasing the validation loss
and no further improvement in accuracy. The GTC model gives us the least average accuracy
among our other two GNN variants.

Bayesian parameter search

We do a Bayesian evaluation of our model to measure the uncertainty of the model in action.
There are basically 2 ways you can measure uncertainty 1) uncertainty in data which is also
called Aleatoric uncertainty, and 2) uncertainty in the model, known as epistemic uncertainty.
In this method, we are going to explore the epistemic uncertainty since it deals with uncer-
tainty in the model, for which we can use techniques such as Bayesian neural networks or
Monte-Carlo dropout. There are 2 ways we interpret probability in frequentist vs Bayesian-
ism. In frequentist, we assume data follow a distribution, and we perform point estimates of
the model parameters such as maximum likelihood estimation. In Bayesian, we assume both
data to follow a distribution and the model. Instead of having a fixed model, the weights
are described probabilistic-ally. P(theta) is prior. They believe in the world, which is the
prior, and combine this with data. Thus we can use the Bayes rule to calculate maximum A
posteriori estimation.

To measure this, we can use Bayesian neural networks or BNN, where the weights for
each neuron in the network are sampled from a certain distribution, e.g., a Gaussian distri-
bution. These sampled weights represent an ensemble of networks on which we run our
data and calculate the uncertainty at the output. However, it is important to note here that
to perform back-propagation in BNN. We require a reparametrization trick since we cannot
back-prop through random nodes in the network. The task is to approximate the true pos-
terior distribution. This is done using variational inference. To compare the approximated
and true distribution, we use the KL divergence, which helps us measure the dissimilarity

37

6.3. Attack Classification using GCN

between the two. This is then combined with the loss function. Although BNNs, in theory,
are powerful, implementing them in practice brings additional computational costs.

Thus in this scenario, we use dropout as a Bayesian approximation inspired by the paper
on Representing Model Uncertainty in Deep Learning[13]. The dropout estimation mini-
mized the GCN loss over a uniform distribution of dropout values in the range (0.2, 0.8)
for a total max evaluation of 10 steps. After optimizing the training of our GCN model us-
ing dropout from a uniform distribution, our model confidently predicts high accuracy for
dropout value with 0.33. Thus we can confidently use the GCN model with the parameters
(dropout as 0.33), yielding a high confidence score. The best loss returned reported 0.3081.

GCN on raw IQ samples

When training a GCN model on IQ samples, we report a mean loss of 0.024 and test accuracy
score of 99.54% which is comparatively similar to the accuracy of a GCN model trained on
decoded ADS-B message data. This shows that our GCN variant can be easily adopted to
new incoming data without modifying underlying architecture and compromising on per-
formance. The raw IQ samples consists of 480 features of a quadrature signals with its I and
Q components. To accommodate this high dimensional data we use a GCN model with 3
convolution layers and a hidden dimension of 256 units.

The following table 6.10 and 6.11 summarises the confusion matrix of GCN on test data
and its precision, recall, and F1 score.

Table 6.10: Confusion Matrix

Real/Pred Attack Normal
Attack 1169 8
Normal 3 1220

Table 6.11: Model Prediction score

Class Precision (%) Recall (%) F1-score (%)
Attack 99.74 99.32 99.53
Normal 99.35 99.75 99.55

The following two tables illustrates the training and inference time of GCN model on IQ
sample data. Although the learning rate and epochs were kept the same for GCN on adsb
and IQ data, the training time is higher in IQ data due to large number of features of 480
compared to only 6 features in decoded adsb data.

Table 6.12: Training Time of GCN on IQ data

Model Training
Time

GCN 86.44

Table 6.13: Avg. Testing Time of GCN on IQ data

Model Inference
Time

GCN 0.014

38

6.4. Anomaly prediction with Wavenet

6.4 Anomaly prediction with Wavenet

Figure 6.7: Illustration of sliding window

Table 6.14: ADS-B features analysis for attacks

Model Lat(deg) Lon(deg) Alt(m) Spd(knots) Hdg(deg) Roc
LSTM 0.717 0.5529 917.55 20.4003 142.30 2734.67
Wavenet 0.5433 0.4485 5379.98 2.133 13.108 51.058

In order to perform anomaly detection using our Wavenet model, we need to first to trans-
form our ADS-B data into time-series data. The ADS-B messages from each aircraft having a
unique ICAO are sorted according to their timestamps. This applies to all the features of the
ADS-B message protocol. Later we apply a min-max scalar transformation to the six features
in our dataset. We use a sliding window over the input sequences. Here we set the window
length to 10 (which means we listen to approximately 5 seconds of ADS-B messages) and pre-
dict the next timestamp, i.e., the 11th sequence as indicated in the 6.3. If the predicted values
result in a high reconstruction error, then we classify it as an anomaly. This error choice is
made using a threshold value which we learn by calculating the average difference between
true sequence values and predicted values. To achieve this, we train our Wavenet model on
each aircraft time distributed dataset and slide the window over 10 sequences at a time to
make the model - learn and predict the next values in the sequence. We train the model over
each feature from our aircraft data separately and measure the loss as an absolute mean er-
ror. Our Wavenet architecture uses a 1D Convolution with 16 filters as a prepossessing step
which transforms our input features sequence into 16 channels followed by two 1D Convolu-
tion layers with a dilation factor. This process is repeated over a set of dilation factors. In our
case, it is 8. Finally, we add all the results and pass them through the nonlinear relu activa-
tion function. The model is trained for a total 15 epochs on each feature. To measure the train
and validation loss, we use mean absolute error. Our validation data is 20% of our original
training set.

39

6.4. Anomaly prediction with Wavenet

Residual error

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timesteps

50.9

51.0

51.1

51.2

51.3

51.4

La
tit

ud
e

Latitude pred vs real

pred
true

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timesteps

3.5

3.6

3.7

3.8

3.9

Lo
ng

itu
de

Longitude pred vs real

pred
true

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timesteps

27000

28000

29000

30000

31000

32000

33000

Al
tit

ud
e

Altitude pred vs real

pred
true

Figure 6.8: Predict next 20 time-steps

40

6.4. Anomaly prediction with Wavenet

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timesteps

483.0

483.5

484.0

484.5

485.0

485.5

486.0

Sp
ee

d

Speed pred vs real

pred
true

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timesteps

30

32

34

36

38

40

42

He
ad

in
g

di
re

ct
io

n

heading pred vs real

pred
true

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timesteps

4300

4250

4200

4150

4100

4050

4000

Ra
te

 o
f c

lim
b

RoC pred vs real
pred
true

Figure 6.9: Predict next 20 time-steps

In order for us to visualize how the Wavenet model has learned and whether the predictions
from the output make sense, we chose a 20-time steps sequence from the ADS-B message
data as input and get the output predictions from the model. These predicted outputs are
plotted against the actual true values for those 20-time steps and compared. To calculate the
average residual error, we take the difference between the predicted and true value for each
time step and average it. The goal is to closely follow the trend of true values over period of
time. Consider the example of Latitude feature as we see, we get an average residual error
of 0.5433 as indicated in Table 6.8. The Fig 6.8 shows us the plot for Latitude, Longitude and
altitude values for predicted vs real.

Similarly, we also plot the speed, heading direction, and rate of climb values over 20
time-steps in fig 6.9, respectively. For instance, when we observe the output of speed we
notice that the predicted values closely follow the trend of the true speed curve, with an
average difference of 2.133. But, we also notice a higher average predicted difference for
altitude and rate of climb features. More specifically, the model somehow struggles to capture
a close correlation with the altitude feature. This may be because we have a higher range of
values in altitude which is measured in feet (ft) compared to other features. This, when
scaled down via min-max scalar, in turn, increases the average difference. Although we get
a very high average difference for altitude and rate of climb, as highlighted in table 6.8, it
can still successfully identify software-based simulated attacks (which we discuss more in
the following section) given the set threshold of 0.015 which we calculated above.

41

6.4. Anomaly prediction with Wavenet

Threshold setting:

After the model is fully trained, on our training data, i.e. (M1), we use our test data (M2) as
input to the model and obtain a set of predicted values P. The set of true values corresponding
to P is V, and the residual set of P and V is defined as D, which is formulated as follows:

D = |P ´ V| (6.1)

Once we take the absolute difference among predicted and true values, we average them,
which gives us the mean µ, and simultaneously we also calculate the standard deviation σ2.
Using this information, we can set our threshold to T = 3 ˚ σ. It is worth noting that the
anomaly thresholds for different features are different. This way, we can better do a feature
by feature analysis rather than relying on one threshold value; nevertheless, we decide to
hold on to one threshold value by combining the anomaly threshold values obtained from all
features and average them to give users one global threshold value, which in our case was
T = 0.015

0 20 40 60 80 100 120 140
Sequence

4000

3500

3000

2500

2000

1500

1000

Ra
te

 o
f c

lim
b

pred
true

0 20 40 60 80 100 120 140
Sequence

250

300

350

400

450

Sp
ee

d

pred
true

Figure 6.10: Anomaly Detection in RoC and Speed

42

6.4. Anomaly prediction with Wavenet

Test for software simulated attacks:

Table 6.15: ADS-B Data software simulated attacks [40]

Attack Simulation Method Result

Jamming Random noise

Multiply the flight value ob-
tained in the original ADS-B
message by a random value
between 0 and 1.

Success

Injection feature replace-
ment

Given certain feature infor-
mation, inject different cor-
rect feature values to replace
the sequence for the selected
ADSB sequence segment.

Success

Modification speed offset(+)

Use 20 knots as multiples to
gradually change the speed
characteristics of ADS-B
messages by increasing
speed by 20 knots each time.

Success

Speed offset(´) Decrease speed by 20 knots
each time. Success

altitude
offset(+)

Use 400 ft as multiples to
gradually change the alti-
tude characteristics of ADS-
B messages by increasing al-
titude by 400 ft s each time.

Success

Altitude
offset(´)

Decrease altitude by 400 ft
each time.

Success
(0.33 >
Th)

Heading
change

Change the value of the
heading info contained in the
ADS-B message to the oppo-
site of the original value.

Success

Climb rate
change

Change the value of the
climb rate contained in the
ADS-B message to the oppo-
site of the original value

Success

To comprehensively evaluate our trained Wavenet model, we perform several software sim-
ulated attacks such as random noise, jamming, injection, and modification, as shown in the
table. The goal here is to successfully identify these attacks. For example, Suppose we mod-
ify the speed value in the ADS-B data on its way to the ground station, given the history
of ADS-B data during model prediction. In that case, it should be able to detect deviation
and anomaly in the predicted value. The resulting difference between predicted and actual
should be higher than the threshold.

43

6.4. Anomaly prediction with Wavenet

0 20 40 60 80 100 120 140
Sequence

10000

15000

20000

25000

30000
La

tit
ud

e
pred
true

0 20 40 60 80 100 120 140
Sequence

50.00

50.25

50.50

50.75

51.00

51.25

51.50

51.75

52.00

At
itu

de

pred
true

Figure 6.11: Anomaly Detection in Altitude and Latitude

Abnormal score visualization

Figure 6.10 and 6.11 illustrates the abnormal score for jamming attacks on various features
such as rate of climb, speed, altitude, and latitude, along with their respective real normal

44

6.5. GAN Model

score. The jamming attack was produced by adding random noise between 0 and 1. The
abscissa is the data serial number, and the ordinate is the abnormal score. The red circle
highlighted for the spikes in the predicted score indicates an anomaly. It means the normal
data was attacked at the time when the spike originated. This sudden spike is what we
measure as an anomaly, and if it crosses the set threshold of 0.015, we alert the system.

6.5 GAN Model

The GAN model was used to simulate real data as attacks on real ADS-B messages. The GAN
training proceeds iteratively, with the generator being initialized with a randomly generated
noise vector with 128 dimensions (from a uniform distribution), which is used to generate the
first set of “fake” samples. This fake data is used as input to the discriminator. The discrimi-
nator also receives the real data as input and, on each sample (real or fake), tries to predict the
correct label for the data. The output from the discriminator is used as feedback to the gen-
erator, which uses this feedback to improve and update its data generation mechanism. We
trained the GAN for 2500 epochs with a batch size of 128. We used the Binary Cross Entropy
Loss for our implementation, which was minimized over the given epochs. After tuning, the
trained discriminator network was able to identify the fake samples from the generator net-
work with an accuracy of 96.88 %. As a result, the distribution of the generated ADS-B data
matches those of the real ADS-B samples very closely.

Figure 6.6 below shows the absolute mean of 6 features from real ADS-B data, and the
line is an approximation learned by our GAN model to closely follow the ADS-B message
characteristics.

Figure 6.12: Absolute mean and standard deviation of all six features for predicted and real
data

To evaluate GAN more robustly we look at cumulative sum plot between the generated
and real data for each of the six features as follows:

45

6.5. GAN Model

Figure 6.13: Latitude and Longitude generated v/s real

Figure 6.14: Altitude and Speed generated v/s real

46

6.5. GAN Model

Figure 6.15: Heading direction and rate of climb generated v/s real

Figure 6.16: Snapshot of Generated v/s Real samples comparison

We see that for latitude and longitude features, the generated data is closely able to follow
the real data point distribution, followed by speed, altitude, and rate of the climb, which to
some extend capture the real trend. But for the heading direction, the GAN model somehow
struggles to reach the real data distribution. This may be due to the sparsity in the feature
values, which may be hard for GAN to learn and generalize. Finally, this generated data,

47

6.6. Aircraft classification using DNN

along with real data, is then classified into the attack and normal data and fed to our attack
classification model.

6.6 Aircraft classification using DNN

Finally, to counter spoofing attacks in which the ADS-B data will impersonate an existing air-
craft with its ICAO address, we need to use transmitter signal characteristics for true aircraft
identification, as discussed previously. We cannot use an attack classification or an Anomaly
detection framework in this case since the ADS-B message is not altered or harmed, but in
fact, the intruder is trying to impersonate and fake its existence as a real aircraft. Thus if we
identify an aircraft based on its unique RF signal fingerprint, we can classify which aircraft
it is originating from and whether an entity is trying to fake its identity. We use the raw IQ
signal data to achieve this and extract two important features, phase, and magnitude, from
IQ samples using signal processing techniques. The phase and magnitude act as a unique
fingerprint to classify which aircraft it belongs to. Our input to Deep Neural Network (DNN)
is a multi-modal input (Phase+Magnitude), and outputs are the class labels for each unique
aircraft or ICAO. DNN is 4 layers deep with 500 hidden units. The results after training are
shown in the following table.

Table 6.16: Accuracy score for aircraft classification

Model Phase Magnitude (Phase+Magnitude)
Accuracy(%) 69.79 70.3 70.5

6.7 Federated Learning

In order to demonstrate federated training in practice, we use the ADS-B data, which con-
sists of Normal messages along with Dos, alterations, and spook attacks. We aim to build a
classifier model that is sent to the client-side for training. In this experiment, we choose four
different clients (i.e., aircraft) operating in different regions and send our model to be trained
on the local data of every aircraft’s ADS-B messages. Once training is complete on the client-
side, we fetch the trained model parameters on our main server for inference. We use the
Pysyft library, which is built on top of Pytorch for secure and private deep learning. It uses
federated learning, differential privacy, and encrypted computation. It provides a platform
for distributed training of our model using peer-to-peer client-server connections. To begin,
we create four virtual workers and hook our tensor to them. We send a dataset of one aircraft
to these four workers or clients to one worker. From there on, we build our model architec-
ture on the server-side, and during training, we send our model to each of the workers. For
every epoch we send and train the model, we get back the trained parameters, aggregate it
using federated averaging and continue training until complete.

The global trained model is averaged over all the training parameters received from its
worker clients (aircraft). This model is then sent to each of the aircraft as a new updated
model. To estimate the model performance, we evaluate it on test data consisting of attacks
and observe its precision and recall score on three different attacks (alteration, Dos, and spoof
attacks). The following table shows the results of the global trained model on our test data
with an overall test accuracy of 89.0%.

48

6.8. Final Summary: Best performing model

Table 6.17: Training a classifier with Federated learning

Precision(%) Recall(%)
Alteration 77.78 80.77
DoS 100.0 78.57
Spoofing 81.48 0.0

6.8 Final Summary: Best performing model

Table 6.18: Summary of all attack classification models

Model (on IQ samples) Detection score
(%)

False alarm rate
(%)

ADS-B (SODA) DNN [41] 99.34 0.43
GAN [19] 98.74 7.1
SVM [30] 80.29 25.67
NN (1 hidden, 10 nodes) [26] 91.4 13.8
Our model (GCN on IQ) 99.74 0.25
Our model (GCN on adsb) 99.99 -

The above table summarizes the detection score and false alarm rate for various models
referenced from previous work. Basically, Detection score is: the percentage of malicious
messages classified as malicious and False alarm rate is: the percentage of authentic messages
classified as malicious. We show that our proposed solution outperforms all other models in
terms of high detection score and very low false alarm rate, which means the model on very
rare occasions predicts false attacks, this can help us save costly time involved in analysing
ADS-B data if there wasn’t any attack and lead to less panic situations during air-ground
communication.

It is important to note here that adsb data was considerably smaller in size when com-
pared to IQ samples and this experiment shows application of graph representation learning
on both data-sets yields a very high attack detection score.

Table 6.19: Comparison of Prediction Indicators of Different Models

Model RMSE/Altitude(m) RMSE/Speed
(Knots)

RMSE/Heading
(degrees)

LSTM [11] 1249.43 11.77 21.92
Bi-LSTM [18] 810.62 10.45 19.51
Our proposed model 917.55 2.133 13.108

We also compare Root mean squared error or RMSE values of different features with
previous model implementation such as LSTM and Bi-LSTM and show that our proposed
Wavenet model clearly outperforms the previous two implementations except for Altitude
feature.

49

6.8. Final Summary: Best performing model

A0 A1 A2

A3

A4
A5

A6

A7A8A9

A10

Figure 6.17: Lambert conformal conic projection of airspace

In figure 7.1 we depict Lambert conformal conic projection (LCC) of the entire airspace for
different aircraft’s position in a region for a fixed time, we can observe in the picture that the
area circled in red with aircraft A10 is a fake aircraft and the data for it was generated using
GAN model, whereas other aircraft’s are legitimate and taken from real ADS-B data.

50

7 Discussion

7.1 Results

The results for our 3 stage Intrusion detection system is a combination of 3 models, first is
the attack classification using Graph Convolutional network to classify ADS-B message data
into normal or attack we report a high accuracy of 99.25% for this model. It classifies the
entire airspace region consisting of multiple aircraft node and its features into an attack if
it finds attack behaviour characteristics in data. Next stage is fed to the Anomaly detection
model which observes the ADS-B data over period of time and makes future prediction of
values if the resulting values results in abnormal score than we identify it as an anomaly. The
model we selected for the time series prediction of ADS-B data is Wavenet, it is successfully
able to detect anomaly with an overall threshold of 0.015. Finally the last stage is an aircraft
classification module that separates each data signal extracted using the IQ samples of the
receiver aircraft into its corresponding ICAO addresses class.

To touch upon how our proposed solution considers all the risk averse factors we dis-
cussed in section 1.6, firstly to prevent adversarial attacks we show an example of how fed-
erated learning can be used to enforce data privacy and avoid data being externally manip-
ulated by the system. Moreover federated training also allows us to train model locally on
each aircraft data and aggregate a global model, thus reducing the bandwidth and server
cost. Another risk we discussed was not having enough data to validate, to counter this we
use GAN’s or Generative Adversarial Network to simulate and generate more data for use
to be used for training the model. And finally to measure model uncertainty we used the
technique called dropout as Bayesian parameter optimization which helps us evaluate how
confident is our model.

7.2 Method

The methods used in the project are motivated from the latest advancement in deep learning
applied to graph data and use of convolution based generative models over LSTM and GRU
based approach for modelling time series data. The advantage of using graph neural net-
work (GNN) over standard deep neural network (DNN) is that in a typical DNN the attack
classification model needs to be trained for each sample of ADS-B data from an aircraft sepa-
rately which increases the overall training time and may involve risk of over-fitting. Whereas

51

7.3. The work in a wider context

the use of graph based learning helps us analyse the entire airspace in one short, and capture
ADS-B of data from multiple air-crafts during attack classification which leads to faster model
training and convergence. Moreover it helps us capture higher level of details from air-to-air
communication which is message transfer between air-crafts. To illustrate this consider air-
craft A sends ADS-B data to ground station as well as to its neighbouring aircraft(s) in this
case consider a neighbour aircraft B. Thus if an intruder attacks message signal on its way to
ground station, the aircraft B has already received the authentic message data, which can be
an important piece of information for attack classification. Thus due to graph enabled learn-
ing we can leverage these message passing between air-crafts (nodes) and include it during
model training.

The method used for aircraft classification is motivated from paper [19]. Here the data is
extracted from IQ signal of each aircraft. The data processed from IQ samples is the phase and
magnitude information of the receiver signal. Thus the input to our classification model is a
multi-modal which gives additional information about aircraft sender signal characteristics.
This is alternative approach from the previous work which only use raw IQ samples as 2D
data (I + Q) to train a classifier model.

7.3 The work in a wider context

With the current system in place there is always scope for continuous improvement, one
immediate change we can establish in our attack classification model is advancing it from
spatial graph classification to Spatio-Temporal graph this helps us model the complete pic-
ture of an airspace over a series of time. Thus enabling us model time dependence which
is an important aspect for anomaly detection along with its spatial features. An interesting
research in this direction has been done using Attention Temporal Graph Convolutional Net-
work for Traffic Forecasting [43]. Furthermore there are still a variety of attacks that needs to
be handled and detected autonomously such as Sybil attack (impersonates multiple air-crafts
at once) which is outside the scope of this project. This requires additional modification to
the architecture and training data, one solution could be to train an AI agent in a simulation
environment to detect and identify multiple attacks onto on aircraft, the AI model is trained
using reinforcement learning such that AI agent will get rewarded each time it identifies an
attack and punished for not. The entire training can be done in simulation thus no need of
external hardware interface to test attacks using ADS-B equipment.

Another interesting direction we can explore is using Mel-frequency Spectrogram ex-
tracted from RF noise detection signal. Every aircraft transponder equipment sends signal
to the ground station with a unique RF prints. This distinct radio noise can be treated as an
audio which is transformed into a Spectrogram representation of frequency-time domain by
applying Short Time Fourier Transform or STFT, this is done in order for ease of processing
of audio signal by the neural network. This 2D spectrogram is then fed into an autoencoder
for example which will help use reconstruct the spectrogram input, if it results in high recon-
struction loss we could identify it as an anomaly signal.

52

8 Conclusion

In this thesis, we have demonstrated the use of a novel architecture framework to lever-
age graph data. We comprehensively discussed how we can transform the ADS-B data into
graph representation and how it can be used to learn the airspace feature representation. We
have thoroughly touched upon all our research questions from implementation of IDS sys-
tem to performing various test to evaluate model robustness such as message modification,
injection, and replay attacks, moreover we also touched upon how we can handle spoofed
attacks using phase/magnitude of IQ signal. To evaluate confidence score we use dropout
as Bayesian approximation to find which set of hyper-paremter give us the highest accuracy.
We also looked into on how adversarial attacks can be prevented by using GAN’s to generate
fake ADS-B data that simulate our real ADS-B messages. Though we have established the
efficacy of our proposed method with these experiments illustrated in table 6.3 for hardware
based attacks using GCN and table 6.8 showcasing simulated software attacks identified by
Wavenet, we would like to further exploit the performance of our system with real spoofed
ADS-B data. For more comprehensive analysis, we developed sequential time-series model
for decoded ADS-B messages that help us do feature by feature analysis in order to identify ir-
regularities or anomaly in values. This helped us identify the software based attacks whereas
the former GCN attack classification module was implemented to identify hardware attacks.
Above all, having two distinct models for various attack detection scenarios is not suffice as
there are more difficult attacks such as spoofed/impersonation and Sybil attack which try to
copy one or multiple aircraft behaviours of real aircraft entity, in order to tackle these kind
of attacks we built a DNN module at the end which make use of the phase and magnitude
features from IQ signal which remain unique to every aircraft based on the fact that every
ADS-B emitter signal has unique RF fingerprint which can be leveraged for classification of
an aircraft. Although we have discussed and covered multiple attacks and scenarios in dur-
ing Air-ground communication with ADS-B protocol, the challenge still remains on how we
can successfully deploy global model that can identify all kind of attacks in all operating
regions with high confidence. This thesis provides methods to solve certain type of attacks
using deep learning framework in real time, but requires additional modifications and real
world testing to adapt to various cyber-attack and keep pace with advancing technology.

53

Bibliography

[1] Sefi Akerman, Edan Habler, and Asaf Shabtai. “VizADS-B: Analyzing Sequences of
ADS-B Images Using Explainable Convolutional LSTM Encoder-Decoder to Detect Cy-
ber Attacks”. In: June 2019.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. 2017. DOI: 10.
48550/ARXIV.1701.07875. URL: https://arxiv.org/abs/1701.07875.

[3] Anton Blåberg, Gustav Lindahl, Andrei Gurtov, and Billy Josefsson. “Simulating ADS-
B attacks in air traffic management”. In: 2020 AIAA/IEEE 39th Digital Avionics Systems
Conference (DASC). IEEE. 2020, pp. 1–10.

[4] An Braeken. “Holistic air protection scheme of ADS-B communication”. In: IEEE Access
7 (2019), pp. 65251–65262.

[5] Andrei Costin and Aurélien Francillon. “Ghost in the Air (Traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices”. In: black hat USA (2012), pp. 1–
12.

[6] Vijay Prakash Dwivedi and Xavier Bresson. “A Generalization of Transformer Net-
works to Graphs”. In: AAAI Workshop on Deep Learning on Graphs: Methods and Appli-
cations (2021).

[7] Sofie Eskilsson, Hanna Gustafsson, Suleman Khan, and Andrei Gurtov. “Demonstrat-
ing ADS-B and CPDLC Attacks with Software-Defined Radio”. In: 2020 Integrated Com-
munications Navigation and Surveillance Conference (ICNS). IEEE. 2020, 1B2–1.

[8] “EUROPEAN AVIATION IN 2040”. In: © European Organisation for the Safety of Air
Navigation, 2018. URL: https://www.eurocontrol.int/sites/default/
files/2019-07/challenges-of-growth-2018-annex1_0.pdf.

[9] “Federal Aviation Administration”. In: United States Department of Transportation,
2022. URL: https://www.faa.gov/data_research/aviation/aerospace_
forec.

[10] Ziliang Feng, Weijun Pan, and Yang Wang. “A data authentication solution of ADS-
B system based on X. 509 certificate”. In: 27th International Congress of the Aeronautical
Sciences, ICAS. 2010, pp. 1–6.

54

https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.1701.07875
https://arxiv.org/abs/1701.07875
https://www.eurocontrol.int/sites/default/files/2019-07/challenges-of-growth-2018-annex1_0.pdf
https://www.eurocontrol.int/sites/default/files/2019-07/challenges-of-growth-2018-annex1_0.pdf
https://www.faa.gov/data_research/aviation/aerospace_forec
https://www.faa.gov/data_research/aviation/aerospace_forec

Bibliography

[11] “Framewise phoneme classification with bidirectional LSTM and other neural network
architectures”. In: Neural Networks 18.5 (2005). IJCNN 2005, pp. 602–610. ISSN: 0893-
6080. DOI: https://doi.org/10.1016/j.neunet.2005.06.042. URL: https:
//www.sciencedirect.com/science/article/pii/S0893608005001206.

[12] Ahmed Gad. “Introduction to Federated Learning”. In: Medium. 2020.

[13] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning”. In: Proceedings of The 33rd International
Conference on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger.
Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA: PMLR,
20–22 Jun 2016, pp. 1050–1059. URL: https://proceedings.mlr.press/v48/
gal16.html.

[14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks.
2014. arXiv: 1406.2661 [stat.ML].

[15] Edan Habler and Asaf Shabtai. “Analyzing Sequences of Airspace States to Detect
Anomalous Traffic Conditions”. English. In: IEEE Transactions on Aerospace and Elec-
tronic Systems (Jan. 2021). Publisher Copyright: IEEE. ISSN: 0018-9251. DOI: 10.1109/
TAES.2021.3124199.

[16] Edan Habler and Asaf Shabtai. “Using LSTM encoder-decoder algorithm for detecting
anomalous ADS-B messages”. In: Computers & Security 78 (2018), pp. 155–173.

[17] Charles R. Harris, K. Jarrod Millman, Stéfan J.van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. “Array programming with NumPy”. In: Na-
ture 585.7825 (Sept. 2020), pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL:
https://doi.org/10.1038/s41586-020-2649-2.

[18] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.
1997.9.8.1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/
1735/813796/neco.1997.9.8.1735.pdf. URL: https://doi.org/10.1162/
neco.1997.9.8.1735.

[19] Nikita Susan Joseph, Chaity Banerjee, Eduardo Pasiliao, and Tathagata Mukherjee.
“FlightSense: A Spoofer Detection and Aircraft Identification System using Raw ADS-B
Data”. In: 2020 IEEE International Conference on Big Data (Big Data). 2020, pp. 3885–3894.
DOI: 10.1109/BigData50022.2020.9377975.

[20] Thabet Kacem, Duminda Wijesekera, Paulo Costa, Jeronymo Carvalho, Márcio Mon-
teiro, and Alexandre Barreto. “Key distribution mechanism in secure ADS-B networks”.
In: 2015 Integrated Communication, Navigation and Surveillance Conference (ICNS). IEEE.
2015, P3–1.

[21] Suleman Khan, Joakim Thorn, Alex Wahlgren, and Andrei Gurtov. “Intrusion Detection
in Automatic Dependent Surveillance-Broadcast (ADS-B) with Machine Learning”. In:
2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). IEEE. 2021, pp. 1–10.

[22] Syed Khandker, Hannu Turtiainen, Andrei Costin, and Timo Hämäläinen. “On the (In)
Security of 1090ES and UAT978 Mobile Cockpit Information Systems–An Attacker Per-
spective on the Availability of ADS-B Safety-and Mission-Critical Systems”. In: IEEE
Access 10 (2022), pp. 37718–37730.

55

https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/1406.2661
https://doi.org/10.1109/TAES.2021.3124199
https://doi.org/10.1109/TAES.2021.3124199
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/BigData50022.2020.9377975

Bibliography

[23] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-
lutional Networks”. In: CoRR abs/1609.02907 (2016). arXiv: 1609.02907. URL: http:
//arxiv.org/abs/1609.02907.

[24] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and
Daniel J. Inman. “1D convolutional neural networks and applications: A survey”. In:
Mechanical Systems and Signal Processing 151 (2021), p. 107398. ISSN: 0888-3270. DOI:
https://doi.org/10.1016/j.ymssp.2020.107398. URL: https://www.
sciencedirect.com/science/article/pii/S0888327020307846.

[25] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha
Suresh, and Dave Bacon. “Federated Learning: Strategies for Improving Communica-
tion Efficiency”. In: NIPS Workshop on Private Multi-Party Machine Learning. 2016. URL:
https://arxiv.org/abs/1610.05492.

[26] Mauro Leonardi, Luca Di Gregorio, and Davide Di Fausto. “Air Traffic Security: Air-
craft Classification Using ADS-B Message’s Phase-Pattern”. In: Aerospace 4.4 (2017).
ISSN: 2226-4310. DOI: 10.3390/aerospace4040051. URL: https://www.mdpi.
com/2226-4310/4/4/51.

[27] Mohsen Riahi Manesh and Naima Kaabouch. “Analysis of vulnerabilities, attacks,
countermeasures and overall risk of the Automatic Dependent Surveillance-Broadcast
(ADS-B) system”. In: International Journal of Critical Infrastructure Protection 19 (Oct.
2017). DOI: 10.1016/j.ijcip.2017.10.002.

[28] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Het-
erogeneous Systems. Software available from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[29] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera
y Arcas. “Communication-Efficient Learning of Deep Networks from Decentralized
Data”. In: (2016). DOI: 10.48550/ARXIV.1602.05629. URL: https://arxiv.
org/abs/1602.05629.

[30] Dustin M. Mink, Jeffrey McDonald, Sikha Bagui, William B. Glisson, Jordan Shropshire,
Ryan Benton, and Samuel Russ. “Near-Real-Time IDS for the U.S. FAA’s NextGen ADS-
B”. In: Big Data and Cognitive Computing 5.2 (2021). ISSN: 2504-2289. DOI: 10.3390/
bdcc5020027. URL: https://www.mdpi.com/2504-2289/5/2/27.

[31] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A
Generative Model for Raw Audio. 2016. arXiv: 1609.03499 [cs.SD].

[32] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu koray,
Oriol Vinyals, and Alex Graves. “Conditional Image Generation with PixelCNN De-
coders”. In: Advances in Neural Information Processing Systems. Ed. by D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc.,
2016. URL: https : / / proceedings . neurips . cc / paper / 2016 / file /
b1301141feffabac455e1f90a7de2054-Paper.pdf.

56

https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107398
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://www.sciencedirect.com/science/article/pii/S0888327020307846
https://arxiv.org/abs/1610.05492
https://doi.org/10.3390/aerospace4040051
https://www.mdpi.com/2226-4310/4/4/51
https://www.mdpi.com/2226-4310/4/4/51
https://doi.org/10.1016/j.ijcip.2017.10.002
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.48550/ARXIV.1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://doi.org/10.3390/bdcc5020027
https://doi.org/10.3390/bdcc5020027
https://www.mdpi.com/2504-2289/5/2/27
https://arxiv.org/abs/1609.03499
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf

Bibliography

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “Py-
Torch: An Imperative Style, High-Performance Deep Learning Library”. In: Advances in
Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.
URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

[34] Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B.
Wiltschko. “A Gentle Introduction to Graph Neural Networks”. In: Distill (2021).
https://distill.pub/2021/gnn-intro. DOI: 10.23915/distill.00033.

[35] Matthias Schäfer, Vincent Lenders, and Ivan Martinovic. “Experimental analysis of at-
tacks on next generation air traffic communication”. In: International Conference on Ap-
plied Cryptography and Network Security. Springer. 2013, pp. 253–271.

[36] Martin Strohmeier, Matthias Schäfer, Vincent Lenders, and Ivan Martinovic. “Realities
and challenges of nextgen air traffic management: the case of ADS-B”. In: IEEE Com-
munications Magazine 52.5 (2014), pp. 111–118. DOI: 10.1109/MCOM.2014.6815901.

[37] Junzi Sun, Joost Ellerbroek, and Jacco Hoekstra. “Flight Extraction and Phase Identifi-
cation for Large Automatic Dependent Surveillance–Broadcast Datasets”. In: Journal of
Aerospace Information Systems (2017), pp. 1–6.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. 2017. arXiv:
1706.03762 [cs.CL].

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. “Graph Attention Networks”. In: International Conference on Learn-
ing Representations (2018). URL: https : / / openreview . net / forum ? id =
rJXMpikCZ.

[40] Jing Wang, Yunkai Zou, and Jianli Ding. ADS-B spoofing attack detection method based on
LSTM. Mar. 2020. DOI: 10.21203/rs.3.rs-19635/v1.

[41] Xuhang Ying, Joanna Mazer, Giuseppe Bernieri, Mauro Conti, Linda Bushnell, and
Radha Poovendran. “Detecting ADS-B Spoofing Attacks Using Deep Neural Net-
works”. In: June 2019, pp. 187–195. DOI: 10.1109/CNS.2019.8802732.

[42] Xuhang Ying, Joanna Mazer, Giuseppe Bernieri, Mauro Conti, Linda Bushnell, and
Radha Poovendran. Detecting ADS-B Spoofing Attacks using Deep Neural Networks. 2019.
arXiv: 1904.09969 [cs.CR].

[43] Jiawei Zhu, Yujiao Song, Ling Zhao, and Haifeng Li. A3T-GCN: Attention Temporal Graph
Convolutional Network for Traffic Forecasting. 2020. DOI: 10.48550/ARXIV.2006.
11583. URL: https://arxiv.org/abs/2006.11583.

57

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.23915/distill.00033
https://doi.org/10.1109/MCOM.2014.6815901
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.21203/rs.3.rs-19635/v1
https://doi.org/10.1109/CNS.2019.8802732
https://arxiv.org/abs/1904.09969
https://doi.org/10.48550/ARXIV.2006.11583
https://doi.org/10.48550/ARXIV.2006.11583
https://arxiv.org/abs/2006.11583

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Main issues addressed by this thesis are:
	Research Questions
	De-limitations
	Risk Analysis

	Background
	ADS-B Protocol Stack
	ADS-B Vulnerabilities
	Types of ADS-B attacks
	Proposed Methodology
	Why use Federated learning?

	Related Work and Limitations
	Encryption and Authentication
	Challenges of nextgen: ADS-B
	Works Related ADS-B Using Machine Learning
	ADS-B Spoof Attack detection based on LSTM
	Near-Real-Time IDS for the U.S NextGen ADS-B
	Detecting ADS-B Spoofing Attacks using Deep Neural Networks
	Analyzing Sequences of Airspace States to Detect Anomalous Traffic Conditions

	Graph Theory
	What is a Graph?
	Graph representation learning
	Types of Graph structure data
	GNN
	Graph Convolution
	Graph Attention Networks (GAT)
	Transformer Architecture (Graph Transformer Convolution)
	Cross Entropy

	Methods
	Building a Graph Convolutional Network
	Part IV - Aircraft classification: using DNN
	Part V - Training model using Federated Learning

	Results
	Data-set Collection
	Hardware Requirements
	Attack Classification using GCN
	Anomaly prediction with Wavenet
	GAN Model
	Aircraft classification using DNN
	Federated Learning
	Final Summary: Best performing model

	Discussion
	Results
	Method
	The work in a wider context

	Conclusion
	Bibliography

