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Abstract: Modelling drought is vital to water resources management, particularly in arid areas, to
reduce its effects. Drought severity and frequency are significantly influenced by climate change. In
this study, a novel hybrid methodology was built, data preprocessing and artificial neural network
(ANN) combined with the constriction coefficient-based particle swarm optimisation and chaotic
gravitational search algorithm (CPSOCGSA), to forecast standard precipitation index (SPI) based
on climatic factors. Additionally, the marine predators algorithm (MPA) and the slime mould algo-
rithm (SMA) were used to validate the performance of the CPSOCGSA algorithm. Climatic factors
data from 1990 to 2020 were employed to create and evaluate the SPI 1, SPI 3, and SPI 6 models for
Al-Kut City, Iraq. The results indicated that data preprocessing methods improve data quality and
find the best predictors scenario. The performance of CPSOCGSA-ANN is better than MPA-ANN
and SMA-ANN algorithms based on various statistical criteria (i.e., R2, MAE, and RMSE). The pro-
posed methodology yield R?=0.93, 0.93, and 0.88 for SPI1, SPI 3, and SPI 6, respectively.

Keywords: drought forecast model; metaheuristic algorithms; artificial neural network; standardised
precipitation index; Iraq

1. Introduction

Drought is one of the most devastating natural catastrophes globally, causing the
highest economic losses, and it happens when there is a shortage of precipitation com-
pared to the long-term average precipitation [1,2]. On a worldwide scale, drought is re-
sponsible for 22% of the economic losses caused by calamities and 33% of the losses in
terms of the number of people affected [3,4]. There are four types of droughts: meteoro-
logical, agricultural, socioeconomic, and hydrological [5]. Drought is dependent on cli-
matic variables such as rainfall and temperature. Additionally, there are a variety of
drought indicators available, such as the Palmer drought severity index (PDSI), standard-
ised precipitation evapotranspiration index (SPEI), effective drought index (EDI), recon-
naissance drought index (RDI), and standardised precipitation index (SPI). SPI was intro-
duced by McKee, et al. [6], which is the most widely employed drought indicator and has
been recommended by the World Meteorological Organisation [7]. The SPI can be com-
puted at various timescales to provide insight into various types of drought; for example,
the short-to-medium timescale is appropriate for agricultural and meteorological
droughts [8].
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Climate change is causing significant issues for the ecosystem, such as rainfall varia-
tion, which may lead to drought and desertification [9,10]. Additionally, the effect of
global warming on temperature and precipitation in various areas of the world is uneven.
The Arabian Peninsula, which has a mostly desert environment, is expected to face more
rapid climate change due to global warming [11].

Iraq, an arid country on the Arabian Peninsula, is one of the most affected by climate
change in the world [12,13]. The Tigris and the Euphrates rivers are Iraq’s most important
freshwater sources. As a result, many storage dams have been built along the paths of
these rivers in Iraq [14]. These rivers had severe water shortages from 2009 to 2014, which
are predicted to increase due to climate change, leading to a rise in upstream water con-
sumption (i.e., Turkey and Iran) [14,15]. Climate change has significant effects in Iraq,
such as decreasing rainfall and increasing temperatures [16]. Osman, et al. [17] showed
that most Iraqi areas are expected to experience decreased annual mean rainfall, particu-
larly towards the end of the twenty-first century. Additionally, Salman, et al. [11] deduced
that yearly precipitation is decreasing at a rate of —1.0 to =5.0 mm/year in northwest Iraq.
Furthermore, the temperature of Iraq is rising at a rate two to seven times more rapidly
than the world average [12]. As a result, these studies highlight the need for more research
in drought forecasting in Iraq. It plays a significant role in providing decision-makers with
helpful information that enables them to make appropriate decisions to alleviate the ef-
fects of drought [18,19].

Drought forecasting is essential for irrigated agriculture, water management, envi-
ronmental monitoring, recreational tourism, and ecosystem health [20]. Additionally,
drought prediction and early warning are important for agricultural adaptability to cli-
mate change [21]. Various machine learning (ML) technologies have shown remarkable
performance in forecasting droughts due to their ability to manage the nonlinear correla-
tion between meteorological factors and drought [22,23]. Traditional methods assume that
the relationship between the predictors and the predictand is linear and may be unsuitable
for solving real application problems [24]. Owing to the nonlinear and complex character
of the drought process, employing artificial intelligence (Al) techniques in drought fore-
casting has received significant attention [25]. According to studies by Zhang, et al. [3]
and Belayneh, et al. [26], Al models are superior to traditional models. These AI models
that are employed to forecast drought are support vector machines (SVMs) [27], adaptive
neurofuzzy inference system (ANFIS) [28], artificial neural network (ANN) [29], and ran-
dom forests [30,31].

The capability of the ANN model to simulate nonlinear and nonstationary time series
data in water resources and hydrology issues makes it an attractive tool for predicting drought
[32], as proven in Dikshit, et al. [33], Das, et al. [34], and Bari Abarghouei, et al. [35]. Addition-
ally, the ANN was used in other hydrological fields and proved efficient in predicting accu-
racy, such as Apaydin, et al. [36] and Ren, et al. [37] for streamflow, Omer Faruk [38] and Seo,
et al. [39] for water quality, and Tiu, et al. [40] for water level.

A hybrid model combines two or more methods, one working as the main model and
the others as post-or preprocessing methods [41]. Different methods and scenarios have
been used to predict drought. The results have shown that the hybrid model outperforms
the single model; therefore, most studies recommended employing the hybrid model to
improve prediction accuracy, such as Zhang, et al. [3], Khan, et al. [42], and Adnan, et al.
[43].

To date, several studies confirmed the effectiveness of employing climatic variables
and hybrid ANN models for forecasting drought, such as Banadkooki, et al. [5], Nabipour,
et al. [25], Alawsi, et al. [44], and Adnan, et al. [43], additionally employing different data
pretreatment approaches such as singular spectrum analysis (S5SA) and utilising various
preprocessing techniques for determining the best input model. Furthermore, hybrid
models with nature-inspired optimisation algorithms are significantly encouraged.

Different optimisation algorithms have been used to solve issues in engineering
fields. The optimisation techniques are designed to find the best values for the system’s
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parameters under various scenarios [45]. Li, et al. [46] introduced the slime mould algo-
rithm (SMA), which has been used to solve optimisation problems, for example, water
demand prediction [47], spring design problem [48], and photovoltaic models [49]. In ad-
dition, the marine predators algorithm (MPA) was proposed by Faramarzi, et al. [50]. It
has been utilised in a variety of applications, including photovoltaic systems [51], friction
stir welding [52], and power resources in distribution networks [53].

Additionally, data preprocessing techniques are necessary to improve prediction
performance for hydrologic time series [4,54]. These techniques play a crucial role in
ANNSs by promoting high accuracy and minimising computing costs during the training
phase since unreliable information and noise in data records negatively impact the learn-
ing phase and result in a flawed model [9]. The primary goals of data preprocessing tech-
niques are to enhance the quality of raw time series to determine the best predictors’ sce-
nario [41,55].

Recently, Alawsi, et al. [44] reviewed drought forecasting articles that were published
in the last several years and recommended:

1. Employing singular spectrum analysis (S5SA) as a data pretreatment technique;

2. Using a multivariate strategy;

3. Applying the hybridisation of preprocessing-based with parameter optimisation-
based hybrid models.

Accordingly, this study aims to evaluate a novel methodology (including data pre-
processing techniques and an ANN model that integrates with different metaheuristic al-
gorithms) to forecast the drought indices SP1 1, SPI 3, and SPI 6 for Al-Kut City, Iraq.

The primary objectives of this study are to:

1. Investigate 14 climate factors over thirty years to determine to what extent climate
factors drive drought indices;

2. Enhance raw data quality and identify the optimal predictor scenario;

3. Integrate the ANN model with the recent CPSOCGSA algorithm to choose the opti-
mal ANN hyperparameters;

4.  Evaluate the CPSOCGSA-ANN technique’s performance by comparing it with the
updated MPA-ANN and SMA-ANN algorithms;

5. Provide a scientific view of drought to the local stakeholders because this province
has the highest production and marketing of wheat in Iraq.

Based on our knowledge, this is the first time to: (a) investigate this novel methodol-
ogy for forecasting drought and (b) use Al-Kut City as a study area.

The organisation of the remaining sections of this paper follows: Section 2 describes
the study area and the data set employed in this study, together with the methodology
utilised for constructing the prediction models. The results obtained in this study are pre-
sented in Section 3. Section 4 provides a discussion of the study’s findings. Finally, con-
clusions are stated in Section 5.

2. Materials and Methods
2.1. Study Area and Data Collection

Al-Kut is the Wasit region’s capital city, situated on the Tigris River in southeast Iraq.
The city has an area of 17,153 square kilometres. In contrast, the built-up area of Al-Kut is
around 40 square kilometres. In 2003, around 400,000 people lived in the city, and it is
predicted to reach over 750,000 by 2035. Additionally, Al-Kut is considered an agricultural
region characterised by wheat production [56,57]. The climate of Al-Kut City is character-
ised by pleasant spring and autumn seasons, cold winters, and dry and hot summers. Ac-
cording to the Iraqi Meteorological Department, winter begins in November and continues
until March. The other seven months are considered to be summer, and the months of June,
July, and August are typically the hottest of the summer [57,58].

In developing countries, the main challenge faced by many researchers is the data. In
general, data from Iraqgi metrological stations (1990-2020) were lost because of unusual
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events (i.e.,, embargo, terrorism, and wars). As a result, according to Ahmad, et al. [59] and
Capt, et al. [60], monthly climatic factors were obtained from the National Oceanic and
Atmospheric Administration (NASA) [61]. This study used the Drought Indicator Calcu-
lator (DrinC) program to calculate the SPI. DrinC program required that precipitation data
be structured from October to September of the next year. It was created at the Laboratory
of Reclamation Works and Water Resources Management, National Technical University
of Athens, Greece [42].

The information on climatic variables was collected from 01 October 1990 to 30 Sep-
tember 2020. It includes minimum temperature (Tmin) (°C), mean temperature (Tmean)
(°C), maximum temperature (Tmax) (°C), dew forest (DF) (°C), wet bulb temperature
(Twet) (°C), rainfall (Rain) (mm/day), relative humidity (RH) (percent), surface pressure
(P) (kPa), specific humidity (SH) (g/kg), maximum wind speed (Wmax) (m/s), wind speed
(W) (m/s), range wind speed (Wrange) (m/s), minimum wind speed (Wmin) (m/s), and
top of atmosphere (TOA) (MJ/m?/day) (Table S1 describes the statistics of climate factors).
Figure 1 shows the monthly time series and boxplot for the raw minimum wind speed
data. Additionally, Figures S1-53 show the monthly time series and boxplot for rain, rel-
ative humidity, and wet bulb temperature (i.e., the other best predictors), respectively.
Table 1 provides descriptive statistics for the drought index.
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Figure 1. Shows the wind speed minimum: (A) monthly time series and (B) boxplot.

Table 1. The descriptive statistics of SPI time series.

Variable (Monthly) Mean Max. Min. Std. Dev.
SPI1 0.191 2,53 —2.85 0.898
SPI3 0.0182 2.58 -2.98 0.98
SPI 6 0.0007 2.43 -3.06 1.002

2.2. Methodology

The proposed methodology to simulate drought (i.e., SPI 1, SPI13, and SPI 6) is based
on several climatic factors, including standardised precipitation index (SPI), and its parts
can be categorised into data preprocessing, constriction coefficient-based particle swarm
optimisation (CCPSO), artificial neural network (ANN), and prediction accuracy criteria,
as presented in Figure 2.
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Figure 2. The suggested methodology for simulating drought (SPI 1, SPI 3, and SPI 6) depends on
climatic factors.

2.2.1. Standardised Precipitation Index (SPI)

McKee, et al. [6] introduced the SPI as a drought indicator, which the World Meteorolog-
ical Organisation recognised for detecting meteorological drought characteristics [62,63]. Uti-
lising the SPI index has several benefits: first, the SPI is easy to employ and requires only
monthly rainfall data [64]. Second, the SPI can be computed on any time scale, allowing it to
describe different drought types [43,65,66]. Third, since the SPIis a dimensionless index, it is
possible to easily compare values across both time and space [26,67].

To calculate the SPI, the long-term rainfall record for the required period is fitted to
a probability distribution, which is then converted into a normal distribution. This ensures
that the mean SPI for the required period and location is zero [34]. Negative SPI values
represent rainfall less than the mean, while positive values represent rainfall higher than
the mean because the SPI is normalised; drier and wetter climates can be presented by
using the same method [42].
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Thom [68] discovered that the climatological rainfall time series follows the gamma
distribution. The gamma distribution is described by the likelihood density or frequency
function, as shown in Equation (1).

gX) =

1
B%1(a)

X* 1 e™/F  forX>0 (1)

where t(a),f,a,and x represent gamma function, scale parameters, shape, and the rain-
fall amount, respectively. The gamma parameters f and « are computed for each station
and each time scale (1, 3, 6 months, etc.). The maximum probability estimates of § and a

are as follows:
a=i<1+ /1+ﬁ>,whereA=ln(JE)—M (2)
4A 3 n

®)

Q| =

B =

where n is the number of rainfall observations.

The resulting parameters are employed in order to calculate the cumulative proba-
bility (Equation (4)) of a recorded rainfall event for the given time scale and month for the
specific area.

1 [
G(x)=ﬁa.—‘f(0!).bfx .e B.dx (4)

Even though the gamma function is indeterminate for x = 0 and the rainfall distribution
may include zeros, Equation (5) is employed to calculate the cumulative probability.

Hx)=q+(1-q).6(x) ®)
where G(x) represents the gamma function’s cumulative probability and q is the probabil-
ity of zero rainfall, which is calculated as follows in Equation (6):

a== ©)

where m is the number of zeros in a rainfall time series.

Then, the cumulative probability H(x) is converted into a standardised normal distri-
bution at an SPI value of variance and mean equal to one and zero, respectively [42,69], as
shown in Equations (7) and (8).

Cot GK + G ) here K = |In( ! ) for 0 < H(x) < 0.5 7
- ,wnere = n(——— or X) s U
1+ d,K + d,K? + d;K?3 (Hx))* @)
Co + CK + C,K? here K = |1 1 05 < Hex) < 1
1+ diK +d,K? + d;K3 owhere £ = 0 ((1 —H(x))z) foro 00 = ®)

Monthly rainfall is generally not normally distributed; therefore, these values trans-
form to fit a normal distribution that produces SPI values. The SPI is the number of stand-
ard deviations where the measured value deviates from the long-term average for a ran-
dom variable with a normal distribution [70]. Table 2 shows a drought classification based
on SPL

Practically, droughts may be categorised depending on the time scales of rainfall. The
SPI is commonly employed to define droughts based on time scales; agricultural drought
can be represented by SPI1 to SPI 6 [71]. Hence, SPI 1, SPI 3, and SPI 6 are employed due
to Al-Kut being an agricultural area (i.e., a short time scale is appropriate for agriculture
drought).
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Table 2. Classification of drought based on SPI [72].

SPI Values Class

>2 Extremely wet
1.5t0 1.99 Very wet

1.0to 1.49 Moderately wet
-0.99 to 0.99 Near normal
-1to-1.49 Moderately dry
-1.5t0-1.99 Severely dry
<2 Extremely dry

2.2.2. Data Preprocessing

In this study, the preprocessing of data includes three methods: normalisation, clean-
ing, and selection of the best model input. Details are provided below.

Normalisation

Tabachnick and Fidell [73] advised that the first choice was to employ the natural
logarithm to reduce the influence of the outliers and make the distribution normal or close
to normal; the second choice is to change the scores for the remaining outliers after the
transformation approach. Therefore, the natural logarithm approach was applied to re-
duce the multicollinearity of the input variables and make the data more static [41]. This
research uses the SPSS 24 statistics package.

Cleaning

Outliers and noise are leading causes for negative impact on the prediction model
[73]; therefore, the box—whisker approach was employed in this research to determine
outliers that exist outside of the period + 1.5 x IQR (IQR = 3rd quartile (Q3)—1st quartile
(Q1)) [74]. The SPSS 24 statistical package was used to perform the method of this ap-
proach, and the singular spectrum analysis (SSA) technique was employed to denoise the
time series.

All time series contain various noise components, and the pretreatment signal is one
of the most successful approaches for denoising raw time series by analysing them into
multiple components [75]. Singular spectrum analysis (SSA) is commonly recognised as
an adaptive noise-decreasing method employed in time series analysis [76].

Additionally, SSA has been identified as an effective preprocessing technique when
combined with neural networks (or similar approaches) for time series prediction. It can
be applied to both nonlinear and linear time series [9,77,78]. This strategy has been shown
to be effective in a variety of fields, including industry [79], economics [80], hydrology
[81], and predicting stochastic processes [82].

Selection of the Best Model Input

Selecting suitable independent variables that drive the target (dependent variable) is
essential in creating the prediction model [83,84]. This study uses the tolerance technique
to choose the best scenario of explanatory factors, described by Pallant [85]. The tolerance
coefficient value for the selected predictors should be equal to or greater than 0.2 to avoid
multicollinearity [47,85].

2.2.3. Constriction Coefficient-Based Particle Swarm Optimisation and Chaotic Gravita-
tional Search Algorithm (CCPSOCGSA)

The present methodology is used to cover the local minima, intensification, and ran-
domisation issues that combine the standard PSO and GSA techniques. The components
of the hybrid CCPSPCGSA are explained in the following sections.
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a. Constriction Coefficient-Based Particle Swarm Optimisation (CCPSO)

The PSO is one of the well-known nature-based optimisation techniques inspired by
the behaviour of birds and fish swarms. The structure of the PSO algorithm contains three
key parameters. They are inertia weight, pbest, and gbest. The inertia weight has an im-
portant effect on the global exploration process. The gbest and pbest help in finding the
search space region. The mathematical formulation of the PSO that describes the updating
process of the location and velocity of the particles during the change in the particle values
is written in Equations (9) and (10):

vd(t + 1) = w(t)vd(t) + cira (pbest, — x(t)) + coryo(gbest — x£(t)) )

x¢(t+1) =x2() + vi(t+1) (10)

where c;, ¢, are learning constants and ry,and ry, are numbers ranging from 0 to 1.

To manage the consequences of the particle movements outside the solution space
and to improve the convergence during the optimisation process, a number of coefficients,
called constriction coefficients, were introduced, as in Clerc and Kennedy [86]. The coef-
ficients are described in Equations (11) and (12):

@1 =2.05,¢, =205 ¢ =09, + ¢, (11)

K=2/(<p—2+ (<p2—4)) (12)
Substituting the inertia weight by the notation K, Equation (9) can be rewritten as:
vl (t +1) = Kvg (t) + K@iy (phest, (8) — x7(8)) + K@z (gbest — xi(8)  (13)
where K¢, = ¢, Ko, = c,.
b.  Chaotic Gravitational Search Algorithm CGSA
GSA is an optimisation technique that is inspired by Newton’s law of gravitation and
motion. The GSA-based optimisation process is initialised by representing the searching

agents as masses. According to Newton’s law, the gravitational force F;; between masses (i.e.,
searching agents) x and y at time t can be described as in Equation (14):

Mpx (t)may ®)

by =GO R,y (t)+€

(x¢® +x§(®) (14)
where m,, and m,,, are the attractive and passive masses, respectively. Rxy(t) describes
the Euclidian distance between the two masses at time t, while € is a small coefficient.
The constant G is introduced to control the solution space for the purpose of securing a
feasible region. The constant G can be described as in Equation (15):

G(6) = G(¢,)e(~) (15)

where G(t) and G(t,) are the final and initial values of G, a is a small constant, CI is the
current iteration, and MI is the maximum number of iterations.

The behaviour of G over time is proposed by Rather and Bala [87] using a chaotic
normalisation process. Thus, the final description of the gravitational constant can be for-
mulated as in Equation (16):

GE(E) = Crorm(e) + G(t,)e( ) (16)

The total force exerted by the masses (i.e., searching agents) can be calculated as in
Equation (17):

&) = Z VyFey (17)

y=ly#x

where y value ranges from 0 to 1.
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The position and velocity can be represented according to Equations (18) and (19):

vt + 1) = pd(t) + af(®) (18)

x2(t+1) = x2(t) + vt + 1) (19)
where a(t) is the acceleration of the mass.
c. Combination of CCPSO and CGSA

The combination of CPSO and CGSA leads to combining the diversification and con-
vergence properties of the two techniques. The combination results are described in Equa-
tion (20):

vi(t+1) = (2/(9 = 2+97 = 4)) () + Kprra (a(0) — x4 (®))

20
+ K@,1y, (gbest —xZ (t)) (20)

The location of the particles is given by Equation (21):
xd(t+1) =xq(@®) +vit+1) (1)

2.2.4. Artificial Neural Network (ANN)

ANN is a computational system for information processing inspired by the human
brain [88,89]. The benefits of employing ANNSs follow: small data needs; capacity to con-
struct models when the link between inputs and outputs is not completely understood;
quick execution time; and, finally, ability to predict nonstationary and nonlinear time se-
ries data in the fields of hydrology and water resources [2,32,90]. These properties make
ANNSs appropriate for drought prediction [29]. This study implements the multilayer per-
ceptron (MLP) to simulate the standardised precipitation index. MLP applied feed-for-
ward backpropagation (FFBB) that used the Levenberg-Marquardt learning algorithm
(LM) for training the ANN model due to its speed, efficiency, and low error rate, as shown
by Payal, et al. [91]. The MLP structure consists of four layers: the first is the input layer
that has climatic variables (Rain, RH, Twet, and Wmin); followed by two hidden layers
that contain the tansigmoidal activation function to manage complex nonlinearity and the
output layer that includes SPI. Moreover, the trial-and-error approach does not always
provide the optimal solution and considers time consumption. Therefore, metaheuristic
algorithms were integrated with ANN to select the optimal value of the learning rate and
the best number of neurons for hidden layers to obtain the best input/output mapping
and avoid overfitting or underfitting the model [41]. The model was also applied using
the Neural Network Toolbox for MATLAB. Furthermore, following Soh, et al. [23] and
Zhang, et al. [3], the data were divided into three groups: training (70%, from 1990 to
2010); testing (15%, from 2011 to 2015); and validation (15%, from 2016 to 2020) to build
and assess the forecasting model.

2.3. Prediction Accuracy Criteria

This research evaluated the performance of models in SPI prediction by employing
three statistical criteria. The applied metrics are mean absolute error (MAE), root-mean-
squared error (RMSE), and determination coefficient (R?). The following formulae can be
used to calculate them [92,93]:

?’:1|0i _Fi|
N

’ N T2
RMSE = # (23)

MAE = (22)
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= 2
2 = [ 25100 — 0D(F — F)

VE(0; — 0)?X(F; — F)?
where 0; represents observed SPI, F; is the predicted SPI, N is the sample size, F, is the
mean of predicted SPI, and 51 is the mean of observed SPI.

In addjition, this research employed Taylor diagrams to compare the modelling re-
sults, which provide pattern statistics to prepare a visual comprehension of performance
by displaying various points on a polar plot for two or more sets of modelling outcomes
[94]. Additionally, three tests were used to assess the residual analysis: the Kolmogorov—
Smirnov, Shapiro-Wilk, and residual analysis plot.

(24)

3. Results
3.1. Input Data Analysis

The climatic factors (independent variables) data were normalised, as mentioned in
Section 2.2.2. Additionally, the time series for dependent variables (SPI 1, SPI 3, and SPI
6) and climatic factors were cleaned according to Section 2.2.2. Figure 3 shows the normal-
ised and cleaned data for wind speed minimum. The time series variance has decreased
in Figure 3A compared to Figure 1A. Additionally, Figure 3B shows the time series
cleaned from outliers that appear in Figure 1B.

14 ‘ —Normalised and cleaned data 14 -
A B |
12- T |
g 1+ I
0 H |
£ 08 & 808 ‘
~ £
£ 06- < 06
s 's
S 04 \4 304
|
02| d ﬂ 0 3
0 ‘ 1 1 Il 1 1 | ;
0, -
0 60 120 180 240 300 360
Monthly time series Normalised and cleaned data

Figure 3. Normalised and cleaned wind speed minimum data: (A) monthly time series and (B) box-
plot data.

Then, the pretreatment signal technique (SSA) was utilised to obtain the time series
data for SPI 1, SPI 3, SPI 6, and all climatic variables without noise. Figure 4 shows the
original time series (cleaned data) for SPI 6 (first line), the new time series (second line)
and two noise signals (third and fourth lines).
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0 5|
0.5 -
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Figure 4. Cleaned SPI 6 time series (first line) and components of SPI 6 obtained by SSA (second to
fourth lines). The second line represents the new time series, while the third and fourth represent
noise signals.

In the last step of data preprocessing methods, a tolerance technique was employed to
choose the best scenario of model input (climatic factors) to simulate the SPI precisely and
avoid multicollinearity by removing superfluous variables. After applying various scenarios,
the best scenario was chosen based on tolerance coefficients that were equal to or greater than
0.2 for all nominated predictors. This strategy was used for SPI 1, SPI 3, and SPI 6 models, as
presented in Table 3. It can be seen that four climatic factors, Rain, RH, Twet, and Wmin, were
chosen to be the best predictors’ scenarios for the three SPI models.

Table 3. Statistics of collinearity for the chosen best input variables.

Target Climatic Variables Tolerance Value

Rain 0.292

RH 0.240

— Twet 0.577
Wmin 0.678

Rain 0.292

RH 0.241

SP13 Twet 0.578
Wmin 0.682

Rain 0.291

RH 0.242

oile Twet 0.579
Wmin 0.686

The impact of data preprocessing on the correlation coefficient (R) between input and
output data was assessed, and it found that the data preprocessing enhanced the correla-
tion coefficient values between standardised precipitation indices (SPI 1, SPI 3, and SPI 6)
and climatic variables; for example, the correlation coefficient for rain increased from
0.507 to 0.945, 0.446 to 0.936, and 0.373 to 0.866 for SPI 1, SPI 3, and SPI 6, respectively.
Accordingly, the preprocessing data methods improved the data quality for both depend-
ent and independent time series.
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3.2. Application of the Hybrid Heuristic Algorithms—ANN Approach

The ANN approach requires combination with a metaheuristic algorithm to find the
optimal learning rate (Lr) and the number of neurons in both hidden layers (N1 and N2).
A MATLAB toolbox was employed to run the CPSOCGSA-ANN, MPA-ANN, and SMA-
ANN algorithms to determine the best hyperparameters for the ANN model. For each
algorithm, this research applied the swarm size (10, 20, 30, 40, and 50 swarms) five times
for each swarm with 200 iterations to gain a minimum fitness function (MSE). Figure 5
shows an example of the CPSOCGSA-ANN algorithm performance and reveals the best
fitness function for each swarm for SPI 1.
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Figure 5. Performance of the CPSOCGSA algorithm for SPI 1.

Figure 6A presents the best swarm size 50_2 of the CPSOCGSA-ANN algorithm for
SPI 1 that provides less MSE = 0.04266 after 178 iterations. Additionally, Figure 6B shows
the swarm size 40_s offers the minimum MSE = 0.04645 after 169 iterations for the MPA-
ANN algorithm. Additionally, the swarm size 50_s gives less MSE = 0.052063 after 48 iter-
ations for the SMA-ANN algorithm, as presented in Figure 6C.
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Figure 6. Performance of the CPSOCGSA-ANN, MPA-ANN, and SMA-ANN algorithms for SPI 1.

Figure 7A displays that the 304 swarm size gives the best solution for the
CPSOCGSA-ANN algorithm (MSE = 0.080356, after 111 iterations) for SPI 3, while in Fig-
ure 7B, the 30_1 swarm size provides the best solution for the MPA-ANN algorithm (MSE
=0.08682, after 188 iterations). Figure 7C presents the swarm size 40_s and offers the opti-
mal solution for the SMA-ANN algorithm (MSE = 0.093785, after 120 iterations).
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Figure 7. Performance of the CPSOCGSA-ANN, MPA-ANN, and SMA-ANN algorithms for SPI 3.
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Figure 8A shows that the swarm size 50_4 offers the best answer with less fitness func-
tion (MSE = 0.19433 after eight iterations) for the CPSOCGSA-ANN algorithm. While in
Figure 8B, the hybrid MPA-ANN algorithm reveals that the swarm size 40_4 provides the
optimal answer with less fitness function (MSE = 0.20575 after 85 iterations). Figure 8C
shows that the swarm size 50_s gives the best solution for the hybrid SMA-ANN algorithm
based on MSE equal to 0.21468 after 28 iterations for SPI 6. Based on the results of hybrid
models for each SPI model, each best swarm for each hybrid model offers optimal hy-
perparameters for the ANN model. Accordingly, Table 4 shows the ANN hyperparame-
ters for the best swarm size for each algorithm and SPI model.
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Figure 8. Performance of the CPSOCGSA-ANN, MPA-ANN, and SMA-ANN algorithms for SPI 6.

Table 4. ANN parameters are based on algorithms for SPI 1, SPI 3, and SPI 6.

Model Parameter CPSOCGSA MPA SMA
N1 3 5 7
SPI1 N2 7 5 13
Lr 0.3686 0.0010 0.4192
N1 4 10 3
SPI3 N2 5 1 14
Lr 0.5841 0.1115 0.6413
N1 5 9 3
SPI 6 N2 3 1 4
Lr 0.2747 0.0013 0.2570
N1 and N2 represent the number of neurons in hidden layers one and two, respectively. LR is the
learning rate of the ANN.

3.3. Evaluating and Comparing the Performance of the Algorithms with ANN

Following the procedure of Adnan, et al. [43] and Aghelpour, et al. [62], three ANN
models were constructed using the hyperparameters (Table 4). Each ANN model was run
numerous times to discover the best structure of the neural network (weights) capable of
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accurately forecasting SPI 1. The performance of the models was evaluated using three
statistical criteria (see Section 2.3). This strategy was performed for SPI3 and SPI 6 as well.
Table 5 shows the statistical indicators (R?2, MAE, and RMSE) for each hybrid model for
the SPI 1, SPI 3, and SPI 6 prediction models. According to Dawson, et al. [95], the
CPSOCGSA-ANN and MPA-ANN models showed good forecasting accuracy for SPI11,
SPI 3, and SP1 6, and the SMA-ANN model for SPI 3 that yielded R? greater than 0.85. The
results also demonstrated that the CPSOCGSA-ANN model is preferable to MPA-ANN
and SMA-ANN for SPI models, and that the SMA-ANN model was the worst.

Table 5. Performance assessment criteria for CPSOCGSA, MPA, and SMA in the validation stage.

Target Model R? MAE RMSE
CPSOCGSA-ANN 0.93 0.0635 0.0791

SPI'1 MPA-ANN 0.86 0.0840 0.0976
SMA-ANN 0.78 0.0961 0.1127
CPSOCGSA-ANN 0.93 0.1020 0.1270

SPI 3 MPA-ANN 0.91 0.1172 0.1344
SMA-ANN 0.86 0.1220 0.1676
CPSOCGSA-ANN 0.88 0.2004 0.2334

SPI 6 MPA-ANN 0.86 0.2186 0.2589
SMA-ANN 0.78 0.2618 0.3001

The Taylor diagram was employed to examine the drought forecasting results for
further assessment. This diagram shows a graphical view of the agreement between pre-
dicted and measured patterns, considering the blue azimuthal line, a green contour line,
and a black arc representing the value of the correlation coefficient (R), the root-mean-
square difference (RMSD), and standard deviation (SD), respectively. Figure 9 shows the
Taylor diagram for the CPSOCGSA-ANN, MPA-ANN, and SMA-ANN forecasting mod-
els for SPI 1, SPI 3, and SPI 6.

For SPI 1, performance predictions for all the models fall within the correlation coef-
ficient range 0.88 to 0.97. In addition, the CPSOCGSA-ANN and MPA-ANN are located
between the contour lines (0.05 and 0.1) according to RMSD, while the SMA-ANN is situ-
ated beyond the 0.1 contour line.

For SPI 3, the Taylor diagram shows that the correlation coefficient of forecasting
models is located between 0.92 and 0.97. Additionally, all models were found between
contour lines 0.1 and 0.2 according to RMSD.

For SPI 6, the performance of the simulation models is located within the correlation
range 0.88 to 0.94. According to RMSD, all models are found between the same range of
contour lines (0.2 and 0.4).

In all cases, the CPSOCGSA-ANN is nearest to the observed drought (reference), fol-
lowed by MPA-ANN, and lastly, SMA-ANN. Therefore, CPSOCGSA-ANN is superior to
the MPA-ANN and SMA-ANN, as shown in Figure 9. Additionally, for the CPSOCGSA-
ANN technique, SPI 1 performs better than SPI3 and SPI 6 models, and the accuracy tends
to decline steadily from SPI 1 to SPI 6.
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Figure 9. Taylor diagram for CPSACGSA-ANN, MPA-ANN, and SMA-ANN prediction models.

A graphical test was employed to confirm the capability of the hybrid models to gener-
alise SPI time series (i.e., SPI 1, SPI 3, and SPI 6) in the validation stage. Figure 10 shows the
measured SPI data and predicted SPI data from CPSOCGSA-ANN, MPA-ANN, and SMA-
ANN. It can be noticed that the forecasted data from CPSOCGSA-ANN follows the trend and
periodicity of the measured data, and it is the closest to the measured data from MPA-ANN
and SMA-ANN according to the scale of error. Several slight deviations in the predicted time
series may have resulted from the effect of climatic factors’ fluctuations.
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Figure 10. Comparison between measured data (i.e., SPI 1, SPI 3, and SPI 6) and predicted data for
CPSOCGSA-ANN, MPA-ANN, and SMA-ANN for the validation stage.

The results of this study affirmed that the CPSOCGSA-ANN outperforms the MPA-
ANN and SMA-ANN models. For more examinations of the CPSOCGSA-ANN model,
Kolmogorov-Smirnov (K-S) and Shapiro-Wilk (S-W) tests were employed to check the
normality of the residual data, as shown in Table 6. The finding reveals that the residuals
follow a normal distribution because the outcomes of the K-S and S-W tests showed a p-
value > 0.05, according to Valentini, et al. [96]. In addition, Figure 11 shows the normal
distribution of the residual data for SPI 1, SPI 3, and SPI 6.
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Figure 11. Normal distribution of the residual data.
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Table 6. Tests of normality.

Target Kolmogorov—Smirnova (K-S) Shapiro-Wilk (5-W)
SPI1 0.200 0.224
SPI3 0.200 0.545
SPI 6 0.200 0.340

Based on the above results of statistical and graphical tests and residual analysis, it
is possible to conclude that:

(1) These results show the ability of SSA and tolerance strategies to enhance the quality
of raw data and choose the optimal predictors scenario without transgressing the
multicollinearity supposition.

(2) Rain, RH, Twet, and Wmin emerged as reliable predictors of SPI 1, SPI 3, and SPI 6.

(38) The CPSOCGSA-ANN method is a reliable model that can accurately predict the short-
term drought index, outperforming the MPA-ANN and SMA-ANN models.

(4) The proposed methodology (i.e., hybridisation of preprocessing-based with parame-
ter optimisation-based hybrid models) accurately predicted monthly drought ac-
cording to various statistical criteria.

(5) The findings reveal a strong relationship between drought and climatic factors.

This study focuses on the proposed methodology for predicting drought for cities
that suffer from variability in socioeconomic factors and climate, such as Al-Kut city. As
a result, policymakers and stakeholders can find this procedure helpful in making intelli-
gent decisions and developing effective plans for irrigation system operation.

4. Discussion

Droughts may have devastating consequences on socioeconomic and environmental
conditions, but the agricultural sector is the most severely impacted by drought. Al-Kut
is considered an agricultural area that is characterised by wheat production. Therefore,
drought prediction is essential for mitigating the effects of droughts in the region. Based
on our knowledge, no article has been published to predict droughts in the study area. As
a result, the present study forecasts the standardised precipitation index using various
machine learning techniques (CPSOCGSA-ANN, ANN-MPA, and ANN-SMA) with dif-
ferent time scales (SPI 1, SPI 3, and SPI 6).

During the validation stage, the models with lowest RMSE, MAE, and greatest R? are
considered the best for predicting drought. This study reveals that predictions of SPI by
using CPSOCGSA-ANN were the most accurate across all time scales (SPI 1, SPI 3, and
SPI 6). This model can help the local authorities (managers and decision-makers) make
intelligent decisions and improve effective irrigation system operation plans.

The artificial neural network (ANN) result was compared with support vector re-
gression (SVR) to predict temporal drought occurrences in Australia. The findings showed
that ANN outperformed SVR, with the former having the higher R? value of 0.86 com-
pared to 0.75 for the latter [33]. Despite the high ability of ANN in forecasting hydrocli-
mate parameters (e.g., rainfall), this technique may show limitations in dealing with hy-
drological time series that are often nonstationary and cover a broad range of scales. As a
result, data preprocessing may be a significant stage in overcoming defects and similar
issues [97]. Khan, et al. [98] employed ANN and the hybrid ANN with wavelet (W-ANN)
for predicting drought in Malaysia. The results show that the wavelet method achieved
higher correlation coefficients (i.e., W-ANN outperforms the single ANN). The least-
square support vector machine (LSSVM) and LSSVM-singular spectrum analysis (SSA-
LSSVM) were used to predict the standardised precipitation index (SPI) for Taiwan. Pre-
diction accuracy was higher for SSA-LSSVM than for LSSVM [4]. Basakin, et al. [28] eval-
uated the adaptive neurofuzzy inference system (ANFIS) and ANFIS with empirical mode
decomposition (ANFIS-EMD) to predict drought. The statistical indicators MSE and NSE
reveal that the combined EMD-ANFIS model is better than the ANFIS model when
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employed singularly. Bioinspired optimisation algorithms have been effectively utilised
to improve model abilities by identifying the optimal hyperparameters of ML models
[5,99]. Banadkooki, et al. [5] utilised ANN models with three metaheuristic optimisation
algorithms, namely particle swarm optimisation (PSO), the salp swarm algorithm (SSA),
and the genetic algorithm (GA), to predict drought in the Yazd plain, Iran. The result re-
veals that SSA-ANN outperforms PSO-ANN and GA-ANN. Nabipour, et al. [25] pro-
posed a combined model of artificial neural networks (ANN) with different metaheuristic
algorithms, including the salp swarm algorithm (SSA), grasshopper optimization algo-
rithm (GOA), particle swarm optimization (PSO), and biogeography-based optimisation
(BBO) for predicting short-term drought in Iran. According to the results, the combined
model outperformed the single ANN.

The literature described above indicates that the hybridised version of the machine
learning techniques is better than standalone models in forecasting drought. The present
study shows that data preprocessing (i.e., normalisation, cleaning, and best model input)
increased the correlation coefficient values between standardised precipitation indices
(SP11, SPI3, and SPI 6) and climatic variables (Section 3.1). Moreover, this study showed
that the hybrid ML model, specifically ANN-CPSOCGSA, was more accurate in drought
prediction with different time scales (SPI 1, SPI 3, and SPI 6). Furthermore, the results of
this study indicate that the drought simulation model may be installed as an early warn-
ing system in the Al-Kut region to mitigate the effects of drought.

5. Conclusions

The accuracy of future drought forecasting is critical for risk management, agricul-
ture irrigation, and drought preparation. Climate variables play a significant role in
drought forecasting. Drought is driven effectively by rainfall, temperature, wind speed,
and relative humidity. Therefore, the effects of climate variables cannot be neglected in
drought forecasting. This study suggested a novel hybrid methodology to simulate
drought (SPI 1, SPI 3, and SPI 6) based on climatic factors over 30 years in Al-Kut City,
Iraq. The methodology includes data preprocessing techniques and an ANN model inte-
grated with the recent CPSOCGSA algorithm. Additionally, the MPA and SMA algo-
rithms were applied to assess and validate the performance of the CPSOCGSA algorithm.
The results reveal that the data preprocessing techniques (i.e., SSA and tolerance) effec-
tively denoise time series and remove the redundant predictors leading to improving the
data quality and selecting the best predictors scenario. The performance of CPSOCGSA-
ANN outperforms both the MPA-ANN and SMA-ANN algorithms based on different sta-
tistical criteria (i.e., R MAE, and RMSE). The best models predicted SPI 1 with R?=0.93,
MAE =0.0635, and RMSE =0.0791, SPI 3 with R?=0.93, MAE = 0.1020, and RMSE = 0.1270,
and SPI 6 with R?=0.88, MAE = 0.2004, and RMSE = 0.2334. Additionally, the results indi-
cate that the proposed model can be successfully applied in predicting drought for regions
that suffer from variability in socioeconomic and climate variables. These findings can
provide beneficial information to the local authorities (i.e., managers and decision-mak-
ers), helping the irrigation sector company to manage the irrigation system better, leading
to improved service and management of resources in Al-Kut city. For future research, this
study offers a framework for exploring and investigating innovative hybrid models that
combine preprocessing and parameter optimisation. Further research using the same hy-
brid techniques to forecast different drought indices is needed for various regions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/atmos13091436/s1, Figure S1: Rain: (a) monthly time series
and (b) boxplot. Figure S2: Relative humidity: (a) monthly time series and (b) boxplot. Figure S3.
Wet bulb temperature: (a) monthly time series and (b) boxplot. Table S1: Descriptive statistics of
important parameters.

Author Contributions: Conceptualization, S.L.Z.; Data curation, M.A.A. and H.A.-B.; Formal anal-
ysis, M.A.A. and S.L.Z.; Funding acquisition, N.A.-A ; Investigation, M.A.A.; Methodology, M.A A,



Atmosphere 2022, 13, 1436 20 of 24

S.L.Z, N.A.-A,, H.A.-B. and HM.R,; Project administration, M.A.A. and S.L.Z.; Resources, N.A.-A.
and HM.R,; Software, HM.R.; Supervision, S.L.Z.; Validation, M.A.A. and S.L.Z.; Visualization,
M.A.A., H.A.-B. and HM.R,; Writing — original draft, M.A.A.; Writing — review & editing, M.A.A.,
S.L.Z., N.A.-A. and H.A.-B. All authors have read and agreed to the published version of the man-
uscript.

Funding: The APC was funded by Lulea University of Technology.
Institutional Review Board Statement: Not applicable
Informed Consent Statement: Not applicable

Data Availability Statement: Data were obtained from the National Oceanic and Atmospheric Ad-
ministration (NASA) https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (accessed on 27
July 2022).

Conflicts of Interest: The authors declare no conflict of interest

References

1. Xu, D; Zhang, Q.; Ding, Y.; Zhang. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting.
Environ. Sci. Pollut. Res. Int. 2022, 29, 4128-4144. https://doi.org/10.1007/s11356-021-15325-z.

2. Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Long-term SPI drought forecasting in the Awash River Basin in
Ethiopia using wavelet neural network and wavelet support vector regression models. J. Hydrol. 2014, 508, 418-429.
https://doi.org/10.1016/j.jhydrol.2013.10.052.

3. Zhang, Y.; Li, W,; Chen, Q.; Pu, X,; Xiang, L. Multi-models for SPI drought forecasting in the north of Haihe River Basin, China.
Stoch. Environ. Res. Risk Assess. 2017, 31, 2471-2481. https://doi.org/10.1007/s00477-017-1437-5.

4. Pham, Q.B,; Yang, T.-C,; Kuo, C.-M.; Tseng, H.-W.; Yu, P.-S. Coupling Singular Spectrum Analysis with Least Square Support
Vector Machine to Improve Accuracy of SPI Drought Forecasting. Water Resour. Manag. 2021, 35, 847-868.
https://doi.org/10.1007/s11269-020-02746-7.

5. Banadkooki, F.B.; Singh, V.P.; Ehteram, M. Multi-timescale drought prediction using new hybrid artificial neural network
models. Nat. Hazards 2021, 106, 2461-2478. https://doi.org/10.1007/s11069-021-04550-x.

6. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of 8th
Conference on Applied Climatology, Anaheim, CA, USA, 17-22 January 1993.

7. Anshuka, A, van Ogtrop, F.F.; Willem Vervoort, R. Drought forecasting through statistical models using standardised
precipitation index: A systematic review and meta-regression analysis. Nat. Hazards 2019, 97, 955-977.
https://doi.org/10.1007/s11069-019-03665-6.

8.  Gumus, V. Algin, HM. Meteorological and hydrological drought analysis of the Seyhan—Ceyhan River Basins, Turkey.
Meteorol. Appl. 2017, 24, 62-73. https://doi.org/10.1002/met.1605.

9.  Zubaidi, S.L.; Dooley, J.; Alkhaddar, RM.; Abdellatif, M.; Al-Bugharbee, H.; Ortega-Martorell, S. A Novel approach for
predicting monthly water demand by combining singular spectrum analysis with neural networks. J. Hydrol. 2018, 561, 136~
145. https://doi.org/10.1016/j.jhydrol.2018.03.047.

10. Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.-S.; Wang, X.-]. Distributional changes in rainfall and river flow in Sarawak, Malaysia.
Asia Pac. |. Atmos. Sci. 2017, 53, 489-500. https://doi.org/10.1007/s13143-017-0051-2.

11. Salman, S.A.; Shahid, S.; Ismail, T.; Ahmed, K.; Chung, E.-S.; Wang, X.-J. Characteristics of Annual and Seasonal Trends of
Rainfall and Temperature in Iraq. Asia Pac. |. Atmos. Sci. 2019, 55, 429-438. https://doi.org/10.1007/s13143-018-0073-4.

12.  Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos.
Res. 2017, 198, 97-107. https://doi.org/10.1016/j.atmosres.2017.08.011.

13. Nashwan, M.S,; Shahid, S.; Abd Rahim, N. Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor.
Appl. Climatol. 2018, 136, 457-473. https://doi.org/10.1007/s00704-018-2498-1.

14. Ethaib, S.; Zubaidi, S.L.; Al-Ansari, N.; Fegade, S.L. Evaluation water scarcity based on GIS estimation and climate-change
effects: A case study of Thi-Qar Governorate, Iraq. Cogent Eng. 2022, 9, 2075301. https://doi.org/10.1080/23311916.2022.2075301.

15. Aljanabi, A.A.; Mays, L.W.; Fox, P. A Reclaimed Wastewater Allocation Optimization Model for Agricultural Irrigation. Environ.
Nat. Resour. Res. 2018, 8, 55. https://doi.org/10.5539/enrr.v8n2p55.

16. Salman, S.A.; Shahid, S.; Ismail, T.; Rahman, N.b.A.; Wang, X.; Chung, E.-S. Unidirectional trends in daily rainfall extremes of
Iraq. Theor. Appl. Climatol. 2017, 134, 1165-1177. https://doi.org/10.1007/s00704-017-2336-x.

17.  Osman, Y.; Abdellatif, M.; Al-Ansari, N.; Knutsson, S.; Jawad, S. Climate change and future precipitation in an arid environment
of the middle east: Case study of Iraq. J. Environ. Hydrol. 2017, 25, 3.

18. Bandyopadhyay, N.; Bhuiyan, C.; Saha, A.K. Drought mitigation: Critical analysis and proposal for a new drought policy with
special reference to Gujarat (India). Prog. Disaster Sci. 2020, 5, 100049. https://doi.org/10.1016/j.pdisas.2019.100049.

19. Adnan, S.; Ullah, K.; Shuanglin, L.; Gao, S.; Khan, A.H.; Mahmood, R. Comparison of various drought indices to monitor

drought status in Pakistan. Clim. Dyn. 2017, 51, 1885-1899. https://doi.org/10.1007/s00382-017-3987-0.



Atmosphere 2022, 13, 1436 21 of 24

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Adede, C.; Oboko, R.; Wagacha, P.W.; Atzberger, C. A Mixed Model Approach to Vegetation Condition Prediction Using
Artificial Neural Networks (ANN): Case of Kenya’s Operational Drought Monitoring. Remote Sens. 2019, 11, 1099.
https://doi.org/10.3390/rs11091099.

Elbeltagi, A.; AlThobiani, F.; Kamruzzaman, M.; Shaid, S.; Roy, D.K; Deb, L.; Islam, M.M.; Kundu, P.K,; Rahman, M.M.
Estimating the Standardized Precipitation Evapotranspiration Index Using Data-Driven Techniques: A Regional Study of
Bangladesh. Water 2022, 14, 1764. https://doi.org/10.3390/w14111764.

Xu, L.; Chen, N.; Zhang, X.; Chen, Z. An evaluation of statistical, NMME and hybrid models for drought prediction in China. J.
Hydrol. 2018, 566, 235-249. https://doi.org/10.1016/j.jhydrol.2018.09.020.

Soh, Y.W.; Koo, C.H.; Huang, Y.F.; Fung, K.F. Application of artificial intelligence models for the prediction of standardized
precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia. Comput. Electron. Agric. 2018, 144, 164-173.
https://doi.org/10.1016/j.compag.2017.12.002.

Agana, N.A.; Homaifar, A. EMD-Based Predictive Deep Belief Network for Time Series Prediction: An Application to Drought
Forecasting. Hydrology 2018, 5, 18. https://doi.org/10.3390/hydrology5010018.

Nabipour, N.; Dehghani, M.; Mosavi, A.; Shamshirband, S. Short-Term Hydrological Drought Forecasting Based on Different
Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks. IEEE Access 2020, 8, 15210-15222.
https://doi.org/10.1109/access.2020.2964584.

Belayneh, A.; Adamowski, J.; Khalil, B. Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet
transforms and machine learning methods. Sustain. Water Resour. Manag. 2015, 2, 87-101. https://doi.org/10.1007/s40899-015-0040-5.
Altunkaynak, A; Jalilzadnezamabad, A. Extended lead time accurate forecasting of palmer drought severity index using hybrid
wavelet-fuzzy and machine learning techniques. J. Hydrol. 2021, 601, 126619. https://doi.org/10.1016/j.jhydrol.2021.126619.
Basakin, E.E.; Ekmekcioglu, oF Ozger, M. Drought prediction using hybrid soft-computing methods for semi-arid region.
Modeling Earth Syst. Environ. 2020, 7, 2363-2371. https://doi.org/10.1007/s40808-020-01010-6.

Belayneh, A.; Adamowski, J. Standard Precipitation Index Drought Forecasting Using Neural Networks, Wavelet Neural
Networks, and Support Vector Regression. Appl. Comput. Intell. Soft Comput. 2012, 2012, 794061.
https://doi.org/10.1155/2012/794061.

Dikshit, A.; Pradhan, B.; Alamri, A.M. Short-Term Spatio-Temporal Drought Forecasting Using Random Forests Model at New
South Wales, Australia. Appl. Sci. 2020, 10, 4254. https://doi.org/10.3390/app10124254.

Park, H.; Kim, K.; Lee, D .k. Prediction of Severe Drought Area Based on Random Forest: Using Satellite Image and Topography
Data. Water 2019, 11, 705. https://doi.org/10.3390/w11040705.

Ali, Z.; Hussain, I; Faisal, M.; Nazir, H.M.; Hussain, T.; Shad, M.Y.; Mohamd Shoukry, A.; Hussain Gani, S. Forecasting Drought
Using Multilayer Perceptron  Artificial Neural Network Model. Adv. Meteorol. 2017, 2017, 5681308.
https://doi.org/10.1155/2017/5681308.

Dikshit, A.; Pradhan, B.; Alamri, A.M. Temporal Hydrological Drought Index Forecasting for New South Wales, Australia Using
Machine Learning Approaches. Atmosphere 2020, 11, 585. https://doi.org/10.3390/atmos11060585.

Das, P.; Naganna, S.R.; Deka, P.C.; Pushparaj, ]. Hybrid wavelet packet machine learning approaches for drought modeling.
Environ. Earth Sci. 2020, 79, 221. https://doi.org/10.1007/s12665-020-08971-y.

Bari Abarghouei, H.; Kousari, M.R.; Asadi Zarch, M.A. Prediction of drought in dry lands through feedforward artificial neural
network abilities. Arab. ]. Geosci. 2011, 6, 1417-1433. https://doi.org/10.1007/s12517-011-0445-x.

Apaydin, H.; Taghi Sattari, M.; Falsafian, K.; Prasad, R. Artificial intelligence modelling integrated with Singular Spectral
analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. J. Hydrol. 2021, 600, 126506.
https://doi.org/10.1016/j.jhydrol.2021.126506.

Ren, T.; Liu, X.; Niu, J.; Lei, X.; Zhang, Z. Real-time water level prediction of cascaded channels based on multilayer perception
and recurrent neural network. J. Hydrol. 2020, 585, 124783. https://doi.org/10.1016/j.jhydrol.2020.124783.

Omer Faruk, D. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell.
2010, 23, 586-594. https://doi.org/10.1016/j.engappai.2009.09.015.

Seo, L.w.; Yun, S.H.; Choi, S.Y. Forecasting Water Quality Parameters by ANN Model Using Pre-processing Technique at the
Downstream of Cheongpyeong Dam. Procedia Eng. 2016, 154, 1110-1115. https://doi.org/10.1016/j.proeng.2016.07.519.

Tiu, E.SK,; Huang, Y.F; Ng, J.L.; AlDahoul, N.; Ahmed, A.N.; Elshafie, A. An evaluation of various data pre-processing
techniques with machine learning models for water level prediction. Nat. Hazards 2022, 110, 121-153.
https://doi.org/10.1007/s11069-021-04939-8.

Zubaidji, S.L.; Ortega-Martorell, S.; Kot, P.; Alkhaddar, R.M.; Abdellatif, M.; Gharghan, S.K.; Ahmed, M.S.; Hashim, K. A Method
for Predicting Long-Term Municipal Water Demands Under Climate Change. Water Resour. Manag. 2020, 34, 1265-1279.
https://doi.org/10.1007/s11269-020-02500-z.

Khan, M.M.H.; Muhammad, N.S.; El-Shafie, A. Wavelet based hybrid ANN-ARIMA models for meteorological drought
forecasting. J. Hydrol. 2020, 590, 125380. https://doi.org/10.1016/j.jhydrol.2020.125380.

Adnan, RM.; Mostafa, R.R.; Islam, A.RM.T.; Gorgij, A.D.; Kuriqi, A.; Kisi, O. Improving Drought Modeling Using Hybrid
Random Vector Functional Link Methods. Water 2021, 13, 3379. https://doi.org/10.3390/w13233379.

Alawsi, M.A.; Zubaidi, S.L.; Al-Bdairi, N.S.S.; Al-Ansari, N.; Hashim, K. Drought Forecasting: A Review and Assessment of the
Hybrid Techniques and Data Pre-Processing. Hydrology 2022, 9, 115. https://doi.org/10.3390/hydrology9070115.



Atmosphere 2022, 13, 1436 22 of 24

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.

Ahmed, M.S.; Mohamed, A.; Khatib, T.; Shareef, H.; Homod, R.Z.; Ali, ].A. Real time optimal schedule controller for home
energy management system using new binary backtracking search algorithm. Emnergy Build. 2017, 138, 215-227.
https://doi.org/10.1016/j.enbuild.2016.12.052.

Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300-323. https://doi.org/10.1016/j.future.2020.03.055.

Zubaidi, S.L.; Abdulkareem, I.H.; Hashim, K.S.; Al-Bugharbee, H.; Ridha, H.M.; Gharghan, S.K.; Al-Qaim, F.F.; Muradov, M.;
Kot, P.; Al-Khaddar, R. Hybridised Artificial Neural Network Model with Slime Mould Algorithm: A Novel Methodology for
Prediction of Urban Stochastic Water Demand. Water 2020, 12, 2692. https://doi.org/10.3390/w12102692.

Ghafil, H.N.; Jarmai, K. Dynamic differential annealed optimization: New metaheuristic optimization algorithm for engineering
applications. Appl. Soft Comput. 2020, 93, 106392. https://doi.org/10.1016/j.as0c.2020.106392.

Jiao, S.; Chong, G.; Huang, C.; Hu, H.; Wang, M.; Heidari, A.A.; Chen, H.; Zhao, X. Orthogonally adapted Harris hawks
optimization ~ for  parameter  estimation  of  photovoltaic =~ models. Energy 2020, 203, 117804.
https://doi.org/10.1016/j.energy.2020.117804.

Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.
Expert Syst. Appl. 2020, 152, 113377. https://doi.org/10.1016/j.eswa.2020.113377.

Yousri, D.; Babu, T.S.; Beshr, E.; Eteiba, M.B.; Allam, D. A Robust Strategy Based on Marine Predators Algorithm for Large Scale
Photovoltaic Array Reconfiguration to Mitigate the Partial Shading Effect on the Performance of PV System. IEEE Access 2020,
8, 112407-112426. https://doi.org/10.1109/access.2020.3000420.

Abd Elaziz, M.; Shehabeldeen, T.A.; Elsheikh, A.H.; Zhou, J.; Ewees, A.A.; Al-qaness, M.A.A. Utilization of Random Vector
Functional Link integrated with Marine Predators Algorithm for tensile behavior prediction of dissimilar friction stir welded
aluminum alloy joints. . Mater. Res. Technol. 2020, 9, 11370-11381. https://doi.org/10.1016/j.jmrt.2020.08.022.

Eid, A.; Kamel, S.; Abualigah, L. Marine predators algorithm for optimal allocation of active and reactive power resources in
distribution networks. Neural Comput. Appl. 2021, 33, 14327-14355. https://doi.org/10.1007/s00521-021-06078-4.

Unnikrishnan, P.; Jothiprakash, V. Daily rainfall forecasting for one year in a single run using Singular Spectrum Analysis. J.
Hydrol. 2018, 561, 609-621. https://doi.org/10.1016/j.jhydrol.2018.04.032.

Jothiprakash, V.; Unnikrishnan, P. Data-driven multi-time-step ahead daily rainfall forecasting using singular spectrum
analysis-based data pre-processing. J. Hydroinformatics 2018, 20, 645-667. https://doi.org/10.2166/hydro.2017.029.

Balket, S.F.; Asmael, N.M. Study the Characteristics of Public Bus Routes in Al Kut City. ]. Eng. Sustain. Dev. 2021, 25, 3-186-
183-194. https://doi.org/10.31272/jeasd.conf.2.3.18.

Edan, M.H.; Maarouf, R.M.; Hasson, J. Predicting the impacts of land use/land cover change on land surface temperature using
remote sensing approach in Al Kut, Iraq. Phys. Chem. Earth Parts A/B/C 2021, 123, 103012.
https://doi.org/10.1016/j.pce.2021.103012.

Muter, S.A; Nassif, W.G.; Al-Ramahy, Z.A.; Al-Taai, O.T. Analysis of Seasonal and Annual Relative Humidity Using GIS for
Selected Stations over Iraq during the Period (1980-2017). . Green Eng. 2020, 10, 9121-9135. https://doi.org/10_10, 9121-9135.
Ahmad, H.Q.; Kamaruddin, S.A.; Harun, S.B.; Al-Ansari, N.; Shahid, S.; Jasim, R.M. Assessment of Spatiotemporal Variability
of Meteorological Droughts in Northern Iraq Using Satellite Rainfall Data. KSCE ]. Civ. Eng. 2021, 25, 4481-4493.
https://doi.org/10.1007/s12205-021-2046-x.

Capt, T.; Mirchi, A.; Kumar, S.; Walker, W.S. Urban Water Demand: Statistical Optimization Approach to Modeling Daily
Demand. ]. Water Resour. Plan. Manag. 2021, 147, 4020105. https://doi.org/10.1061/(asce)wr.1943-5452.0001315.

NOAA. National Oceanic and Atmospheric Administration. Data Tools: Find a Station. Availabe online:
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation (accessed on 1 December 2021).

Aghelpour, P.; Bahrami-Pichaghchi, H.; Kisi, O. Comparison of three different bio-inspired algorithms to improve ability of
neuro fuzzy approach in prediction of agricultural drought, based on three different indexes. Comput. Electron. Agric. 2020, 170,
105279. https://doi.org/10.1016/j.compag.2020.105279.

Alquraish, M.; Abuhasel, K.A.; Alqahtani, A.S.; Khadr, M. SPI-Based Hybrid Hidden Markov-GA, ARIMA-GA, and ARIMA-
GA-ANN Models for Meteorological Drought Forecasting. Sustainability 2021, 13, 12576. https://doi.org/10.3390/su132212576.
Islam, A.R.M.T.; Salam, R.; Yeasmin, N.; Kamruzzaman, M.; Shahid, S.; Fattah, M.A.; Uddin, A.S.M.S.; Shahariar, M.H.; Mondol,
M.A H.; Jhajharia, D.; et al. Spatiotemporal distribution of drought and its possible associations with ENSO indices in
Bangladesh. Arab. ]. Geosci. 2021, 14, 2681. https://doi.org/10.1007/s12517-021-08849-8.

Malik, A.; Kumar, A.; Salih, 5.Q.; Kim, S.; Kim, N.W_; Yaseen, Z.M.; Singh, V.P. Drought index prediction using advanced fuzzy
logic model: Regional case study over Kumaon in India. PLoS ONE 2020, 15  e0233280.
https://doi.org/10.1371/journal.pone.0233280.

Djerbouai, S.; Souag-Gamane, D. Drought Forecasting Using Neural Networks, Wavelet Neural Networks, and Stochastic Models:
Case of the Algerois Basin in North Algeria. Water Resour. Manag. 2016, 30, 2445-2464. https://doi.org/10.1007/s11269-016-1298-6.
Evkaya, O.0.; Kurnaz, F.S. Forecasting drought using neural network approaches with transformed time series data. ]. Appl.
Stat. 2020, 48, 2591-2606. https://doi.org/10.1080/02664763.2020.1867829.

Thom, H.C.S. A note on the gamma distribution. Mon. Weather. Rev. 1958, 86, 117-122.

Sénmez, F.K.; Komiiscii, A.U.; Erkan, A.; Turgu, E. An Analysis of Spatial and Temporal Dimension of Drought Vulnerability
in Turkey Using the Standardized Precipitation Index. Nat. Hazards 2005, 35, 243-264. https://doi.org/10.1007/s11069-004-5704-7.



Atmosphere 2022, 13, 1436 23 of 24

70.

71.

72.

73.

74.

75.

76.

77.

78.
79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2014,
8, 697-709. https://doi.org/10.1007/s12145-014-0178-y.

Fung, K.F.; Huang, Y.F.; Koo, C.H.; Soh, Y.W. Drought forecasting: A review of modelling approaches 2007-2017. ]. Water Clim.
Change 2020, 11, 771-799. https://doi.org/10.2166/wcc.2019.236.

Freitas, A.A.; Drumond, A.; Carvalho, V.S.B.; Reboita, M.S.; Silva, B.C.; Uvo, C.B. Drought Assessment in Sao Francisco River
Basin, Brazil: Characterization through SPI and Associated Anomalous Climate Patterns. Atmosphere 2021, 13, 41.
https://doi.org/10.3390/atmos13010041.

Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2013.

Kossieris, P.; Makropoulos, C. Exploring the Statistical and Distributional Properties of Residential Water Demand at Fine Time
Scales. Water 2018, 10, 1481. https://doi.org/10.3390/w10101481.

Zubaidi, S.L.; Ortega-Martorell, S.; Al-Bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Al-Khaddar, R. Urban
Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study.
Water 2020, 12, 1885. https://doi.org/10.3390/w12071885.

Karami, F.; Dariane, A.B. Melody Search Algorithm Using Online Evolving Artificial Neural Network Coupled with Singular
Spectrum Analysis for Multireservoir System Management. Iran. ]. Sci. Technol. Trans. Civ. Eng. 2021, 46, 1445-1457.
https://doi.org/10.1007/s40996-021-00680-1.

Hassani, H.; Mahmoudvand, R. Multivariate Singular Spectrum Analysis: A General View and New Vector Forecasting
Approach. Int. |. Energy Stat. 2013, 1, 55-83. https://doi.org/10.1142/s2335680413500051.

Golyandina, N.; Zhigljavsky, A. Singular Spectrum Analysis for Time Series, 2nd ed.; Springer: Cham, Switzerland, 2020.
Al-Bugharbee, H.; Trendafilova, I. A fault diagnosis methodology for rolling element bearings based on advanced signal
pretreatment and autoregressive modelling. J. Sound Vib. 2016, 369, 246-265. https://doi.org/10.1016/j.jsv.2015.12.052.

Saayman, A.; de Klerk, J. Forecasting tourist arrivals using multivariate singular spectrum analysis. Tour. Econ. 2019, 25, 330—
354. https://doi.org/10.1177/1354816618768318.

Ouyang, Q.; Lu, W. Monthly Rainfall Forecasting Using Echo State Networks Coupled with Data Preprocessing Methods. Water
Resour. Manag. 2017, 32, 659-674. https://doi.org/10.1007/s11269-017-1832-1.

Khan, M.A.R,; Poskitt, D.S. Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and
application. Int. ]. Forecast. 2017, 33, 199-213. https://doi.org/10.1016/j.ijforecast.2016.01.003.

Zubaidi, S.; Al-Bugharbee, H.; Ortega-Martorell, S.; Gharghan, S.; Olier, I.; Hashim, K.; Al-Bdairi, N.; Kot, P. A Novel
Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System
Approach. Water 2020, 12, 1628. https://doi.org/10.3390/w12061628.

Sundararajan, K.; Garg, L.; Srinivasan, K.; Kashif Bashir, A.; Kaliappan, J.; Pattukandan Ganapathy, G.; Kumaran Selvaraj, S.;
Meena, T. A Contemporary Review on Drought Modeling Using Machine Learning Approaches. Comput. Modeling Eng. Sci.
2021, 128, 447-487. https://doi.org/10.32604/cmes.2021.015528.

Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS, 6th ed.; McGraw-Hill Education: New
York, NY, USA, 2016.

Clerc, M.; Kennedy, J. The particle swarm —Explosion, stability, and convergence in a multidimensional complex space. [EEE
Trans. Evol. Comput. 2002, 6, 58-73.

Rather, S.A.; Bala, P.S. Hybridization of Constriction Coefficient-Based Particle Swarm Optimization and Chaotic Gravitational
Search Algorithm for Solving Engineering Design Problems. In Applied Soft Computing and Communication Networks; Springer:
Singapore, 2020; Volume 125, pp. 95-115.

Zubaidi, S.L.; Gharghan, S.K.; Dooley, J.; Alkhaddar, R.M.; Abdellatif, M. Short-Term Urban Water Demand Prediction
Considering Weather Factors. Water Resour. Manag. 2018, 32, 4527-4542. https://doi.org/10.1007/s11269-018-2061-y.
Mokhtarzad, M.; Eskandari, F.; Jamshidi Vanjani, N.; Arabasadi, A. Drought forecasting by ANN, ANFIS, and SVM and
comparison of the models. Environ. Earth Sci. 2017, 76, 729. https://doi.org/10.1007/s12665-017-7064-0.

Morid, S.; Smakhtin, V.; Bagherzadeh, K. Drought forecasting using artificial neural networks and time series of drought
indices. Int. ]. Climatol. 2007, 27, 2103-2111. https://doi.org/10.1002/joc.1498.

Payal, A.; Rai, C.S,; Reddy, B.V.R. Analysis of Some Feedforward Artificial Neural Network Training Algorithms for
Developing Localization Framework in Wireless Sensor Networks. Wirel. Pers. Commun. 2015, 82, 2519-2536.
https://doi.org/10.1007/s11277-015-2362-x.

Mohammadi, B.; Mehdizadeh, S. Modeling daily reference evapotranspiration via a novel approach based on support vector
regression  coupled with whale optimization algorithm. Agric.  Water = Manag. 2020, 237, 106145.
https://doi.org/10.1016/j.agwat.2020.106145.

Mohammadi, B.; Linh, N.T.T.; Pham, Q.B.; Ahmed, A.N.; Vojtekova, J.; Guan, Y.; Abba, S.I.; El-Shafie, A. Adaptive neuro-fuzzy
inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrol. Sci. ]. 2020,
65, 1738-1751. https://doi.org/10.1080/02626667.2020.1758703.

Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183—
7192. https://doi.org/10.1029/2000jd900719.

Dawson, C.W.; Abrahart, R.J.; See, L. M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment
of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034-1052. https://doi.org/10.1016/j.envsoft.2006.06.008.



Atmosphere 2022, 13, 1436 24 of 24

96. Valentini, M.; dos Santos, G.B.; Muller Vieira, B. Multiple linear regression analysis (MLR) applied for modeling a new WQI
equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul—Brazil. SN Appl. Sci. 2021, 3, 70.
https://doi.org/10.1007/s42452-020-04005-1.

97.  Nourani, V.; Molajou, A.; Uzelaltinbulat, S.; Sadikoglu, F. Emotional artificial neural networks (EANNSs) for multi-step ahead
prediction of monthly precipitation. A case study: Northern Cyprus. Theor. Appl. Climatol. 2019, 138, 1419-1434.
https://doi.org/10.1007/s00704-019-02904-x.

98. Khan, M.; Muhammad, N.; El-Shafie, A. Wavelet-ANN versus ANN-Based Model for Hydrometeorological Drought
Forecasting. Water 2018, 10, 998. https://doi.org/10.3390/w10080998.

99. Ahmadi, F.; Mehdizadeh, S.; Mohammadi, B. Development of Bio-Inspired- and Wavelet-Based Hybrid Models for
Reconnaissance Drought Index Modeling. Water Resour. Manag. 2021, 35, 4127-4147. https://doi.org/10.1007/s11269-021-02934-z.



