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Abstract
1. Climate change is increasing the severity and frequency of droughts around the 

globe, leading to tree mortality that reduces production and provision of other 
ecosystem services. Recent studies show that growth of mixed stands may be 
more resilient to drought than pure stands. The two most economically important 
and widely distributed tree species in Europe are Norway spruce (Picea abies (L.) 
Karst) and Scots pine (Pinus sylvestris L.), but little is known about their suscepti-
bility to drought when coexist.

2. This paper analyses the resilience (resistance, recovery rate and recovery 
time) at individual- tree level using a network of tree- ring collections from 
22 sites along a climatic gradient from central Europe to Scandinavia. We 
aimed to identify differences in growth following drought between the two 
species and between mixed and pure stands, and how environmental vari-
ables (climate, topography and site location) and tree characteristics influ-
ence them.

3. We found that both the timing and duration of drought drive the different re-
sponses between species and compositions. Norway spruce showed higher vul-
nerability to summer drought, with both lower resistance and a longer recovery 
time than Scots pine. Mixtures provided higher drought resistance for both spe-
cies compared to pure stands, but the benefit decreases with the duration of the 
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1  |  INTRODUC TION

Drought kills trees across Europe, affecting carbon balance and 
other ecosystem functions (Anderegg et al., 2015; Senf et al., 2020). 
Climate change is increasing the frequency of droughts, their inten-
sity and duration around the globe, and European forests have re-
cently endured unprecedented drought events (Buras et al., 2020; 
Spinoni et al., 2018). Drought stress predisposes trees to forest fires 
and damage from pest and diseases, leading to an emerging vulnera-
bility of European forests (Forzieri et al., 2021). Therefore, new man-
agement strategies to increase forest drought resilience are urgently 
needed (DeSoto et al., 2020).

Drought frequency, intensity, duration and timing all affect tree 
growth (Anderegg et al., 2020; Bose et al., 2021; D'Orangeville 
et al., 2018), but their interactions are poorly understood. Huang 
et al. (2018) found that droughts during the dry season (DS) normally 
last longer and have larger impacts compared to droughts during 
other seasons. Trees with greater pre- drought growth can be more 
affected by long and intense droughts (Bose et al., 2020). In addi-
tion, other intrinsic and environmental drivers could modulate the 
impact of drought on growth (D'Orangeville et al., 2018). Intrinsic 
attributes include tree size, population age structure, species rich-
ness, evenness and diversity of communities. Extrinsic drivers are 
characteristics of the trees' environment such as topography and soil 
(Nimmo et al., 2015). Recent studies show that the tree response to 
extreme climate events may vary based on individual characteris-
tics such as tree size or competition pressure (Nepstad et al., 2007; 
Pretzsch et al., 2018), while others point to minor or species- specific 
importance (Serra- Maluquer et al., 2021). Therefore, more evidence 
is needed in this regard.

Recent studies reveal several advantages of mixed over pure 
stands, including enhanced drought resilience (Fichtner et al., 2020; 
Jactel et al., 2017). In mixed stands, trees use water and light more 
efficiently than in single- species stands (Fichtner et al., 2017; 
Grossiord, 2019). This may result in higher growth and yield 
(Jactel et al., 2018; Pretzsch & Schütze, 2021), more stable growth 
(Schnabel et al., 2021), greater ecosystem service provision (Felton 
et al., 2020) and reduced disturbance impact (Jactel et al., 2017). On 
average, mixed stands are more resilient to drought than monospe-
cific stands (Jansen et al., 2021), but exceptions are common (del Río 
et al., 2021; Forrester et al., 2016). Tree growth response to drought 

depends on the identity of neighbouring species and forest struc-
ture (Pardos et al., 2021). Therefore, which species combinations are 
more resilient to drought is an important question that needs more 
investigation.

Understanding the effects of perturbations on ecosystems re-
quires the simultaneous measurement of multiple components of 
stability (Ingrisch & Bahn, 2018). Various indices used to character-
ize tree growth resilience to drought have been widely discussed in 
literature (van der Maaten- Theunissen et al., 2021). The most com-
monly used indices for this purpose have drawbacks and limitations 
which may lead to misleading results or misinterpretation of ob-
served patterns (Schwarz et al., 2020). Therefore, the way in which 
growth- based resilience indices are calculated and how intrinsic and 
environmental predictors are considered are important factors for 
correctly evaluating tree growth response to drought.

Forests in most of Europe are dominated by two coniferous tree 
species: Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus 
sylvestris L.). They are widely distributed (Figure SM1), have great 
ecological significance and are of major commercial importance for 
European forestry. Low summer water availability combined with 
high temperatures strongly reduces growth for both of these spe-
cies, suggesting that they may be unable to cope with prolonged 
and frequent dry conditions in Europe (Lévesque et al., 2014; Zang 
et al., 2012). In fact, there is clear evidence that extreme growth 
reductions (GRs) due to drought in Europe increased after 1990 
for both species (Treml et al., 2021). Norway spruce is regarded as 
more vulnerable to drought than other coexisting species (Pretzsch 
et al., 2020; Vitasse et al., 2019; Zang et al., 2014), with significant 
wood damage and economic loss (Rosner et al., 2018). Accordingly, 
Treml et al. (2021) showed that Norway spruce is more vulnera-
ble to drought than Scots pine at low altitudes in Central Europe. 
Other studies have shown that both Scots pine and Norway spruce 
can benefit from mixtures with other species (Pardos et al., 2021; 
Pretzsch et al., 2020), but it is still not known how these two species 
will respond to drought when growing together.

In this study, we used tree- ring data from 22 sites covering 
a large part of the distribution ranges of Scots pine and Norway 
spruce in Europe. We analysed their tree- level growth responses 
to drought in mixed and pure stands to identify: (1) differences in 
species- specific growth responses, (2) differences in tree- growth 
response to drought between mixed and pure stands and (3) how 

drought. Especially climate sensitive and old trees in climatically marginal sites 
were more affected by drought stress.

4. Synthesis. Promoting Scots pine and mixed forests is a promising strategy for 
adapting European forests to climate change. However, if future droughts be-
come longer, the advantage of mixed stands could disappear which would be es-
pecially negative for Norway spruce.

K E Y W O R D S
drought period, drought resilience, forest adaptation, mixing effect, tree- ring data
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drought characteristics (intensity, duration and timing) and other en-
vironmental and intrinsic factors influence tree growth responses. 
Our ultimate goal is to better understand and identify the individual 
tree, site and environmental conditions which influence growth re-
silience to drought in Scots pine and Norway spruce.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites and experimental design

This study focuses on Scots pine and Norway spruce in temperate, 
hemiboreal and boreal Europe (Figure SM1). The study area spans 
47°– 64°N, and 10°– 27°E, covering the natural overlap of these spe-
cies' distributions. Within this area, we used data from 22 sites in 
10 countries, representing different climate conditions (Table SM1). 
The experimental design was based on the ‘triplet’ concept (Pretzsch 
et al., 2015), which consists of three plots per site: one monospecific 
stand each of Scots pine and Norway spruce, plus a stand mixing 
the two species. The three plots were located no more than 1 km 
from each other, with similar soil and topographical conditions to 
minimize site and stand effects. Thus, the study uses a total of 66 
plots with a mean size of 0.12 ha and stand ages varying from 45 to 
115 years (average age: 60 years). The species' proportions by basal 
area in mixtures ranged from 32% to 67% with an average close 
to 50%, and in the pure plots, additional tree species were always 
below 10%.

In each plot, 20 dominant living trees and 10 trees representing 
the rest of the diameter distribution were sampled for increment 
cores in 2017. In the mixed plots, both tree species were sampled for 
a total of 60 trees. Annual radial growth increments were measured 
for every core with an accuracy of 0.01 mm and cross- dated using 
the COFECHA software (Grissino Mayer, 2001).

2.2  |  Tree ring dataset, weather and drought 
identification

We calculated tree- ring width (TRW) chronologies using the mean 
of the two cores per tree. The raw ring- width measurements were 
converted to a standardized TRW index (TRWI) by removing low- 
frequency ring- width fluctuations related to increasing tree size 
and age or to stand dynamics such as harvest or self- thinning 
(Anderegg et al., 2015). Each measured ring width was divided by 
its expected value, which was estimated based on a 30- year cubic 
smoothing spline approach with a 50% frequency cut- off using the 
‘dplR’ R package (Bunn et al., 2022). Individual TRWI series were 
preserved for each site preserving the climate signal and the com-
plex environment- tree growth interactions (Wilmking et al., 2020). 
We calculated the coefficient of variation (CV) for the TRWI at tree 
level, considering all the recorded years, and included this as pre-
dictor in the models described below. This procedure allowed us to 
check whether the tree growth response to drought depends on 

recent past growth conditions, particularly climate sensitivity (Bose 
et al., 2020; Pretzsch, 2021). In most cases, weather data came from 
meteorological stations close to each study site. When meteoro-
logical stations were not available, national meteorological services' 
0.5° resolution gridded datasets were used. Monthly water balance 
(WBAL) and monthly standardized precipitation– evapotranspiration 
index (SPEI) values were calculated from the weather data (Vicente- 
Serrano et al., 2010).

We used a climate- based approach for drought identification 
to avoid overestimating the effect of the explanatory variables 
(Schwarz et al., 2020). The first step was to compute the monthly 
SPEI from the previous September to August of each year at each 
site. In addition, we estimated the water availability for the same 
time period via WBAL to identify the periods in which there was a 
deficiency of water (resulting from rainfall and evapotranspiration 
deficit). A drought event was identified for a target year when both 
of the following criteria were met for one or more months: (a) an SPEI 
value more than one standard deviation (SD) below the mean, indi-
cating moderate to extreme drought (McKee et al., 1993; Vicente- 
Serrano et al., 2010), during the previous September to current 
August period, and (b) a negative WBAL for the same period. We 
finally selected those drought events in which TRWI was also lower 
than the mean tree growth value during the target year or the follow-
ing one. The latter condition allowed us to check the site sensitivity 
of the tree growth– climate relationship (Bose et al., 2021; Huang 
et al., 2018) and to consider the lagged drought responses in relation 
to the species- specific growth dynamics (Schwarz et al., 2020). The 
identified and analysed drought events are shown in the supplemen-
tary material (Table SM2). We calculated the duration (number of 
months with a negative WBAL and SPEI more than one SD below the 
mean), intensity (mean SPEI value during the months of drought) and 
seasonal timing to characterize each drought episode. We divided all 
drought events into three seasonal groups (Huang et al., 2018): (a) 
years with drought only in the DS, (b) years with drought only in the 
wet season (WS) and (c) years with drought in both the dry and wet 
seasons (DS + WS). The DS was defined as months when the mean 
value of the historical monthly WBAL was negative (June– August), 
and vice versa for the WS (all other months).

2.3  |  Resilience to drought events

Since there is evidence of non- independence of the resilience com-
ponents (Hodgson et al., 2015; Ingrisch & Bahn, 2018; Schwarz 
et al., 2020), we decided to use three variables simultaneously to 
better understand the trees' ability to return to equilibrium after a 
drought: resistance, recovery rate and recovery time (Figure SM2). 
We use more suitable alternative resilience indices than those com-
monly used and defined by Lloret et al. (2011) to correct some of 
their limitations (Schwarz et al., 2020; Thurm et al., 2016). We used 
a baseline normalized tree growth rate, which allowed comparison 
of the growth response relative to the pre- drought state of the re-
spective tree (Ingrisch & Bahn, 2018). The pre- drought baseline was 
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defined by the mean tree growth value from the detrended data se-
ries (TRWI).

According to the terminology used by Thurm et al. (2016), 
we defined the total GR as the cumulative growth decrease in 
the drought year plus all years during the recovery period, that 
is, the total growth loss due to drought (Figure SM2). From this 
value, we calculated the resistance component of resilience as 
the inverse of total GR (1/GR), a measure of the overall ability to 
avoid drought impact, which primarily quantifies aspects of per-
turbation (Ingrisch & Bahn, 2018). The recovery period or recov-
ery time was defined as the time needed to reach pre- drought 
growth levels after the disturbance (Schwarz et al., 2020; Thurm 
et al., 2016; Figure SM2). Accordingly, recovery time quantifies 
the endogenous processes that return the disturbed system back 
to the initial equilibrium (Hodgson et al., 2015), that is, capacity 
of trees to regain the growth rate of non- stress conditions. The 
maximum length of the recovery period to be considered in defin-
ing the recovery time was 10 years. The recovery rate component 
was calculated as the magnitude of total GR divided by the length 
of the recovery period, expressed as the mean magnitude of GR 
recovered annually after the drought episode. This quantifies 
the ecosystem state change per unit time after the disturbance 
(Ingrisch & Bahn, 2018). The three growth response indices were 
computed for drought events at different sites from 1940 to 2017, 
with a minimum continuous period of 40 years within this window 
(Table SM2). Data are open and free available in Zenodo public 
digital repository (Aldea, 2022).

2.4  |  Statistical analysis

We used generalized mixed effect models to evaluate the influ-
ence of intrinsic and extrinsic environmental factors on the three 
tree- level resilience components. These types of models account 
for the hierarchical structure of the data and correct for the de-
gree of correlation between the residuals due to spatial and tem-
poral dependence, avoiding misleading inferences. Multiple tree, 
stand, site and climate variables and their interactions were in-
cluded as predictors in the models (Table SM3). Triplet, plot and 
tree (hierarchically nested) and year (as a crossed factor) were 
included in the random effects, considering spatial and tempo-
ral observation's structure. The optimal model was calculated by 
comparing different random and fixed structures and selecting the 
model with the lowest value of Akaike's information criterion (AIC) 
following Zuur et al. (2009). The ‘resistance’ response variable was 
log transformed before analysis to correct for heteroscedasticity, 
and ‘recovery time’ was modelled following a Poisson distribu-
tion with logarithm as link function. Finally, differences between 
levels of some predictor variables (species, composition and 
drought seasonality) were evaluated post- hoc in the final models 
using Sidak tests for multiple comparisons. We used the ‘lme4’ 
R package (Bates et al., 2015) for model fitting, ‘AICcmodavg’ 
(Mazerolle, 2017) for model selection and ‘emmeans’ (Lenth, 2020) 

to estimate the differences in marginal means between predictor 
levels. All analyses were performed in the R statistical environ-
ment version 4.1.2. (R Development Core Team, 2022).

3  |  RESULTS

3.1  |  Species- specific tree response

We observed that the number of trees which presented a GR due 
to drought was similar regardless of species composition and site 
(Figure SM3), although their response differed. Accordingly, tree 
growth responses to drought varied among species and stand compo-
sitions, but their interaction was not significant (Table 1). Scots pine 
resistance was on average higher than Norway spruce (Figure 1a), 
although it was dependent on the timing of the drought (Table 1). On 
the other hand, Norway spruce recovered 22.5% of mean growth 
per year after drought, compared to 20.2% per year for Scots pine 
(Figure 1b). Thus, the species' contrasting resistance and recovery 
rate patterns show a clear trade- off. Scots pine also showed a lower 
recovery time compared to Norway spruce (Figure 1c), although the 
average difference was <1 year, which reflects the similarity of the 
species' responses. In summary, the higher recovery rate of Norway 
spruce was not enough to compensate for the greater GR it suffered 
due to drought, evincing a slightly higher recovery time compared 
to Scots pine.

3.2  |  Tree responses in pure versus mixed stands

Tree resistance and recovery rate varied between stand composi-
tions. In general, trees in pure stands showed a lower resistance 
to drought compared to mixtures (Table 1). Norway spruce in pure 
stands had the largest average GR, while Scots pine in mixed stands 
had the lowest (Figure 1a). However, trees in pure stands recovered 
faster than in mixtures (Figure 1b). These two trends balanced one 
another out, so no recovery time differences were found between 
pure and mixed stands (Figure 1c). Therefore, mixtures could reduce 
tree vulnerability to drought by increasing resistance.

3.3  |  Effect of drought characteristics and other 
environmental factors on tree growth response

The species' response to drought was controlled by the timing 
of the drought, and the differences between stand compositions 
were modulated by the duration of the drought (Table 1). Trees 
had higher resistance in mixed than in pure stands, but only dur-
ing shorter drought events. The difference between trees grow-
ing in different stand compositions decreased with duration of 
drought and became similar during droughts longer than 2 months 
(Figure 1a). Timing of drought also affected species' performance. 
Norway spruce was less resistant to summer drought than Scots 
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pine, but more resistant to droughts occurred during the WS 
(Figure 2a). Scots pine showed little variation in resistance be-
tween seasons. Drought intensity, measured as SPEI, also reduced 
tree resistance (Table 1). Old trees and trees with a high growth 
variation showed a lower resistance.

Features of trees (species and diameter at breast height), stands 
(composition) and sites (latitude, longitude and elevation) all influ-
enced post- drought recovery rate (Table 1). Trees further north 
and east and at lower elevations recovered more slowly. Timing 
of drought events also influenced the recovery time (Figure 2b). 
Droughts occurred in the WS needed the shortest recovery time for 
both species, but Scots pine always recovered faster than Norway 
spruce regardless of drought timing (Figure 2b). Drought intensity 
(SPEI) and tree age prolonged tree recovery (Table 1). In summary, 
Norway spruce showed a higher sensitivity to summer droughts, 
with lower resistance and longer recovery times compared to Scots 
pine.

4  |  DISCUSSION

4.1  |  Tree growth response to drought in pure and 
mixed stands

Scots pine was the more drought tolerant species, with higher 
resistance to drought and shorter recovery times, compared to 
Norway spruce. Dry summers have been shown to strongly re-
duce photosynthesis, stomatal conductance, carbohydrate trans-
fer and growth for Norway spruce (Lévesque et al., 2014; Treml 
et al., 2021). Later termination of shoot elongation and later 
radial growth above- ground and below- ground make Norway 
spruce more sensitive to summer water stress than Scots pine 
(Zang et al., 2012). A higher specific leaf area of Norway spruce 
(compared to pine) would involve high transpiration rates longer 
into drought episodes, probably impairing tree water status 
(Greenwood et al., 2017). It increases drought damage risk and 

TA B L E  1  Summary of the results from modelling the three resilience components. dbh: Diameter at breast height (mm); Age: Tree age 
at the drought event; CV: Coefficient of variation for the TRWI; S.pine: Dummy variable for species (scots pine = 1); Pure: Dummy variable 
for stand composition (pure stands = 1); Latitude (°N); Longitude (°E); Elevation (m); SPEI: Monthly average standardized precipitation– 
evapotranspiration index during the drought event; Duration: The number of months that the drought lasted; WS: Wet season level for the 
timing of the drought; DS + WS: Dry and wet season level for the timing of the drought; triplet: Triplet random factor; plot: Plot random 
factor nested in triplet; tree: Tree random factor nested in plot and triplet; year: Year crossed random factor; error: Variance of residual 
error. The interactions Pure: Duration, S.pine: Drought season were also included in the model. AIC: Akaike's information criterion; RMSE: 
Root- mean- square error

Model components Variables

Resistance Recovery rate Recovery time

Coefficient p- value Coefficient p- value Coefficient p- value

Fixed parameters Intercept 1.879 <0.001 0.623 <0.001 0.790 <0.001

dbh — — 4.5·10−5 0.045 — — 

Age −0.008 <0.001 — — 0.005 <0.001

CV −0.019 <0.001 — — — — 

S.pine 0.337 <0.001 −0.023 <0.001 −0.041 0.002

Pure −0.174 0.007 0.014 <0.001 0.023 0.065

Latitude — — −0.006 <0.001 — — 

Longitude — — −0.002 <0.001 — — 

Elevation — — −7.9 × 10−5 <0.001 — — 

SPEI 0.236 <0.001 — — −0.067 0.045

Duration −0.075 <0.001 — — — — 

WS 0.525 <0.001 — — −0.112 0.002

DS + WS 0.211 <0.001 — — 0.004 0.841

Pure:Duration 0.049 0.021 — — — — 

S.pine:WS −0.530 <0.001 — — — — 

S.pine:DS + WS −0.282 <0.001 — — — — 

Variance parameters triplet 0.137 — 0.113

plot 0.140 — — 

tree 0.119 0.015 — 

year 0.364 0.018 0.302

error 1.006 0.115 0.106

Fit statistics AIC 2762.2 −1394.8 3613.7

RMSE 0.996 0.115 1.028
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mortality for this species (Rosner et al., 2018; Zang et al., 2014). On 
the other hand, Norway spruce's faster recovery rate could come 
from prioritizing investment of assimilates below ground, prob-
ably to regain root functions after drought (Hagedorn et al., 2016). 

Scots pine showed a lower resistance to droughts occurred in WS 
compared to Norway spruce (Figure 2a), in agreement with previ-
ous findings (Camarero et al., 2016; Voltas et al., 2013). The earlier 
onset of cambial activity of Scots pine compared to Norway spruce 

F I G U R E  1  Differences between species and stand compositions in resistance to drought (a), recovery rate (b) and recovery time (c). 
Values were averaged according to the mean value of other predictors in the model (Table 1). Letters denote significant differences 
corrected for multiple comparisons using a Sidàk test at p < 0.05. Shaded areas show 95% confidence intervals for the estimated trend lines 
in panel (a) and boxes and whiskers in panels (b, c) show standard error and 95% confidence intervals of estimated means, respectively

(a)

1.5

2.0

2.5

3.0

1 2 3 4 5
Duration (months)

R
es

is
ta

nc
e 

(G
R

−1
)

Composition
N.spruce Mix
N.spruce Pure
S.pine Mix
S.pine Pure

c

a

d

b

(b)

20

22

24

26

Norway spruce Scots pine

R
ec

ov
er

y 
ra

te
 (%

G
R

·y
ea

r−1
)

bc

a

c

ab

(c)

2.4

2.6

2.8

3.0

Norway spruce Scots pine

R
ec

ov
er

y 
tim

e 
(y

ea
rs

)

F I G U R E  2  Species differences in 
resistance (a) and recovery time (b) as a 
function of drought seasonality: dry (DS), 
wet (WS) and, dry and wet (DS + WS) 
season. Values assume mean values of all 
other predictors in the model (Table 1). 
Letters denote significant differences 
using Sidàk tests at p < 0.05. Boxes and 
whiskers show standard error and 95% 
confidence intervals of estimated means, 
respectively

a

c

d

c

b

bc

(a)

1.5

2.0

2.5

3.0

3.5

DS WS DS+WS

R
es

is
ta

nc
e 

(G
R

−1
)

Species
Norway spruce
Scots pine

d

c

b

a

d

c

(b)

2.6

2.8

3.0

DS WS DS+WS

R
ec

ov
er

y 
tim

e 
(y

ea
rs

)

 13652745, 2022, 11, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.13978 by U

m
ea U

niversity, W
iley O

nline L
ibrary on [30/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  2679Journal of EcologyALDEA et al.

(Mäkinen et al., 2018) could be a disadvantage during droughts of 
WS. Scots pine's strict stomatal control to reduce hydraulic failure 
risk (Zang et al., 2014) could lead to high sensitivity regardless of 
drought timing, leading to similar resistance levels in DS and WS, 
but different recovery times (Figure 2). We observed that Scots 
pine was less vulnerable to drought compared to Norway spruce, 
which may result in a better adaptation to warmer and drier sum-
mers (Treml et al., 2021).

Mixtures of Scots pine and Norway spruce may provide an op-
tion to reduce drought vulnerability because of increased resistance 
(Figure 1a). Resistance to drought of mixed forests may result from 
complementary use of below- ground resources, predominantly via 
root stratification (Jactel et al., 2017), potentially reducing soil water 
competition in mixtures (Grossiord, 2019). Norway spruce has shal-
lower root systems than Scots pine, potentially reducing intraspe-
cific competition for water in mixed stands (Fichtner et al., 2017). In 
contrast, Lutter et al. (2021) found that these species' roots overlap 
in mixed stands at boreal sites, suggesting competition for resources 
among trees of both species. They also showed that both species en-
larged their root system in mixed stands. This increased root surface 
area may lead to more efficient water uptake during drought events 
compared to pure stands (Jansen et al., 2021). In addition, these 
species' contrasting crown structures might modify the proportion 
of precipitation that is intercepted by the canopy (Pretzsch, 2022). 
Another reason for better performance of mixtures could be Scots 
pine acting as a hydraulic lift, redistributing deep water to the drier 
surface soil layers (Jactel et al., 2017). There are strong indications 
that both Scots pine and Norway spruce improve performance 
during drought when they are mixed with other species (Pardos 
et al., 2021; Pretzsch et al., 2020). However, differences in density 
and basal area between pure and mixed stands may complicate ex-
planation of mixture performance (Castagneri et al., 2021; Forrester 
et al., 2016). Another question for future research is the role of 
species' proportion and the spatial configuration of the species (in-
termingling vs. clustering), since it may affect the results. Here, we 
observed that in mixtures, trees of both species were less vulnerable 
to drought, making mixtures a preferable smart forest strategy to 
reduce drought stress.

Timing of drought was a crucial factor determining impacts 
on growth, which agrees with recent studies (Bose et al., 2021; 
D'Orangeville et al., 2018; Huang et al., 2018), who highlight the 
stronger effects of drought in summer seasons. Our results show 
that droughts occurred in DS require longer recovery times for both 
species, with Norway spruce having the lowest resistance during this 
time of year (Figure 2). Previous research has also shown that low 
summer water availability strongly reduces growth in both of these 
species (Lévesque et al., 2014; Vitasse et al., 2019). Nevertheless, 
Norway spruce seems to be much more sensitive to drought even in 
boreal forest (Gutierrez Lopez et al., 2021). In our study, resistance 
was reduced and recovery times prolonged when drought intensity 
increased, which has been reported as a promoter of tree mortality 
(Allen et al., 2015; Greenwood et al., 2017). According to our results, 
if future droughts become longer the advantage of mixed stands 

could disappear, which would be especially negative for Norway 
spruce.

We also found other environmental and intrinsic factors which 
modulated tree growth response to drought. A low recovery rate 
was observed for trees at high latitude and elevation (Table 1), 
where growth is often limited by low temperatures (Gutierrez Lopez 
et al., 2021; Wilmking et al., 2020). Similarly, a high vulnerability to 
drought for both species has also been confirmed at dry sites in cen-
tral and southern regions of Europe (Serra- Maluquer et al., 2021; 
Treml et al., 2021), with a trend towards higher resilience in mixed 
stands at hotter sites (Pardos et al., 2021). Despite large trees having 
a higher recovery rate (Table 1), probably due to more extensive root 
systems, they may experience stronger GRs (Pretzsch et al., 2018; 
Zang et al., 2012), lower drought resilience (Bennett et al., 2015; 
Grote et al., 2016) and possibly increasing tree mortality risk (DeSoto 
et al., 2020; Ryan, 2015). High variation in TRWI during pre- drought 
conditions, which indicates that a tree has great climate sensitiv-
ity, can reduce tree resistance to drought stress (Bose et al., 2021; 
Pretzsch, 2021). These trees typically would occupy a dominant 
social position (Grote et al., 2016; Stovall et al., 2019). Senescence 
could also reduce drought tolerance since trees show lower resis-
tance and higher recovery times as they age (Andivia et al., 2020; 
Zang et al., 2014). Therefore, dominant and old trees in sites with 
climate limitations could be more susceptible to drought and other 
damage (Drössler et al., 2018).

4.2  |  Ecological, management and policy 
implications

Careful selection of tree species is a smart forest management strat-
egy to face drought. Intensive production forestry has promoted the 
conversion of Scots pine and broadleaved forests to more profit-
able Norway spruce monocultures (Felton et al., 2020). This comes 
at the cost of large negative outcomes for biodiversity, aesthetic 
and recreational values, as well as increased stand vulnerability 
to disturbances such as drought, pests and pathogens. For single- 
species stands, Scots pine would be a safer choice to adapt forests to 
droughts. As conifers may be more susceptible to extreme weather 
events broadleaved species could be another forest management al-
ternative (DeSoto et al., 2020).

Replacing pure Norway spruce plantations with the mixtures 
studied here would increase drought resilience and biodiver-
sity (Felton et al., 2020; Messier et al., 2021) and reduce diseases 
(Lindén & Vollbrecht, 2002) without a significant loss in stand 
production (Drössler et al., 2018; Pretzsch & Schütze, 2021; Ruiz- 
Peinado et al., 2021). Since droughts can greatly reduce stand pro-
duction, mixtures may help to alleviate it to some extent (Schnabel 
et al., 2021). However, mixtures are more complicated to manage 
than monocultures although useful examples of silvicultural pre-
scriptions can be found in northern latitudes (Drössler et al., 2015; 
Huuskonen et al., 2021; Lindén & Agestam, 2003). Furthermore, 
some steps have recently been taken towards introducing 
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methodological approaches for steering European mixed forests 
(Pretzsch et al., 2021; Pretzsch & Del Río, 2020).

Our results also showed that tree and site features can modu-
late growth responses to drought. Bigger trees, for example, showed 
higher recovery rates, so stand density reduction to produce fewer 
but larger trees could be desirable to face drought (Castagneri 
et al., 2021; Sohn et al., 2016). On the other hand, a competition 
release due to thinning may increase water evaporation and tree 
climate sensitivity (CV), consequently reducing drought resis-
tance (Table 1) which is consistent with recent studies (Pretzsch 
et al., 2018; Stovall et al., 2019). Mortality of large trees would be 
particularly concerning because they have an important ecological 
and carbon storage role (Lutz et al., 2018; Ryan, 2015). Managing 
the higher drought vulnerability of dominant and old trees does not 
necessarily require shorter rotation periods. In our view, it would be 
preferable to maintain a range of tree ages and sizes within stands. 
Shelterwood systems or continuous cover forestry may be promising 
strategies in this regard (Drössler et al., 2015). Finally, the revealed 
greater tolerance to drought stress of Scots pine- Norway spruce 
mixtures compared with neighbouring pure stands substantiates 
the benefits of mixed stands in the face of observed and forecasted 
climate change, and may help stem the ongoing dieback of Norway 
spruce monocultures across Europe.

5  |  CONCLUSIONS

This researched aimed to examine differences between species 
(Scots pine vs. Norway spruce) and compositions (pure vs. mixed 
stands) in terms of tree growth responses to drought along a climatic 
gradient in Europe. We showed that drought characteristics, tree 
and site conditions modulated the tree growth response. Drought 
seasonality modulated the differences of the species' responses, 
whereas the longer drought duration reduced the differences be-
tween mixed and pure stands. Summer droughts required longer 
recovery times compared to droughts occurred in the WS, with 
Norway spruce being more vulnerable than Scots pine. Thus, Norway 
spruce should be avoided at sites with water limitations. Since mixed 
stands increased drought resistance for both species, mixtures are a 
promising strategy for adaptation of forest management to climate 
change. However, more research is needed to develop concise and 
specific silviculture prescriptions for this type of mixtures. The find-
ings of this study have a number of important implications for future 
forest management in Europe. Scots pine and Norway spruce mix-
tures could reduce tree drought vulnerability and therefore reduce 
the impact on forests from ongoing climate change. Furthermore, 
such forests would increase the value of several ecosystem services 
without a significant loss of forest productivity.
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