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Abstract

This thesis focuses on motion planning algorithms for self-driving heavy-
duty vehicles. Motion planning is a fundamental part of autonomous ve-
hicles, tasked with finding the correct sequence of actions that take the
vehicle towards its goal. This work focuses on the aspects that distinguish
heavy-duty vehicles from passenger vehicles and require novel developments
within motion planning algorithms. The proposed algorithms are studied in
simulation environments and on two Scania prototype autonomous vehicles:
a mining truck and a public transport bus.

We start by addressing the problem of finding the shortest paths for a
vehicle in obstacle-free environments. This problem has long been studied,
but the considered vehicle models have been simplistic. We propose a novel
algorithm that plans paths respecting complex vehicle actuator constraints
associated with the slow dynamics of heavy vehicles.

Using the previous method, we tackle the motion planning problem in en-
vironments with obstacles. Lattice-based motion planners, a popular choice
for this type of scenario, come with drawbacks related to the sub-optimality
of solution paths and the discretization of the goal state. We propose a
novel path optimization method that significantly reduces both drawbacks.
The resulting optimized paths contain less oscillatory behavior and arrive
precisely at arbitrary non-discretized goal states.

We then study the problem of bus driving in urban environments. In
order to successfully maneuver buses, distinct driving objectives must be
used in planning algorithms. Moreover, a novel environment classification
and collision avoidance scheme must be introduced. The result is a motion
planning algorithm that mimics professional bus driver behavior, resulting
in safer driving and increased vehicle maneuverability.

One particular challenge of driving in urban environments is common to
buses and trucks with trailers, namely, that of centering the whole vehicle
body on the road. In the case of buses, the long wheelbase introduces
a conflict between centering the rear axle vehicle or centering the front
axle. In the case of trucks with trailers, a similar conflict appears, this
time between centering the truck body or centering the trailer body. We
propose a framework to design motion planners that optimally trade-off
between these conflicting objectives, resulting in planned paths that center
the whole vehicle body, improving driving behavior.

Finally, we study the challenges of interacting with human-driven vehi-
cles. We propose a motion planning framework that addresses the multi-
modality of human behaviors, the interactive nature of traffic, and the im-
pact of the autonomous vehicle on human drivers’ decision making. The
result is a motion planner that can reason about multiple future outcomes



of a traffic scene, minimizing the expected cost across all outcomes. Fur-
thermore, we show that incorporating neuroscience-based decision making
models of human drivers into the motion planner results in the autonomous
vehicle taking safe but assertive maneuvers, reducing the conservativeness
usually seen in autonomous vehicles.
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Sammanfattning

Denna avhandling fokuserar p̊a algoritmer för rörelseplanering av själv-
körande tunga fordon. Rörelseplanering är en grundläggande del av au-
tonoma fordon, med uppgift att hitta rätt sekvens av åtgärder som tar
fordonet mot sitt m̊al. Detta arbete fokuserar p̊a de aspekter som skiljer
tunga fordon fr̊an personbilar och kräver ny utveckling av algoritmer för
rörelseplanering. De föreslagna algoritmerna studeras i simuleringsmiljöer
och p̊a tv̊a prototyper av autonoma Scaniafordon: en gruvlastbil och en
kollektivtrafikbuss.

Vi börjar med att undersöka problemet med att hitta de kortaste vägarna
för ett fordon i miljöer fria fr̊an hinder. Detta problem har studerats länge,
men de övervägda fordonsmodellerna har varit förenklade. Vi föresl̊ar en
ny algoritm som planerar vägar som respekterar komplexa begränsningar
av fordonsmanövrar förknippade med tunga fordons l̊angsamma dynamik.

Med den tidigare metoden adresserar vi rörelseplaneringsproblemet i
miljöer med hinder. Lattice-baserade rörelseplanerare, ett populärt val för
den här typen av scenarier, har problem med suboptimala lösningar och
diskretiseringen av m̊altillst̊andet. Vi föresl̊ar en ny optimeringsmetod som
avsevärt minskar b̊ada dessa problem. De resulterande optimerade vägarna
inneh̊aller mindre oscillationer och n̊ar godtyckliga icke-diskretiserade m̊al-
tillst̊and exakt.

Vi studerar sedan problemet med busskörning i stadsmiljö. För att
framg̊angsrikt manövrera bussar m̊aste distinkta körm̊al användas vid pla-
nering av algoritmer. Dessutom m̊aste ett nytt system införas för klassifi-
cering av omgivningen och kollisionsundvikning. Resultatet är en algoritm
för rörelseplanering som efterliknar professionella busschaufförers beteende,
vilket resulterar i säkrare körning och ökad manöverbarhet av fordonet.

En speciell utmaning med att köra i stadsmiljö är gemensam för bussar
och lastbilar med släp, nämligen att centrera hela fordonskarossen p̊a vägen.
När det gäller bussar introducerar den l̊anga hjulbasen en konflikt mellan
att centrera bakaxeln och att centrera framaxeln. När det gäller lastbilar
med släp uppst̊ar en liknande konflikt, denna g̊ang mellan centrering av
lastbilskarossen och centrering av trailerkarossen. Vi föresl̊ar ett ramverk
för att utforma rörelseplanerare som optimalt avväger dessa motstridiga
m̊al, vilket resulterar i planerade vägar som centrerar hela fordonskarossen
och förbättrar körbeteendet.

Slutligen studerar vi utmaningarna med att interagera med människo-
drivna fordon. Vi föresl̊ar ett ramverk för rörelseplanering som tar itu med
m̊angfalden av mänskliga beteenden, trafikens interaktiva karaktär och det
autonoma fordonets inverkan p̊a mänskliga förares beslutsfattande. Resul-
tatet är en rörelseplanerare som kan resonera om flera framtida utfall av ett



trafikscenario, vilket minimerar den förväntade kostnaden för alla utfall.
Dessutom visar vi att inkorporering av psykologibaserade beslutsfattande
modeller av mänskliga förare i rörelseplaneraren resulterar i att det au-
tonoma fordonet väljer säkra men beslutsamma manövrar, vilket minskar
den konservativitet som ofta ses i autonoma fordon.
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Chapter 1

Introduction

Autonomous vehicles have been enjoying ever-increasing attention in recent
years. The benefits and possibilities enabled by vehicles that can drive
themselves have compelled industry and academia to invest massive re-
sources into this technology. These benefits include increased safety, eco-
nomic gains, and new mobility options.

Heavy-duty vehicles (HDVs), which consist of trucks and buses, can
potentially be the first vehicle segment to adopt autonomous driving func-
tionalities. Costs related to the driver account for 35% of the cost of haul-
ing cargo over trucks [1]. The limitations of human drivers present one
of the biggest bottlenecks for long-haulage operations. The introduction
of autonomous HDVs can double the productivity of long-haul transport.
Moreover, the trucking industry is currently facing a driver shortage [2].
Autonomous trucks can reduce the need for truck drivers and make the
truck driving profession more attractive.

Urban transportation will likely benefit from automated driving. An ex-
pected increase in the population living in urban areas will increase the need
for urban transport. At the same time, a relative decrease in the available
workforce is expected, due to an aging population, creating a shortage of
drivers. Automation has the potential to solve both problems, and multiple
automated mobility pilots are currently testing this technology [3].

Motion planning is one of the building blocks of autonomous vehicles.
It deals with finding a sequence of actions that make the vehicle progress
along the road or arrive at a specific goal. Planned motions need to be safe
and avoid obstacles, smooth and comfortable for passengers or cargo inside
the vehicle, and efficient in optimizing fuel costs or travel times.

This thesis studies motion planning and its applications to autonomous
HDVs. Unlike passenger vehicles, HDVs often require more space to ma-
neuver, longer braking distances, and different driving techniques. We focus
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CHAPTER 1. INTRODUCTION

on the fundamental differences that distinguish HDVs from passenger ve-
hicles and how these dissimilarities influence the design of motion planning
algorithms.

1.1 The benefits of autonomous vehicles

Every year a distressing amount of 1.35 million deaths occurs in road traf-
fic accidents. Road traffic injuries are currently the leading cause of death
for people ages 5-29 and the eighth leading cause of death for people of all
ages [4]. A survey analyzing several facets of vehicle crashes concluded that
in 94% of the cases, the driver played a crucial role in the sequence of events
leading up to the crash. Some common driver-related errors include inat-
tention, distractions, decision errors, performance errors (overcompensation
and poor directional control), and sleep [5].

Autonomous vehicle deployment promises to decrease traffic accidents
and traffic-related deaths significantly. It is natural to speculate that a
significant part of the 94% of accident cases attributed to human error
will disappear once autonomous vehicles outperform the average human
driver. Accidents stemming from driver inattention or sleepiness will not
happen since the implemented algorithms never reduce their focus on the
surroundings or reduce their computational capabilities. Accidents due to
excessive speeds will disappear since the vehicles will be programmed to
abide by traffic rules and to adapt their velocities according to surrounding
traffic or incoming turns. In summary, we can expect a reduction in traffic
accidents once autonomous vehicles have driving capabilities better than
humans.

Connected and autonomous vehicles will have a substantial impact on
the overall economy. According to estimates, an additional 1.2 trillion U.S.
dollars in value will be created in the USA alone once autonomous vehicles
are a large share of the automotive market [6]. The identified economic
effects impact 13 different industries, most seeing gains and a minority of
them seeing losses.

The automotive industry is likely to expand its market since autonomous
vehicles can serve children, people with disabilities and the elderly, unlike
regular vehicles. Software and electronic companies will also grow with the
arrival of autonomous vehicles. Currently, software represents 10% of vehicle
value. However, this percentage will likely grow to 40% in the future [6].
Truck-Freight transport is estimated to have economic gains of 100 to 500
billion U.S. dollars per year by 2025. These gains are primarily due to the
replacement of truck drivers, and associated salary costs, by self-driving
systems [6].
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1.2. HEAVY-DUTY VEHICLES

Autonomous vehicles can open the way for increased mobility of groups
previously devoid of independent ways of transportation. Youth, elderly,
and physically impaired people, can now access a convenient and flexible
way of transport, increasing fairness and inclusion in society.

The previously mentioned benefits are the motivating force behind many
demonstrations and testing projects driven by academia and industry. Coun-
tries are also engaging in legislation changes to speed up the introduction
of autonomous vehicles. Although raking up millions of miles of driving
experience, autonomous vehicles still report multiple accidents. Thus au-
tonomous vehicles still have a long way to go until they reach a maturity
level deemed acceptable by societal standards.

1.2 Heavy-duty vehicles

Heavy-duty vehicles (HDVs), which encompass trucks and buses, are a large
portion of vehicles driving on roads today. Trucks are responsible for 9.2%
of all distance driven on roads nowadays [7]. Regarding inland passenger
transport, buses account for 9.2% of passenger-kilometers [8]. HDVs find
applications within long-haul, regional and urban delivery, public trans-
portation, construction, and industrial settings.

Trucks with one or more trailers are the preferred choice for long-haulage.
These vehicles maximize the total cargo carried by a driver, pushing down
transportation costs. A significant share of long-haulage takes place over
highways, which are, according to some, one of the first potential use cases of
autonomous driving. Highways are simpler environments, where the traffic
mainly drives straight and with reasonably constant speeds. However, at
high speeds, the consequences of traffic accidents are also more severe.

Furthermore, the long-haulage trucking industry is currently facing a
shortage of drivers, and estimates indicate that by 2024 an additional 175
thousand drivers will be needed in the USA. The initial stages of autonomous
driving technology will likely allow trucks to drive themselves on the high-
ways during good weather conditions. These initial deployments will in-
crease transport efficiency and reduce the monotony and stress of driving
long hours, making the truck driver profession more attractive [9].

Urban logistics and deliveries require HDVs to drive inside cities to de-
liver cargo to different destinations. Urban scenarios introduce a series of
challenges, as the traffic is usually chaotic, can consist of complicated ma-
neuvers, and needs to consider pedestrians. Furthermore, the dimensions of
the trucks often make them more complicated to maneuver.

Buses and articulated buses are the backbone of public transportation
in many cities. When considering buses, one must deal with the large di-
mensions of the vehicle, which often has to drive into adjacent lanes or
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CHAPTER 1. INTRODUCTION

Perception Decision Making Motion Planning Motion Control

Figure 1.1: Simplified architecture of autonomous vehicle modules.

over curbs to progress along its route. Furthermore, bus driving requires
very precise maneuvering, as bus stop approaches often demand the vehicle
to stop very close to sidewalks. Articulated buses introduce an additional
difficulty as their multiple bodies make the driving task challenging.

Trucks play a central role in many industrial settings, including mines,
agricultural lands, construction sites, and freight terminals. Industrial sce-
narios offer a more controlled environment that minimizes the risk of dealing
with pedestrians and other vehicles. The reduced risk makes it a promis-
ing application for autonomous driving technologies, as it does not need
the same level of technology maturity required in the previously mentioned
applications. Even though safer, these environments are often deprived of
properly paved roads and can be subject to extreme weather or pollution
conditions, introducing novel challenges for the autonomous vehicle.

HDVs differ from passenger vehicles to such an extent that their drivers
must partake in specific driving education. The large dimensions, slow
dynamics, and multi-body configurations of these vehicles often introduce
additional challenges in the driving task. These challenges motivate our
work, which focuses on further development and modification of current
motion planning approaches, which most often target passenger vehicles [10,
11], to consider the unique characteristics of HDV driving.

1.3 Motion planning for self-driving vehicles

An autonomous vehicle is composed of multiple modules, each implementing
different functionalities. This modular approach breaks down the complex-
ity of the driving task into several less complex problems that are easier
to tackle. Figure 1.1 shows a simplified system architecture illustrating the
modules relevant to this thesis.

Motion planning is an essential capability for an autonomous vehicle.
The motion planning module receives information about the environment,
corresponding to internal information about the vehicle’s state, such as posi-
tion and speed, and external information, such as lane markings, surround-
ing vehicles, and obstacles. Furthermore, the module receives a high-level
decision, such as change lane, slow down, or drive into a given parking spot.
Given this information, the motion planning module is responsible for find-
ing a sequence of actions that achieves the high-level decision.
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1.3. MOTION PLANNING FOR SELF-DRIVING VEHICLES

Figure 1.2: The motion planning task. The vehicle must plan a sequence of
states that make it progress along the road while avoiding obstacles.

A motion planning task is often defined by the goal state that the ve-
hicle should arrive at, the obstacles in the environment, the current vehicle
position, a performance/objective metric, and the vehicle model. Unlike
more traditional robotic approaches where vehicle dynamics are often sim-
plified [12], this thesis considers the underactuated and often complicated
dynamics of the system at hand. This thesis is thus concerned with the
fields of nonholonomic and kynodynamic planning [13].

The motion planner module is responsible for finding a plan, i.e., a
sequence of vehicle states that:

• Arrives at the goal state or makes progress towards it;

• Respects vehicle kinematic and dynamic constraints;

• Avoids collisions with obstacles in the environment;

• Optimizes desirable metrics.

Figure 1.2 illustrates a motion planning situation.

This thesis focuses on HDVs, making the motion planning task signifi-
cantly hard concerning the second and third requirements listed above. An
HDV imposes complex kinematic and dynamic constraints that result from
its slow dynamics and sometimes from the complicated vehicle arrangement,
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CHAPTER 1. INTRODUCTION

as is the case with tractor-trailers and articulated buses. Collision avoid-
ance also becomes significantly more complicated when considering the large
dimensions of HDVs, which often need to drive on narrow roads.

The motion planning task is often impossible to solve optimally, except
for particular and limiting scenarios. Thus, current approaches to solving
this task often make simplifications and assumptions to keep the problem
tractable. These assumptions can consist of simplified vehicle models, a
reduced possible solution space, and alternative metrics that roughly ap-
proximate the desired objectives. Assumptions about the environment can
also help develop algorithms to solve the motion planning task. Different
assumptions about the driving environment can be made, depending on
whether one considers on-road or off-road scenarios.

A motion control module receives the output of motion planning and is
responsible for controlling the vehicle actuators to follow the planned mo-
tions as precisely as possible. Since both the vehicle actuators and con-
trollers have performance limitations, the motion planner faces another
challenge: planning motions that the underlying control system can fol-
low accurately. The performance of a controller depends on the quality of
planned motions. Therefore, improvements in motion planning often result
in improvements in the underlying control module.

1.4 Structured and unstructured environments

This thesis makes an important distinction between the type of environ-
ments considered for autonomous vehicles. The distinction between struc-
tured and unstructured environments allows motion planning algorithms to
exploit specific assumptions suitable for each environment.

The most common usages of vehicles that one is familiar with fall within
the category of structured scenarios. These scenarios, shown in Figure 1.3,
often correspond to on-road driving situations, such as driving on highways
and driving in urban environments.

On-road driving environments are usually well structured, i.e., there are
clear guidelines on how the vehicle should move. These guidelines are often
implicit via lane markings that identify where the vehicle is confined to
move and traffic signs that further limit the freedom of the vehicle to make
decisions.

This environment drastically reduces the possibilities that a motion plan-
ning algorithm needs to consider, limiting it to a very narrow set of possible
decisions. However, narrowing down the set of options that the vehicle needs
to consider introduces the need for finer granularity within the limited set
of possible choices. Furthermore, the interaction with pedestrians and other
vehicles presents a far more significant challenge when it comes to decision
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1.5. RESEARCH CHALLENGES

(a) Truck used for long-haul of cargo (b) Bus used for public transportation

Figure 1.3: Examples of on-road scenarios (courtesy of Scania CV AB)

making. Thus, self-driving algorithms require complex reasoning capabili-
ties when performing lane changes, driving through pedestrian crossings, or
managing intersections without defined priority rules.

A fair share of HDV usage, particularly of truck-trailers, happens in
unstructured environments. Unstructured environments often correspond
to off-road driving and encompass a large and diverse group of environ-
ments, such as mining sites and harbors. Figure 1.4 shows two examples of
unstructured environments. These environments are often more controlled
and suitable for an earlier deployment of autonomous driving solutions with
narrower and less general functionality.

Off-road environments often lack structure and have unclear or not ob-
vious driving patterns. Such environments give the vehicle an extensive
range of possible motions, complicating the motion planning task. These
environments can sometimes resemble mazes, in which decisions taken at
a given step will significantly influence the subsequent performance of the
vehicle. Such a decision process has a combinatorial nature, introducing a
challenging complexity for motion planning algorithms.

1.5 Research challenges

This thesis addresses motion planning methods for autonomous truck-trailers
and buses. We seek computationally efficient methods suitable for online
implementation in vehicles with limited computational resources. We also
consider the connection between the path planning methods and the un-
derlying control system performance. This thesis highlights the particular
aspects that differentiate heavy-duty vehicles (HDVs) from passenger ve-
hicles. Some of these aspects only require slight modifications to state-of-
the-art algorithms, but others require significant modifications to existing
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CHAPTER 1. INTRODUCTION

(a) Truck carrying ore from a mine (b) Transporting containers in a harbor

Figure 1.4: Examples of off-road scenarios (courtesy of Scania CV AB)

solutions.
The thesis addresses the following questions:

• How can the slow actuator dynamics of HDVs be dealt with at a
planning stage, and what is the impact on controller and vehicle per-
formance?

• Can graph-search methods be improved, concerning oscillation and
discretization, using optimal control methods?

• How do common on-road driving behaviors need to be adapted to
deal with the specific characteristics of buses and allow maximum
maneuverability in urban settings?

• How to ensure that the whole vehicle body drives on the center of
the road when considering vehicles with long wheelbases and multiple
bodies?

• What practical considerations should be made in the planning module
to ensure a successful real vehicle implementation?

• How can a planner take into account the multi-modality, interaction,
and decision making aspects of human-driver and autonomous vehicle
interaction?

1.6 Thesis outline and contributions

This thesis focuses on both structured (on-road) and unstructured (off-road)
application scenarios, with five technical chapters dedicated to solutions de-
veloped for them. Additionally, it contains a chapter providing an overview
and introduction to motion planning and a chapter with concluding remarks
and future work directions.
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1.6. THESIS OUTLINE AND CONTRIBUTIONS

Introductory material

Chapter 2: Motion Planning
This chapter introduces motion planning, explaining the problem for-

mulation in detail and its challenges. Different approaches to solving the
problem are gathered from the literature and explained briefly. The chap-
ter concludes with current state-of-the-art research trends within motion
planning.

Unstructured (off-road) environments

Chapter 3: Sharpness Continuous Paths
We introduce sharpness continuous paths as a near-optimal motion plan-

ner for obstacle-free environments. Without obstacles, it is possible to de-
velop motion planning methods based on geometric arguments, resulting
in computationally fast algorithms. This chapter distinguishes itself from
previously developed methods by considering the particularly slow actuator
dynamics of HDVs. We show that the method is near length optimal, mak-
ing it attractive for industrial applications where travel efficiency and fuel
consumption are of utmost importance. The contribution of this chapter is
the development of a method for the generation of vehicle trajectories that:

• take into account steering actuator magnitude, rate, and acceleration
limitations;

• ease the controller task and improve passenger comfort;

• connect arbitrary vehicle configurations;

• have fast computation times.

This chapter is based on the following publication:

R. Oliveira, P. F. Lima, M. Cirillo, J. Mårtensson and B. Wahlberg,
”Trajectory Generation using Sharpness Continuous Dubins-like
Paths with Applications in Control of Heavy-Duty Vehicles”,
2018 European Control Conference (ECC), Limassol, 2018, pp.
935-940.

Chapter 4: Smooth Path Planning for Unstructured Environ-
ments

This chapter presents a planning method that combines a lattice-based
planner with the previously presented sharpness continuous paths. The
assumption of obstacle-free environments is often too limiting for practi-
cal applications, requiring methods such as lattice-based graph search to
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be used to take into account obstacles. These methods are powerful when
dealing with unstructured scenarios, often characterized by complex, maze-
like environments. However, these methods can come with the drawback
of oscillatory solution paths. To tackle this problem, we present an exten-
sion to lattice graph search that ensures that solution paths are smooth,
non-oscillatory, and suitable for HDVs. The contributions of this chapter
include:

• A formulation and algorithm for the problem of path optimization
that makes use of steering methods and heuristics to achieve real-time
performance;

• A novel modification of lattice-based planners that alternates between
path planning and path optimization in an interleaved way;

• Simulations and experiments with a heavy-duty truck showing the
benefits and applicability of the proposed method.

This chapter is based on the following publication:

R. Oliveira, M. Cirillo, J. Mårtensson and B. Wahlberg, ”Com-
bining Lattice-Based Planning and Path Optimization in Au-
tonomous Heavy Duty Vehicle Applications”, 2018 IEEE Intelli-
gent Vehicles Symposium (IV), Changshu, 2018, pp. 2090-2097.

Structured (on-road) environments

Chapter 5: Optimization-based On-road Path Planning for Buses

Here, we use numerical optimization to solve the motion planning prob-
lem. This type of framework does not rely on the discretization of the plan-
ning space, thus not suffering from resolution issues which often affect other
approaches. Unlike previous chapters, we consider structured on-road envi-
ronments, specifically urban driving. We target the challenges of bus driving
that arise when considering a large dimension vehicle driving on narrow and
sharp roads. The proposed algorithm leverages buses’ fundamentally differ-
ent chassis to maximize their maneuverability. Our contribution is a motion
planning algorithm that mimics professional bus driver behavior, resulting
in safer driving and increased vehicle maneuverability. The contributions of
this chapter include the proposal of a novel path planner that:

• tackles the challenging task of bus driving in urban environments,
taking full advantage of the overhangs of buses to sweep over curbs
and low height obstacles;
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• uses a new approximation technique for the distortions introduced by
the road-aligned frame and that affect the vehicle body and obstacles;

• considers the distinct chassis configuration of buses, distinguishing
between the overhangs and the wheelbase of the vehicle;

• takes into account three distinct types of surface: obstacle, sweepable,
and drivable regions.

This chapter is based on the following publications:

R. Oliveira, P. F. Lima, G. Collares Pereira, J. Mårtensson
and B. Wahlberg, ”Path Planning for Autonomous Bus Driving
in Highly Constrained Environments”, 2019 Intelligent Trans-
portation Systems Conference (ITSC), Auckland, 2019.

P. F. Lima, R. Oliveira, J. Mårtensson and B. Wahlberg, ”Min-
imizing long vehicles overhang exceeding the drivable surface
via convex path optimization”, 2017 Intelligent Transportation
Systems Conference (ITSC), Yokohama, 2017.

Chapter 6: On-road Path Planning for Articulated Vehicles
A significant part of today’s goods transportation is done over tractor-

trailer vehicles. Tractor-trailer vehicles are composed of two independent,
but connected, bodies, the tractor in front and the trailer behind. A com-
mon challenge when driving a tractor-trailer is the off-tracking effect, which
corresponds to the trailer cutting through turns when the tractor is turn-
ing. To successfully drive an autonomous tractor-trailer, one needs to in-
troduce new vehicle models that capture the vehicle dynamics and obstacle
constraints that ensure collision avoidance for both bodies. Furthermore,
novel optimization criteria must be introduced to properly drive the tractor
while at the same time taking into account, and attenuating, the trailer
off-tracking effect. The contributions of this chapter are:

• proposal and evaluation of different optimization criteria suitable for
on-road path planning of articulated vehicles;

• implementation of a sequential quadratic programming (SQP) solver,
which ensures smooth driving while guaranteeing precise obstacle avoid-
ance;

• a sequential method for computing the off-tracking, as well as approx-
imate partial derivatives, of each point of the vehicle bodies suitable
for numerical optimization approaches;

25



CHAPTER 1. INTRODUCTION

• simulation results that show the proposed path planner’s ability to
solve complicated on-road planning scenarios while considering the
most challenging tractor-trailer dimensions.

This chapter is based on the following publication:

R. Oliveira, O. Ljungqvist, P. F. Lima and B. Wahlberg, ”Optimization-
Based On-Road Path Planning for Articulated Vehicles”, 21st
IFAC World Congress, Berlin, 2020.

Chapter 7: On-road Path Planning for Long and Multi-Body
Vehicles

The challenges of road driving impact both buses as well as tractor-
trailer vehicles. In the case of buses, the long wheelbase introduces a conflict
between centering the rear axle vehicle or centering the front axle. The same
conflict arises in the tractor-trailer case as a trade-off between centering
the tractor or centering the trailer. This chapter presents a framework
to design optimization objectives that optimally trade-off between these
conflicting objectives. Simulation results show that the proposed design
strategy results in planned paths that considerably improve the behavior of
both buses and tractor-trailer vehicles by keeping the whole vehicle body in
the center of the lane. The contributions of this chapter include:

• geometric derivation of optimal driving objectives, focusing on center-
ing the area swept by the vehicles, suitable for online computation;

• development of a unified framework targeting both long vehicles, such
as buses, as well as multi-body vehicles, such as tractor-trailers;

• simulation results showing the proposed planner’s ability to solve com-
plicated on-road planning scenarios while considering the most chal-
lenging vehicle dimensions.

This chapter is based on the following publication:

R. Oliveira, O. Ljungqvist, P. F. Lima and B. Wahlberg, ”A
Geometric Approach to On-road Motion Planning for Long and
Multi-Body Heavy-Duty Vehicles”, 2020 IEEE Intelligent Vehi-
cles Symposium (IV), Las Vegas, 2020.

Chapter 8: On-road Path Planning Experimental Results
To further validate the algorithms introduced in previous chapters, we

implement the proposed on-road motion planner on a Scania prototype au-
tonomous bus. We describe the practical considerations and implementation
details required for successful real-life experiments. Extensive experimental
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results in a test track show the method’s suitability for real-life deploy-
ment. The planner runs in real-time on an industrial computing unit, while
communicating and sharing computational resources with other modules
of the autonomous software stack. The planned maneuvers are smooth
and comfortable, even in the presence of noisy and irregular map and road
information. Furthermore, the executed paths have low tracking errors, in-
dicating that the planned paths can be feasibly followed by the underlying
controllers actuating the vehicle. The experiments also provide insight into
a common challenge associated with bus stop maneuvers, which led to de-
veloping a novel collision checking method that explicitly considers a bus’s
front wheels. The contributions of this chapter include:

• extensions and modifications to the previously developed path planner
that lead to successful real-life implementation;

• proposal of the novel concept of wheel-aware planning that explicitly
considers that the front wheels of the vehicle move relative to the
chassis, possibly protruding and colliding with curbs;

• experimental validation of the proposed method by navigating an au-
tonomous bus on urban-like roads;

• demonstration of the benefits of the proposed planner through prac-
tical experiments in challenging scenarios.

This chapter is based on the following publication:

R. Oliveira, P. F. Lima, M. Cirillo and B. Wahlberg, ”Au-
tonomous Bus Driving: A Novel Motion-Planning Approach”,
IEEE Vehicular Technology Magazine, vol. 16, no. 3, pp. 29-37,
2021.

Chapter 9: Decision Making using Branch MPC
One of the toughest challenges affecting autonomous vehicles nowadays

is successfully interacting with human drivers on the road. This challenge
applies to both heavy-duty and passenger vehicles. However, it becomes
more pronounced in the heavy-duty case due to its slow dynamics. The dif-
ficulty arises from three challenging aspects of human driving: that human
drivers are 1) multi-modal; 2) interacting with the autonomous vehicle; 3)
actively making decisions based on the current state of the surrounding en-
vironment. This chapter proposes a motion planning framework based on
Branch Model Predictive Control that tackles these aspects. Branch Model
Predictive Control offers an intuitive way of dealing with the multi-modality
using a scenario tree approach. The interaction aspects can be dealt with by
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considering an adaption of the Intelligent Driver Model suitable for numeri-
cal optimization. Finally, one can use decision making models of humans, as
taken from user studies, to model the frequency of different human decisions
and, in turn, different probabilities of future outcomes. We present simu-
lation results in various scenarios, showing the advantages of the proposed
method. The contributions of this chapter include:

• addressing the multi-modality of human drivers by considering mul-
tiple future outcomes associated with different decisions taken by the
human driver;

• considering the interactive nature of humans by modeling them as
reactive agents impacted by the actions of the autonomous vehicle;

• approximating the decision making process of human drivers by con-
sidering a model developed in neuroscience studies with human drivers
as subjects.

This chapter is based on recent research results currently being prepared
for submission to a scientific journal.

Concluding remarks

Chapter 10: Conclusions and Future Work
This chapter contains conclusions regarding the developed work. Fur-

thermore, it discusses promising directions for further development of the
presented work. We also present emerging research topics that we deem
relevant in the field of autonomous heavy-duty vehicles.

1.7 Author’s contributions

The thesis author is the main contributor to the work in [14]. The co-authors
of [14] participated in technical discussions and supervision.

The thesis author is the main contributor to the work presented in [15].
The developed solution builds upon the lattice planner developed by the
second author, which contributed significantly to the technical and practi-
cal implementation of the solution. The remaining co-authors have been
involved in supervision.

The thesis author is a co-author of the work in [16], being involved in
technical discussions and in studying motivating examples for the developed
solution. The thesis author eventually developed significant improvements
to [16], which resulted in being the main contributor to [17]. The second
and third authors of [17] participated in technical and implementation dis-
cussions. The remaining co-authors have been involved in supervision.
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The thesis author is the main contributor to the works [18, 19]. The
second author has made significant contributions to the formulation and
development of the proposed methods. The remaining co-authors have been
involved in technical discussions and supervision.

The thesis author is the main contributor to [20]. The remaining co-
authors have been involved in technical discussions and supervision.
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Chapter 2

Motion Planning

Motion planning has been the focus of research for many decades, and plays
an important role in many autonomous systems that control physical en-
tities, be it self-driving vehicles, autonomous quadcopters, or humanoid
robots. In a nutshell, motion planning is responsible for finding a sequence
of future actions that an autonomous system must take in order to achieve
its goals.

This thesis considers the systems to be self-driving vehicles, and the goals
to be short term objectives such as arrive at a goal position, or overtake
the vehicle ahead. Due to the complex vehicle dynamics of the vehicles
considered in this thesis, the problems hereby addressed fall within the
fields of nonholonomic and kinodynamic planning [13].

Section 2.1 presents a definition for the motion planning problem. It
enumerates the vehicle constraints and limitations that must be addressed,
as well as common formulations for the goal and objectives of motion plan-
ning. Section 2.2 illustrates some of the challenges of motion planning for
autonomous vehicles, drawing attention to the fact that some of these chal-
lenges become even more problematic when HDVs are considered.

We start by introducing a specific class of motion planning methods,
called steering methods, in Section 2.3. Steering methods are tasked with
finding motions that connect an initial and final vehicle state, with the
assumption of an obstacle-free environment. These methods are often used
as building blocks of more advanced motion planners.

The concept of lattice-based motion planners is presented in Section 2.4.
These type of planners are suitable for environments lacking structure (often
off-road scenarios), which often require combinatorial-like methods in order
to find a good quality solution. Lattice-based planners have been widely
used in numerous self-driving applications.

Another technique that can be used to solve motion planning problems
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is continuous optimization methods, presented in Section 2.5. This type
of implementation has been gaining popularity due to recent advances in
optimization techniques and the ever increasing computation power avail-
able on-board autonomous vehicles. These solutions are mostly targeted to
structured environments (often on-road scenarios), where the the structure
effectively removes the combinatorial nature of the planning problem.

Autonomous vehicle technology is becoming more mature, and self-
driving vehicles are being deployed in more complex and traffic heavy envi-
ronment. This requires the initial motion planning problem to be reformu-
lated so as to take into account the challenges associated with driving in the
presence of human traffic participants. Section 2.6 introduces a reformula-
tion of the motion planning problem that takes into account interactions
with humans, and presents an overview of the proposed solutions developed
to deal with this additional challenging aspect of driving.

2.1 Problem formulation

In this thesis we deal with motion planning for autonomous car-like vehicles.
To define the motion planning problem it is necessary to first introduce some
of its components, namely the vehicle model, the obstacle space, and the
objective function.

Vehicle model

The vehicle model is a mathematical representation of the evolution of ve-
hicle states. We first define a vehicle state vector q ∈ Rn containing the
relevant n states of the vehicle, which can correspond to vehicle coordinates,
velocities, and internal state information.

The simplest, or lowest dimension, vehicle state that is useful for our
motion planning purposes, corresponds to the vehicle pose q = (x, y, θ).
Here, x and y correspond to the Cartesian coordinates of the vehicle rear
axle center, and θ is the vehicle heading, corresponding to the angle between
the forward direction of the vehicle and the X axis, as shown in Figure 2.1.

A natural extension to the vehicle pose corresponds in augmenting the
state vector with an extra dimension corresponding to the vehicle curvature
κ, so that q = (x, y, θ, κ) The vehicle curvature κ is directly related to its
steering wheel angle ϕ.

A vehicle can move from one state to another by applying command
inputs u during a defined amount of time. Considering the simplest case,
the vector u is 2-dimensional with a component corresponding to the linear
velocity of the vehicle v, and an angular rate w. The linear velocity can be
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Figure 2.1: The vehicle pose in the Cartesian coordinate system. x and y
correspond to the position of the rear axle center, and θ is the heading of
the vehicle.

controlled via the vehicle engine, whereas the angular rate is often a result
of both the vehicle velocity and the current steering wheel angle.

A vehicle model can now be introduced as:

q̇(t) = f(q(t), u(t)). (2.1)

This equation defines how the vehicle state evolves over time (q̇ = dq/dt),
given the current vehicle state q, and the applied command inputs u.

Vehicle models can be made arbitrarily complex, in an attempt to more
accurately capture the true physical vehicle dynamics. Vehicle models are
often divided into two major groups, kinematic models and dynamical mod-
els. Kinematic models disregard the forces acting on the vehicle, resulting in
simpler equations of movement. When considering vehicles, kinematic mod-
els are only accurate when the slip angle is neglectable, i.e., at low speeds or
low yaw rates. In order to model more complex phenomena, that can arise
from high speed driving or harsh environmental situations dynamic mod-
els are introduced. By considering the forces acting on the vehicles, these
models can more accurately express the motion of vehicles in the presence
of drift, low friction conditions (such as rain or snow), and cargo load.

Previously, when defining the vehicle pose, we made use of the Cartesian
frame, however there are several applications when it is beneficial to consider
alternative vehicle models using different coordinate systems. An example is
the road-aligned model illustrated in Figure 2.2, which makes use of a curvi-
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Figure 2.2: Vehicle pose in the road-aligned frame.

linear coordinate system [21]. In this model, the vehicle pose is defined with
respect to a frame moving along a reference path. Alternative formulations,
such as the road-aligned model, can have many practical motivations, such
as faster computational times or avoiding ill-defined behavior of the model.
This thesis uses both the Cartesian-based vehicle model (in Chapter 3 and
Chapter 4) and the road-aligned vehicle model (in Chapter 5).

Configuration and obstacle space

The configuration space X corresponds to the possible states achievable by
the vehicle. Assuming the vehicle state q ∈ Rn, the configuration space
corresponds to the manifold of the possible vehicle states [13]. Often times,
the vehicles are affected by constraints of the form

g(q, q̇) = 0, (2.2)

which originate from the vehicle model Equation (2.1). In car-like systems,
these constraints are often affecting the achievable velocities q̇, and are
referred to as nonholonomic constraints.

Motion planners are often tasked with finding a solution which is collision-
free. In the vehicle environment there are often obstacles corresponding to
multiple entities existing in the vehicle surroundings. Obstacles can con-
sist of static obstacles, such as parked vehicles by the side of the road, and
dynamic obstacles, such as other vehicles and pedestrians.

From the set of obstacles one can create the obstacle space Xobs. The
obstacle space Xobs can be formally defined as the set of all vehicle states
q that collide or intersect with the entities that we wish to encompass as
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obstacles. For dynamic environments, the obstacle space depends on time:
Xobs(t) [10]. We note that the obstacle space Xobs is always larger than the
obstacle itself, since the vehicle states q have an associated body width and
length that must also be outside of the obstacle.

Once the obstacle region is defined, one can define the complementary
free space region Xfree = X\Xobs. The free space region Xfree corresponds
to all the vehicle states q that are collision-free. Similarly, if in the presence
of a dynamic environment, one has Xfree(t). To guarantee that the vehicle
is collision-free, the following condition must be verified:

q(t) ∈ Xfree(t). (2.3)

Objective function

The output of a motion planner is a sequence of vehicle states:

(q(s), u(s)), s ∈ [0, S], (2.4)

where s corresponds to the distance along the path, and S is the path length.
If there is a timing law associated to the distance along the path, such that
s(t), then the sequence is called a trajectory, otherwise it is called a path.

One is usually interested in optimizing the motion of vehicles with re-
spect to multiple metrics or criteria. Taking the example of comfort, one
could define objective Jcomfort (q(s), u(s)) that measures the comfort of a
ride along the planned motion q(s). This measure could correspond to the
sum of lateral and longitudinal accelerations of a vehicle driving along the
planed motion.

Besides comfort, one could optimize with respect to the time it takes to
follow the path, or to the length of the path (both are often correlated),
in the form of an objective function Jtravel time (q(s), u(s)). To increase the
efficiency of vehicles, an objective function Jfuel (q(s), u(s)) can be designed
that measures the consumption of fuel, and consequently minimizes it. To
increase safety, one could measure the distance of the vehicle to obstacles, in
the form of a function Jsafe (q(s), u(s)) that would guide the motion planner
to prefer to choose paths that have bigger clearance to obstacles, and that
are in turn safer.

There is a multitude of objectives that a motion planner can optimize for.
Sometimes these criteria can significantly complicate the motion planning
problem, as they might be expensive to evaluate, or introduce challenging
problem structures. Furthermore, one is usually interested in multiple ob-
jectives at the same time. This can be easily achieved by creating a new
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criteria corresponding to the sum of other criteria, as follows:

J (q(s), u(s)) =

M∑
i=1

ωiJi (q(s), u(s)) (2.5)

where Ji (q(s), u(s)) corresponds to the i-th objective we are interested in
minimizing and ωi is a weight determining the relative importance of this
objective against the other i− 1 objectives.

Problems can arise when different criteria or goals are contradictory in
nature. As an example, imagine that we are interested in minimizing both
the time it takes to perform a motion, and the fuel consumption. In order
for the vehicle to optimize the time it takes to travel the path, it has to
accelerate as much as it can, however doing this as a negative effect on
fuel consumption. Developers working on motion planning often have to
deal with these types of problems, and must decide on appropriate trade-
offs that achieve satisfying results in both criteria. This type of trade-
off worsens as the number of objectives, and their associated weight ωi,
increases. A high number of weights results in practitioners often having
to spend a considerable amount of time tuning the system, i.e. finding an
acceptable combination of weight values that produces a good performance
of the system.

Motion planning formulation

With all components in place, we are now able to define the motion planning
problem as follows. We follow a formulation similar to that of [10]:

minimize
u(t)

J (q(s), u(s))

subject to q̇(t) = f(q(t), u(t)),

q(0) = q0,

q(tG) = qG,

q(t) ∈ Xfree(t).

(2.6)

The first constraint q̇(t) = f(q(t), u(t)) corresponds to the vehicle model.
It is used to enforce the planned solutions to respect the vehicle kinematic
and/or dynamic constraints that are encoded in the vehicle model f . The
solution must also start from the initial state q0, usually corresponding to
the current state of the vehicle, furthermore it should end a a goal state qG.
It is also required that the planned motion is collision-free in its entirety
q(t) ∈ Xfree(t). The objective function J(q(s), u(s)) is a user defined metric
measuring the quality of a planned motion. Lower values of J correspond
to motions with better properties.
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Figure 2.3: A vehicle can only follow specific motion patterns. To move
sideways, the red path is unfeasible. A more complex, but feasible to follow
path, is shown in green. Bird’s-eye (left) and perspective (right) views.

The following section presents some of the aspects that make Equa-
tion (2.6) hard to solve.

2.2 Challenges of motion planning

This section details some of the challenges associated with finding a solu-
tion to Equation (2.6). They are related to the difficulty in finding paths
respecting the vehicle dynamics, the possible complex maze-like nature of
the environments, and the narrow and low-clearance roads often present in
urban driving.

The vehicle nonholonomic constraints

Consider a vehicle whose goal is to arrive at a state which is laterally dis-
placed from its current position, as shown in Figure 2.3. It is impossible
for the vehicle to just move sideways into the goal state, illustrated by the
red path, due to the vehicle nonholonomic constraints in Equation (2.2). A
possible solution path respecting the vehicle dynamics, and thus the non-
holonomic constraints, is shown in green in Figure 2.3.

This example illustrates the difficulty involved in finding a solution path
for these vehicles. The constraint q̇(t) = f(q(t), u(t)) in Equation (2.6) that
encodes the vehicle model, introduces constraints on the possible velocities
q̇ that the vehicle can achieve. These constraints are usually referred to
as nonholonomic constraints, and they make the motion problem in Equa-
tion (2.6) challenging to solve.

In Section 2.3 we present some methods that are able to optimally solve
the motion planning problem, however under very limiting assumptions.
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Figure 2.4: The obstacle space is non-convex making motion planning com-
binatorial in nature.

Furthermore, Chapter 3 presents one such method developed specifically
for HDVs. For most practical applications, algorithms that find the optimal
solution to Equation (2.6) are not available, and algorithms that find sub-
optimal solutions are used instead.

Complex obstacle environments

Many motion planning applications target the task of driving in unstruc-
tured environments. These type of applications are often characterized by
a large number of obstacles, forming maze like environments. Due to the
existence of multiple obstacles, the free-space is in general non-convex, as
shown in Figure 2.4. The non-convex nature of the environment often re-
quires solution methods that are combinatorial in nature [22].

In order to keep combinatorial methods feasible to solve, sampling, or
discretization, of the configuration space is often used. The resulting mo-
tion planning solutions are, most likely, not the true optimal solution, but
instead a sub-optimal one, due to the reduced configuration space that is
considered. In some cases, the sub-optimality of solutions can result in
oscillatory behavior of the vehicle [15], greatly degrading the performance
of the autonomous vehicle. Chapter 4 presents in detail one such scenario
where this occurs, and proposes a solution to it.

Narrow environments

Certain driving environments might require the vehicle to drive quite close
to obstacles. This type of situation is particularly common when large
dimension HDVs are driving in urban environments and narrow roads. In
Figure 2.5 it is possible to see a bus which is driving through a packed
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Figure 2.5: A bus driving in a narrow road is forced to pass very close to
other vehicles (courtesy of Scania CV AB).

traffic situation, a task which is hard not only for motion planners but also
for drivers.

Two main reasons can be attributed as the cause of struggle for motion
planners in narrow environments: discretization and sampling of the state
space and conservative collision checking.

Motion planners that discretize the state space, e.g., [23], require a very
high resolution to be able to find solution paths that are collision-free. In-
creasing the resolution however, comes at the cost of increased computa-
tional times, which can make the algorithms unsuitable for online imple-
mentation. Methods which randomly sample the state space, e.g., [24], are
still able to find solutions in narrow environments. However the probability
of sampling collision-free paths in narrow environments is very low, which
results in excessively high computational times.

Collision checking refers to the process of checking if a tentative vehicle
state (often being part of a tentative solution path) is in collision. To keep
the collision checking process computationally cheap, approximate collision
checking methods are used. These approximations are usually made con-
servative to guarantee safety of the solution path. Problems arise however,
when the conservativeness of the approximation is in the same order of mag-
nitude as the clearance to obstacles, which can be arbitrarily small in some
cases.

This challenge is tackled in Chapter 5, where a planner targeted for buses
driving in narrow environments is proposed. The planner does not suffer
from the discretization of the state space nor does it rely on conservative
collision checking methods.

39



CHAPTER 2. MOTION PLANNING

2.3 Steering methods

Steering methods are a subset of the motion planning problem in Equa-
tion (2.6) where obstacles are disregarded, i.e., Xobs = ∅ =⇒ Xfree = X.
Even without obstacles, the solution to this new problem can be hard to
find due to the boundary constraints, defining the start and final states of
the motion, and the nonholonomic constraints, which need to be respected
when generating the motion. The problem becomes even harder, if one adds
an optimization objective to be minimized.

Even though steering methods ignore obstacles, they are of interest for
motion planning, as they are often used as building blocks for more complex
planners that take into account obstacles. Thus, the performance of com-
plex motion planners often relies on the quality of the underlying steering
methods. In this section, we list three different classes of steering methods,
Dubins-inspired methods, interpolation methods, and optimization-based
methods.

Dubins-inspired methods

It was proven in [25] that the minimum length paths for the simple car-
like model, assuming a unit velocity and a minimum turning radius, are
composed of straight line segments and arc circles. One such path is shown
in Figure 2.6. Finding these paths requires very few computations, making
them attractive for practical implementations. The drawback of this method
is related to the too simplified car-like model assumed, where the vehicle
is limited to moving forward and can either turn at the maximum turning
radius or drive straight.

The work in [26] introduces Reeds-Shepp paths, that improve upon Du-
bins paths by allowing the vehicle to change its direction of motion, i.e.,
the vehicle can drive both forwards and backwards. Reeds-Shepp paths are
proven to be of minimal length for the considered vehicle model. Further-
more, they increase the maneuverability of the vehicle, when compared to
its Dubins counterpart. The solution paths are also composed by a set of
straight line segments and arc circles, but the vehicle is now able to change
direction, which can be seen by the cusps in Figure 2.6.

Following works address more complicated vehicle models. In [27], the
vehicle model is made more complex, by now assuming that the steering
wheel angle of the vehicle moves continuously. This results in paths that are
smoother and easier to follow, but loses optimality guarantees with respect
to the length of the path. The work in [28] takes into account that vehicles
can turn their steering wheels when stopped, adding extra maneuverability
to the vehicle. Futhermore, [29] ensures that the steering wheel angle of the
vehicle is continuously differentiable, increasing the smoothness of the path.
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Figure 2.6: A Dubins path [25] on the left and a Reeds-Shepp path [26] on
the right. The Reeds-Shepp path includes a reversing motion between the
two cusps of the path.

Chapter 5 extends Dubins like paths in order to take into account steer-
ing actuator limitations, in the form of maximum magnitude, rate, and
acceleration. This extension comes at the cost of losing optimality guaran-
tees with respect to minimum length, similarly to the previously mentioned
works [27–29]. However, it is shown experimentally that the path length
converges to the optimal Dubins path length, as the steering actuator limi-
tations are relaxed. The loss of optimality guarantees is a small drawback
when compared to the benefit of better controller performance and a more
comfortable drive.

Interpolation methods

The work in [30] introduces circular arcs and cubic curvature paths to con-
nect two vehicle poses. Circular arcs are shown to be the solution paths
when minimizing the integral of the squared curvature of the path, whereas
cubic curvature paths are the solution paths which minimize the integral
of the squared derivative curvature of the path. These paths can be found
using an iterative method based on the Newton-Raphson algorithm. Fur-
thermore, they are result in smoother driving, when compared to methods
based on clothoids.

Lane change trajectories can be generated by combining clothoids, cir-
cular arcs, and line segments, as presented in [31]. The planned trajectories
are designed for emergency maneuver situations and take into account the
limited friction between the tires and the road.

The work in [32] uses both cubic and quartic curvature polynomials to
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connect sampled endpoints. Quartic polynomials are used when connecting
the vehicle pose, since they allow for continuity of the curvature rate, and
thus smooth paths, even in the case of frequent re-planning. For other
endpoint connections cubic polynomials are used since they result in smaller
computation times.

Polynomials of higher order, such as quintic polynomials, can also be
used. In [33], the authors make use of quintic polynomials in the Frenet-
Serret frame to generate trajectories for high speed driving. The Frenet-
Serret frame is a frame that moves along a curve, which in this case, corre-
sponds to the centerline of the road. The trajectories obtained using quintic
polynomials minimize the jerk of the vehicle, which translates into ease of
driving and a comfortable ride. Furthermore, the optimization objective is
defined so as to ensure compliance with Bellman’s principle of optimality.
This guarantees temporal consistency of the planner, ensuring that subse-
quent re-planning instances do not deviate from previously found solutions.
However, this property only holds for the unconstrained (obstacle-free) case.

Smooth path planning for mining vehicles is targeted in [34]. Using
B-Splines of degree 4, the authors plan paths with minimum curvature vari-
ation. These paths reduce the jerk of the vehicle, allowing it to run at higher
speeds without damaging steering gear and mechanics of the vehicles.

2.4 Lattice-based motion planning

This section introduces one of the most successful approaches to motion
planning under differential constraints, as those imposed by the vehicle
model. This family of methods is based on the discretization of the state
space into a lattice, which then allows for powerful graph search algorithms
to be used. Lattice-based motion planners, hereby referred to as lattice
planners, have been extensively used in the literature, mostly for off-road
scenarios, but also with some applications for on-road scenarios.

Search space

The first step in a lattice planner is the creation of the search space. One of
the challenges in creating the search space for autonomous vehicles emerges
from the kinodynamic constraints of the considered vehicles. Kinodynamic
constraints correspond to both the kinematic, and the dynamic constraints
of the vehicle. Early motion planning applications found solution paths by
discretizing the Cartesian space into a uniform grid, and using graph search
techniques on the resulting discretization. A planned path could then look
like the one pictured in Figure 2.7. These types of paths are suitable for
early robotic applications, where the considered robots were able to drive
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Figure 2.7: Planning on a 4-connected grid. The planned path is impossible
to perform by a car-like vehicle, motivating the development of lattice-based
motion planners.

straight and turn on the spot. However with car-like vehicles, and other
complex systems, the kinodynamic constraints make it impossible for such
paths to be executed, and as such, invalidate these approaches.

Instead of discretizing the space according to a uniformly spaced grid,
lattice planners create a special discretization which, by design, follows
the kinodynamic constraints of vehicles, i.e., it respects their motion con-
straints. This discretization is obtained by sampling the state space in a
way, that it can form a self-repeating tile, i.e., a lattice, and where connec-
tions between sampled states respect the vehicle model.

We start by assuming a vehicle that only has three possible motions,
turn left, right and drive straight, all in the forward direction. We refer
to these motions as motion primitives, as any solution path consists of a
combination of these. Following these motions results in new vehicle states,
as shown in Figure 2.8a.

This toy example assumes that the vehicle state is given by q = (x, y, θ),
and that the vehicle can instantaneously change between left turning, right
turning and straight driving. This type of vehicle system is invariant to
translation and rotation, meaning that the same motion primitives can be
applied again to the new vehicle states, as illustrated in Figure 2.8b. If
this process is repeated continuously, the motion primitives, together with
the intermediate vehicle states, eventually span the whole search space,
as shown in Figure 2.8. This process creates a regular and self-repeating
pattern of the motion primitives, i.e., a state lattice.

We note that state lattices can also be constructed for more complicated
vehicle systems [35, 36]. The approach is usually to define a discretization of
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(a) One level of motion
primitives.

(b) Two levels of motion
primitives.

(c) The resultant state
lattice.

Figure 2.8: A lattice can be constructed by successively applying motion
primitives of the vehicle. Figure inspired by [23].

the configuration space, and then compute motion primitives that connect
these discretized vehicle states. This is the opposite of the toy example pre-
sented before, where motion primitives are first defined, and the discretized
vehicle states are result from applying them. The computation of motion
primitives connecting the discretized states is a motion planning problem in
itself. These motion primitives can be computed resorting to steering meth-
ods as the ones discussed in Section 2.3, or using numerical optimization
approaches which are introduced in Section 2.5.

The lattice can be represented as a graph G = ⟨V,E⟩, where the vehicle
states correspond to vertices V , and the motion primitives are edges E
between these vertices. In order to plan a path, one is then tasked with
finding the shortest path between the graph vertices corresponding to the
current and goal vehicle states.

The shortest path in the graph between two nodes is computed by find-
ing the sequence of edges with the lowest cumulative cost connecting them.
Each edge has a cost that can reflect different motion planning goals. In
the simplest case, the edge cost is equal to the corresponding motion prim-
itive path length, which results in planned motions which are of minimum
length. Other costs besides length can be introduced, such as curvature and
direction of motion. By including a curvature cost, the planned solutions
tend to be smoother. Including the direction of motion results in the vehi-
cle preferring to drive forwards instead of backwards, a common behavior
followed by human drivers.

Collision checking

The planner must also take into account obstacles in order to guarantee that
the planned solutions are collision free. To achieve this, it is necessary to
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Figure 2.9: The occupancy grid for an environment with an obstacle shown
in red. Orange cells are cells classified as obstacles, where free cells are
white. The occupancy grid discretization inflates the obstacle.

have collision checking procedures that are able to check if a given vehicle
state (vertex) or a motion primitive (edge) are in collision. Vertices and
edges that are in collision are then removed from the search graph, ensuring
that possible planned paths are collision-free.

Collision checking can be done in multiple ways, and in this section,
we focus on occupancy grid-based collision checking. Occupancy grid-based
collision checking is used later on in Chapter 4. A different type of collision
checking is introduced in Section 2.5 and is used extensively in Chapter 5.

An environment can be represented as an occupancy grid by discretizing
the environment into cells. Each cell can then be classified as obstacle, in
case a cell contains an obstacle in it, or as free otherwise. An example of an
occupancy grid is shown in Figure 2.9. It can be seen that the occupancy
grid inflates the obstacles due to the inherent discretization.

To check if a vehicle state is in collision, the occupancy of the vehicle
in the occupancy grid must be computed. Then, the vehicle occupancy is
checked against the obstacle occupancy, and in case there is an overlap, i.e.,
at least one cell is classified as being obstacle and also as being vehicle, the
the vehicle state is in collision. Figure 2.10 shows the collision checking
procedure, for two cases. In the first case, the vehicle is correctly deemed
as being collision-free, since no vehicle cells overlap the obstacle cells. How-
ever in the second case, the grid discretization causes a vehicle state to be
wrongly classified as in collision. This problem can be solved by increasing
the grid resolution, however that comes with an increased computational
cost. Since collision checking is often one of the most expensive parts of
motion planning algorithms, it is important to keep its computational effi-
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Figure 2.10: Collision checking using occupancy grid. Left: The occupancy
grid is successful in identifying that the vehicle state is collision-free. Right:
The discretization causes a conservative collision checking and wrongly clas-
sifies the vehicle state as in collision.

ciency high.

Lattice planners allow the collision checking computational times to be
reduced by allowing the precomputation of path swaths. A path swath is
the occupancy grid for a certain motion primitive. Since a motion primitive
corresponds to a sequence of infinite vehicle states, computing its occupancy
grid is a trade-off between fidelity of the discretization of the path as being
a sequence of states, and the computational time required for computing.

In the case of the lattice, path swaths can be computed offline, stored
and used online when needed. This is permitted since a limited number of
motion primitives is used, and due to translational and rotational invari-
ance principles that applie to certain car-like vehicle models. The invari-
ance property is not trivial to obtain, specially when considering truck and
trailer systems, however some specific solutions can be developed for these
systems [36].

Graph search techniques

Once the lattice is constructed, the corresponding graph is to be searched
in order to find a solution path. Any graph search algorithm can be used to
find a solution, however, depending on the intended application, some offer
better performance. Here we list some of the graph search algorithms that
have been successfully used in autonomous driving applications.

A* [37] is one of the most used graph search algorithms. It evaluates
nodes, and decides which parts of the graph to explore by computing an
evaluation function f(n) = g(n)+h(n). The cost function g(n) corresponds
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to the path cost from the start node to node n, whereas h(n) is an heuristic
function that estimates the cost of getting from node n to the goal node.

An heuristic function is defined to be admissible if h(n) ≤ h∗ (n), where
h ∗ (n) is the optimal cost from node n to the goal node. In essence admis-
sibility consists in the heuristic never overestimating the cost of reaching
the goal. Admissibility of the heuristic plays an important role in the A*
search, as it guarantees that the search finds the optimal solution to the
goal.

Besides being admissible, an heuristic function h(n) can also be con-
sistent. Consistency indicates that h(n) follows the triangular inequality
h(n) ≤ c(n, a, n′) + h(n′), that is, for every successor n′ of n obtained by
applying action a, the estimated cost to arrive at the goal from n is not
greater than the estimated cost to arrive at the goal from n′ plus the the
cost of getting from n to n′. Consistency of the heuristic plays an important
role in the A* search. If A* is provided with a consistent heuristic, then the
returned solution is optimal, i.e., it is the lowest cost path. Furthermore,
a consistent heuristic also guarantees that A* is optimally efficient, i.e., it
does not expand more nodes than other search methods using the same
heuristic information [12].

Anytime Repairing A* (ARA*) extends upon A*, and is targeted for
planning scenarios in which computational time is scarce [38]. ARA* in-
flates the heuristic function, using ϵh(n) with ϵ > 1, which often results in
significantly less node expansions, and therefore faster computational times.
The drawback however, is that the heuristic might no longer be consistent,
and the solution paths are no longer optimal. The solutions can then be
made progressively better, by decreasing the inflation factor ϵ and redoing
the search in an efficient way by making use of previous search results. The
process is iteratively repeated, as long as time allows, or until ϵ = 1, and
the solution becomes optimal, i.e., with the same cost of a solution found
by A* for the same problem instance [38].

Time-Bounded A* (TBA*) is a variant of A* that targets the case of
real-time environments [39]. In these type of environments, one often has
a limited planning time, after which a solution path is expected to be pro-
vided. After every planning cycle TBA* is able to provide a temporary
path solution, which can be further enhanced in following planning cycles,
in an efficient way. In its original implementation, TBA* does not support
vehicles with momentum, motivating the development of new extensions
targeting these systems [35].

D* Lite [40] targets applications in which the environment is constantly
changing, such as robotic applications where new sensor information is ob-
tained as the robot progresses along its path. D* Lite focuses on efficiently
recomputing shortest paths, without having to start the whole planning
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procedure from scratch.

Relevant works

The concept of lattice planning is introduced in [23], where the authors study
the mechanisms of how to best construct the lattices so that optimality and
completeness are maximized, while complexity is kept to a minimum. The
proposed solution is tested on prototype rovers, and shown to be suitable
for implementation using low computational resources.

In [35], a lattice planner is developed for, and tested on, an autonomous
truck. The graph search algorithm used is based on TBA* [39] allowing
for real-time computation of solution paths. Extensions to the search algo-
rithm are developed so that the slow dynamics of the truck are taken into
account. The planner is tested in simulations and in real experiments on an
autonomous truck.

A lattice based motion planner for a general truck and trailer system
is considered in [36]. These systems cannot be driven backward from ar-
bitrary states, due to its unstable nonlinear behavior, as well as state and
input constraints [41]. Due to these characteristics, the lattice is specially
designed so that the discretized vehicle states are within circular equilibrium
configurations, significantly reducing the dimension of the search space.

The concept of lattices can also be extended to on-road planning by
creating a discretization of the state space that adapts itself to the road
shape. In [42], a lattice is built online at each planning cycle, by selecting
discretized states on the road, and connecting the states with feasible motion
primitives. The motion primitives need to be computed online, in order to
adapt them to the shape of the current road segment.

The work in [32] uses a similar concept as the previously proposed road
lattice, however it simplifies the search by having a coarser discretization
of the state space. The found solution is then optimized using a post-
processing algorithm, and the results are comparable to those of the road
lattice with the original discretization, although they can be obtained at a
fraction of the computational time.

2.5 Optimization-based motion planning

Optimization problems such as the one in Equation (2.6) can be solved us-
ing continuous numerical algorithms [43]. These methods have the benefit
of directly encoding the system dynamics and constraints in its formulation,
and are characterized by smooth solutions when compared to other meth-
ods. This type of approach is attracting significant attention due to the
constantly increasing computational power available, and to the growing

48



2.5. OPTIMIZATION-BASED MOTION PLANNING

availability of numerical algorithms for solving optimization problems [44–
47].

Numerical optimization

In order to understand the numerical optimization approach, we start by
introducing the relatively simple optimization problem:

minimize
x1,x2

f(x1, x2) = (x1 − 2)2 + (x2 − 1)2

subject to x21 − x2 ≤ 0,

x1 + x2 ≤ 2.

(2.7)

The optimal solution is the point x∗ = (x∗1, x
∗
2) inside the feasible set, that

minimizes the optimization function f . The feasible set corresponds to the
set of points respecting both inequalities. For an introduction to algorithms
solving this type of optimization problem the reader is referred to [43].

Depending on the optimization function and on the constraints, the op-
timization problem belongs to different problem classes. If the optimization
function is quadratic and the constraints are linear with respect to optimiza-
tion variables the problem is referred to as quadratic programming (QP).
QP problems benefit from convexity, which allow algorithms to be developed
which are guaranteed to find the optimal solutions to the problem.

In case the optimization function or the constraints have nonlinear ex-
pressions, then the problem falls within the nonlinear programming class.
This type of problems are non-convex, and it is usually hard to develop
general algorithms that find the global optimal solution to the problem.
Instead general algorithms usually find solutions corresponding to a sub-
optimal local minima.

If some of the variables in the optimization problem are restricted to be
integers, then the problem belongs to the class of integer programming. Inte-
ger constraints typically arise in problems that must make binary decisions
(such as deciding if a vehicle should overtake or not). The integer vari-
ables introduce a combinatorial complexity, and algorithms for these type
of problems ofter suffer from very poor worst-case computational times.

It can be observed that Equation (2.7) is similar to the motion planning
problem in Equation (2.6). In fact, the motion planning problem can be
seen as numerical optimization in a high-dimensional search space. In the
following section, we present in more detail how to use numerical optimiza-
tion for motion planning.
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Formulating the motion planning problem

The vehicle model

A vehicle model q̇ = f(q, u) can be enforced by creating suitable constraints
on the optimization problem. Typically, a discretized version of the contin-
uous model is used:

qk+1 = fk(qk, uk), (2.8)

where qk corresponds to the vehicle state at sample k, and fk is a function
that approximates the following state qk+1 based on the previous state qk
and input uk.

Often a linear model is desired, as it is a requirement for many numer-
ical optimization algorithms. The linearized and discretized version of the
continuous model then becomes:

qk+1 = Akqk +Bkuk + bk. (2.9)

Where

Ak =
∂f

∂q

∣∣∣∣
qrefk ,uref

k

,

Bk =
∂f

∂u

∣∣∣∣
qrefk ,uref

k

,

bk = f(qrefk , urefk )−Akqrefk −Bkurefk .

(2.10)

Ak, Bk, and bk can be obtained using numerical differentiation methods.
The constants qrefk and urefk correspond to the linearization references.

Equation (2.9) is then incorporated into the numerical optimization
problem as constraints on the variables qk and uk. We note that usually qk
is not an optimization variable, but instead an auxiliary variable, which is
uniquely defined from the initial vehicle state q0 and the vehicle inputs uk.

Depending on the intended application, the considered vehicle models
can vary significantly in terms of fidelity. In [48], a bicycle kinematic model
is used. This type of model does not consider forces, making its usage limited
to urban scenarios where driving is characterized by low speed driving with
moderate steering angles. This model is extended in [49], by modeling the
steering wheel actuator as a second-order system.

Dynamic models take into account forces acting on vehicle, and are
often more accurate, although not always [50]. In [51] a model taking into
account the longitudinal and lateral load transfers is used. Tire forces are
also modeled, based on the Pacejka tire model, and successful experiments
are carried on a low friction surface, made of packed snow. The work in [52]
is able to adapt to changing road conditions, by adapting to current traction
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limitations. This results in enhanced stability during evasive maneuvers and
leads to a safer driving.

In case a reference path is known, road-aligned models can be used [53].
In the road-aligned model, the vehicle state is defined with respect to a frame
moving along a reference path, instead of being defined in the Cartesian
frame. This type of models prove to be useful in on-road situations, as
they can simplify the optimization problem by making the optimization
objectives convex, or the constraints easier to handle.

Different vehicle models and optimization criteria (discussed later in Sec-
tion 2.5) are investigated in [54]. The authors study chassis and tire models
of varying complexity, and arrive at the conclusion that the choice of model
can potentially lead to fundamentally different optimization solutions. This
highlights the fact that there is not one vehicle model which is best for
all purposes, and that the choice of one is dependent on the application,
required performance, and even on the numerical algorithms used.

Optimization objectives

Depending on the particular application that the motion planner is target-
ing, different goals and target behavior for the vehicle might be expected.
These can often be encoded via appropriate optimization objectives.

To reduce actuator stress, the steering wheel and acceleration com-
mands can minimized as part of the optimization objective. This results
in a smoother and more comfortable driving for the vehicle passengers [16].
In [55], the minimization objective is chosen to be the norm of the vector
of instantaneous yaw accelerations of the vehicle along the path. This ob-
jective encourages path solutions to be smooth and to not waste traction
unnecessarily.

Progress maximization, or similarly traveling time minimization, can
also be an objective to be optimized. When doing so the vehicle plans
trajectories resulting in shorter traveling times. This can be interesting
when planning trajectories for speeding up track times of a racing car [56],
or for increasing the efficiency and productivity of processing relying on
heavy-duty vehicle transport [57].

In order to maximize the safety in potentially dangerous maneuvers,
the work in [48] considers the maximization of visibility. Certain driving
situations might create blind spots for the vehicle sensors. These blind
spots can contain unseen obstacles or even other vehicles that will cross the
autonomous vehicle path. Thus, the optimization objective is introduced,
in order induce the planner to find solution paths that minimize the blind
spot areas, thus reducing safety hazards.
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Collision checking

Constraints related to collision avoidance must also be incorporated into
the optimization algorithm. Unfortunately, formulating such constraints
is often challenging within the framework of numerical approaches. Two
main reasons for this are the high non-linearity of the constraints, and the
combinatorial nature of obstacle avoidance.

Obstacle avoidance constraints can be formulated as ensuring that the
vehicle body does not intersect obstacles. This type of constraint is non-
convex and non-differentiable in general, making it difficult in numerical
approaches. Furthermore, collision avoidance is in general combinatorial,
introducing binary decision variables.

As an example, recall Figure 2.4, where the vehicle needs to decide if
it avoids the obstacles by passing them by their left or right. This type of
decisions is binary, and in the presence of multiple obstacles, it becomes
combinatorial, all obstacles can be avoided either by driving through its
left or right, and all combinations must be considered. Problems with these
type of decision variables fall within the class of integer programming, which
has very poor worst-case computational times. In this section, we assume
that the planner knows a priori, on which side to avoid an obstacle, thus
removing the combinatorial aspects of planning.

The work in [58] makes use of distance maps in order to ensure collision
avoidance. Distance maps compute for every point in the environment (x, y)
the distance to the nearest obstacle. The gradient of a distance map gener-
ates a potential field that guides a path that is in collision into a solution
path that is collision-free. We note however, that this type of approach, be-
ing only locally optimal instead of globally optimal, relies on a good initial
guess.

Noticing the sensitivity of numerical approaches to the provided ini-
tial guess, [59] combines homotopy methods with numerical optimization.
Obstacles in the environment are iteratively introduced during planning it-
erations using an homotopy method. Thus, the optimization problem is
continuously changed from an easy to solve motion planning problem which
ignores obstacles, into the original, and hard to solve, motion planning
problem considering obstacles. This method allows numerical optimization
methods to be used for a wider and more complex class of motion plan-
ning problems. However, a new challenge arises, which consists in finding a
suitable homotopy for the problem at hand.

Several works have approximated the vehicle body through a combina-
tion of simpler shapes that are suitable for usage in numerical optimization
methods. In [60], the vehicle shape is described using a set of circles, as
shown in Figure 2.11 (Left). The number of circles used is usually a trade-
off between conservativeness of the vehicle model (the fewer the circles the
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Figure 2.11: Modeling the vehicle body using: a combination of circles [60]
(Left); an ellipse [49] (Center); a combination of points [17] (Right).

worse approximation of the shape), and computational times (more cir-
cles results in higher computational times). The vehicle shape can also be
approximated using a safety ellipse, as proposed in [49] and illustrated in
Figure 2.11 (Center). We note that this approach is not suited for long
vehicles, such as buses, as the length to width ratio of the vehicle would
result in safety ellipses that severely overestimate the vehicle body. A third
way to approximate the vehicle body consists in considering multiple points
located along its edges as shown in Figure 2.11 (Right). As in the case of
the circles-based approximation, the number of points used is a trade-off be-
tween fidelity of the approximation, and computational times (more points
cause higher computational times).

Based on the concept of approximating the vehicle shape using points,
a new set of vehicle body approximations is introduced in [17]. These ap-
proximations are specifically targeted for numerical optimization methods
that rely on vehicle models using the road-aligned frame. In this frame the
vehicles suffer complicated distortions that do not have closed form expres-
sions. The effect is further worsened when considering long vehicles, such
as HDVs. This approach is explained in detail in Chapter 5.

Relevant works

The work in [44] introduces a reformulation of the trajectory planning task,
that allows the usage of convex optimization methods. The method is ap-
plicable to environments where the obstacles can be described as a union of
convex set, and ensures that collision avoidance constraints are exact. How-
ever, the proposed solution requires an initial good guess, that is obtained
via graph-search based motion planning methods. Simulation results are
shown for a vehicle parking in very tight environments.

To take full advantage of state-of-the-art numerical optimization meth-
ods, [59] makes use of homotopy methods for motion planning. The pro-
posed method targets systems with nonlinear dynamics in complex non-
convex environment, an application where numerical optimization approaches
often fail. By introducing an homeomorphic transformation of the environ-
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ment, the authors are able to use powerful numerical optimization methods
in these challenging applications. One drawback remains however, the need
to find a suitable homeomorphic transformation of the environment.

Observing that the combinatorial aspects of motion planning are of mi-
nor importance when considering road driving, the work in [60] uses local
and continuous optimization for trajectory planning. The approach focuses
on the smoothness, dynamics, and optimality, and like other continuous
optimization schemes, does not suffer from a complexity which rises expo-
nentially with the dimension of the stat space. The approach is used in
a fully autonomous vehicle which drove a route of 103 km and dealt with
complex traffic situations.

In emergency scenarios it might be the case that vehicle stabilization
needs to be sacrificed in order to avoid collision. In [61] the authors use nu-
merical optimization in order to plan motions which avoid obstacles which
suddenly appear on the road. The method is experimented on an au-
tonomous vehicle showing its capabilities of driving at the vehicle’s handling
limits. Prioritizing collision avoidance over vehicle stabilization can allow
for a reduction of accidents when considering extreme emergency situations.

2.6 Interaction-aware motion planning

In the previous sections, we considered the collision avoidance constraint to
take the form q(t) ∈ Xfree(t). This type of constraint is suitable when the
motion planner is provided with predictions of obstacles, e.g., human-driven
vehicles, from a perception system, as illustrated in Figure 1.1. One implicit
assumption of Figure 1.1 is that predictions are independent of the decision
making and motion planning modules, as they are located downstream in
the architecture. However, the traffic scene and the human drivers are
affected by and react to the autonomous vehicle’s decisions. For example,
if the autonomous vehicle is driving in a single lane and slows down, the
vehicle closest behind it will adjust its velocity to avoid colliding. Therefore,
the evolution of the traffic scene depends on the actions of the autonomous
vehicle.

Let us define the input trajectory of the autonomous vehicle for the time
interval [0, t] as:

u ([0, t])

and the corresponding autonomous vehicle state trajectory as:

x ([0, t]) .

We can now define the free space at time t as:

Xfree (t, u ([0, t]) , x ([0, t])) . (2.11)
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Equation (2.11) emphasizes that the free space at time t also depends on the
input and state trajectories of the autonomous vehicle. In a traffic scene,
Equation (2.11) is used to capture the fact that the maneuvers executed by
the autonomous vehicle impact the trajectories of other traffic participants,
which in turn leads to the obstacle-free space changing.

The original motion planning problem in Equation (2.6) is then adapted
to consider the interaction aspects between the autonomous vehicle and
other traffic participants, yielding the new motion planning problem:

minimize
u(t)

J (q(s), u(s))

subject to q̇(t) = f(q(t), u(t)),

q(0) = q0,

q(tG) = qG,

q(t) ∈ Xfree (t, u ([0, t]) , x ([0, t])) ,

(2.12)

where the collision avoidance constraint explicitly considers that the free
space, determined by the space not occupied by other traffic participants,
is dependent on the autonomous vehicle state and its inputs.

We note that this new formulation is not compatible with the simplified
autonomous vehicle diagram presented in Figure 1.1. Figure 1.1 assumes a
downstream flow where the predictions of the other traffic participants are
provided to the motion planner. Afterwards, the motion planner is tasked
with finding a solution that avoids other participants. With the new formu-
lation of the motion planning problem in Equation (2.12), the predictions of
other traffic participants are modified in response to the planned maneuver
of the autonomous vehicle. The new formulation of the motion planning
problem is referred to as joint prediction and planning. The modular archi-
tectural differences between a framework implementing the original motion
planning problem in Equation (2.6) and the new joint prediction and plan-
ning problem in Equation (2.12) are shown in Figure 2.12.

Relevant works

In the following, we present some of the relevant work in the area of joint
prediction and planning. The considered relevant work is grouped in the fol-
lowing categories: Numerical optimization, Search and sampling, Partially
observable Markov decision process, Game theory, and Learning-based.

Numerical optimization

The work in [62] proposes a Stochastic MPC (SMPC) for autonomous vehi-
cles that can deal with the multi-modality and interaction aspects of the sur-
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(a) Predictions as an input to the planner in Equation (2.6).

(b) Predictions and planning are jointly optimized in Equa-
tion (2.12).

Figure 2.12: Top: Many planning approaches assume the predictions of
other vehicles and plan a motion for the autonomous robot that avoids these
predictions. Bottom: To reduce conservatism and increase the performance
of autonomous vehicles a joint prediction and planning approach is needed.

rounding drivers. The approach considers that a target vehicle might have
multi-modal predictions corresponding to different types of driver behavior.
The predictions of the human-driven vehicle depend on the autonomous ve-
hicle decisions, where the human driver will try to keep a constant headway
to the vehicle in front. The proposed approach is shown to reduce con-
servatism and improve the performance of the autonomous vehicle, mainly
when interaction plays an important role.

Some works combine learning with MPC [63, 64], extending the capabili-
ties of the underlying MPC from pure reacting behavior to interaction-aware
behavior. The intersection case is studied in [63], where an autonomous ve-
hicle is approaching an intersection where other vehicles are also crossing.
A deep Reinforcement Learning (RL) approach [65] is used to determine
if the autonomous vehicle should stop, cross, or wait for a specific gap to
pass, given the positions and velocities of other vehicles. The low-level MPC
planner then computes a safe trajectory based on this high-level decision.
Similarly, the work in [64] combines a deep RL and Model Predictive Con-
tour Control (MPCC) to tackle the challenging task of merging in dense
traffic scenarios. An interaction-aware policy is learned using deep RL. The
policy takes as inputs the states of the vehicles ahead and behind the au-
tonomous vehicle and outputs a continuous velocity reference, as opposed
to a discrete decision as in [63]. This velocity reference is then used to guide
the MPCC, which plans a collision-free trajectory.
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Search and sampling

The authors of [66] show the importance of considering social coopera-
tion, i.e., interaction-aware human predictions, when considering merging
from entrance ramps. The proposed framework samples different candidate
strategies, corresponding to different velocity profiles for the autonomous
vehicle. For each candidate strategy, a prediction engine that considers how
the human driver adapts to the vehicle ahead of it is used. Afterwards,
each traffic scene is evaluated with respect to an expected cost, and the
candidate strategy that achieves the lowest cost is selected as the maneuver
to execute.

The work in [67] tackles merging scenarios in congested traffic. In these
scenarios, merging onto the road might be impossible without the cooper-
ation of human-driven vehicles, highlighting the importance of interaction-
aware planning. The proposed solution simulates and evaluates a large
number of planned trajectories and chooses the one achieving the highest
utility. The predictions of the human-driven vehicles are obtained by con-
sidering an Intelligent Driver Model that adjusts to the actions planned by
the autonomous vehicle.

Partially observable Markov decision process

A partially observable Markov decision process (POMDP) models the au-
tonomous vehicle decision making by assuming that the traffic scene evolves
according to known dynamics, but that the observations of other vehicles
can have noise, and equally important, that the intentions of other drivers
are unknown, i.e., they are hidden. POMDPs are a powerful tool for plan-
ning and decision making under uncertainty. However, finding an optimal
solution can often be computationally too complex [68].

The work in [69] formulates the decision making problem of an au-
tonomous vehicle as a POMDP. In their formulation, the intended route
of other vehicles is considered a hidden variable. The solution to their
POMDP is a policy with the optimal acceleration for an autonomous ve-
hicle following a pre-planned path. A remarkable behavior that appears
from this approach is that the autonomous vehicle might postpone making
certain decisions. The postponing happens since the autonomous vehicle
understands that more information will be present in the future, leading
to better predictions of other traffic participants. Therefore, the proposed
POMDP can trade-off between exploration, i.e., gathering information, and
exploitation, i.e., optimizing the driving behavior. The results show that
their approach performs nearly as well as if the actual intentions of other
vehicles were known in advance.
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The authors of [70] combine the strengths of POMDP and MPC to tackle
the joint prediction and planning problem in a T-junction traffic scenario
with up to five vehicles. An online POMDP estimator is used to predict
the other traffic participants’ velocity profiles and their likelihood. Human
drivers are assumed to choose between three different intentions: accelerate,
brake, and keep speed. Afterwards, a receding horizon optimization plans
a trajectory for the autonomous vehicle that guarantees a specified level
of safety under all possible intentions of the other vehicles. This is imple-
mented using a chance constrained MPC formulation, which can directly
incorporate the likelihood of other traffic driver intention, as estimated by
the POMDP. The solution found by the MPC is fed to the POMDP esti-
mator in the next planning cycle, generating a new POMDP traffic scene
estimate and, afterwards, a new planned trajectory. The framework effec-
tively performs joint prediction and planning by sequentially predicting and
planning over multiple planning cycles.

Game theory

Game theory studies the decision making processes of multiple agents that
try to minimize the costs associated with their actions. In the game theory
framework, the costs of each agent’s actions depend on the actions of the
other agents, therefore becoming crucial for an agent to consider how other
agents might act [71]. Game theory is a suitable framework for tackling
the joint prediction and planning problem since autonomous vehicles and
other human-driven vehicles are interacting agents with their own conflicting
goals.

The work in [72] models the traffic scene with two agents, an autonomous
and a human-driven vehicle, as a partially observable stochastic game. The
authors propose approximations for solving this game in real time and show
that their proposed method can plan autonomous vehicle maneuvers that
are assertive and show intent. In simulation and user study experiments,
the autonomous vehicle accelerates or slows down when approaching an
intersection to encourage the human-driven vehicle to either give way or
proceed first.

The work in [73] proposes a hierarchical trajectory planning algorithm
for autonomous vehicles. On a higher level, a dynamic game is solved, which
models the long-horizon interaction between the autonomous and a human-
driven vehicle. The computations of the higher level are used as guidance
for a short horizon trajectory optimization algorithm, effectively allowing
the lower short horizon planner to reason about the long-term effects of its
actions.

Traffic scenes often contain more than two agents, calling for methods
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that are able to solve problems with multiple agents. The work in [74]
presents a framework that can solve three-player games efficiently. The
proposed approach is used in an intersection scenario, where two cars and a
pedestrian traversing a crosswalk make up the traffic scene. Similarly, the
work in [75] tackles merging scenarios with four agents. In their work, the
authors study the merging maneuver for an autonomous vehicle approaching
a highway where three other vehicles are present.

The concept of Social Value Orientation is introduced in [76] to quantify
the degree of altruism or selfishness of human drivers. The authors propose
a solution that estimates a human driver’s Social Value Orientation and
then incorporates this information to solve a two-agent game.

Learning-based

Classical prediction approaches tend to produce trajectories, or distribu-
tions of trajectories, for the different agents in the scene. This type of rep-
resentation does not allow the planning and control layers to reason about
the interactivity of the scene. Therefore, the planner can only try to avoid
the provided trajectories. Realizing this drawback, the authors of [77] pro-
pose a prediction framework that outputs Mixtures of Affine Time-varying
Systems (MATS). The proposed MATS prediction representation allows a
downstream planning layer to reason about the impact of planned maneu-
vers of the autonomous vehicle on traffic participants, therefore capturing
the interaction aspects of driving.

The work in [78] makes use of a transformer, a deep learning model, to
enable interaction-aware motion planning. One of the proposed solution’s
benefits is a unified architecture that allows for different types of prediction
for all participants in the traffic scene. Using the same model but different
masking strategies, the approach can perform either of the following tasks:

• Planning : Propose a goal state that directs a motion planner into a
desirable end state, given the current and past history of the whole
traffic scene (other vehicles + autonomous vehicle);

• Behavior prediction: Predicting the evolution of the whole traffic scene
(other vehicles + autonomous vehicle), given the current and past
history of the traffic scene;

• Conditional behavior prediction: Predicting the evolution of the traffic
scene (excluding the autonomous vehicle), given the current and past
history of the whole traffic scene and the planned trajectory of the
autonomous vehicle.
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The first task, planning, can provide a downstream motion planner with a
good guess of what is a desirable state to drive towards. This is an indirect
way of including interaction in the motion planning framework. The last
task, conditional behavior prediction, provides a motion planner with a
measure of the impact its action will have on the other traffic participants.
This corresponds to a direct way of including interaction in the motion
planning framework.

60



Chapter 3

Sharpness Continuous Paths

This chapter deals with a simplified version of the planning problem in
which the obstacles in the environment are ignored. Ignoring obstacles in
the environment can, in some cases, allow the development of solutions to
the planning problem which are based on analytic or geometric arguments,
as opposed to having to resort to numerical optimization or search-based
techniques. Analytic or geometric solutions are often computationally in-
expensive, and as such, desirable for online implementations.

The simplified formulation might also allow the development of solutions
with optimality guarantees. The most frequent metric to be optimized,
is the length of the planned solution. In the case of vehicles, this often
correlates with the execution time of the solution, thus being an attractive
metric to minimize.

In this simplified formulation, the vehicle kinematic and dynamic con-
straints, which define how the vehicle is allowed to move, are still considered,
and are part of the problem formulation. As one might expect, the more
complex the constraints considered, the more challenging it is to find opti-
mal solutions to the planning problem. However it will be shown that the
most relevant vehicle constraints, associated with the vehicle actuators, can
be captured, while still keeping the problem tractable to solve.

Although not obvious, solutions to the obstacle-free planning problem
can be directly used as components of algorithms that seek to solve the
original planning problem in the presence of obstacles. Thus, improvements
in the area of obstacle-free planning, will greatly contribute to the progress
of algorithms for the general planning problem. Chapter 4 focuses on solving
the planning problem in the presence of obstacles, and makes use of the
methods introduced in this chapter.

The contributions of this chapter are the following:

• take into account steering actuator magnitude, rate, and acceleration
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limitations;

• ease the controller task and improve passenger comfort;

• connect arbitrary vehicle configurations;

• have fast computation times.

The chapter is organized as follows.

Section 3.1 gives an introduction to the topic of planning in the absence
of obstacles. A literature survey on the topic of obstacle-free planning for
car-like vehicles is presented, which summarizes relevant works in the area,
ranging from the original works already started in the fifties, to very recent
publications, which show a reborn interest in the topic over the last couple
of years.

Section 3.2 introduces Cubic Curvature paths, an interpolating curve
with desirable properties for autonomous vehicles. This curve can be seen
as an extension to the well-known clothoid curves, which are commonly used
in road design [79].

Section 3.3 introduces Sharpness Continuous paths, a novel proposal,
which seeks to solve the obstacle-free path planning problem for the case
of heavy-duty vehicles. Inspired by previous works in obstacle-free optimal
path planning, we propose a solution which takes into account both the
kinematic constraints of the vehicle and the dynamic constraints of steering
actuators used in heavy-duty vehicles. This novel proposal considers the rate
and torque limitations in the steering actuators of the vehicle, a problem
not considered in previous published works.

Section 3.4 presents results of the proposed method and shows its ben-
efits. It is shown that the proposed paths resemble the length optimal
Dubins paths [25], and that they come with the benefit of improved con-
troller performance. Furthermore the computational times of the method
are measured, and show suitability for online implementation. Concluding
remarks are made in Section 3.5.

3.1 Introduction

Planning in the absence of obstacles can be seen as a simplified version
of the planning problem, in which the obstacles in the planning space are
ignored. The problem can be formulated as:
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minimize
u

J(q, u) (3.1a)

subject to q̇ = f(q, u), (3.1b)

q(0) = qS, (3.1c)

q(1) = qG, (3.1d)

where constraint Equation (3.1b) corresponds to the vehicle model. In the
following sections we will detail solutions that have been proposed for vehi-
cles with increasingly complex constraints f(q).

Constraints Equation (3.1c) and Equation (3.1d) correspond to the ini-
tial and final states of the vehicle. In the planning problem, Equation (3.1c)
usually corresponds to the current state of the vehicle, whereas Equa-
tion (3.1d) corresponds to the goal state. These two constraints correspond
to boundary conditions that the solution to the differential equations must
respect, making this problem often be referred to as a two-point boundary
value problem.

The objective function Equation (3.1a) defines the metric to be opti-
mized. In this chapter we will consider this function to correspond to the
length of the path performed by the vehicle. This is a suitable metric to
optimize, as a common goal in driving, is to arrive at the destination as
fast as possible, which can usually be achieved by minimizing the length of
the driven path. A remark has to be made however, as it is not always the
case, that the shortest path is the one that can be performed the fastest.
Another shortcoming of this metric is that it does not take into account the
comfort of passengers.

This simplified planning problem might seem trivial at first glance, how-
ever the presence of the differential constraints Equation (3.1b) complicates
the process of finding feasible solutions to it. Figure 2.3 illustrates the diffi-
culty associated with obstacle-free path planning. The vehicle is tasked with
moving from its initial state to the goal state. The shortest path between
these two configurations would be the straight line shown in red, however,
the kinematic constraints prevent the vehicle from executing such a path.
A possible solution that the vehicle can perform, is to move forward, switch
to reverse, and approach the goal configuration in a backward motion, as
shown by the green path in Figure 2.3. This illustrates the complexity of
motion planning for vehicles, even in the absence of obstacles.

In the following we review previous works that have managed to pro-
vide solutions to variants of the obstacle-free path planning problem Equa-
tion (3.1). Some solutions are able to provide optimality guarantees, at
the expense of assuming simplified vehicle models. Other solutions consider
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more complex vehicle motion constraints, while still showing a performance
close to optimal.

Dubins curves

The work in [25] studied the nature of curves of minimal length, with
bounded curvature, connecting initial and terminal positions and tangents.
The proposed curves have been extensively used in the motion planning
and robotics community. This is due to the fact that many mobile robots
have system equations that result in motions defined by curves of bounded
curvature.

We start by defining the system equations that are considered in [25]:

ẋ = cos θ,

ẏ = sin θ,

θ̇ = u.

(3.2)

This corresponds to a system that moves with unit speed in the xy plane,
and that can actuate its angular velocity, through u. The angular velocity
is assumed to be bounded, such that |u| ≤ umax. The major contribu-
tion in [25] was to prove that the shortest path between two vehicle states
(xS, yS, θS) and (xG, yG, θG) for this kind of system, is always composed by
at most three motion patterns. The motion patterns are: drive straight
(S), turn left with maximum curvature (L), and turn right with maximum
curvature (R). The actuation values for the motion patterns S, L and R are
u = 0, u = umax and u = −umax, respectively.

System Equation (3.2) is often referred to as the kinematic car model.
The word kinematic originates from the fact that forces actuating on the
system are disregarded, and instead only positions, velocities and accelera-
tions are used to describe the system. Kinematic models are fairly simple
and accurate for low speeds, making them suitable for many heavy-duty ve-
hicle industrial applications. However when considering high speeds, such
as in the case of highway driving, dynamic models which take into account
forces are often necessary.

The solutions of minimal length, obtained using the motion patterns S,
L, R, are commonly referred to as Dubins paths. Figure 3.1 shows Dubins
paths, connecting initial and goal vehicle poses qS and qG, for three different
planning instances. In order to find the optimal sequence of motion patterns,
one can exhaustively try all possibilities, and chose the one resulting in
a shortest path. However there are more efficient ways to find out the
minimum length Dubins path between two vehicle configurations [80].

The system presented in Equation (3.2) is equivalent to the kinematic
car model if one replaces the actuator command, such that u = tan(ϕ)/L,
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qS qG

qS qG

qS

qG

Figure 3.1: Different examples of Dubins paths.

where ϕ is the steering angle of the vehicle, and L is the wheelbase length.
The value of umax corresponds to tan(ϕmax)/L, with ϕmax being the max-
imum steering angle of the vehicle. The inverse of the curvature of the
turning motion patterns L and R, corresponds to the minimum turning ra-
dius of the vehicle. Therefore, Dubins paths have immediate applicability in
motion planning for vehicles, and are widely used in the field of autonomous
driving [81–84].

One of the drawbacks of the Dubins paths, is the simplified motion
equations that are considered for the vehicle model. Since the actuation u
can change instantaneously, the resulting optimal paths have a curvature
profile that is discontinuous at the transitions between straight lines and
circular arcs. In order for a vehicle to exactly perform these paths, it would
have to stop at the junctions of two motion patterns, and turn the steering
wheels in place. This is of course time consuming, and results in an increased
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wear of the vehicle tires. Typical autonomous driving implementations that
make use of Dubins paths, usually ignore this problem, and resort instead
to a post-optimization step on the found paths, or simply let the underlying
feedback controllers perform the path without stopping between motion
patterns. More recent works have tried to tackle the discontinuity problem,
as will be seen in the following sections.

Reeds-Shepp curves

A vehicle can move both forward and backward, an aspect that Dubins
paths do not capture. Realizing that backward movement is an important
part of driving, [26] proposed to solve the minimal path length problem for
the more complex vehicle model:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = u.

(3.3)

Contrary to the case of Dubins paths, this model allows the vehicle to have
a forward or a backward unit velocity, |v| = 1. Thus the vehicle can switch
directions of movement, allowing it to realize paths that are shorter or equal
to the Dubins path.

The work in [26] concludes that the optimal length paths for the car
that can move both backward and forward, is also a combination of at most
three motion patterns, turn left, turn right and drive straight (L, R and
S). However these motion patterns can now be performed either in forward
or in backward motion. Similar to the Dubins paths, these path solutions
have gained popularity in the motion planning community and are known as
Reeds-Shepp paths. Furthermore, it has been shown that there is a total of
46 possible combinations of motion patterns that can result in the shortest
path [85].

An example of two planning instances, connecting different initial and
goal vehicle poses qS and qG, solved using Reeds-Shepp paths is shown in
Figure 3.2. It can be seen that switches in the direction of movement occur,
resulting in cusps at intermediate sections of the path.

It should be noted that Reeds-Shepp paths also suffer from the drawback
of discontinuous curvature that Dubins paths were shown to have. Thus
vehicles performing these paths will have to stop and re-orient their steering
wheels at the junction of different motion patterns, in order to follow the
path exactly. The next section introduces an extension to Reeds-Shepp
paths, which deals with the problem of discontinuous curvature.
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qS qG

qS qG

Figure 3.2: Different examples of Reeds-Shepp paths.

Continuous curvature paths

In [27] an extension to Reeds-Shepp paths is proposed, which is able to
solve the inherent discontinuity problem. In fact this solution, allows the
computation of paths with: 1) continuous curvature; 2) bounded curvature;
and 3) upper bounded curvature derivative. This means that the generated
paths can be followed by a vehicle of the form:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = vκ,

κ̇ = u.

(3.4)

The above system constitutes a more complex version of the kinematic car
model Equation (3.3). The dynamics of the real vehicle are more accurately
modeled by extending the system with the curvature κ of the vehicle. The
longitudinal velocity v can take unit values |v| = 1, corresponding to mov-
ing forward or backward. The control u is the angular acceleration of the
vehicle, and is related to the steering rate of the front wheels.

In order to achieve curvature continuity, the authors in [27] introduce a
new motion pattern to the Reeds-Shepp paths. This motion pattern cor-
responds to a clothoid arc, and is used to ensure a continuous curvature
transition between line segments (S) and arc circle segments (L or R). By
inserting this extra clothoid arc in between motion patterns of the Reed-
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Curvature Curvature

Arc circle CC Turn

Clothoid

Arc circle

κmax

−κmax

κmax

−κmax

Figure 3.3: The curvature profile of Dubins [25] and Reeds-Shepp [26] paths
(left) presents discontinuities. Curvature continuous paths [27] (right) over-
come this problem by using clothoid segments between arc circles and line
segments. Figure based on [27].

Shepp paths, it is possible to ensure curvature continuity of the path. The
junction of motion patterns corresponding to a clothoid arc, an arc circle,
and a clothoid arc, is called a continuous curvature (CC) turn. Figure 3.3
shows an example comparing the curvature profile of a Reeds-Shepp path
and that of a path as proposed by [27].

Unfortunately, [27] provides no guarantees as to the length optimality
of these paths. The problem of finding length optimal paths for the system
in Equation (3.4), had already been addressed in [86], which hinted at a
complex behavior of the optimal solution, with possibly infinitely many
switching points. However [27] successfully shows that the proposed paths
converge towards the optimal Reeds-Shepp paths, as |u| → ∞. This in itself
is a good indication that the solution paths are of good quality, as it shows
that their length is not excessively larger than the optimal paths for the
simplified vehicle model.

Recently, some works have tried to further improve Curvature Contin-
uous paths. This can be done by taking into account even more complex
vehicle dynamics, which is expected to increase the performance and com-
fort of autonomous vehicles following it. The following section details some
of these works.

Further extensions

The work [87] builds upon the original Dubins paths, adapting them so as
to generate smooth curvature profiles. To do so, a Dubins path is computed
in a first step, and then, intermediate paths are added at the discontinuous
curvature transitions. The additional transitions are characterized by a
smooth curvature profile with bounded curvature and curvature derivative.
The resulting path is C∞, meaning that it is infinitely differentiable, and
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presents a smooth curvature profile. One of the shortcomings of this work,
is that it only focuses on the forward motion of the vehicle, and that it does
not consider Dubins paths concatenating three sequential turns.

Targeting the case of tight environments, such as parking lots, the work
in [28] proposes Hybrid Curvature steer, an approximation of Reeds-Shepp’s
paths. The proposed solution has the same benefits as Curvature Contin-
uous paths, however it allows curvature discontinuities where changes in
direction movement of the vehicle occur. This is inspired by human be-
havior when parking, which is characterized by turning the steering wheel
while stopped, when changing directions of movement. The authors show
that when integrated in a motion planner, Hybrid Curvature steer allows
for shorter paths, when compared to Curvature Continuous curves, and
smoother paths, when compared to Reeds-Shepp’s paths.

The Hybrid Curvature steer approach is further developed into Hybrid
Curvature Rate steer in [29]. The work extends the continuous curvature
vehicle model into the following model:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = vκ,

κ̇ = α,

α̇ = u,

(3.5)

where κ, α, and u are all bounded. In order to generate motions that respect
this vehicle model, the paths must respect maximum limits on curvature,
curvature rate and curvature acceleration. Curvature and curvature rate
limits have been tackled by Continuous Curvature paths [27], but curvature
acceleration is for the first time considered in this work. By considering lim-
itations on the curvature acceleration, a planner is able to generate paths
that take into account actuator limits, and that result in a better track-
ing performance of the vehicle controller. Tracking performance is very
important, specially in tight environments, where poor tracking can lead
to deviations from the planned path that might result in collisions with
obstacles.

A novel take on steering methods is introduced in [88] where the au-
thors consider planning in the belief state. As opposed to all of the previ-
ously mentioned solutions, which assume a perfect following of the planned
path, [88] takes into account uncertainties in both the controller and lo-
calization modules. The result is a steering method which provides paths
with an associated motion execution uncertainty, which is computed by as-
suming knowledge of the uncertainties in the measurement model and the
disturbances affecting the system. By taking into account the uncertainty
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associated with the planned path, the proposed motion planner plans mo-
tions that have a significantly smaller risk of collision due to control and
localization errors.

The work in [89] follows a similar line as that of Continuous Curvature
paths. Instead of resorting to clothoid arcs, characterized by C0 curvature
continuity, they make use of a transition segment, which ensures C1 cur-
vature continuity. Even though C1 curvature is guaranteed, the produced
paths do not have a bounded curvature rate, and can result in curvature rate
profiles with noticeable spikes. The transition segment used in this work is
derived so as to ensure convergence of a given control law, thus allowing for
control guarantees when executing the path. Control guarantees provide a
way to know the maximal possible deviation from the planned path, when
the vehicle is following the path. If at planning time, this maximal possible
deviation is also checked for collision, then it is possible to plan collision-
free paths, even in the presence of controller transients/errors. The maximal
possible deviation, and collision checking of it, is not pursued in [89], but is
instead left as future work.

Summary

The works mentioned previously show a trend of trying to consider increas-
ingly more complex vehicle constraints. The benefit of considering more
complex vehicle models at the planning layer, is that this will simplify the
control task, which in turn results in more accurate tracking of the planned
paths. In most autonomous systems following the sense-plan-act architec-
ture, the collision checking procedures are done only at the planning layer,
and for the planned path. A disparity between planned path and per-
formed path is inevitable, meaning that the collision checking procedures
at the planning layer might not be sufficient to ensure safety of the system.
The previously mentioned works tried to address these issues through three
different approaches:

Accurate system dynamics By taking into account more complex vehi-
cle models, which are closer to the real vehicle model, the differences
between planned path and performed path are reduced. This results
in collision checking procedures which are more accurately portraying
the performed path [29, 87];

Controller stability guarantees By studying the properties of the whole
system, i.e., considering the whole chain consisting of planner, con-
troller, and vehicle, it is possible to arrive at strong guarantees about
its stability and convergence. Furthermore, it is possible to ensure
that the system will stay within a region around the planned path. If
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the given region is collision-free then the whole system will be safe,
even in the presence of controller transients. An initial work into this
topic is done in [89];

Uncertainty and disturbance considerations Considering measurement
uncertainties and controller disturbances is another possible way to
ensure safety of the system. Associated to the planned path is an
uncertainty that can be used to measure the probability of collision
of a given path. A path is deemed safe if it has a low enough collision
probability [88].

In the remainder of this chapter we will present a novel method which
follows the first type of approach. This method is motivated by the ob-
servation that all of the previously proposed works have been focusing on
constraints on the path properties (curvature and curvature rate). However
these constraints do not immediately relate to the vehicle actuator limits.
Instead they have a complex relation to the path and the velocity at which
the path should be followed. The proposed method starts from the vehicle
actuator limits, and based on them, and on the desired vehicle velocity,
generates constraints on the path curvature and curvature rate. This is a
benefit in itself, as curvature rate constraints are not usually known or easy
to compute, whereas actuator limits are. Furthermore, this work proposes
constraints on the curvature acceleration, as they are a natural consequence
of limited actuator torque.

3.2 Cubic curvature paths

Cubic curvature paths are hereby introduced as paths that respect complex
steering actuator constraints, namely limitations on steering magnitude,
rate and torque. In the following sections we introduce the considered vehi-
cle model, the constraints it puts on a path to be followed, and the suitability
of cubic curvature paths for this particular vehicle model.

Vehicle model

We start by considering the already familiar vehicle model used by Du-
bins [25] and given by Equation (3.2). The curvature κ of a vehicle with
wheelbase length L is related to its steering angle ϕ through

κ = tan (ϕ) /L. (3.6)
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This allows us to write the angular velocity as a function of the steering
angle ϕ, resulting in the vehicle model:

ẋ = v cos θ, (3.7a)

ẏ = v sin θ, (3.7b)

θ̇ = v
tan(ϕ)

L
, (3.7c)

where (x, y) represents the position of the rear wheel axle center of the ve-
hicle, θ its orientation and v is the vehicle velocity. A vehicle pose is defined
by the three variables (x, y, θ). If an additional curvature is associated to a
pose we obtain a configuration, defined as (x, y, θ, κ).

The steering angle ϕ of the vehicle is physically coupled to an actuator,
which like any real system has physical limitations. In this work we consider
the following limitations:

• Maximum steering angle amplitude ϕmax,

• Maximum steering angle rate of change ϕ̇max,

• Maximum steering angle acceleration ϕ̈max.

Thus, in addition to Equation (3.7) the following constraints must be re-
spected:

−ϕmax ≤ϕ ≤ ϕmax, (3.8a)

−ϕ̇max ≤ϕ̇ ≤ ϕ̇max, (3.8b)

−ϕ̈max ≤ϕ̈ ≤ ϕ̈max. (3.8c)

These constraints directly affect the vehicle motion capabilities and should
be dealt with when planning paths.

Path feasibility

Path feasibility depends on the capabilities of the vehicle that executes it
and on the path itself. The limited steering angle amplitude ϕmax constraint
Equation (3.8a) imposes a maximum allowed curvature on the path κmax.
This limitation is addressed by generating paths which have a curvature
profile |κ| ≤ κmax [25, 26]. Limited steering angle rate of change ϕ̇max

Equation (3.8b), can be tackled by limiting the curvature derivative of the
generated paths [27]. We note however that the relation between steering
angle rate and curvature derivative is not a trivial one.

In this work we also deal with the third limitation Equation (3.8c),
related to the limited steering angle acceleration ϕ̈max. Having a limited
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ϕ̈max results in ϕ̇ being a continuous function, which in turn indicates that
ϕ is a continuously differentiable, C1 function. Previously mentioned works,
with the exception of [29, 87, 89], fail to generate paths with a C1 curvature
profile. Paths that do not have a C1 curvature profile, require an infinite
ϕ̈max, in order to be accurately followed. This is impossible to achieve by
an actuator, and motivates the usage of paths with a C1 curvature profile.

The steering profile is related to the curvature profile through Equa-
tion (3.6). The sharpness α is defined as the change of curvature along the
path length s:

α = ∂κ/∂s. (3.9)

By ensuring sharpness continuity in a path, we guarantee that the curvature,
and the steering profile of such a path is C1. A vehicle is thus able to follow
the path using a bounded steering acceleration.

In the following section, we detail how to generate paths that respect all
three limitations, ϕmax, ϕ̇max, and ϕ̈max, previously stated.

Cubic curvature paths

Cubic curvature paths are paths where the curvature is given by a polyno-
mial of order three with respect to the length s along the path:

κ(s) = a3s
3 + a2s

2 + a1s+ a0. (3.10)

A cubic curvature profile is the minimum degree polynomial that allows us
to define arbitrary initial and final curvatures, κi and κf , and sharpnesses
αi and αf . The sharpness profile of these paths is given by:

α(s) =
∂κ(s)

∂s
= 3a3s

2 + 2a2s+ a1. (3.11)

In order to find the parameters of the cubic polynomial, we use the initial
and final constraints:

κ(0) = κi, (3.12a)

α(0) = αi, (3.12b)

κ(sf) = κf , (3.12c)

α(sf) = αf , (3.12d)

where sf is the path length. Assuming the path length sf is known, the
terms of the polynomial Equation (3.10) can be determined by solving the
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linear equation system:

a0 = κi, (3.13a)

a1 = αi, (3.13b)[
3s2f 2sf
s3f s2f

] [
a2
a3

]
=

[
αf − a1

κf − a1sf − a0

]
. (3.13c)

We use cubic curvature paths as transition segments between straight
lines and arc circles. In order to ensure that the path formed by stitch-
ing together different path segments has a C1 curvature profile, we need
to ensure that both the curvature and the sharpness profiles are continu-
ous. Initial constraint Equation (3.12a) is used to ensure that the initial
curvature is equal to the final curvature of the preceding segment path. Fi-
nal constraint Equation (3.12c) is used to ensure that the final curvature is
equal to the initial curvature of the following segment path. Analogously,
Equation (3.12b) and Equation (3.12d) are used to ensure that the initial
and final sharpness match those of the preceding and following paths. By
doing so, we ensure continuity of the curvature and of the sharpness, which
leads to paths with C1 curvature profiles.

It should be noted that so far, we have only considered curvature and
sharpness constraints, that ensure continuity of the curvature profile. How-
ever it is necessary to also consider the steering limitations Equation (3.8),
in order to ensure that the generated paths are feasible to follow. The
following section addresses this issue.

Ensuring steering rate and acceleration constraints

In order to have a feasible path, we need to ensure that a vehicle can follow
it while complying with its steering constraints Equation (3.8). Each con-
straint introduces a different requirement on the generated cubic curvature
path.

The limitations regarding the steering magnitude can be addressed by
selecting appropriate initial and final curvature and sharpness constraints. If
we make both κi and κf smaller in magnitude than κmax, and αi and αf equal
to zero, we can ensure that the curvature profile will be contained within
the bounds [min(κi, κf),max(κi, κf)]. Since the steering angle is related to
the curvature according to Equation (3.6), we get that the steering angle
will be contained within the bounds [min(ϕi, ϕf ),max(ϕi, ϕf )], where ϕi =
arctan(κiL) and ϕf = arctan(κfL).

Given κi, κf , αi, and αf , and selecting an arbitrary path length sf , a cubic
curvature profile is generated according to Equation (3.13). Afterwards, the
steering angle profile corresponding to the cubic curvature path is computed
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from the path curvature using Equation (3.6). Assuming then that the
vehicle is following the path at a given fixed velocity v, the steering angle
rate and acceleration profiles are computed.

The steering angle rate profile will have a peak rate ϕ̇peak, which can
be found by numerical methods. In our case we simply perform an exhaus-
tive search over the whole steering rate profile. We note that a numerical
procedure is necessary due to the non-linear relation between the curvature
profile and the steering rate profile. In case ϕ̇peak is larger than the allowed

maximum steering rate ϕ̇max the length sf needs to be increased so that
ϕ̇peak = ϕ̇max. In case ϕ̇peak is smaller than the allowed maximum steering
rate, then the length should be increased, this is done to ensure that paths
with excessive length are not allowed. The needed change in path length sf
corresponds to scaling by a factor of ϕ̇peak/ϕ̇max.

The peak acceleration ϕ̈peak can also be found by numerically computing
the maximum magnitude of the steering acceleration profile. If the maxi-
mum magnitude of the steering acceleration profile ϕ̈peak is exceeding or un-

der the acceleration limitation ϕ̈max, then a scaling of the path length must
be done. In this case the needed scaling factor is given by

√
(ϕ̈peak/ϕ̈max).

To guarantee that the path respects both steering rate and acceleration
limitations, we need to scale its length by the greater of the scaling factors.
If both scaling factors are smaller than one, then we are reducing the path
length, thus ensuring that the path is as short as possible and making use of
the full actuation capabilities of the vehicle. Once the new path length sf is
found, the cubic curvature path is recomputed by solving Equation (3.13).
This ensures that the vehicle steering limitations are respected, as long as
the vehicle follows the given path at a velocity v, or lower. Algorithm 1
summarizes this procedure.

3.3 Sharpness continuous paths

Making use of the previously introduced cubic curvature paths, a path plan-
ner for obstacle-free environments can be developed. Our proposed method
is of a similar nature to that in [27] (explained in Section 3.1). However, in-
stead of clothoid arcs, we use cubic curvature paths as transition segments
between line segments (S) and arc circles (L or R). This results in paths
that respect the steering limitations Equation (3.8).

Sharpness continuous turns

We propose Sharpness Continuous (SC) turns, which consist of three seg-
ments, an initial cubic curvature path Γ1,2, an arc circle Γ2,3, and a final
cubic curvature path Γ3,4. Figure 3.4 shows an example of such an SC
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Algorithm 1: Cubic Curvature Path coefficient computation

Input: κi, κf , v, ϕ̇max, ϕ̈max, αi = 0, αf = 0, sf = 10
Output: a0, a1, a2, a3

1 a0, a1, a2, a3 ← solve Equation (3.13);

2 ϕ̇(t)← ComputeSteeringRate(a0, a1, a2, a3, v);

3 ϕ̇peak ← GetPeakSteeringRate(ϕ̇(t));

4 C ← ϕ̇peak/ϕ̇max;

5 ϕ̈(t)← ComputeSteeringAcceleration(a0, a1, a2, a3, v);

6 ϕ̈peak ← GetPeakSteeringAcceleration(ϕ̈(t));

7 if ϕ̈peak/ϕ̈max > C then

8 C ← ϕ̈peak/ϕ̈max;

9 sf ← C · sf ;
10 a0, a1, a2, a3 ← solve Equation (3.13);

turn. The initial segment Γ1,2 starts with null sharpness at a configuration
q1 = (x1, y1, θ1, κ1, α1). It then ends with maximum curvature, ±κmax, and
null sharpness, at configuration q2 = (x2, y2, θ2, κ2, α2). The second segment
is an arc circle Γ2,3 with radius κ−1

max and arbitrary arc length, starting at
q2 and ending at q3 = (x3, y3, θ3, κ3, α3). The SC turn is completed with a
path Γ3,4, starting with curvature ±κmax and null sharpness, and ending at
a configuration q4 = (x4, y4, θ4, κ4, α4), also with null sharpness.

We assume, without loss of generality, that the vehicle, and subsequently
the path, starts at a configuration q1 = (0, 0, 0, 0, 0). From q1, it then follows
the path Γ1,2 taking it to a configuration q2 = (x2, y2, θ2, κmax, 0). The path
Γ1,2 has initial and final curvatures 0 and κmax, respectively. The initial and
final sharpnesses are both set to zero, in order to ensure that Γ1,2 can be
stitched together with arc circles and straight segments while still having
sharpness continuity, i.e., the curvature profile is C1. We note that line
segments and arc circles, are special cases of cubic curvature paths, that
share in common a constant curvature profile, and a null sharpness profile.
Path Γ1,2 is computed according to Algorithm 1, in order to ensure that
steering actuator limitations of the vehicle are respected. The values x2,
y2, and θ2 are those that result from following the curvature profile of Γ1,2

with a starting vehicle state q1.

Once the vehicle has a curvature κmax, it then follows an arc circle path
Γ2,3 with radius κ−1

max. The arc circle starts at (x2, y2) and has its center
at a distance κ−1

max perpendicular to the orientation θ2 at point (x2, y2). Its
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q1

Γ1,2

Γ2,3

κ−1
max

q2

q3

Γ3,4

Ω

r

q4µ

δ

Figure 3.4: Example of a sharpness continuous turn.

center is given by

(xΩ, yΩ) = (x2 − κ−1
max sin θ2, y2 + κ−1

max cos θ2). (3.14)

The last path segment Γ3,4 departs from the arc circle at q3 and brings
the vehicle to a configuration q4. Configuration q4 depends on the point of
departure from the arc circle q3. However, it always lies on a circle Ω, which
has the same center as the arc circle (xΩ, yΩ) in Equation (3.14).

In order to find the radius of circle Ω, we first assume an auxiliary
arc circle to be centered at (xΩ′ , yΩ′) = (0, κ−1

max). We assume a departure
configuration from the circle at (0, 0, 0, κmax, 0). Then, by following the
path given by a curvature profile with initial and final curvatures κmax and
κ4, and null initial and final sharpness, computed with Algorithm 1, we will
end at a configuration q′ = (x′, y′, θ′, κ′, 0). Configuration q′ is located at
an auxiliary Ω′ circle (the auxiliary equivalent of the Ω circle), that has the
same center as the arc circle. Thus we compute the radius of Ω′, which is
equal to the radius of Ω, as

r =
√

(x′ − xΩ′)2 + (y′ − yΩ′)2 =

√
x′2 + (y′ − κ−1

max)2. (3.15)

An additional angle µ is defined as the difference between θ′ and the
tangential angle to Ω at configuration q′. It is computed using the previous
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auxiliary arc circle as

µ = arctan

(
y′ − κ−1

max

x′

)
+
π

2
− θ′. (3.16)

Thus, given a certain initial configuration q1, the possible positions of the
ending configuration q4, resulting from a combination of a cubic curvature
path, an arc circle, and another cubic curvature path, i.e., an SC turn, lie
on a circle Ω. The possible θ4 orientations of these configurations are given
by the tangential angle at the circle plus µ. Figure 3.4 illustrates circle Ω
and the tangential angle µ.

Connecting sharpness continuous turns

An SC path between start and goal configurations qS and qG can be found
by combining SC turns and line segments. Similarly to the Dubins case, two
different types of paths can be found, those composed of two turns connected
by a line segment, and those composed of three consecutive turns. Each of
these must be handled in different ways, as explained below.

Turn + straight + turn case

Assuming the case when the SC path is composed of two turns connected
by a line segment, we have the following path elements:

• an SC turn starting at the start configuration qS and ending at a
configuration qa with null curvature;

• a line segment starting at qa and ending at qb;

• an SC turn starting at configuration qb with null curvature, and ending
at the goal configuration qG.

Figure 3.5 shows an example of an SC path, with the three elements de-
scribed above.

We note here that our approach disregards switches of direction of move-
ment, i.e., it assumes that the vehicle only moves forward or backward, but
not both. This makes it similar to Dubins paths [25], and can possibly
result in paths that are longer than those that would be computed if direc-
tion of movement switches were allowed. These shortcomings could be fixed
with further development, and consequent generalization, of the proposed
approach.

In order to connect two SC turns, we need to find the configurations qa
and qb that belong to the starting and ending SC turn possible departure
configurations, and that can be connected with a line segment. To do so,
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qS

qG

qa

qb

Figure 3.5: Sharpness continuous path example. The path consists of an
SC turn between qS and qa, a line segment from qa to qb, and an SC turn
between qb and qG. Each SC turn contains a curving cubic curvature path
(blue), an arc circle segment (green), and a decurving cubic curvature path
(red). The dashed circles correspond to the SC turns that can span from qa
and qb.

qa and qb must have the same orientation, i.e., θa = θb. Furthermore both
must lie on a line segment with an inclination angle θa.

As seen before, in Figure 3.4, the possible set of departure configurations
of an SC turn are located on a circle, and its orientations differ from the
circle tangent by µ. Thus, to connect two SC turns, we need a way to
connect two circles Ωs and Ωf with arbitrary centers, radii, and µ values.

We first assume two auxiliary circles Ωa and Ωb, as depicted in Figure 3.6
(top). Circles Ωa and Ωb have the same radii and µ values as the original
circles Ωs and Ωf . Circle Ωa is centered at (0, 0) and Ωb is located so
that qa and qb are collinear. We are interested in finding the center of
Ωb = (xΩb

, yΩb
). From Figure 3.6 (top) it can be seen that

yb = −ra cosµa + rb cosµb. (3.17)

We assume that the distance r(Ωa,Ωb) between the circle centers is the
same as the distance between the original circles r(Ωs,Ωf). We then have

xΩb
=

√
r(Ωs,Ωf)2 − y2Ωb

. (3.18)

We know that qa = (ra sinµa,−ra cosµa, 0, 0, 0) and qb = (xΩb
−rb sinµb,

yΩb
−rb cosµb, 0, 0, 0). To find these configurations in the original circles Ωs

and Ωf , we need to first apply a rotation ∆θ = arctan(yΩf
− yΩs

, xΩf
− xΩs

)
to qa and qb. We then translate these configurations by (∆x,∆y) = (xΩs , yΩs).
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Ωa

rara cosµa

ra sinµa

qa
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ra sinµa

qa
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qb
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Ωb

rb cosµb

rb sinµb

µb

Figure 3.6: Computing the external (top) and internal (bottom) tangents
between two circles.

The resulting rotated and translated configurations correspond to the de-
sired tangent configurations between the circles Ωs and Ωf .

The above procedure finds the departure configurations between two
counterclockwise (left steering) SC turns, shown in Figure 3.6 (top). An
analogous procedure can be used to find the possible departure configura-
tions between any combination of clockwise (right steering) and counter-
clockwise turns, as shown in Figure 3.6 (bottom). These procedures are
valid if the found tangent configurations qa and qb do not lie inside the
circles Ωb and Ωa, respectively.
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qS
qG

qbqa

Figure 3.7: Sharpness continuous path example. The path consists of an SC
turn between qS and qa, an arc circle segment from qa to qb, and an SC turn
between qb and qG. Each SC turn contains a curving cubic curvature path
(blue), an arc circle segment (green), and a decurving cubic curvature path
(red). The dashed circles correspond to the SC turns that can span from qa
and qb, but also to the circle that the intermediate arc segment belongs to.

Turn + turn + turn case

An SC path can also be created by combining three consecutive turns. In
that case, the path has the following elements:

• an SC turn starting at the start configuration qS and ending at a
configuration qa with maximum curvature ±κmax;

• an arc circle segment with maximum curvature (equivalent to mini-
mum turning radius) connecting qa and qb;

• an SC turn starting at configuration qb with maximum curvature
±κmax, and ending at the goal configuration qG.

Figure 3.7 shows an example of an SC path, with the three elements de-
scribed above.

We start by defining the auxiliary circles Ωa and Ωb, as depicted in
Figure 3.8. Circles Ωa, Ωb, and the associated µ values are computed as
detailed in Section 3.3. The initial circle Ωa is associated with the start
configuration qS, whereas the final circle Ωb is associated with the goal
configuration qG.
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Figure 3.8: Computing the tangency of a turn + turn + turn path.

We assume that from the exit configuration qa, the vehicle follows an
arc circle with minimum turning radius κ−1

max. The circle to which this arc
circle belongs will be referred to as Ω′. Since the exit configuration qa can lie
anywhere on the circle Ωa, we get also that the center of Ω′ can lie anywhere
within a circle Ω′

a that is concentric to Ωa. The radius r′a of Ω′
a is given by:

r′a =

√(
ra + κ−1

max cosµa
)2

+
(
κ−1
max sinµa

)2
. (3.19)

The equivalent procedure is applied to the auxiliary circle Ωb and the
entry configuration qb, in order to obtain the circle Ω′

b of possible locations
of the center of the circle of maximum turning radius Ω′. Analogously, we
compute the radius of Ω′

b as:

r′b =

√(
rb + κ−1

max cosµb
)2

+
(
κ−1
max sinµb

)2
. (3.20)

The remaining task is to compute the intersection between the two circles
of possible locations of the center of Ω′. In the general case, two intersection
points can be found, however only one of them will allow the concatenation
of paths to be continuous in the orientation.

Figure 3.8, shows the procedure to find an SC path composed of a coun-
terclockwise (left steering) SC turn, a clockwise (right steering) arc circle,
and a counterclockwise SC turn. An analogous procedure can be made to
find the SC path composed by a clockwise SC turn, a counterclockwise arc
circle, and a clockwise SC turn.

One important difference in the initial and final SC turns tangent config-
urations, qa and qb, of the turn+turn+turn case, is that they have maximum
curvature, instead of null curvature, as in the turn+straight+turn case. This
allows the turn+turn+turn case to be composed of two SC turns with an
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arc circle in between them, as opposed to two SC turns with another SC
turn in between them. By using an arc circle as an intermediate connection
between the start and final SC turns, instead of yet another SC turn, we
can guarantee a shorter and more natural transition between the maximum
curvature limits between turns.

Finding the shortest SC path

In order to find the shortest SC path between two configurations qS and
qG, we need to compute all the possible SC turns that can be spanned from
these configurations. The SC turns are then connected, via line segments
or arc circles, in order to generate possible SC paths.

Each of the configurations qS and qG can span a total of four SC turns,
depending on whether the vehicle is moving forward or backward, or whether
it is turning left or right. The possible SC turns that span from qS and qG
are shown in Figure 3.5 as dashed circles (forward and backward SC turns
are equivalent, so they lie on top of each other). Figure 3.4 shows an SC
turn which assumes a vehicle moving forward and turning left. The method
explained in Section 3.3 can be readily used to obtain SC turns moving
forward, independent of the direction they are turning. The procedure to
obtain an SC turn moving backward is analogous.

There are a total of 20 possible SC paths between the two sets of 4 SC
turns spanned from qS and qG. 16 of these possible paths are composed
of two SC turns connected via a line segment, while the remaining 4 are a
combination of two SC turns connected via an arc circle. All path combina-
tions are computed and checked for feasibility, using the methods detailed
in Section 3.3. Each path length is evaluated, and the shortest feasible path
is selected as the solution.

3.4 Results

We present here experiments showing the benefits of the proposed SC paths,
and indicate its amenability to online implementation.

Convergence of SC paths to Dubins paths

As previously mentioned, Dubins and Reeds-Shepp paths are proven to be
optimal in terms of length. The optimality guarantee comes however at
the cost of considering a simplified vehicle model. When considering more
complex vehicle dynamics, the optimal solution often presents complex be-
haviors, and proves hard to compute analytically [27, 86]. It is still possible
however, to understand how near-optimal paths are, by comparing them
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Figure 3.9: SC paths with increasing sharpness α converge to the length
optimal Dubins path.

with the optimal paths, for vehicles with simpler, but similar constraints.
Thus we analyse our proposed method, that respects actuator dynamic lim-
itations, by comparing it to the Dubins paths, which does not comply with
these limitations.

SC paths are, not surprisingly, longer than the Dubins path correspond-
ing to the same initial and final vehicle states. This is a natural consequence
of introducing a transition segment between the arc circle turns and the line
segments. With the added transition segment, SC turns have a longer turn-
ing radii than if the turn was done resorting only to an arc circle with radius
κ−1
max, as is the case with Dubins paths.

Figure 3.9 shows the Dubins path for a given start and goal configuration
qS and qG. Overlayed are SC paths with different maximum sharpness
αmax for the same configurations qS and qG. It is seen that the greater the
maximum sharpness αmax of the SC paths is, i.e., the greater the achievable
steering rate and accelerations of the vehicle, the closer it approaches the
Dubins path. This is somewhat intuitive, as increasing αmax results in
increasing the rate of change of the curvature profile, and consequently in a
reduction of the length of the transition segments (cubic curvature paths).
If αmax → ∞, then the curvature changes would be immediate, and the
transition segments would vanish, making the SC path equivalent to the
Dubins path, and as such, length optimal.

To further study the convergence of SC paths to the length optimal
Dubins paths, we run several planning instances, in which the steering limi-
tations are relaxed by a tuning factor Kϕ. Thus, for each planning instance,

several SC paths are computed with steering limitations ϕ̇max = Kϕϕ̇
0
max
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Figure 3.10: Convergence of the length of SC paths to the length of Dubins
paths.

and ϕ̈max = Kϕϕ̈
0
max. The maximum steering angle magnitude ϕmax is held

fixed. The length of the paths are compared to the corresponding Dubins
path with maximum steering angle magnitude ϕmax. Figure 3.10 shows the
ratio between the lengths of the SC paths and the Dubins path for 1000
randomized planning instances. It can be seen that as Kϕ is increased the
length of the SC paths converges to the length of the Dubins path.

Precomputation of cubic curvature paths

As previously mentioned, given two configurations qS and qG, the SC method
computes all possible 20 SC turns and how they can be connected. The con-
nection process, as detailed in Section 3.3, is computationally cheap. The
bulk of processing is due to the generation of the cubic curvature paths
corresponding to the transition segments.

As seen in Section 3.3, an SC turn depends on the cubic curvature paths
that are part of it. In order to evaluate these paths, one has to generate their
curvature profiles from the given initial and final constraints. To comply
with the steering constraints, a numerical evaluation of a steering profile
must be done, in order to find the path length scaling factors, as detailed in
Section 3.2. When one has the desired curvature profile, the orientations θ
can be obtained analytically. The x and y positions of the path are found
by integrating the vehicle model equations, using an Euler method, which
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has a high computational cost. This cost can be greatly reduced using
precomputations, under the following assumptions.

If one assumes that the start and end configurations qS and qG always
have null curvatures, then one can compute, in an initialization procedure,
all the possible cubic curvature paths starting and ending at curvatures
κ = 0,±κmax. Thus it is possible to avoid the expensive generation of
cubic curvature paths needed to find out the possible SC turns. In order to
generate an SC turn, one just has to use the precomputed paths and apply
rotations and translations to them.

The precomputation of paths can still be achieved, without limiting the
start and goal configurations qS and qG to have null curvature. In fact, one
can allow qS and qG to have curvature values belonging to finite discrete
set. The set of precomputed paths can then be stored in a look-up table
and used online during the computation of sharpness continuous paths.

Timing evaluation

We test the steering method, measuring its computational speed for several
problem instances. The method is implemented in C++ and running on a
Linux Mint distribution. The computer used is equipped with an Intel Core
i7-6820HQ Processor running at 2.70 GHz, and with 16.0 GB of RAM.

We generate 1000 random pairs of start and goal configuration queries.
Each query is repeated 100 times to get a better estimate of the average
computation time. The start and goal configurations of each query are
generated by sampling the x and y coordinates from a uniform random
distribution between −50 and 50. The orientations are sampled from the
interval [−π, π], and the curvatures from a discrete equispaced set of 11
curvatures [−κmax, . . . , 0, . . . , κmax].

Without the use of precomputations, the average time for finding a so-
lution path is 16ms, whereas when making use of precomputations the av-
erage time is 88µs. The precomputations decrease the computational time
by three orders of magnitude, mostly due to the fact that the generation of
the cubic curvature paths, which involves the expensive integration of the
vehicle model equations, is avoided. These results indicate that the steering
method is extremely inexpensive when using precomputations, making it
suitable for real-time applications.

Controller performance

A simulation test is run in order to understand how the proposed paths
affect the performance of a vehicle tracking them. A kinematic vehicle
model coupled with a detailed steering actuator model is used to simulate
the vehicle.
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Figure 3.11: Steering reference profiles used in simulation.

In the test, two paths consisting of a straight segment, a turn, and a
straight segment are generated. The first path is a CC path [27], while the
second is our proposed SC path. Both paths abide by the same maximum
steering angle magnitude ϕmax and steering angle rate ϕ̇max constraints.
Additionally, the SC path respects also the steering angle acceleration ϕ̈max

constraint, unlike the CC paths.

The simulation assumes a steering actuator that is limited in terms of
achievable steering angle magnitude, rate, and acceleration. The steering
angle is controlled making use of a PID controller, which receives a steering
angle reference, and actuates on the steering angle torque. The PID con-
troller was tuned to achieve a step response with a relatively fast settling
time and little overshoot. The steering angle reference is provided from a
high-level path tracking controller. The high-level controller consists of a
feedforward part and a feedback part. The feedforward part is obtained
by finding the closest path point, and getting the corresponding steering
angle reference at that point. The feedback part is a proportional controller
regulating both lateral and heading errors. Such a controller is a simple
implementation commonly used in path tracking applications.

Figure 3.11 shows the steering reference profiles of the paths to be
tracked. The difference between them is in the shape of the increasing
and decreasing sections of the steering angle. In the CC case, the steering
angle, directly related to the curvature, follows a linear profile while in the
SC it follows a cubic profile.

Figure 3.12 shows the lateral and heading errors when the vehicle tracks
both paths. The vehicle is initially placed at the start of the path, and
it follows the first straight segment perfectly. However, when the turning
section starts, a deviation from the path begins to arise. The feedback part
is then responsible for trying to regulate the errors to zero. Shortly after
the turn begins, the CC case becomes unstable. On the other hand, the SC
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Figure 3.12: Lateral error when tracking a CC and an SC path. When
tracking the CC path, the controller becomes unstable, resulting in an error
that grows indefinitely, and out of scope of the graph. The SC path tracking
is seen to be stable.
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Figure 3.13: Lateral acceleration when tracking a path without feedback,
i.e., using only feedforward references.

case is stable, and its error converges to zero. The error profiles show that
the controller performance is worse when tracking CC paths.

The lateral acceleration and jerk (acceleration rate) experienced by the
vehicle are related to passenger comfort. Figure 3.13 shows the lateral
accelerations for a vehicle following the reference steering profiles without
feedback actuation. It is seen that the CC path has large jerk values, which
result from an aggressive steering actuation. The SC path steering profile
achieves smoother lateral acceleration profiles.
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3.5 Conclusions

This section provided an introduction to obstacle-free path planning meth-
ods, listing relevant contributions in the field for the application case of
autonomous vehicles. A trend towards more complex vehicle models can
be observed in the related work section, however, a common shortcoming
to many approaches is the lack of compliance to explicit steering actuator
limitations. The works deal indirectly with path properties, such as curva-
ture rate and curvature acceleration, which have a complex relation with
the steering actuator properties. To address this issue we propose cubic cur-
vature paths, which, with additional assumptions on vehicle velocity, can
be feasibly followed by a vehicle with known steering actuator constraints.
The cubic curvature paths, are then integrated within Sharpness Continuous
(SC) turns, which can be stitched together with line segments to generate
SC paths. We show experimentally that these paths resemble the length
optimal Dubins paths.

We thus introduce a novel steering method, which unlike previous ap-
proaches, is able to take into account steering actuator limitations explicitly,
instead of requiring cumbersome constraints to be formulated on the path
curvature properties. The generated paths respect the maximum steer-
ing angle constraints, maximum steering rate and acceleration constraints.
These properties ease the low-level controller task and introduce an higher
degree of smoothness, improving the driving comfort and reducing actuator
effort. This is of importance when dealing with heavy-duty vehicles, which
are characterized by slow steering actuator dynamics.

As future work, the method could be extended so as to handle direction
switches, as in the case of Reeds-Shepp paths [26], thus allowing for more
complex maneuvers and shorter paths. A natural development, is to take
into account further limitations on the vehicle, that do not only are related
with steering actuator dynamics, but also with safety aspects, such as fric-
tion limits, rollover limitations, or comfort, such as lateral acceleration and
jerk limitations.

With respect to control design, controllers could also be developed such
that they take advantage of the smooth properties of the path. Due to
the high quality of the reference paths, simpler controller approaches can
be used, which have a lower computational burden when compared to more
complex and robust approaches, such as Model Predictive Control. Further-
more the nature of the proposed method, which can be seen as a planner
that concatenates together motion patterns computed offline, can allow the
computation of attraction funnels of said motion patterns. The attraction
funnels allow the planner to take into account the uncertainty and transient
errors associated with the controller. By collision-checking the funnels, one
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can develop a planner which guarantees safety of the whole system com-
posed of the planner, controller and vehicle [88, 90].
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Chapter 4

Smooth Path Planning for
Unstructured Environments

Unstructured environments, such as those encountered in agriculture, forestry,
mining, and construction industries, are usually characterized by the pres-
ence of obstacles and maze-like scenarios. An autonomous truck operating
in these environments requires motion planning capabilities, such that it
can plan a path to reach a goal destination while avoiding obstacles. Fur-
thermore, in order to achieve the maximum throughput and efficiency, it
needs to find the shortest path, out of a multitude of possible ones, to get
to its destination.

Unlike the previous chapter, we hereby consider the existence of obsta-
cles that the vehicle must avoid. Obstacles introduce a combinatorial nature
to the problem, which motivate the usage of graph search-based planning
methods. In order to comply with the kinodynamic constraints of the vehi-
cle, graph search is combined with a state lattice, originating lattice-based
motion planners.

A state lattice corresponds to a discretization of the search space, which
is based on a regular tiling of motion patterns. These motion patterns
are generated taking into account the vehicle constraints, and as such can
be feasibly executed. The lattice can then be explored using graph search
algorithms, by creating a graph where the edges correspond to the motion
patterns and the nodes are the discretized vehicle states.

The discretization of the lattice introduces sub-optimality of the planned
paths. In critical cases the discretization can introduce an oscillatory behav-
ior, greatly affecting vehicle performance. Moreover, the state discretization
does not allow planned motions to arrive at arbitrary goal locations within
the environment. In applications requiring high accuracy, this can hinder
the deployment of autonomous heavy-duty vehicles.
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To deal with these problems, we introduce in this chapter a new method-
ology for smooth and accurate motion planning. A lattice-based planner is
proposed which interleaves exploration of the graph with smoothing of the
solution path. The result is an improved lattice planner that is able to re-
duce the sub-optimality of solution paths and arrive accurately at desired
goal locations.

The contributions of this chapter are the following:

• A formulation and algorithm for the problem of path optimization
that makes use of steering methods and heuristics to achieve real-time
performance;

• A novel modification of lattice-based planners that alternates between
path planning and path optimization in an interleaved way;

• Simulations and experiments with a heavy-duty truck showing the
benefits and applicability of the proposed method.

The chapter is organized as follows.

In Section 4.1 we introduce the planning framework, and detail the lat-
tice construction process, as well as the graph search algorithms used. We
then detail the challenges that arise with lattice-based planners, and that
are the motivation behind the work developed in this chapter.

In Section 4.2 we introduce a path optimization approach that is able
to optimize a given solution path, resulting in a smoothened solution with
reduced oscillations and length. The optimized solutions are computed using
greedy search algorithm, which makes use of the sharpness continuous paths
described in Chapter 3.

Section 4.3 details how to use the introduced path optimization step
in combination with the lattice planner. Unlike previous approaches, the
optimization is performed in between planning cycles, and is used to modify
the search graph online. Modifying the graph online improves not only
the current solution path, but also the solution paths of future planning
iterations.

In Section 4.4 we present simulation and real-work experiments, which
quantify the benefits brought forward by the proposed method. The method
is shown to reduce the average length of planned paths. However, the biggest
advantage comes from the reduction of path oscillations. This allows for
smoother rides, and for the vehicle to achieve higher speeds, effectively
increasing the efficiency of autonomous HDV operations.

Finally, Section 4.5 presents concluding remarks together with possible
avenues of future work.
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4.1 Planning framework

In this section we introduce the planning framework used, and present the
drawbacks with using a lattice-based motion planner. These drawbacks
are the motivation behind the development of a novel path optimization
technique.

State lattice planning

Planning in a state lattice consists of a graph search, in which the graph cor-
responds to a specially discretized state space. Associated to the discretized
space, a set of elementary motions is chosen so that it allows neighboring
discrete states to be connected over feasible motions [23, 91].

We first define the world space W, as the set of possible states of the
system. W can have an obstacle region Wobs, which denotes the set of all
states in W that lie in one or more obstacles. We then define the obstacle-
free space Wfree as the set of states that do not lie in any obstacle, Wfree =
W \Wobs.

Additionally, we define the graph to be searched as G = ⟨V,E⟩. Each
vertex v ∈ V represents a discretized state q ∈ W. In our case, a state q is
defined by a 4-tuple q = (x, y, θ, κ), where x and y represent the position
of the vehicle rear axle in a 2D environment, and θ its heading (recall
Figure 2.1). κ is the vehicle curvature and is related to its steering angle ϕ
as κ = tan(ϕ)/L, where L is the wheelbase length. Each edge e ∈ E encodes
a feasible motion connecting two states. There is an associated nonnegative
cost l(e) to each edge e, corresponding to the cost that our system incurs
in, when performing it. The set of possible edges E is defined as to respect
the kinematic constraints of the vehicle for which we intend to plan [13] and
to enforce curvature continuity, i.e., we require the steering wheel rate to
be bounded.

A planning problem is defined by a starting state qinit, a goal state
qgoal, and the obstacle-free space Wfree. A valid solution is a sequence of
feasible motions, that are collision-free, connecting qinit to qgoal. The state
space can be explored using graph search algorithms that seek to find a
sequence of edges connecting the vertex corresponding to qinit to the vertex
corresponding to qgoal. Ideally the search algorithm returns the sequence
of edges ES = {e1, . . . , eN} that does so with the minimum cumulative

cost J(ES) =
∑N
i=1 l(ei). From ES , a path Π can be created. A path Π

corresponds to a sequence of states, that abide by the feasible motions of
the vehicle, and can be used to take the vehicle from qinit to qgoal. One such
graph search algorithm is described below.

93



CHAPTER 4. SMOOTH PATH PLANNING

Lattice Time-Bounded A*

Lattice Time-Bounded A* (LTBA*) [35] is a search algorithm designed to
be used in real-time problems. The algorithm runs an A* search in a time-
sliced fashion, and it is both real-time and incremental.

LTBA* introduces a mechanism to ensure that planned paths take into
account systems that can have considerable momentum. At each planning
cycle, the position and speed of the system, together with the previous
solution path, are used to predict the future progression of the system.
From this, a committed state qcom is computed, that corresponds to the
state that lies on the solution path before which, the system, at its current
speed, is not capable to come to a stop. Once qcom has been selected, the
algorithm prunes away part of the graph, so that all edges starting from the
vertices laying along the current (partial) solution and between the states
qinit and qcom are eliminated. Moreover, the vertices between qinit and qcom
can no longer be used for further exploring the lattice.

In practice, this means that at every cycle the algorithm commits to
an initial sub-portion of the provided solution by advancing qcom along it.
As new information arrives to the planner (e.g., from sensor updates), the
current solution can be adapted to the new conditions, but only from the
vertex representing qcom onwards.

Challenges

Lattice-based motion planners suffer from some shortcomings that can sig-
nificantly harden the task of finding a high quality solution path. We enu-
merate here the challenges introduced by the drawbacks of lattice planners.

Excessive steering

One problem with solution paths returned from lattice planners is that they
are likely to contain oscillatory behavior. This is a consequence of both the
state discretization and the set of elementary motions available. A lattice
planner can only produce a resolution optimal solution, where the resolution
is limited by the set of elementary motions used. These solutions are most
often not optimal if one considers the equivalent problem in the continuous
search space.

As an illustrative example consider a simplified lattice as the one shown
in Figure 4.1. We want to find the best path taking the vehicle from the
start state (arrow qinit) to the goal state (arrow qgoal). The best path is
defined as the one with the lowest cost J(ES). A typical choice for the
cost of an edge l(ei) consists in the length of the path that it represents.
Figure 4.1 shows two possible solution paths, Π1 and Π2 that connect the
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Π2

Π1
Π3

qinit

qgoal q∗goal

Figure 4.1: A toy example of a simplistic lattice with a positional discretiza-
tion of one meter and four possible headings θ = {0, π/2, π,−π/2}. Three
elementary motions (dashed lines at the top left) are allowed, move forward
(length 1) and turn left/right (length π/2). A start state qinit and a goal
state qgoal are shown as filled arrows. The undiscretized goal state q∗goal is
shown as a dashed arrow. Two solution paths, Π1 and Π2, lying in the
lattice, as well as a third path Π3 that does not follow the lattice are shown.

start and goal states. Path Π1 has a length l = 5π/2 ≈ 7.9 and path Π2

has a length l = 8 + π/2 ≈ 9.6.

Since the path Π1 represents the shortest solution within the set of
elementary motions, it is returned as the best solution. Even though it
is shorter than path Π2, it might not be desirable to select path Π1 as
the solution, since it has an oscillatory behavior. Path Π2 only has one
turning motion, at the expense of being longer. This path would have
been preferable if one wanted to minimize the oscillations, or maximize the
comfort of the ride, two commonly used objectives. Moreover, the straight
segments could allow the vehicle to achieve considerable speeds, and arrive
at the goal state faster, even though it is following a longer path.

It is possible to prioritize the choice of paths with straight sections by
making the edge costs not only a function of the length of the path, but also
of the amount of steering required. However, designing such a cost func-
tion, i.e., finding the right trade-off between length and steering amount
of an edge, is a challenging and time consuming process, and with high
subjectivity. Furthermore, such tuning methods are often scenario and ve-
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hicle dependent and need to be adjusted to each individual application.
These are common problems that arise when dealing with multi-objective
optimization where conflicting objectives exist. In our case, the conflicting
objectives are the path length and the amount of steering required.

Figure 4.1 also shows a path Π3 that is arguably better, as it is shorter
and with no oscillatory behavior. However, Π3 cannot be a solution, since it
is not contained in the lattice, and therefore cannot be found by the graph
search. We note that this path corresponds to a Dubins-like path, more
specifically a sharpness continuous path, as introduced in Chapter 3.

Goal state discretization

As previously stated, the search is performed between two states, qinit and
qgoal. Since qinit and qgoal are limited to the discretized states of the lattice,
it becomes impossible to find solution paths to these states, since they are
not represented in the lattice.

A common approach when one wants to compute a path to a state q∗goal
that lies outside of the lattice, is to simply compute a path to the nearest
discretized lattice state. One such example is shown in Figure 4.1, where
the desired undiscretized goal state q∗goal is shown as a dashed arrow. Since
it does not coincide with any of the discretized states, it is approximated
by the closest one, corresponding to qgoal. The resulting solution path will
then not take the vehicle into the desired state q∗goal, but instead to a nearby
state qgoal.

This becomes problematic in scenarios which require a high accuracy of
the goal state. Driving into a tight parking spot, or trying to stop by a
fixed conveyor belt, are applications where it becomes extremely important
to achieve an exact desired goal state.

Reducing lattice coarseness

The previous drawbacks can be mitigated by reducing the coarseness of the
discretization and increasing the set of available feasible motions. However
these strategies will not fully remove these problems, just alleviate them,
and they will severely increase the search space the algorithm needs to
explore, and consequently its running time.

Due to the limited computing power available in self-driving vehicles,
it becomes important to find solutions which are computationally efficient.
Thus, reducing the coarseness of discretization, and consequently increasing
computational times, is a last resort solution.

In the following sections we propose a solution for these problems that
can be implemented while respecting the real-time requirements of online
motion planning.
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4.2 Path optimization

Here we introduce an algorithm to optimize solution paths computed by a
lattice planner. The optimization objective consists in minimizing the path
length, which has the indirect effect of reducing path oscillations.

Problem formulation

Given initial and goal states (qinit, qgoal) ∈ V × V , the lattice planner de-
scribed in Section 4.1 computes a sequence of vertices and edges

VS = {qinit, q1, . . . , qM , qgoal} ⊆ V,
ES = {einit,1, e1,2, . . . , eM,goal} ⊆ E,

(4.1)

that connects qinit to qgoal. An edge ei,j corresponds to a motion connecting
qi and qj . Let J(E ′) : E ′ ⊆ E → R+

0 denote the function that maps a
sequence of edges E ′ to the sum of the cost of each edge. Here we assume
that the cost of each edge is the length of the edge, and as such J(E ′)
becomes the length of the concatenated path formed by them.

We define V ′
S to be an arbitrary subsequence of VS , and E ′S to be a

sequence of new edges resulting from connecting the vertices in V ′
S over

sharpness continuous paths, described in Chapter 3. Given two vertices q′i
and q′i+1, the steering method from Chapter 3 is able to compute a path, i.e.,
an edge e′i,i+1, that connects the vertices with a feasible motion. However,
this path computation ignores the existence of obstacles.

The set Wfree represents the obstacle-free space in which vehicle states
along the path of an edge must be. An edge is considered collision-free if
the vehicle states along its path are all collision-free. We use the notation
ei,j ∈ Wfree to indicate that an edge ei,j is collision-free. Furthermore q∗goal
corresponds to the undiscretized goal state.

The discrete optimization problem to solve can be stated as follows:

Problem 1 Given the states qinit, q
∗
goal and a solution to the path planning

problem (VS , ES) find a sequence of states V ′
S = {q′1, q′2, . . . , q′N} and a se-

quence of paths E ′S = {e′1,2, e′2,3, . . . , e′N−1,N} connecting the states V ′
S, such

that:
minimize
V′
S⊆VS

J(E ′S)

subject to e′i,i+1 = SteeringMethod(q′i, q
′
i+1)

q′1 = qinit

q′N = q∗goal

E ′S ∈ Wfree
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q1 q2

q3

q4 q5 q6 q7

e1,2

e2,3

e3,4

e4,5 e5,6 e6,7

e′1,7

Figure 4.2: An example solution path as the filled line (blue). The path
is composed of motion primitives connected over intermediate nodes (filled
circles). A possible path resulting from a steering method connecting the
initial and final nodes is shown as the dashed line (red). e1,2, e2,3, . . . , e6,7
represent the edges connecting the intermediate nodes, as provided by the
lattice planner. e′1,7 shows a path generated by the steering method, that
connects states q1 and q7. The polygons are obstacles that the solution path
must avoid.

The objective of solving Problem 1 is to find a subset V ′
S of VS that when

connected through the paths E ′S , minimizes the length of the edges J(E ′S).
An edge e′i,i+1 which is part of the sequence E ′S corresponds to a sharpness
continuous path (Chapter 3) between vertices q′i and q′i+1. The sequence
E ′S must also be collision-free, i.e., all of its edges must be collision-free,
e′i,i+1 ∈ Wfree.

The cost function to minimize is selected to be the length of the path
J(E ′S). One possible alternative would be to minimize the steering or the
oscillations of the path, as that is the main drawback of lattice planner
solutions. However, it is also noticed in practice, that optimizing with
respect to the length of the path results in decreased oscillations.

It is worth noting that, even though solutions to Problem 1 are collision-
free, it might be of interest to have obstacle clearance as an optimization
objective. This would result in paths that maximize the safety margin to
obstacles.

Figure 4.2 shows an example of a possible problem instance as described
in Problem 1. A path that is computed by the lattice planner (filled line),
is composed of several intermediate states (circles), q1, q2, . . . , q7, that are
connected over edges e1,2, e2,3, . . . , e6,7. After the optimization, a possible
solution path (dashed line) is one that connects states q1 and q7 directly. In
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this particular case, the optimized path is the result of applying the steering
method between states q1 and q7, and its corresponding edge is denoted as
e′1,7.

The optimal solution for Problem 1 can be found using a brute-force
method, i.e., by evaluating all possible and valid solutions existing in the
search space. However this type of approach is computationally expensive,
as the number of possible combinations has dimension 2n, where n is the
number of elements in the set VS . In fact, for a sequence of states ES with
n states, a brute-force approach will require at least O(2n) steering method
queries and its respective collision checks. This makes it unsuitable for our
application, in which computations must be kept to a minimum, in order
to maintain real-time capabilities.

Greedy optimization

In this section, an algorithm that finds a sub-optimal solution to Problem 1
is proposed. One important aspect of the algorithm is its computational
time, which needs to be kept low in order to comply with real-time require-
ments. We thus require the algorithm to be time-bounded. Also, we will
have the opportunity to replan in future planning cycles, so it is beneficial
to prioritize optimization in the path edges closer to the current position of
the vehicle, which will be executed first. Edges that are farther away can
be optimized in later planning cycles. Taking into account these aspects we
formulate Algorithm 2.

Algorithm 2 takes as input the sequence of states VS corresponding to
the lattice planner solution, and the obstacle-free space Wfree. The algo-
rithm will run for a limited time ∆Tlimit (line 4), after which the while loop
is exited. Alternatively it can finish before, if it considers the algorithm
complete (line 18). In a first step the algorithm tries to generate a feasible
path between the first state q1 to all the states in VS that follow it. The
path is generated making use of the steering method (line 7) and for it to
be valid it needs to be collision-free (line 8). The farthest state from q1 that
it was possible to connect to, is then selected as part of the solution, and
both the state and the edge are added at the end of sequences V ′

S and E ′S
(lines 13-14). The process then restarts, but now it tries to connect from
the farthest node, to all of the following nodes. In the worst case, each state
tries to connect with all following states, resulting in a complexity of O(n2)
in the number of steering attempts.

Remark 1 It can happen that V ′
S does not include qN , this means that the

algorithm could not compute a feasible path to qN , either due to infeasibility
or shortage of computation time. If this happens, a path that ends up in qN
can still be obtained, by concatenating the original states and edges contained
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Algorithm 2: Greedy Optimization Algorithm

Input: VS = (q1, . . . , qN ), ES = (e1,2, . . . , eN−1,N ), Wfree, ∆Tlimit

Output: V ′
S , E ′S

1 V ′
S ← (q1);

2 E ′S ← ( );
3 i← 1;
4 while ∆Tlimit do
5 success← false;
6 foreach qj ∈ VS \ (q1, . . . , qi−1, qi) do
7 ei,j ← SteeringMethod(qi, qj);
8 if ei,j ∈ Wfree then
9 ei,k ← ei,j ;

10 k ← j;
11 success = true;

12 if success then
13 V ′

S ← V ′
S + qk;

14 E ′S ← E ′S + ei,k;
15 i← k;

16 else
17 if VS \ (q1, . . . , qi−1, qi) = {} then
18 break;
19 else
20 V ′

S ← V ′
S + (qi, qi+1, . . . , qN );

21 E ′S ← E ′S + (ei,i+1, . . . , sN−1,N );

in the original lattice solution VS , ES that come after the last state in V ′
S

(lines 20-21).

By designing the algorithm in this way, we can incrementally improve
the original solution throughout consecutive planning cycles. And we do
so prioritizing the nearest states of the path, and complying with time
limitations. Furthermore, in the worst case, when the algorithm is not able
to generate any improvements, the resulting path will simply be the original
lattice planner solution.

Reducing the computational complexity

Problem 1 can have a very large search space (2VS possible solutions). Re-
ducing the search space will reduce the problem complexity. The search
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space can be reduced by decreasing the number of elements in VS over
which we optimize. This forms a new of sequence of elements V∗

S which
will correspond to the new decision variables of our discrete optimization
problem. However, doing this removes a number of possible valid solutions
to Problem 1, and possibly removes the optimal or near-optimal solutions
from the search space, which is not desirable.

Taking into account the trade-off between complexity and the possibility
of removing desired solutions, Algorithm 3 is proposed, which reduces the
original search space 2VS , while trying to keep the expressiveness of the
original problem, in the now reduced search space 2V

∗
S .

Algorithm 3: State Set Reduction

Input: VS = {q1, . . . , qN}, lmin

Output: V∗
S

1 V∗
S ← q1;

2 k ← 1;
3 for i = 2 to N − 1 do
4 if Distance(qk, qi) > lmin then
5 V∗

S ← V∗
S ∪ qi;

6 k ← i;

7 V∗
S ← qN ;

The function Distance(qk, qi) (line 4) is defined as the euclidean distance
in the (x, y) position between states qk and qi, ||(xk − xi, yk − yi)||2. In
essence, Algorithm 3 loops over the original set VS and removes states that
are near each other, i.e., at a distance smaller than lmin ∈ R+

0 (line 4).

Algorithm 3 is designed taking into account a practical observation.
Assuming Π1 to be a path generated by the steering method [14] between
states qa and qb, and in an obstacle-free environment. And assuming a path
Π2 between states qa and qc generated in the same conditions. Then it
observed experimentally that the smaller the value of Distance(qb, qc), the
more similar (i.e. smaller Hausdorff distance) the paths Π1 and Π2 are.

Using the intuition provided by the previous experimental observation,
Algorithm 3 removes states from VS . The removed states are expected
to not alter the search space 2VS drastically. Assuming that a state qi is
removed from VS by Algorithm 3, then there exists another state qk nearby
qi, that allows the reduced search space 2V

∗
S to contain solution paths which

present a high similarity (measured as the Hausdorff distance) to those that
were removed from the original search space 2VS when removing qi. There
are however exceptions, as certain states in VS might be crucial to guarantee
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a collision-free path, even though they might be very close to other states
in VS .

4.3 Interleaving graph search and path optimization

In this section, we propose a novel way to interleave path optimization, as
the one described in Section 4.2, with the LTBA* described in Section 4.1.
We explain why this is not directly implementable, and propose a modifica-
tion to LTBA* in order to achieve interleaved planning and optimization.

Problem statement

At the end of each planning cycle, the lattice planner returns a solution
path as a sequence of states VS and edges ES . This solution is then fed
into the optimization algorithm described in Section 4.2, resulting in a new
sequence of states V ′

S and edges E ′S . The structure of the search graph is
then altered, such that the original states VS and edges ES are replaced by
the optimized states V ′

S and edges E ′S .

As an illustrative example, assume that a given optimization procedure
resulted in a V ′

S which only contains the first and last element of VS . This
means that the solution obtained from the optimization step, is simply the
path computed by the steering method between the start state q1, and end
state qN of VS . E ′S corresponds then to a single edge connecting the two
states in V ′

S . Additionally, assume that states q1 and qN are located far
apart, meaning that the edge connecting them will have a large length.
According to the mechanisms of LTBA* explained in Section 4.1, the com-
mitted state qcom is at least qN or a state after it. Since planned path
solutions from subsequent planning cycles must include qcom, this means
that the vehicle is forced to commit to the whole path, and not only to a
portion of it. This results in reduced capability for replanning and maneu-
vering around newly sensed obstacles. To solve this issue, it is necessary
to ensure that when changing the structure of the search graph, edges with
large lengths are prohibited.

Escape vertices

In order to avoid the creation of edges with large lengths, we introduce a
mechanism to split an arbitrary path into several short edges. We introduce
the concept of escape vertices, which are vertices that are created in order to
split a long optimized path into multiple edges. The mechanism of creation
of escape vertices is presented in Algorithm 4.
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e1

e2

e3

Figure 4.3: Splitting an optimized path in order to create escape vertices.
The sub-segments e1, e2, e3 of the optimized path become coupled to the
nearest escape vertices. A set of edges resulting from the graph search
expanding the escape vertices is shown as dashed orange branches.

Algorithm 4: Finding Escape Vertices

Input: e′, dmin, d∆
Output: Vesc, Eesc

1 le′ ← Length(e′);
2 dlast ← 0;
3 for d = 0, d∆, 2d∆, . . . , le′ do
4 if d− dlast > dmin then
5 qpath ← StateAtPathLength(e′, d);
6 qesc ← UnexpandedV erticeNearby(qpath);
7 if qesc ̸= null then
8 e← PathSection(e′, dlast, d);
9 dlast ← d;

10 Vesc ← Vesc ∪ qesc;
11 Eesc ← Eesc ∪ e;

Algorithm 4 tries to split an edge e′ resulting from the optimization in
Section 4.2, into a sequence of shorter edges Eesc. First it computes the
length of the path encoded in e′ (line 1), and then it iterates over the path
states (line 5) at regular distances with increments of d∆ (line 3). For a
given path state qpath, it finds a nearby lattice vertex qesc, that has not yet
been expanded, i.e., it has no child vertices (line 6). In case it has found qesc
(line 6), it then proceeds to add it to Vesc (line 10). It also creates an eesc,
corresponding to the section of the original path, evaluated from distance
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dlast to d (line 8), and adds it to Eesc (line 11). By updating (line 9) and
checking (line 4) the last distance dlast at which the path was split, it avoids
creating escaping edges that are too short, i.e., with a length smaller than
dmin.

An arbitrary path might not overlap with any of the discretized lattice
vertices, as is the case of the path shown in Figure 4.3. Thus, it is likely
that Algorithm 4 will create edges that do not connect discretized lattice
vertices with a feasible motion, i.e., one that respects the system model.
If the graph search then expands these vertices, the resulting edges will
be discontinuous, as illustrated by the orange branches in Figure 4.3. This
violates the assumption of the lattice search, and can result in solution paths
that are discontinuous. To deal with this it is necessary to introduce a few
modifications to the original LTBA*.

The search graph G is updated by the path optimization step, where the
original lattice planner solution states VS and edges ES , are replaced by the
optimized states V ′

S and edges E ′S . However the new states V ′
S are marked

as being escape vertices. When a vertex is marked as an escape vertex, it is
known that the edge associated to it does not respect the lattice continuity.
As such, whenever a potential solution path is about to be returned at
the end of the planning cycle, it is checked for path continuity. The path
continuity can be checked by evaluating its vertices, and in case they are
escape vertices, checking if their connecting edges are discontinuous. In case
they are, the whole path is invalidated, and an alternative solution path is
requested. This is an existing feature of the LTBA* algorithm, implemented
in order to deal with the appearance of new obstacles [35]. We note that
this is a very rare occurrence in the scenarios used in our experiments.

4.4 Results

This section presents results of the previously proposed methods. Compu-
tational times are obtained using the computing unit in a prototype au-
tonomous heavy-duty vehicle for industrial applications. A selected plan-
ning instance is also presented and is obtained from real tests making use
of the autonomous heavy-duty vehicle shown in Figure 4.4.

Problem setup

We generate 5000 randomized test scenarios corresponding to typical plan-
ning problems. A planning problem is characterized by the initial vehicle
state, a goal state at which the vehicle should arrive, and a set of obstacles
to avoid. One possible random problem instance is shown in Figure 4.5.
To generate a random planning problem, the initial and goal states are ob-
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Figure 4.4: An autonomous heavy-duty vehicle for which the work presented
is developed and tested on.

tained by sampling from uniform distributions x and y coordinates and a
heading θ. The coordinates are sampled from a distribution with a width
of 100 meters, and the headings from a distribution [0, 2π[. Three random
square obstacles are also generated, and their location follows the same uni-
form distribution with a width of 100 meters. The lattice planner and path
optimization are required to run in a continuous loop, at a frequency of 2
Hz.

Path optimization

We compare the proposed Greedy Optimization Algorithm (Greedy) against
a brute-force method (Brute) as solvers for the discrete optimization prob-
lem stated in Problem 1. For each test scenario we get the lattice planner
solution and corresponding states VS , and then solve Problem 1 using both
methods. We measure the computation time ∆t and solution cost J(E ′S) of
both methods.

Table 4.1 shows the comparison of both methods for 5000 random plan-
ning instances, in which the original lattice planner solution has an average
length J(ES) ≈ 80 meters. The minimum distance parameter lmin in Algo-
rithm 3 is set to 10 meters. We define δJ(ES , E ′S) as the normalized difference
between the lattice solution length J(ES), and the optimized solution length
J(E ′S):

δJ(ES , E ′S) =
J(E ′S)− J(ES)

J(ES)
. (4.2)

The smaller δJ(ES , E ′S), the greater the improvement in terms of path length
reduction. The computation time ∆t corresponds to the amount of time
required for the algorithm to run.
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Figure 4.5: An example of a planning problem. From the current state
(vehicle location), find a path to a goal state (highlighted in orange), while
avoiding obstacles (regions in red).

Table 4.1: Comparison of Brute and Greedy results for 5000 random plan-
ning problem instances. The theoretical complexity O of steering method
calls with respect to the number of states n is also presented.

Measure Brute Greedy
Average δJ(ES , E ′S) [%] -4.0886 -3.9749
Standard deviation δJ(ES , E ′S) [%] 3.1508 3.1574
Average ∆t[s] 0.1835 0.0058
Standard deviation ∆t[s] 0.3375 0.0034
Theoretical complexity O(2n) O(n2)

The results presented in Table 4.1 show that Brute achieves on average
shorter paths than Greedy. Even though the Greedy results are worse than
the Brute ones, they are still fairly similar. Comparing the computational
times ∆t of both algorithms shows a clear advantage for Greedy. It can be
seen that Greedy requires much less time (two orders of magnitude smaller)
than Brute.

From the observed results, we conclude that Greedy finds solutions with
a cost J(E ′S) comparable to that of Brute, however it does so in a fraction
of the computational time required by Brute.
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Interleaved planning and optimization

In this experiment we run the LTBA* and the Greedy Optimization Algo-
rithm (Algorithm 2), in an interleaved fashion, as explained in Section 4.3.
For each test scenario, we compare the solution path obtained from the
original LTBA* implementation [35] with the solution path obtained from
our proposed interleaved planner. The results are presented in Table 4.2.

Table 4.2: Average results from 5000 random planning instances.

Metric Original path Optimized path
Average path length [m] 76.54 73.51
Average straight length [m] 29.03 53.65
Average number of steering changes 12.42 4.19

From Table 4.2 it can be observed that the mean length of the original
solution paths is around 77 meters. When using the optimization proce-
dure, the mean length decreases to 74 meters. The optimization is thus, on
average, successful in shortening the length of the solution paths.

We introduce the straight length metric, which is a measure of the length
of the path corresponding to straight driving, i.e., with zero curvature. We
see that the original paths have on average 29 meters of straight section.
The optimized paths are able to greatly increase this length to 54 meters.
This corresponds to paths that have more sections of straight driving, which
is desirable, since it relates to more comfort, resembles human-like driving,
and allows for increased driving speeds.

A third metric that is measured is the number of steering changes. This
metric corresponds to the number of times that a vehicle will have to change
between left, right, or null steering when following a path. The original
paths present an average of 12 steering changes, while the optimized paths
greatly reduce this number to 4 steering changes. Such a drastic reduction
shows that the paths have a reduced number of turning maneuvers that the
vehicle performs, and by consequence, reduced oscillatory behavior.

Goal state reachability

We also study if the interleaved planner solution paths are able to deal
with the problem of goal state discretization mentioned in Section 4.1. We
measured that 85% of the interleaved planner paths arrived at the exact goal
state q∗goal, instead of at the discretized goal state qgoal corresponding to the
closest neighbor in the lattice. The other 15% end up in the discretized
lattice approximation qgoal, like regular lattice-based planners. Ideally the
paths would always arrive at the exact goal state q∗goal. However, due to the
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Figure 4.6: An example of a planned path (filled line) and the resulting
optimized path (dashed line). The circles correspond to intermediate states.
A view of a zoomed section highlights the excessive steering of the original
non-optimized path.

greedy nature of the optimization, which prioritizes optimizing edges in the
beginning of the path, it is the case that the path is sometimes optimized
without successfully connecting to q∗goal. A possible improvement is to also
try to optimize from q∗goal backwards, to try to increase the success rate
with which optimized path solutions arrive exactly at q∗goal.

Illustrative example

Figure 4.6 shows a selected problem instance. The paths seem quite similar,
but there is a drastic reduction of the number of steering changes from 20
in the original path (filled line), to 6 in the optimized path (dashed line).
Even though the original path seems quite straight, it has several small
oscillations, resulting from the drawbacks of lattice-based motion planners
detailed in Section 4.1. Our proposed interleaved planner is particularly
good at improving the path quality in this aspect.

108



4.5. CONCLUSIONS

4.5 Conclusions

This chapter presented a novel motion planning framework that was eval-
uated on an autonomous heavy-duty vehicle. The methods introduced in
this chapter are motivated by the shortcomings of lattice-based planners,
namely sub-optimality of the solution path and goal state discretization.
Both problems are a direct consequence of the search space discretization
imposed by the lattice.

The proposed solution combines lattice-based motion planning with path
optimization using sharpness continuous paths introduced in Chapter 3.
Through extensive simulations and real-life experiments we show that the
proposed method is successful in addressing both shortcomings of lattice-
based planners. The planned paths present a drastic reduction in the num-
ber of steering changes, and a significant increase in the amount of straight
driving. This results in reduced oscillatory behavior, which leads to more
confortable driving, and the possibility of achieving higher driving speeds.
Moreover, the optimized solution paths are on average shorter, compared
to solutions computed by lattice-based motion planners alone.

The path optimization step is formulated as a discrete optimization
problem, and we propose a greedy algorithm to solve it. It is shown that
the greedy algorithm finds solutions with comparable quality to brute-force
methods, with the advantage of performing the computations in a fraction
of the time. The low computational times make it amenable to be imple-
mented in systems which must perform motion planning online. To further
reduce computational times, the optimization is done in an interleaved fash-
ion in between the planning cycles, instead of as a final planning step, as
is common in other approaches. This allows the optimization results to be
reused in subsequent planning cycles, without the need to recompute them
again.

As future work, one could refine the algorithms used to find a solution
to the discrete optimization problem. To increase the capability of the path
optimization to arrive at the undiscretized goal state, it is worth studying
a greedy optimization algorithm that not only optimizes from the starting
state forwards, but also from the true goal state not restricted to the lattice
backwards. Since the process of interleaving the graph search with path
optimization changes the graph structure, completeness guarantees of the
search algorithm might be lost. It is of interest to study these mechanisms
further, to understand how they influence the efficiency and completeness
properties of the underlying graph search.
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Chapter 5

Optimization-based On-road
Path Planning for Buses

This chapter deals with path planning for buses driving in tight on-road
environments. We focus the developed solution to the specific case of public
transportation via city buses. Here, we introduce a new methodology for
path planning, based on numerical optimization techniques. This technique
proves to be very suitable for the particular challenges buses face when
driving in urban environments.

Driving in cities is often characterized by chaotic and packed traffic,
which can stress even experienced drivers. The situation becomes even
more complicated when considering buses that must share the road with
other vehicles and road users. It is often the case that a bus needs to make
its way through very constrained spaces, i.e., sections of the road where the
distance to obstacles or other vehicles is very small. Such situations can
be caused by narrow lanes, vehicles temporarily parked on the sides of the
road, or maneuvering in and out of bus stops.

Motion planning algorithms for this type of application must be able to
find solutions in constrained environments. Algorithms such as lattice-based
planners and rapidly exploring random trees (RRTs) often have difficulties
with environments where the clearance to obstacles is small. This is due
to the inherent state space discretization of the lattice, and to the low
probability of sampling collision-free states in RRTs.

On the other hand, numerical optimization methods conveniently deal
with this problem. Due to the continuous nature of optimization methods,
it is possible to find solutions even in highly constrained environments.
Furthermore, optimization methods allow for a direct encoding of the vehicle
model, and are characterized by solutions with a high degree of smoothness.

Unlike any other vehicle class, buses have a special design, where the
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chassis extends quite far way from its own wheels. The part of the chassis
extending beyond the wheels is referred to as overhangs, and has a signifi-
cant height, allowing it to sweep over curbs. This design choice is based on
optimizing the vehicle passenger capacity, while maintaining maneuverabil-
ity and stability of the vehicle body.

Making the most out of this particular vehicle design, professional bus
drivers often allow overhangs of the vehicle to go over curbs and low height
obstacles. It is essential to mimic this type of behavior if one is to deploy
autonomous buses for city driving applications. Our proposed solution is
successful in replicating this behavior, and is shown to increase the maneu-
vering capabilities of the bus.

The contributions of this chapter are the following:

• tackles the challenging task of bus driving in urban environments,
taking full advantage of the overhangs of buses to sweep over curbs
and low height obstacles;

• uses a new approximation technique for the distortions introduced by
the road-aligned frame and that affect the vehicle body and obstacles;

• considers the distinct chassis configuration of buses, distinguishing
between the overhangs and the wheelbase of the vehicle;

• takes into account three distinct types of surface: obstacle, sweepable,
and drivable regions.

The chapter is organized as follows.
Section 5.1 introduces the problems with planning in constrained en-

vironments. We present some motion planning techniques that have been
used in the literature to deal with constrained urban environments. Finally,
we highlight some motion planning solutions that have resorted to numerical
optimization techniques.

Section 5.2 details the spatial-based road aligned vehicle model, which
is particularly suited for on-road driving and optimization techniques. We
also present the main drawback of this model, related to the distortion of
the vehicle body. This drawback is addressed via new vehicle body ap-
proximation techniques, which ensure obstacle-free solutions that are not
conservative in their assumptions.

Section 5.3 formulates the path planning problem as a numerical opti-
mization. A novel region classification scheme is introduced, which enables
motion planning algorithms to take full advantage of the increased maneu-
verability made possible by overhangs. Furthermore, we propose optimiza-
tion objectives which encode the professional bus driver behavior that we
desire to mimic.
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Section 5.4 presents simulation results of the proposed method. The
benefits of the newly proposed optimization objectives are shown, and mo-
tivated based on noticing that resulting maneuvers are safer. Furthermore,
we show a scenario where explicitly taking into account the overhangs proves
to be the only way to successfully progress along the road.

Concluding remarks and possible future work directions are given in
Section 5.5.

5.1 Introduction

We have seen in Chapter 4 a solution that satisfies the planning needs of
an HDV, however, here we introduce a new motion planner that is based
on a different framework. The motivation behind the development of a
new motion planner relates to the fact that the lattice-based planner used
previously is not suited for the considered application. For on-road driving
applications, particularly for the case of buses, lattice-based planners as
the one described in Chapter 4, become unusable due to two main reasons:
solution discretization and collision checking approximations.

Solution discretization

Lattice planners rely on a placing a lattice on top of the environment, and
then finding a sequence of edges that arrive at the goal in a collision-free
way. This methodology usually works well in environments where the free
space is somewhat large in comparison to the lattice discretization, i.e., the
positional spacing between the lattice states.

To understand the problem of discretization, we start by overlaying a
lattice on top of an on-road environment, as shown in Figure 5.1. It can be
seen that this lattice does not allow one to find a obstacle-free path that
takes the vehicle along the road. This is caused by the coarseness of the
lattice discretization, which, even though suited for the unstructured envi-
ronments considered in Chapter 4, becomes unusable for on-road scenarios.

A possible solution is to increase the resolution of the lattice by more
finely discretizing the state space. However this comes at the cost of a
tremendous increase in the state space considered, which significantly in-
creases the computational complexity of the algorithm.

Collision checking

Collision checking is an essential part of motion planning algorithms, and
often corresponds to a significant share of the computational times [93]. In
essence, collision checking is responsible for evaluating if a vehicle state, or
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Figure 5.1: A lattice on top of a road (from [92]).

sequence of states along a path, does not collide with obstacles detected in
the environment. Collision checking methods are not limited to checking if a
vehicle state is colliding. They can also be used to check if vehicle states are
contained inside the road. In Chapter 4 the planner makes use of a collision
checker based on grid discretization. This type of collision checking is one of
the most popular ways of collision checking, due to its simplicity and good
performance. However, it comes with the drawback of being conservative,
which makes it unsuitable for highly constrained environments, such as when
driving a bus in urban scenarios.

In a first step the environment is discretized into a grid, which can be
composed of squares, or other shapes that are more convenient. Each cell in
this grid is classified according to the contents inside itself. We assume here a
simple case where each cell is classified as either inside the road or outside of
it. To classify each cell, one looks into its spatial contents. A cell is deemed
outside of the road if any region of it exits the road boundaries. A cell is
only considered inside if its completely contained inside the road. Using
this methodology one arrives at the classification illustrated in Figure 5.2.

Once the environment is discretized and classified, it is then necessary
to check if the vehicle state is inside the road. In a similar procedure to the
one mentioned before, a vehicle mask is created, which corresponds to the
occupancy of the vehicle in the discretized grid, as shown in Figure 5.2. To
then understand if the vehicle state is inside the road, one simply checks
that none of the cells in the vehicle mask correspond to an cell outside of
the road.

Figure 5.2 shows how a vehicle state that is inside the road, can be
wrongly classified as outside of it due to the discretization effects of the
grid. This problem can be addressed by increasing the resolution of the grid,
however that comes with an increased computational cost. If the target
application requires finely discretized grids, then this procedure becomes
too time consuming. Bus driving in urban scenarios is one such application,
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Figure 5.2: Collision checking a bus state using an occupancy grid. The
discretization of the grid can cause bus states to be wrongly classified as
outside of the road. This effect is worsened when considering buses driving
on narrow roads. Bird’s-eye (top) and perspective (bottom) views.

where it is of extreme importance to have precise collision checking, since
the roads are very narrow for the dimensions of the vehicle considered.

Motion planning in constrained environments

Due to the challenges mentioned before, motion planning in constrained
environments has been the subject of research. The approaches found in
the literature show that traditional planning algorithms often have to be
adjusted in order to deal with this type of scenario.

In [94], the authors make use of RRTs for planning the motion of a
vehicle. Realizing that narrow roads introduce a challenging situation for
the motion planner, the authors propose several algorithmic changes that
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make it suitable for road driving. One of these changes is related to the
randomized sampling of new states. Instead of uniformly sampling the new
states, the sampling procedure is biased along the center of the lane. This
reduces the amount of samples that need to be discarded due to collision,
thus saving computational time.

Graph search algorithms can also be used for dealing with constrained
environments. In [95] the authors propose extensions to the A* graph search
algorithm that allow the planner to deal with challenging urban driving sit-
uations. The discretization problem is avoided by making use of a pure-
pursuit expansion, which simulates a vehicle that is steered by a path-
tracking controller. The controller tries to steer the vehicle towards the
center of the lane, thus avoiding the search from straying into invalid colli-
sion states. This comes however with the loss of the original completeness
guarantees of the A* algorithm. The algorithm is experimented in practice,
showing its ability to perform in real time.

The state lattice framework can still be used for on-road driving, however
it must be adjusted to the road shape. In [96, 97], a lattice is created
by discretizing the state space at regular positions along the road. The
vertices of the lattice are created by sampling along the road length and at
different lateral offsets from the lane center. This makes the lattice adjust
to the shape of the road, however it forces the lattice to be computed online,
thus increasing computational times. As opposed to the approach described
in Chapter 4, in on-road driving scenarios one cannot pre-compute state
lattices. Thus, it becomes necessary to have a fast method that is able to
compute the motion primitives of the lattice online.

Dynamic programming is used in [98] to plan vehicle maneuvers in tight
environments. The proposed solution is shown to successfully compute
complicated parking maneuvers in a computationally efficient way. The
algorithm benefits from a varying discretization of the configuration space,
where finer discretization is used where more accurate maneuvers are ex-
pected. However, the amount and resolution of the finer discretization is
decided a priori, using human intuition. The approach is implemented on
a passenger vehicle, and the planned paths are shown to be easily tracked
by a simple linear controller.

Motion planning using numerical optimization

The works mentioned before try to tackle the inherent problem associated
with planners that discretize the state space. The inherent discretization
forces these algorithms to consider an exponentially larger search space when
trying to achieve the granularity needed to plan in constrained environ-
ments. On the contrary, numerical optimization frameworks do not require

116



5.2. MODELING

discretization of the state space, thus being an attractive choice when con-
sidering constrained environments. Furthermore, optimization approaches
are often characterized by the smoothness of the solutions and benefit from
a straightforward encoding of the vehicle model [99].

In [60], trajectory planning is done resorting to nonlinear optimization
methods. Collision checking is implemented by modeling the obstacles as
polygons. The proposed solution is used on a real vehicle, and driven along
a 103 km route. The trajectory planner is shown to be able to deal with
situations where there is little free space available.

A combined trajectory planning and control approach is presented in [100].
The problem is formulated as a nonlinear model predictive control method,
where a special solver is used that exploits the sparsity of the MPC prob-
lem. Simulation results show its effectiveness even in challenging emergency
maneuvers.

Trajectory planning can also be formulated as sequential linear program-
ming, as in [101], which targets the case of passenger vehicles. The approach
makes use of the road-aligned vehicle model, a model particularly suited for
road driving. One of the drawbacks of the model is that it introduces distor-
tions in the vehicle bodies, often complicating the formulation of collision
avoidance constraints.

To deal with the distortion of vehicle bodies introduced by the road-
aligned vehicle model, [16] introduces approximations seeking to ensure
paths that are collision-free. Although safe, the approximations are too
conservative, and the planner might fail in highly constrained environments.
This work seems to be the first to address the challenges faced by buses when
driving in urban environments.

In this chapter, we build upon [16], and introduce a novel approximation
method for vehicle body distortions, developing a path planner that guaran-
tees safe collision-free solutions, without conservative approximations. Fur-
thermore, we develop new optimization objectives that seek to minimize the
amount of overhang being swept by the vehicle, which is a common concern
in bus driving. The result is a motion planner that is able to mimic the
behavior of professional bus drivers.

5.2 Modeling

We introduce the road-aligned vehicle model used and propose a new ap-
proximation for the vehicle body, which deals with distortions introduced
by the road-aligned frame.

117



CHAPTER 5. OPTIMIZATION-BASED PATH PLANNING

x

y reference path γ

s

ey

ψ

eψ

Figure 5.3: Global and road-aligned frames. Vehicle states (s, ey, eψ) on the
road-aligned frame, are defined with respect to the reference path γ.

Vehicle model

We describe the vehicle state evolution using the space-based road-aligned
vehicle model used in [16]:

e′y =
ρs − ey
ρs

tan(eψ),

e′ψ =
(ρs − ey)κ

ρs cos(eψ)
− ψ′

s.
(5.1)

The model describes the vehicle state using a frame that moves along a ref-
erence path. This model is chosen since it allows for the convex formulation
of common on-road optimization objectives and is independent of time.

As shown in Figure 5.3, the road-aligned vehicle states are given by
(s, ey, eψ) corresponding to the distance along the reference path s, the
lateral displacement ey, and the orientation difference eψ between the vehicle
heading and the path heading ψ. These states are defined w.r.t. a reference
path γ. The vehicle is controlled by input u corresponding to the vehicle
curvature, which is related to the steering wheel angle ϕ as u = tan (ϕ) /L,
where L is the wheelbase length.

The reference path is uniformly discretized across its length every ∆s, so
that {si}Ni=0, where si = i∆s. To obtain a linear system, the vehicle model
is linearized around reference states given by s̄ = {s̄i}Ni=0, ēy = {ēy,i}Ni=0,
ēψ = {ēψ,i}Ni=0, and ū = {ūi}Ni=0. This results in a linear system of the
form qi+1 = Aiqi +Biui +Gi, where qi = [ey,i, eψ,i]

T .
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ŝ1

p̂2
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Figure 5.4: The vehicle body in the road aligned frame (bottom), can be
converted to the Cartesian frame (top) using geometric method T . T finds
the normal projection of the vehicle body in the reference path, shown in the
top figure. The resulting vehicle body in the road aligned frame becomes
distorted, as shown in the bottom figure.

Conversion to road-aligned frame

A Cartesian position p ∈ R2, can be converted to the road-aligned frame
using a geometric algorithm. We define the reference path γ as the map
γ : s̄ → (x, y) ∈ R2, where the domain is the discretized path length. One
can convert p̂ to the road-aligned frame, by finding the location γ(ŝ), in
which the normal to the path is pointing towards p̂. êy is then ||γ(ŝ)− p̂||.
We define this conversion as T : p ∈ R2 → (s, ey) ∈ s̄×R. T is useful when
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one needs to evaluate the vehicle body in the road-aligned frame. Figure 5.4
illustrates the results of T , when converting points along the vehicle edge.

Distortions in the road-aligned frame

When planning a path it is necessary to take into account the vehicle body
and check it against obstacles. When using the road-aligned model, it is
necessary to account for the heavy distortion of objects due to transforma-
tion T , shown in Figure 5.4. Since T is obtained via a geometric algorithm,
an analytical approximation of it is of interest, in order to be able to use
optimization algorithms. In the following, we derive such an approximation.

Given a road aligned vehicle state (s, ey, eψ) and the corresponding
Cartesian state (x, y, ψ), corresponding to position and orientation, one can
compute the first order Taylor expansion for a point along the vehicle edge.
Assuming a vehicle body edge point located at position p̂, one can get the
corresponding road aligned coordinates as (ŝ, êy) = T (p̂) (see Figure 5.4).
Assuming a fixed ŝ, the first order Taylor expansion w.r.t. ey and eψ, around
linearization point (s̄, ēy, ēψ), is computed:

êy = Tey (p̂) +
∂Tey (p̂)

∂ey
(ey − ēy) +

∂Tey (p̂)

∂eψ
(eψ − ēψ), (5.2)

where Tey is T with a co-domain corresponding to the lateral displacement
ey only. Note that p′ depends on vehicle states ey and eψ, as they determine
the vehicle position and orientation, and by consequence, the location of
points on the vehicle body.

The partial derivatives can be approximated via a finite difference for-
mula. However this requires numerous calls to the geometric method Tey ,
which is computationally expensive. Instead, we propose an alternative
approximation to the partial derivatives which is faster to compute.

Arc-circle approximation

In the road-aligned coordinate frame, the edges of the vehicle body are
distorted to curves that resemble arc-circles, as seen in Figure 5.5. We
exploit this insight to formulate an approximation to the partial derivatives
in Equation (5.2).

During experiments, it was observed that the edges can be approximated
by an arc-circle with a radius similar to the inverse of the reference path
curvature, κ−1, evaluated at length s. Moreover, the center of the arc-circle
is located perpendicularly to the vehicle rear axle (s, ey, eψ). We thus have
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Figure 5.5: Distorted vehicle edges can be approximated by arc-circles.

for the center of the arc-circle (see Figure 5.5):

cs = s+ κ-1 sin eψ,

cey = ey − κ-1 cos eψ.
(5.3)

Depending on the edge to be considered, left or right, the arc radius r±
is equal to the inverse of the road curvature, plus or minus half the width
ω of the vehicle, that is, r± = κ−1 ± ω/2. The expression of the circle to
which the arc belongs to is then:(

êy − cey
)2

+ (ŝ− cs)2 = r2±. (5.4)

Assuming a constant ŝ, and writing in order to êy, the previous expression
becomes:

êy(ey, eψ) = cey +
√
r2± − (ŝ− cs)2, (5.5)

where êy corresponds to the lateral offset of the edge, evaluated at length
ŝ. We write êy(ey, eψ) to highlight the dependency on vehicle states ey and
eψ.

In essence, this approximation assumes that the different points along
the vehicle edge can be thought to belong to an arc-circle that is attached
to the vehicle state (ey, eψ). Relying on this dependency, we approximate
the partial derivatives in equation Equation (5.2) by the partial derivatives
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of êy:
∂Tey (p̂)

∂ey
≈ ∂êy(ey, eψ)

∂ey
,

∂Tey (p̂)

∂eψ
≈ ∂êy(ey, eψ)

∂eψ
.

(5.6)

Doing so, we skip the computationally expensive process of computing the
partial derivatives of Tey via finite differences.

The previous procedure gives us an expression for Equation (5.2). The
positional constraint pey ≤ êy, which forces a vehicle body edge point to be
contained in a certain region, can then written, by reorganizing the terms
in Equation (5.2), as:

pey ≤ Pq + p. (5.7)

Where pey ∈ R is the position constraint (e.g., corresponding to the bound-
ary of an obstacle), P ∈ R2 is a row vector for the terms associated with
q = [ey, eψ]T , and p ∈ R is a scalar, encompassing all constant terms in
Equation (5.2).

5.3 Problem formulation

We introduce the objectives and constraints that path solutions must take
into account. Special attention is given to the challenges faced by buses,
which must be dealt with by developing special constraints for the overhang
parts.

Driving objectives

A goal in on-road driving is to drive as much as possible in the center of
the lane. Assuming that the reference path corresponds to the center of the
lane, as is often the case in on-road driving, we define the optimization ob-
jective Jcenter to be the squared Euclidean norm of the lateral displacement,
∥(ey,0, ey,1, . . . , ey,N )∥22.

Passenger comfort is also of importance, especially in buses. Thus, we
introduce the minimization objective Jsmooth given by

∑N-1
i=1 (ui − ui−1)

2
.

Minimizing Jsmooth results in a smooth control input profile, i.e. steering
profile, which in turn results in more comfortable driving.

Overhangs and environment classification

Buses have relatively big overhangs (see Figure 5.6), when compared to
other vehicles. The overhangs allow the bus to have a large passenger
capacity, while keeping the wheelbase small, which increases the turning
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Front
overhang

Wheelbase
Rear

overhang

Figure 5.6: A prototype autonomous bus, the dimensions of which are used
for the experimental results in this chapter. The distinct vehicle body, with
its large and elevated overhangs, allows it to sweep over curbs and low height
obstacles (courtesy of Scania CV AB).

radius. Furthermore, the smaller wheelbase allows for a better load balance
on the vehicle chassis. Experienced bus drivers take advantage of the height
of the overhangs, and use it to better maneuver the vehicle. Often a driver
maneuvers the bus in a way that allows the overhangs to sweep over curbs.

Planning approaches typically take into account the dimensions of the
vehicle body and use it to compute collision-free paths. It is common to split
the planning space using a binary classification into obstacle or obstacle-free
regions [13]. Buses suffer from such a classification scheme, as they do not
allow sweeping over low height obstacles.

To address this issue, we introduce a three-label approach, classifying
the space into three different regions, as shown in Figure 5.7. The obstacle
region corresponds to obstacles that the vehicle body cannot collide with.
The sweepable region corresponds to obstacles of height lower than the
overhangs, such as curbs, that can be swept over by the overhangs. The
drivable region corresponds to the road lane, where the wheels are allowed
to be.

To formulate the obstacle constraints we make use of the arc-circle ap-
proximation introduced in Section 5.2, and repeat it for K equispaced points
along the vehicle edge, for both edges. Each point is then constrained, us-
ing Equation (5.7), to be inside the left or right obstacle region boundaries,
depending on which vehicle edge is considered. The obstacle constraints for
all vehicle edge points can then be packed together as:

pobs,iey ≤ Piqi + pi, i ∈ [1, ..., N ], (5.8)
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where pobs,iey ∈ R2K , Pi ∈ R2K×2, and pi ∈ R2K . The 2K rows of Equa-
tion (5.8) correspond each to a positional constraint in the form of Equa-
tion (5.7).

Analogously, we limit the wheelbase to be inside the drivable region, by
formulating the arc-circle approximation for M equispaced points along the
wheelbase edges. The resulting drivable region constraints are:

tdriv,iey ≤ Tiqi + ti, i ∈ [1, ..., N ], (5.9)

where tdriv,iey ∈ R2M , Ti ∈ R2M×2, and ti ∈ R2M .
To minimize overhangs entering the sweepable region, we first introduce

optimization variable σ corresponding to the amount of overhang exiting
the drivable region. Then, the arc-circle approximation is used for the four
vehicle corner points. Combining with the drivable region limits, together
with the constraint that σ must be non-negative, we get:

rdriv,iey ≤ Riqi + ri − σri , i ∈ [1, ..., N ],

σri ≥ 0, i ∈ [1, ..., N ],
(5.10)

where rdriv,iey ∈ R4, Ri ∈ R4×2, ri ∈ R4, and σri ∈ R4.
The optimization variable σ is then penalized through objective Joverhang =

∥(σr1, σr2, . . . , σrN )∥22. This minimization objective, together with the con-
straints defined previously, make σ a measurement of the amount of over-
hang that exits the drivable region. Thus, minimizing Joverhang results in
reducing the amount of overhang exiting the road.

System constraints

We also define the state evolution constraints, corresponding to the dis-
cretized space-based road-aligned vehicle model introduced in Section 5.2:

qi+1 = Aiqi +Biui +Gi, i ∈ [0, ..., N -1]. (5.11)

Furthemore, it is necessary for the planned path to start from the current ve-
hicle state, and with the current steering angle. This originates constraints:

q0 = qstart, u0 = ustart. (5.12)

Finally, we introduce constraints related to actuator limits, which are for-
mulated as:

umax ≥ ui ≥ −umax, i ∈ [1, ..., N -1],

u′max ≥ ui − ui-1 ≥ −u′max, i ∈ [1, ..., N -1].
(5.13)

umax and u′max are space-based limitations of the curvature that reflect
magnitude and rate limits of the steering actuator.
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Drivable

Sweepable
Obstacle

Figure 5.7: Example of a bus stop. On the right half of the image are over-
layed the different region types. In red, yellow, and green are the obstacle,
sweepable, and drivable regions. The vehicle body cannot enter the obsta-
cle region in order to avoid collisions, however the overhangs are allowed to
enter the sweepable region.

Sequential Quadratic Programming formulation

Combining all the optimization objectives and constraints mentioned before,
one can formulate the following QP, [102]:

minimize
u

Jcenter + Jsmooth + Joverhang

subject to qi+1 = Aiqi +Biui +Gi, i ∈ [0, ..., N -1],

q0 = qstart, u0 = ustart,

pobs,iey ≤ Piqi + pi, i ∈ [1, ..., N ],

tdriv,iey ≤ Tiqi + ti, i ∈ [1, ..., N ],

rdriv,iey ≤ Riqi + ri − σri , i ∈ [1, ..., N ],

σri ≥ 0, i ∈ [1, ..., N ],

umax ≥ ui ≥ −umax, i ∈ [1, ..., N -1],

u′max ≥ ui − ui-1 ≥ −u′max, i ∈ [1, ..., N -1].

(5.14)

With optimization variable u corresponding to control inputs (u0, u1, . . . ,
uN-1).

The optimal inputs u∗, and vehicle states e∗y, e∗ψ, which are the solution
to the optimization problem Equation (5.14), can be relatively far from
the linearization references ū, ēy, ēψ. This means that the vehicle body
approximations Equation (5.8), Equation (5.9), and Equation (5.10) lose
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accuracy, possibly resulting in planned paths that violate the vehicle body
constraints.

To overcome this problem, we use Sequential Quadratic Programming
(SQP) [101]. In SQP, problem Equation (5.14) is sequentially solved, and
at each iteration, the previous solution becomes the linearization reference
for the current QP. Thus, we can guarantee that the final QP solution
has an arbitrarily small distance to the linearization reference. By setting
the allowed distance to a small value, we can enforce the quality of our
approximations.

As the successive linearizations of the problem are solved, one gets that
e∗y → ēy and e∗ψ → ēψ. This in turn indicates that the first order Taylor
expansion Equation (5.2) converges to the constant term, i.e., êy → Tey (p̂),
corresponding to the exact value of the edge location. Thus, as SQP pro-
gresses along iterations, so does the approximation become more accurate.

5.4 Results

Here, we present results showing how the novel constraints and optimization
objectives are successful in capturing the desired behaviors of professional
bus drivers. Furthermore, we present a road driving scenario that can only
be solved by allowing the overhangs to exit the lane. Finally, we show the
convergence of the proposed approximations into the real vehicle dimen-
sions, illustrating that these approximations are safe and not conservative.

The motion planning framework is implemented in MATLAB, and we
make use of CVX [103] as the convex solver of each SQP iteration. The ve-
hicle dimensions are those of the prototype autonomous bus shown in Fig-
ure 5.6, and correspond to a wheelbase length of 6 m, a front overhang
length of 3.34 m, a rear overhang length of 2.66 m, and a vehicle width of
2.54 m.

Wheelbase constraints and overhang minimization

Figure 5.8 shows the influence of wheelbase constraints in Equation (5.9)
and optimization objective Joverhang on the planned paths. If both Joverhang
and Equation (5.9) are disregarded, the vehicle follows the center of the road
(Figure 5.8 left). Considering constraint Equation (5.9) forces the vehicle
to the inside of the turn in order to keep the wheelbase inside the road
lane (Figure 5.8 center). By also minimizing Joverhang the planned path is
further pushed to the inside of the turn (Figure 5.8 right).

The maximum amount that the vehicle body exited the road is also
measured, and it can be seen that it is greatly reduced from 1.29 meters

126



5.4. RESULTS

30 40 50

20

30

1.29

0.90

0.85

x [m]

y
[m

]

Vehicle Body
Wheelbase
Road limits
Road center
Planned path

Figure 5.8: The influence of wheelbase constraints and overhang minimiza-
tion on the planned path. Disregarding wheelbase constraints and overhang
minimization (left), considering wheelbase constraints only (center), and
considering both wheelbase constraints and overhang minimization (right).
The maximum amount (in meters) that the vehicle body exits the road is
shown in red, and it decreases from 1.29 (left) to 0.90 (center) and finally
to 0.85 (right).

to 0.85 meters once the constraints and optimization objective are added.
This results in less invasive maneuvers for vehicles on adjacent lanes.

Highly constrained maneuver

One of the biggest challenges that path planners face are highly constrained
scenarios, where the solution must pass through small obstacle-free re-
gions [95]. We set up a scenario where an obstacle on the road forms a
passage with low clearance, as illustrated in Figure 5.9. One could imag-
ine this to be a possible representation of a scenario in which there is a
temporarily stopped vehicle on the side of the road.

Figure 5.9 shows that the path planner is able to find a collision-free
solution that makes the vehicle progress through the low clearance passage.
Furthermore, the planned path makes use of the sweepable region, allowing
the overhangs to exit the road limits, while keeping the wheelbase contained
in the drivable region corresponding to the road. If the overhangs were not
allowed to exit the road limits, as is the case with other planners, then it
would not be possible to find a solution. This illustrates the importance of
allowing the overhangs to go over sweepable regions.

We note that the planned path takes the turn on the inside, except when
avoiding the obstacle. This is done to minimize the amount of overhang
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Figure 5.9: Planned path on a road with an obstacle forcing the bus to drive
through a passage with small obstacle clearance.

exiting the driving lane.

Remark: The proposed planner assumes that a reference path is already
obtained. The reference path usually corresponds to the road center, but
can also be obtained by using a simplified path planner that determines if
obstacles should be avoided by driving through the left or right of them.

Improvement of distortion approximations

We present in Figure 5.10 a zoomed-in version of a selected planning in-
stance, in which an obstacle is present on the road. The figure shows the
position of the vehicle’s front right corner, when following the planned path,
for different iterations of the SQP. In initial iterations the roughness of ap-
proximations makes the vehicle corner intersect the obstacle. However, the
SQP iterations improve the accuracy of the approximation, resulting in suc-
cessful obstacle avoidance.

The results show that the proposed path planner is capable of reducing
the amount of overhang exiting the road, resulting in safer driving. Fur-
thermore it is capable of dealing with highly constrained scenarios, where
the bus can barely fit. This is achieved making use of approximations which
are precise, being both safe and not conservative.

5.5 Conclusions

This chapter presented a path planning framework targeted for buses driving
in urban environments. The work is motivated after noticing that there is a
lack of literature when considering motion planning for buses. Even though
several works are written in planning in constrained environments, none of
them seem to be able to deal with the extremely complicated case of buses
driving in narrow roads.
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Figure 5.10: Zoomed view of a selected problem instance. The curves rep-
resent the location of the front right corner of the bus, according to the
planned path, at three different SQP iterations (SQP converged at iteration
5). At each iteration the distortion approximation becomes more accurate,
and the planned paths converge to a solution avoiding the obstacle.

The path planning problem makes use of the road-aligned vehicle model,
and is solved via sequential quadratic programming. This type of solver,
together with a novel formulation for the obstacle body dimensions, is able
to guarantee obstacle avoidance, without requiring conservative approxima-
tions.

The proposed solution is tailored so as to take advantage of the special
body characteristics of buses, namely the overhangs. Using a new labeling
approach, which takes into account low height structures that can be swept
by the overhangs, the planner is able to plan paths otherwise impossible
when considering a binary classification into obstacle or obstacle-free re-
gions. The solutions are thus successful in mimicking the expert behavior
observed in bus drivers.

The proposed approach has several interesting future work directions.
Firstly one should consider implementation of the method in an online fash-
ion, and perform testing in real vehicles. In addition, the quality of the ve-
hicle body distortion approximations could be studied further. We believe
that the approximation error can be bounded and taken into account, so
that all solution paths are guaranteed collision-free even during intermediate
iterations of the SQP. It is also of interest to tackle the problem of bus stop
arrival and departure maneuvers. In this type of maneuvers, high precision
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is required so as to stop precisely at the boundary of the curb. Moreover,
the framework is suitable to be adapted to other vehicle configurations, such
as, articulated buses, and truck and trailer systems.
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Chapter 6

On-road Path Planning for
Articulated Vehicles

A significant part of vehicles in traffic is articulated, such as tractor-trailer
combinations which are accountable for 9.2% of all distance driven in roads
nowadays [104], and for 65% of USA’s consumable goods transport [105].
Even though articulated vehicles play an essential role in the society, being
responsible for a great the trucking industry is currently facing a shortage of
drivers [106]. At the same time new consumer trends such as e-commerce are
quickly growing and expected to significantly increase the needs for goods
transport in the near future [105]. It is expected that with full autonomy,
the operating costs of trucking would decline by about 45 percent [105].
Together, all these factors motivate the development of self-driving tech-
nologies targeting tractor-trailer vehicles.

Similarly to what was observed in Chapter 5, that driving a bus intro-
duces many novel challenges when compared to driving passenger cars, so
does driving an articulated vehicle introduce specific challenges to be tackled
by motion planning frameworks. A tractor-trailer vehicle is characterized
by two bodies of large dimensions, making it very difficult to successfully
maneuver such vehicles on narrow road stretches, such as roundabouts or
city streets. One difficulty arises from the off-tracking effect that forces the
trailer to take a shortcut when the tractor performs a sharp turn. As a
consequence, planning paths that take the off-tracking effect into account,
while avoiding collision with surrounding obstacles, is both practically rele-
vant and an important subject which requires the development of specialized
solutions. This chapter focuses on this particular problem.

The contributions of this chapter are the following:

• proposal and evaluation of different optimization criteria suitable for
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on-road path planning of articulated vehicles;

• implementation of a sequential quadratic programming (SQP) solver,
which ensures smooth driving while guaranteeing precise obstacle avoid-
ance;

• a sequential method for computing the off-tracking, as well as approx-
imate partial derivatives, of each point of the vehicle bodies suitable
for numerical optimization approaches;

• simulation results that show the proposed path planner’s ability to
solve complicated on-road planning scenarios while considering the
most challenging tractor-trailer dimensions.

The chapter is organized as follows.
Section 6.1 presents existing works that tackle the motion planning task

for articulated vehicles. The existing works mostly focus on off-road scenar-
ios or roads with low curvature, highlighing a gap in existing research for
articulated vehicles in urban environments.

The proposed road-aligned model of the tractor-trailer vehicle is pre-
sented in Section 6.2 presents the road-aligned model for the tractor-trailer
vehicle. The trailer in conjunction with the road-aligned model introduce a
need for numerical approximations that are able to model the trailer axle.

Section 6.3 introduces the formulation of the optimization-based path
planner. An important component of the formulation is the optimization
objective, which in the case of articulated vehicles can take many differ-
ent forms. We introduce a set of possible optimization objectives that are
specifically tailored for on-road driving of tractor-trailer vehicles.

Section 6.4 presents simulation results where the different proposed op-
timization objectives are compared against each other and the most suitable
one is chosen. With the chosen optimization objective we then test the plan-
ning framework in tough maneuvering urban scenarios and in the presence
of obstacles.

Section 6.5 provides a summmary of the chapter and lists its contri-
butions. Furthermore, an introduction to follow-up work in Chapter 7 is
given.

6.1 Introduction

The existing body of work on path planning for tractor-trailer vehicles has
mostly focused on off-road scenarios. We start by presenting some of the
works in this area.

In [107] the authors make use of a cascaded motion planning approach.
At a first stage they compute a collision-free path that does not consider
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the non-holonomic constraints of the system, i.e., that does not respect
the vehicle model. Afterwards, the path is approximated by collision-free
feasible sub-paths, that are computed using a steering method. A final
smoothing step is applied, based on the idea of connecting two configurations
along the planner path by a shorter collision-free path, in a way similar
to that presented in Section 4.2. The whole motion planning and control
framework is evaluated on two experimental platforms, corresponding to
miniature versions of both a tractor with on-axle and a tractor with off-axle
hitching.

In [108] the authors propose a path planner for a truck-trailer system
based on numerical optimization, namely, making use of an SQP solver.
The planned paths are able to solve complicated parking scenarios involv-
ing direction changes. However, the collision avoidance constraints are not
directly, nor exactly, formulated inside the optimization problem. Instead
collisions are detected outside of the optimization, and then an additional
repelling force optimization objetive is introduced, which pushes the vehicle
away from the obstacles. The repelling force is an intuitive, and numeri-
cally stable approach to collision avoidance, however it is not able to always
guarantee that the vehicle actually avoids the obstacles. The work achieves
however impressive real-time performance for complex off-road scenarios.

In [109] the authors propose a numerical optimization based approach to
plan trajectories for generic tractor-trailer vehicles. The authors introduce
a novel solving strategy that progressively constrains a relaxed version of
the planning problem so as to facilitate the numerical optimization process.
The authors build upon the work of [110], where homotopy methods are
used to relax the original planning problem and thereby more easily solve
the underlying numerical optimization problems.

The work in [111] proposes a motion planning framework based on the
closed-loop rapidly-exploring random tree (CL-RRT) algorithm. The work
considers a general two trailer and tractor vehicle performing complex ma-
neuvers in constrained unstructured environments. The authors present
results from tests in a small-scale platform that highlight the capability of
the method to perform complicated reversing maneuvers with high success
rate.

The work in [112] integrates a path planning and control approach that
can maneuver the vehicle in complicated off-road scenarios. A lattice-based
motion planner is used to efficiently deal with difficult parking and obstacle
avoidance maneuvers. Furthermore, a state estimator is developed that
successfully estimates the articulation angles making only use of sensors
mounted on the tractor vehicle. The work is extensively tested on a full-
scale test vehicle showing the real-life applicability of the method.

Another lattice-based approach is presented in [113], but this time con-
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sidering multi-steering trailer vehicles, which correspond to trailers that
might have fixed or steerable wheels. The work combines in a first step a
lattice-based approach that plans motions in unstructured scenarios, and
in a second step optimal control. In the second step, the lattice planner
solution is used to warm-start the optimal control problem, which will then
compute a locally optimal trajectory in the neighborhood of the initial guess.
Simulation results show the capability of the method to deal with a set of
different parking scenarios.

We note however, that lattice planners do not lend themselves well for
on-road applications, as they require the online computation of motion prim-
itives [42], which can be extremely inefficient for collision checking proce-
dures.

The are also some examples considering more structured on-road sce-
narios. The work in [114] presents a path planning approach for extremely
large vehicles driving through narrow roads. More specifically, the authors
study the challenging task of transporting Airbus A380 components through
small villages. Special truck and trailer systems are used, that can reach 8
meters in width and 50 meters in length. The work studies the feasibility
of driving such oversized vehicles through narrow roads of small villages.
This can be seen as a motion planning task where the goal is to find out if a
solution path exists. The method used is based on trajectory deformation,
which is implemented via potential field computations.

The work in [115] also considers on-road environments. The authors
focus on the task of planning paths for a heavy load vehicle with multi-
ple steered axles. The implemented planning solution is based on the A*-
algorithm together with some application specific adaptations to the original
search algorithm. The authors also take into account the existence of ”over
drivable obstacles” which would roughly correspond to the sweepable areas
we presented in Chapter 5. The motion planner achieves impressive results,
however the computational times are in the order of minutes, making the
algorithm not suitable for online motion planning.

Trajectory generation for long truck combinations is also considered
in [116], where a nonlinear model predictive control approach is used. How-
ever, the work is limited to highway scenarios, which are characterized by
roads with low curvature, and therefore not suited for urban scenarios. Fur-
thermore, collision avoidance is performed by approximating the vehicle
body by two points, which is excessively simplistic and cannot guarantee
safety during more complicated maneuvers.

There exists in the literature a body of work on reducing the off-track of
articulated vehicles [117–122]. However, common to all these approaches
is the fact that the solution is implemented in a path-following/control
framework. These approaches have the drawback of disregarding obstacle-
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Figure 6.1: A tractor-trailer vehicle whose dimensions are used in this work.
A tractor-trailer combination is an example of an articulated vehicle. This
work considers such vehicle combinations, which also include articulated
buses. (courtesy of Scania CV AB)

avoidance constraints, as well as properly deal with the dimensions of the ve-
hicle bodies. By considering the off-track reduction problem already at the
path-planning layer, it is possible to guarantee collision avoidance, reduce
controller complexity, and minimize more general optimization objectives
than just off-track reduction, as will be seen in the current chapter.

6.2 Modeling

We hereby introduce the model of the tractor-trailer vehicle used in the
numerical optimization. The model is formulated in the road-aligned frame
introduced in Chapter 5. Modeling the tractor-trailer vehicle in the road-
aligned frame comes with challenges associated with deriving the position
of the trailer axle. Therefore, we also introduce linear approximations for
the position of the trailer axle that are suited for usage in the numerical
optimization used in the planning framework.

Road-aligned tractor-trailer model

We consider a tractor-trailer vehicle composed of a car-like tractor and a
trailer. The vehicle and respective dimensions are shown in Figure 6.2.
The tractor is defined by the wheelbase length L1, and the front and rear
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Figure 6.2: An illustration of the tractor-trailer vehicle in the road-aligned
frame and definitions of relevant geometric lengths and vehicle states.

overhang lengths, Lf1 and Lr1, respectively. M1 corresponds to the signed
hitch offset, which in the case of Figure 6.2 corresponds to a negative value.
The trailer is defined by the length L2 corresponding the distance between
the trailer’s axle and the off-axle hitch connection at the tractor, as well
as the rear trailer overhang length Lr2. Here we assume an equal width W
for both the tractor and the trailer, however the approach can just as well
consider different widths for the different bodies.

Similarly to the bus case presented in Chapter 5, in the road-aligned
frame, the tractor-trailer vehicle is described in terms of deviation from
the geometric reference path γ, as shown in Figure 6.2. Variable s is the
distance traveled by the position of the tractor’s rear axle onto its projection
to the reference path γ. The reference path curvature is given by κγ(s). The
reference path γ is assumed to be the center of the road, however, depending
on the application, it could also be the output solution of a global path
planner.

We describe the tractor-trailer vehicle through the configuration vector
q = [s, ey, eψ, β1]T . ey and eψ represent the tractor’s lateral and orientation
error, respectively, with respect to the reference path. β1 = θveh−θtra is the
joint angle, defined as the difference between the orientation of the tractor
θveh and the trailer θtra. The evolution of the tractor states (s, ey, eψ) is
equivalent to that of the road-aligned vehicle model used in for the bus case
in Chapter 5. The model of the additional state β1 corresponding to the
joint angle is based on [112].

The model of the tractor-trailer vehicle in the road-aligned coordinate
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frame is then given by

ṡ = v
cos(eψ)

1− eyκγ(s)
,

ėy = v sin(eψ),

ėψ = v

(
κ− κγ(s) cos(eψ)

1− eyκγ(s)

)
,

β̇1 = v

(
κ− sin(β1)

L2
+
M1

L2
cos(β1)κ

)
,

(6.1)

where q̇ = dq/dt, v is the linear velocity of the tractor, and κ = tan(ϕ)/L1

corresponds to the tractor’s curvature. The curvature of the tractor κ is the
control input, which is directly related to the actuated steering angle ϕ.

Since we are considering on-road driving, we will only consider forward
motion maneuvers. We note that reversing a long articulated vehicle in a
road is something that very rarely happens and that should be avoided. By
only considering forward motion we get that v > 0, and as a result time-
scaling can be applied to remove the time-dependency presented in (6.1)
and to transform the model into an equivalent spatial model [21]. Using
the chain rule, it holds that dq/ds = dq/dt1/ṡ, and the resulting spatial model
becomes

e′y = (1− eyκγ) tan(eψ),

e′ψ =
1− eyκγ
cos(eψ)

κ− κγ ,

β′
1 =

1− eyκγ
cos(eψ)

(
κ− sin(β1)

L2
+
M1

L2
cos(β1)κ

)
,

(6.2)

where (·)′ = d(·)/ds and s′ = 1. The new state vector is given by z =
[ey, eψ, β1]T . As in Chapter 5 we discretize and linearize the spatial model (6.2)
The reference path γ is discretized along its length, {si}Ni=0, with si = i∆s,
with a path sampling distance ∆s. We then linearize around the reference
states s̄ = {s̄i}Ni=0, ēy = {ēy,i}Ni=0, ēψ = {ēψ,i}Ni=0, β̄1 = {β̄1,i}Ni=0 and
κ̄ = {κ̄i}Ni=0, resorting to a first-order Taylor approximation. After dis-
cretization and linearization, we obtain a linear discrete-time model in the
form zi+1 = Aizi +Biκi +Gi, where zi = [ey,i, eψ,i, β1,i]

T .

Trailer-axle states

The previously presented model (6.2) describes the evolution of the trac-
tor’s states as well as of the joint-angle between the tractor and the trailer.
However, it lacks direct information about the position and orientation of
the trailer’s axle. For planning purposes and collision checking it is neces-
sary to also have trailer state variables (stra, ey,tra, eψ,tra) corresponding to
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the distance traveled by the position of the trailer’s rear axle, the trailer’s
lateral and orientation error, respectively, with respect to the reference path
γ. The trailer variables are important to define planning objectives, such
as minimizing the lateral error of the trailer axle ey,tra, as well as for for-
mulating collision avoidance constraints.

As mentioned in Chapter 5 the road-aligned frame introduces distor-
tions onto the vehicle body. As a result, the road-aligned model does not
allow for an analytical expression that expresses the evolution of the trailer
states (stra, ey,tra, eψ,tra) as a function of q = [s, ey, eψ, β1]T and the tractor’s
curvature input κ. To tackle this issue we compute an approximate rela-
tionship of (ŝtra, êy,tra, êψ,tra), which depends linearly on the tractor-trailer
states of (6.2).

Given a reference vehicle state q̄ = [s̄, ēy, ēψ, β̄1]T , we compute the cor-
responding position and orientation of the trailer’s axle (s̄tra, ēy,tra, ēψ,tra)
as:

(s̄tra, ēy,tra, ēψ,tra) = f(s̄, ēy, ēψ, β̄1, γ).

Function f performs three steps to compute (s̄tra, ēy,tra, ēψ,tra):

1. compute the equivalent Cartesian x state of q̄ = (s̄, ēy, ēψ, β̄1)

2. computes the Cartesian pose (xtra, ytra, θtra) of the rear axle of trailer
for state x,

3. converts pose (xtra, ytra, θtra) into the road aligned state (s̄tra, ēy,tra, ēψ,tra),
by projecting it onto the reference path γ.

It is important to note that function f is not analytical since the third
step involves the projection of a Cartesian position onto an arbitrary path
γ with varying curvature κγ . In the particular case of a straight reference
path, f can actually be described by a closed-form expression [117], however
the assumption of a straight reference path would be too restrictive for the
purposes of on-road planning.

To compute the approximation of trailer states (ŝtra, êy,tra, êψ,tra) we
then need to express how (s̄tra, ēy,tra, ēψ,tra) changes with respect to the
tractor states (ey, eψ, β1). One possible way is to approximate the par-
tial derivatives ∂ey,tra/∂ey, ∂ey,tra/∂eψ, ∂ey,tra/∂β1, ∂eψ,tra/∂ey, ∂eψ,tra/∂eψ, and
∂eψ,tra/∂β1, using finite differences. This can be captured by approximating
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the partial derivatives as follows:

∂ey,tra
∂ey

≈ fey (s̄, ēy + δey, ēψ, β̄1, γ)− fey (s̄, ēy, ēψ, β̄1, γ)

δey
,

∂ey,tra
∂eψ

≈ fey (s̄, ēy, ēψ + δeψ, β̄1, γ)− fey (s̄, ēy, ēψ, β̄1, γ)

δeψ
,

∂ey,tra
∂β1

≈ fey (s̄, ēy, ēψ, β̄1 + δβ1, γ)− fey (s̄, ēy, ēψ, β̄1, γ)

δβ1
,

∂eψ,tra
∂ey

≈ feψ (s̄, ēy + δey, ēψ, β̄1, γ)− feψ (s̄, ēy, ēψ, β̄1, γ)

δey
,

∂eψ,tra
∂eψ

≈ feψ (s̄, ēy, ēψ + δeψ, β̄1, γ)− feψ (s̄, ēy, ēψ, β̄1, γ)

δeψ
,

∂eψ,tra
∂β1

≈ feψ (s̄, ēy, ēψ, β̄1 + δβ1, γ)− feψ (s̄, ēy, ēψ, β̄1, γ)

δβ1
,

(6.3)

where functions fey and feψ are simply selecting the corresponding ey or eψ
co-domain of function f . The linear approximation of the trailer states is
then defined as follows:

êy,tra = ēy,tra +
∂ey,tra
∂ey

(ey − ēy) +

∂ey,tra
∂eψ

(eψ − ēψ) +
∂ey,tra
∂β1

(β1 − β̄1),

êψ,tra = ēψ,tra +
∂ey,tra
∂ey

(ey − ēy) +

∂ey,tra
∂eψ

(eψ − ēψ) +
∂ey,tra
∂β1

(β1 − β̄1).

(6.4)

This model is a linear approximation of the lateral and orientation error
of the trailer axle with respect to the reference path γ at a fixed path
length s̄. These approximations are made around the reference vehicle states
(s̄, ēy, ēψ, β̄1).

6.3 Problem formulation

We hereby present the Optimal Control Problem (OCP) formulation corre-
sponding to the on-road path planning problem. The OCP is solved using
a Sequential Quadratic Programming (SQP) approach. We propose a set of
different optimization objectives that target tractor-trailer on-road driving
based on principles inspired by human-like driving goals.
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Optimal control problem

The on-road path planning problem for the tractor-trailer vehicle is formu-
lated as the following OCP:

minimize
κ

Jke (ey, ey,tra) + Jκ(κ) (6.5a)

subject to zi+1 = f(zi, κi), i ∈ {0, ..., N − 1}, (6.5b)

z0 = zstart, κ0 = κstart, (6.5c)

pobs,iey ≤ g(zi), i ∈ {1, ..., N}, (6.5d)

|κi| ≤ κmax, i ∈ {1, ..., N − 1}, (6.5e)

|κi − κi−1| ≤ κ′max, i ∈ {1, ..., N − 1}, (6.5f)

where ey = [ey,1 . . . ey,N ]T ∈ RN , ey,tra = [ey,tra,1 . . . ey,tra,N ]T ∈ RN ,
and κ = [κ0 κ1 . . . κN−1]T ∈ RN . Vector κ is the optimization variable to
be optimized, which corresponds to the curvature of the vehicle along the
planned path. The vehicle curvature can be directly converted to a steering
angle of the vehicle, which is the actuated variable used to steer the vehicle.

The optimization objective (6.5a) is composed of two terms. The term
Jke penalizes a function related to the vehicle states of the tractor, trailer,
or both. In Section 6.3 we will see that different formulations of Jke terms
can result in very different types of behaviors, with their respective advan-
tages and disadvantages. The term Jκ is used to penalize control inputs
and increase ride comfort. To do so, we set Jκ(κ) =

∑N-1
i=1 (κi − κi−1)

2
,

enforcing a smooth curvature profile that is associated with a comfortable
driving behavior.

Constraint (6.5b) encondes the vehicle model. (6.5c) defines the initial
constraints on the vehicle states and control input, necessary to ensure that
the planned paths start from the current vehicle state. Constraint (6.5d)
enforces obstacle avoidance by ensuring that the vehicle bodies do not col-
lide with any obstacle. The constraints are formulated in an analogous way
to that presented for the bus case in Chapter 5. Finally, constraints (6.5e)
and (6.5f) set the tractor’s curvature limits including both maximum mag-
nitude κmax as well as maximum rate κ′max.

We make use of the same SQP methodology introduced in Chapter 5
to find the solution to OCP (6.5). At each SQP iteration, the vehicle
model (6.5b) is re-linearized around the previous solution. The linearization
is done using a first-order Taylor series approximation as explained in Sec-
tion 6.2, resulting in a linear prediction model of the tractor states ey and
eψ as well as of the joint-angle state β1. The remaining trailer states ey,tra
and eψ,tra are obtained using approximation (6.4).
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reference path γ

Figure 6.3: Illustration of optimization objective 1, corresponding to mini-
mizing the tractor lateral offset. The optimization objective tries to mini-
mize the blue dot corresponding to the center of the rear axle of the tractor.

Optimization objectives

This section presents a set of different candidate optimization objectives
Jke that can be used in (6.5). These candidate optimization objectives will
be later on compared to understand their performance and suitability for
on-road driving of articulated vehicles.

Optimization objective 1 - Tractor centering

In normal conditions, vehicles on the road drive as much as possible in the
center of their lanes. As previously mentioned, we assume here that the
the reference path γ of the road-aligned frame corresponds to the center
of the lane. Therefore, centering the tractor is achieved by minimizing the
magnitude of ey. In the case when the tractor drives precisely on the center
of the road, i.e., on top of the reference path γ, we get that ey = 0. We
define our first optimization objective J1

e to be the square of the euclidean
norm of the lateral displacement ey of the tractor, along the planned path:

J1
e = ∥ey∥22 .

Figure 6.3 illustrates the proposed optimization objective.

Optimization objective 2 - Trailer centering

In the case of a tractor and trailer vehicle, one needs to take into account
the presence of the trailer. The trailer can significantly deviate from the
center of the road, even when the tractor is centered. This is the case in
turns, where the off-tracking effect is clearly noted, causing the trailer to
significantly cut through the inside of the curve.

To avoid the trailer from deviating from the center of the road, we define
the second optimization objective J2

e as a minimization of the trailer lateral
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reference path γ

Figure 6.4: Illustration of optimization objective 2, corresponding to mini-
mizing the trailer lateral offset. The optimization objective tries to minimize
the blue dot corresponding to the center of the rear axle of the trailer.

offset to the center of the road:

J2
e = ∥ey,tra∥22 .

Figure 6.4 illustrates the proposed optimization objective.

Optimization objective 3 - Tractor and trailer centering

Ideally one would center both the tractor and trailer, and not just one of
them. Therefore the third centers both the tractor and the trailer simultane-
ously. Instead of considering only on the tractor or the trailer, we formulate
an objective that minimizes the lateral error of both. This is achieved with
the following optimization objective:

J3
e = ∥(1−K)ey +Key,tra∥22 , (6.6)

where K ∈ [0, 1] is a tunable parameter. The value of K determines the
trade-off between centering the tractor or the trailer around the road cen-
ter. A method for determining a suitable K is presented in Section 6.4.
Figure 6.5 shows an illustration of the lateral offsets to be minimized in the
proposed optimization objective. We note that centering the tractor is often
in conflict with centering the trailer, and vice-versa. K is therefore crucial
for having an appropriate behavior of this optimization objective.

Optimization objective 4 - Tractor and trailer maximum
deviation minimization

For the fourth optimization objective, we make use of the L∞-norm, that
significantly differs from the Euclidian norm considered in the previous ob-
jectives. When considering the L∞-norm, we minimize the worst lateral
deviation of the vehicle states. Intuitively, this should result in planned
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reference path γ

Figure 6.5: Illustration of tractor and trailer lateral offsets involved in the
formulation of optimization objectives 3 and 4. Both optimization objectives
3 and 4 tries to keep the blue dots corresponding to the center of the rear
axle of the tractor and of the trailer as close as possible to the center of the
road.

paths that minimize the maximum lateral deviation of the vehicle axles
from the road center. The fourth optimization objective is then defined as:

J4
e = ∥(ey, ey,tra)∥∞.

Figure 6.5 shows an illustration of the lateral offsets to be minimized in the
proposed optimization objective.

Optimization objective 5 - Swept area minimization

The fifth objective minimizes the distance of the vehicle sides to the center
of the road. We first define the vector of auxiliary variables

q = [lL1 , l
L
2 , . . . , l

L
M , l

R
1 , l

R
2 , . . . , l

R
M ]T , (6.7)

shown in Figure 6.6. The superscripts L and R correspond to the left (L)
and right (R) sides of the vehicle bodies. The proposed vector q measures
the displacement of the sides of the vehicle bodies to the reference path, i.e,
the center of the road. For each vehicle state (ey,i, eψ,i, β1,i) we compute
the corresponding qi. Ideally, vector qi is kept as small as possible. This in
turn, implies that the tractor-trailer vehicle body drives as close as possible
to the center of the road.

We can then formulate the optimization objective J5
e as:

J5
e = ||(q1,q2, . . . ,qN )||∞.

With this formulation, we encourage the optimization problem to find a
solution that minimizes the largest displacement of the vehicle sides to the
center of the road.
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reference path γ

lL1
lR1

lL2
lR2

lLM−1

lRM−1

lLM
lRM

Figure 6.6: Illustration of the auxiliary variables lL1 , . . . , l
L
M , l

R
1 , . . . , l

R
M that

are sampled uniformly across the vehicle length and used to measure the
lateral displacement of the vehicle sides. These variables provide an estimate
of how much the vehicle sides deviate from the center of the road.

Note that this objective makes use of the positional information of the
vehicle sides in its formulation, and therefore takes into account the vehi-
cle dimensions. Previous candidate objectives only make use of the axle
positions to center the tractor-trailer vehicle. Intuitively, one expects that
an optimization objective which takes into account the dimensions of the
vehicle will achieve better results than an optimization objective which only
considers the center positions of the axles.

We remark that it would be interesting as well to formulate this opti-
mization objective with an Euclidean norm instead of the L∞-norm. How-
ever, during our experiments, we noticed that the Euclidean norm turned
out to be computationally too demanding for the optimization problem to
be solved.

6.4 Results

To study the performance of the on-road path planner with the different
optimization objectives we run a set of simulation experiments and evaluate
them using a set of relevant performance metrics. After choosing a suitable
optimization objective we simulate two realistic urban driving scenarios that
highlight the capabilities of the proposed path planner.

We use the vehicle dimensions of the tractor-trailer vehicle shown in Fig-
ure 6.1. We consider a tractor wheelbase L1 = 3.78 m, a tractor front over-
hang Lf1 = 1.46 m, a tractor rear overhang Lr1 = 1.64 m and a hitch length
M1 = −0.30 m (the hitch connection is located in front of the tractor’s rear
axle). For the trailer we assume an axle length L2 = 13.97 m and a rear
overhang Lr2 = 4.50 m. Both the tractor and the trailer have the same width
W = 2.54 m. We have chosen a tractor-trailer vehicle with a total length
of 24 meters. This vehicle length corresponds to the maximum legally al-
lowed in Sweden, and therefore one of the most challenging tractor-trailer
combinations that are allowed to drive on public roads. Furthermore, we

144



6.4. RESULTS

consider a tractor with a maximum curvature magnitude κmax = 0.1 m−1

and a maximum curvature rate κ′max = 0.1∆s.
All results shown in this section have been obtained on a computer

equipped with an Intel Core i7-6820 HQ@2.7GHz CPU. The numerical
optimization problem is implemented in MATLAB, and we make use of
CVX [103] as the convex solver of each SQP iteration.

Performance metrics

To measure and compare the performance of the different optimization ob-
jectives proposed in Section 6.3, we introduce three different performance
metrics.

First, it is desirable to measure the maximum amount the vehicle bodies
sweep on the road, i.e., how much the vehicle body deviates at most from
the road center. Therefore we introduce performance metrics max left and
max right that measure the maximum offset from any point on the vehicle
body to the center of the road. These metrics are illustrated in Figure 6.8.

It is also important to consider the behavior of the vehicle along the
whole planned path, and not just at its maximum offset. Therefore we
introduce a second metric aL−aR that measures the difference between the
areas swept by the vehicle bodies to the left and to the right of the road
center. In the special case of a straight road, and when the vehicle drives
on the center of it, we would get that aL − aR = 0. Large values of this
metric indicate a preference for the vehicle bodies to be off-centered. The
case when aL− aR > 0 indicates a tendency to drive on the left of the road
center, whereas aL−aR < 0 indicates a tendency to drive on the right. The
closer this metric is to zero, the more centered the tractor-trailer drives.

The third metric is related to the applicability of the proposed optimiza-
tion objectives for practical implementation. We introduce metric CPU time
that measures the amount of time required to solve the OCP in (6.5a). This
metric is used to compare the computational effort that the different opti-
mization objectives require from a computing unit. Large values of CPU
time indicate that the optimization objective is not feasible for real-time
implementation, as one expects that path planner to run a high frequency
and on limited computational power. Small values of CPU time are de-
sirable, as they indicate that the optimization objective is computationally
fast and suitable for actual implementation on a vehicle.

Comparison of different optimization objectives

We now compare the results of using the different optimization objectives
introduced in Section 6.3. Figure 6.7 shows the envelopes of the areas swept
by the vehicle when performing a U-turn. The U-turn road considered
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Figure 6.7: Vehicle envelopes of the planned paths for each optimization
objective. The road considered is shown in Figure 6.8. Table 6.1 provides
detailed information about the maximum envelope offsets, the swept areas,
and computational times.

has a curvature of 0.065 m−1 (turning radius of 15.38 m) and can be seen
in Figure 6.8, resulting in a planning horizon of the optimization problem
of 134.2 m, and a discretization of the path of 0.1 m. Table 6.1 presents the
different performance metrics for the five candidate optimization objectives.
The performance of each optimization objective is studied in detail below.

Optimization objective 1 - Tractor centering

Objective J1
e results in the largest positive (left) sweep, corresponding to the

trailer taking the turn on the inside up to 8.34 m. Moreover, the vehicle has
a swept area of 312 m2, clearly indicating that it tends to the inside of the
turn. This is a direct result of the objective formulation, which tries to keep
the tractor on the road center while disregarding the trailer. Considering J1

e

as an optimization objective results in a large off-tracking effect, where the
vehicle clearly cuts in through the inside of the curve. As it is not desirable
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that the trailer cuts through the inside of curves, we can determine this
optimization objective to not be suited for on-road planning purposes.

Optimization objective 2 - Trailer centering

The second optimization objective J2
e has the opposite effect of J1

e , resulting
in the largest negative (right) sweep, corresponding to the vehicle bodies
taking the turn on the outside up to 7.83 m from the road center. The
swept area is −302 m2, which clearly shows the tendency of the vehicle
to drive on the outside of the turn. This is expected, as the formulation
only focuses on keeping the trailer rear axle centered on the road, ignoring
the position of the tractor. In order to keep the trailer on the road center,
i.e., minimize ∥ey,tra∥22 the tractor needs to drive on the outside of the
turn. Intinuitively, it is not desireable that the tractor drives to much on
the outside of the turn, and we can therefore determine this optimization
objective to be unsuitable for on-road planning purposes.

Optimization objective 3 - Tractor and trailer centering

We note that objective function J3
e involves a term K that has not been

determined yet. To find an appropriate value for K, we do a discrete search
over the interval K ∈ [0, 1], and measure the performance of the result-
ing planned paths with respect to the area difference metric aL − aR. To
measure metric aL − aR in a relevant way, we run the path planner in sev-
eral U-turn roads of different curvatures. We then conclude that K = 0.45
is consistently performing the best for the majority of roads considered.
Therefore, we select K = 0.45 in optimization objective J3

e , and all coming
results are obtained considering these value, unless stated otherwise. With
this value of K in optimization objective J3

e , we obtain a balanced trade-off
between the cut-in of the trailer (4.79 m), and the cut-out of the tractor
(−4.82 m). Furthermore, we obtain a small swept area of −5 m2, which is
expected, as we optimize the value of K with respect to this metric.

Optimization objective 4 - Tractor and trailer maximum
deviation minimization

Optimization objective J4
e achieves a better trade-off between the cut-in

and cut-out than both J1
e and J2

e . However, we note that it is significantly
worse than J3

e . Furthermore, since J4
e considers the L∞-norm instead of

the euclidean norm, the vehicle does not have any incentive to come back
to the center of the road after the turn finishes. This effect can be seen
in Figure 6.7, where it can be noted that after the turn, i.e., for s > 100
m, the vehicle envelope continues with a negative lateral offset, indicating
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that the vehicle continues driving on the left side of the road, even in the
straight road section. This is a clear disadvantage of the L∞-norm which
only penalizes the vehicle state that leaves the road center the most. As a
result, J4

e has an excessively large swept area of −406 m2.

Optimization objective 5 - Swept area minimization

Optimization objective J5
e results in a good trade-off between cutting in and

out of the road, resulting in very similar values for the maximum cut-in,
max left, and maximum cut-out, max right. We note that this trade-off is
slightly worse than the one achieved by J3

e , however J5
e has the significant

advantage of not relying on a tuning of parameter, whereas J3
e requires a

properly chosen K value. Similarly to J4
e , objective J5

e also is affected by
the drawbacks that arise when considering the L∞-norm. Figure 6.7 shows
that the vehicle does not converge to the center of the road at the final
section of the path, instead actually deviating from it.

An even more significant drawback is that objective J5
e makes the op-

timization problem very expensive to solve, as show by the CPU time of
770.71 s that is required to solve the OCP. The high computational time is
due to the large number of terms involved in J5

e . For each vehicle state in
the planning horizon, objective J5

e must consider several auxiliary variables
q = [lL1 , l

L
2 , . . . , l

L
M , l

R
1 , l

R
2 , . . . , l

R
M ]T corresponding to points along the vehi-

cle body (see Equation (6.7)). This in turn results in large computational
times that are not suitable for implementation on a real system with online
planning requirements.

Selection of best optimization objective

Based on the above study of the individual optimization objectives, we can
conclude that J3

e is the most suited for our purposes. Firstly, it achieves
a low swept area, as well as a balanced trade-off between maximum cut-in
and cut-out. Secondly, since it penalizes all states along the planned path,
it takes the vehicle to the center of the road in both turning and straight
segments. Thirdly, its CPU time of 22.03 s makes it promising for usage in
online planning for autonomous vehicles. A planned path for the tractor-
trailer vehicle using optimization objective J3

e is shown in Figure 6.8. We
observe that the optimal solution achieves a balanced trade-off between the
cut-in of the trailer body and the cut-out of the tractor body.

We note that the results presented have focused on a specific U-turn
defined by a curvature of 0.065 m−1. However, we performed the same
analysis for several other U-turns with different curvatures, as well as for
road with curvatures with different sign (turning clockwise, as opposed to
counterclockwise). The comparisons and conclusions made previously were
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Figure 6.8: Path performed by the tractor-trailer when using optimization
objective J3

e . The planned solution fairly balances the maximum cut-out
of the tractor to the right of the road center, and the maximum cut-in of
trailer to the left of the road center. max left and max right measure the
maximum amount of sweep of the vehicle body to the left and right of the
road center.

also observed in the majority of distinct U-turns that were tested, indicating
that the above conclusions can be generalized to a broad set of U-turns.

It should also be noted that all CPU times are quite high in this study.
This can be explained by the fact that we have used a MATLAB implemen-
tation running on a personal laptop, and that the optimization problem
was solved for the whole length of the road, which amounts to 1342 vehicle
states (134.2 m long road with a discretization of the path of 0.1 m). In
a real implementation, we would expect very significant speed ups in the
computational time, due to
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Table 6.1: Performance metrics for the proposed optimization objectives.
Metrics max left and max right correspond to the maximum amount swept
by the vehicle body to the left and right of the road center, respectively.
aL − aR is the difference between the area swept to the left (L) and to
the right (R) of the road center. CPU time is the time taken to solve the
OCP (6.5).

Objective max left max right aL − aR CPU time

J1
e 8.34 m 2.06 m 312 m2 7.92 s
J2
e 1.79 m 7.83 m −302 m2 17.93 s
J3
e 4.79 m −4.82 m −5 m2 22.03 s
J4
e 4.25 m −4.82 m −406 m2 13.53 s
J5
e 4.70 m 4.78 m 4 m2 770.71 s

1. implementation in a low-level language, such as C++, which is expected
to achieve computational times when compared to MATLAB;

2. reformulation of the QP problem and usage of a tailored solver;

3. execution in a receding horizon fashion which will significantly reduce
the length of the road considered for planning and therefore the num-
ber of vehicle states to be optimized;

4. execution in a receding horizon fashion which allows as well for the us-
age of initial guesses to the optimization problem allowing for efficient
warm-starts and faster solving times.

These reasons lead us to believe that the proposed approach can be made
real-time given a more time to focus on a more serious implementation of
the planning framework.

Driving on a roundabout

After deciding to use optimization objective J3
e we now study the perfor-

mance of the proposed path planner in more complex scenarios. We first
consider a 450-degree turn in a roundabou, shown in Figure 6.9. This round-
about is taken from the work in [119], where the authors use this scenario
to test for compliance with UK requirements for roundabout maneuvers.
The roundabout has a curvature 0.056 m−1, corresponding to a turning
radius of 17.88 m. This results in a planning horizon for the optimization
problem of 245.8 m. To keep the computational times more tractable we
consider a sampling distance is 0.2 m (instead of the previously used 0.1
m). We also adapt the tractor-trailer dimensions to match those considered
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Figure 6.9: The tractor-trailer performing a 450-degree turn in a round-
about. The planned path (using objective J3

e ) balances the tractor and
trailer cut-in and cut-out towards the right and left sides of the road center.
Both the roundabout and vehicle dimensions are taken from [119].

in [119] considers a smaller tractor-trailer combination. The new vehicle
dimensions correspond to a tractor wheelbase L1 = 3.47 m, a tractor front
overhang Lf1 = 1.16 m, a tractor rear overhang Lr1 = 1.34 m and a hitch
length M1 = −0.30 m (corresponding to the hitch connection being in front
of the rear axle). The new trailer dimensions correspond to an axle length
L2 = 9.40 m and a rear overhang Lr2 = 3.03 m. The tractor and the
trailer have the same width W = 2.54 m. We consider the same curvature
magnitude and rate limits as before, κmax = 0.1 m−1 and κ′max = 0.1∆s.

We note that since we are considering a vehicle with significantly differ-
ent dimensions, we need to re-tune parameter K of optimization objective
J3
e . This highlights one significant drawback of this optimization objective,

151



CHAPTER 6. ON-ROAD PATH PLANNING FOR ARTICULATED
VEHICLES

namely the need to tune K for different vehicle dimensions. Analogously
to the tuning process explained in Section 6.4, we run the path planner
with different values of K in several U-turn roads. The best value of K is
determined to be K = 0.40 as it performs best for the majority of roads
considered.

Figure 6.9 presents the planned path when considering the newly tuned
K value. The planned path properly balances the cut-in and cut-out of
the vehicle bodies as it drives along the roundabout. The vehicle smoothly
enters and exits the roundabout, while keeping its swept width reasonably
small at all times during the maneuver. In this scenario the computational
time required to obtained the planned path is 11.88 s.

Collision avoidance

To show the collision avoidance capabilities enforced by constraint (6.5d), we
set up a complex scenario with obstacles on the road. Here we consider again
the vehicle dimensions of the longest vehicle combination legally allowed in
Sweden. In this scenario, the vehicle needs to drive on a sharp U-turn with
a curvature of 0.040 m−1 and corresponding turning radius of 25 m. Two
obstacles are placed on each side of the road creating a complex driving
scenario.

Figure 6.10 shows the considered scenario as well as the planned path
solution. The vehicle starts by driving towards the outside of the turn
in order to avoid colliding with the first obstacle. The collision avoidance
constraints of the trailer body are the ones that determine this maneuver,
guiding the tractor towards the outside of the road to ensure that the trailer
safely avoids the obstacle. Afterwards the second obstacle forces the vehicle
into the inside of the turn. In this case, obstacle avoidance constraints of
the tractor body force the vehicle into the inside of the road. The trailer
follows safely, as it is dragged along through the inside of the turn and away
from the obstacle.

In this simulation the planning horizon of the optimization problem is
134.2 m, and we consider a sampling distance of 0.2 m. The resulting com-
putation time required to obtain the planned solution is 108.41 s. This is
an excessively large computation time that can be explained by the com-
plexity of the maneuver. The complexity of the maneuver requires the SQP
solver to perform several iterations until converging to a feasible solution
and collision free solution. Moreover, we have noticed that the dimensions
of the vehicle severely impact computation times. When considering the
same scenario for a vehicle with smaller dimensions, such as those consid-
ered in [119] and used in our roudabout experiments, we get a computation
time of 29.89 s, significantly lower than the time required for the case of the
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Figure 6.10: The tractor-trailer vehicle avoiding obstacles located in a U-
turn. First the tractor drives towards the outside of the turn in order for
the the trailer to avoid the obstacle located on the inside of the turn. Then
the tractor drives towards the inside of the turn, thereby avoiding a collision
with the second obstacle. At the end of the turn, both the tractor and the
trailer converge to the road center.
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larger vehicle.

Model fidelity

The road-aligned tractor-trailer model described in Section 6.2 is based on
the well studied kinematic bicycle model. Several works in the literature
have made use of this model in practical experiments, which is a good sign
that the model is suitable for describing vehicle movement. We note that
most works using this model consider low lateral forces, which corresponds
to the use case of the articulated vehicles studied in this work, on-road
driving at reasonably low speeds.

Both the linearization and discretization of the vehicle model introduce
errors in the vehicle model, however the usage of an SQP strategy partially
addresses these issues. When sequentially linearizing the problem and solv-
ing until convergence, the SQP algorithm ensures that the planned solution
path is arbitrarily close to the linearization reference. Being close to the
linearization reference implies in turn that the planned path closely follows
the original nonlinear kinematic model.

Furthermore, when considering practical applications, motion planners
are implemented in a receding horizon fashion. Doing so, results in the
planned solution only being used during the current planning interval. At
the next planning interval, the planner re-computes a new path based on the
current vehicle state and environment observations. Thefore, the planner
works in a closed-loop, minimizing possible errors arising from a mismatch
between considered vehicle model and the actual dynamics of the real vehi-
cle.

6.5 Conclusions

This chapter introduced a path planner for tractor-trailer combinations driv-
ing in urban environments. Existing works on motion planning for tractor-
trailer vehicles mostly focuses on off-road applications, leaving a research
gap open for research focuses on on-road and urban scenarios. To deal with
such scenarios we have proposed a motion planner tailored for articulated
vehicles.

First we formulate the tractor-trailer vehicle model in the road-aligned
frame. This model builds upon the well known road-aligned vehicle model,
extending it in order to allow for consideration of a trailer attached to the
tractor. This model comes with its own challenges, as the road-aligned
frame introduces distortions that do not allow for an analytical expression
of the trailer states. This lead us to introduce approximations schemes that
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allow us to model the trailer rear axle as it moves along the road, as well
as to formulate collision avoidance constraints for the vehicle body.

Unlike standard passenger vehicles, articulated vehicles have multiple
bodies, and therefore standard passenger vehicle optimization objectives do
not suffice to center the tractor-trailer vehicle on the road. Therefore, we
introduce a set of candidate optimization objectives for the optimal control
problem and study their advantages and disadvantages We then select the
optimization objective that results in less intrusive driving caused by the
swept path of the tractor-trailer bodies, and that also lends itself suitable
for real-time implementation.

The proposed approach is studied in two challenging urban driving sce-
narios, a roundabout and a U-turn with multiple obstacles. The planner is
able to find solution paths that can center the tractor and trailer bodies, and
that safely avoid obstacles in a smooth and comfortable way. A drawback of
the proposed solution is the need for tuning a parameter K which depends
on the vehicle dimensions. In this chapter we have resorted to a brute-force
method to find this parameter K. Different vehicle dimensions required a
tuning of the parameter K, which can be time consuming. However, we
will show in the following chapter that an analytical expression for the K
value can actually be used, increasing the generalization of this approach
not only to different vehicles, but also to different road curvature profiles.
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Chapter 7

On-road Path Planning for
Long and Multi-Body Vehicles

In this chapter, we extend the motion planning framework presented in Chap-
ter 6, generalizing it to both long vehicles (buses) and multi-body vehicles
(tractor-trailers). This generalization is brought forward by the insight that
the tuning parameter K that defines the trade-off between centering differ-
ent vehicle bodies (see Equation (6.6)) can be derived analytically. This an-
alytical derivation allows the numerical optimization formulation to obtain
planned paths that are optimal according to certain performance metrics
that measure the centering of the area swept by the vehicle. Furthermore, it
provides a simple way to compute the value K, as opposed to having to run
offline time-consuming computations that do not generalize for all vehicle
dimensions and road combinations.

The work in this chapter also improves upon the planning framework
presented in Chapter 5. Using a similar analytical derivation to that of the
truck-trailer case, it is possible to derive an optimal trade-off parameter
that is able to center the whole bus body. The analytical derivation is done
by considering a trade-off parameter that weighs between centering the rear
and front axles of the bus. Simulation results show that this extension leads
to improvements on the driving behavior, avoiding the problem of the bus
driving too close to road boundaries.

The contributions of this chapter are the following:

• geometric derivation of optimal driving objectives, focusing on center-
ing the area swept by the vehicles, suitable for online computation;

• development of a unified framework targeting both long vehicles, such
as buses, as well as multi-body vehicles, such as tractor-trailers;
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• simulation results showing the proposed planner’s ability to solve com-
plicated on-road planning scenarios while considering the most chal-
lenging vehicle dimensions.

The chapter is organized as follows.
Section 7.1 introduces a unified formulation of the bus and tractor-trailer

vehicle models. Using this model, we then describe the motion planning
problem resorting to the already familiar numerical optimization problem
formulation.

Section 7.2 first proposes the optimal driving behavior to be achieved by
both long and multi-body vehicles. Then, based on this optimal behavior,
we derive, through geometric arguments, the expression for the trade-off pa-
rameter K that can achieve this behavior. Although similar, the derivation
for the long vehicles differs from that for multi-body vehicles, we present
therefore the derivation for both types of vehicles.

Section 7.3 studies the benefits of using the proposed geometric deriva-
tions for both the bus and the tractor-trailer case. Furthermore, we present
results highlighting the advantages brought forward by the capability of be-
ing able to compute the K parameter analytically. By adapting K online,
the motion planner is able to adapt to the current road curvature profile,
further improving the centering of the vehicle body.

Section 7.4 summarizes the chapter and lists its contributions. It also
proposes directions for future work and possible extensions of the planning
framework.

7.1 Motion Planning Framework

This section presents the vehicle models used for the bus and the tractor-
trailer vehicles. The vehicle models are based on the road-aligned frame
presented in both Chapter 5 and Chapter 6. The on-road path planning
problem is then presented using a generalized formulation that encompasses
both the bus and tractor-trailer systems.

Road-aligned bus model

The vehicle system is modeled in the road-aligned frame, where the geo-
metric reference path γ(·) corresponds to the road center. The bus in the
road-aligned coordinate frame is schematically illustrated in Fig. 7.2. We
denote the dimensions of the bus by L1 corresponding to the wheelbase, W
corresponding to the width, and Lr1 and Lf1 are the lengths of the rear and
front overhangs.

We define s as the distance traveled along the reference path γ by the
rear axle. The lateral displacement of the rear axle to the reference path γ
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Figure 7.1: A bus (left), with a considerable vehicle length, and a tractor-trailer
(right), consisting of two vehicle bodies, are examples of heavy-duty vehicles stud-
ied in this work. The long vehicle dimensions, or the presence of multiple vehicle
bodies, introduce novel challenges covered in this work. (courtesy of Scania CV
AB)

x

y

reference path γ
s

ey

s

eψ

L1 Lf1Lr1

W

ebusy

sbus

Figure 7.2: Illustration of the bus in the road-aligned frame and definitions
of its dimensions and vehicle states.

is defined as ey and the orientation difference to the reference path tangent
as eψ. With these three quantities, the bus state is fully described by config-
uration vector q = [s, ey, eψ]T . These quantities are outlined in Figure 7.2.
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The vehicle model for the bus is then given by [21]:

ṡ = v
cos(eψ)

1− eyκγ(s)
,

ėy = v sin(eψ),

ėψ = v

(
κ− κγ(s) cos(eψ)

1− eyκγ(s)

)
,

(7.1)

where ˙(·) = d(·)/dt and κ is the actuated variable corresponding to the cur-
vature of the bus. The curvature of the bus is directly related to its steering
angle ϕ through κ = tan(ϕ)/L1. By restricting the attention to forward mo-
tion v > 0 and employing time scaling with ṡ > 0, the temporal model
of Equation (7.1) is converted to an equivalent spatial model [21]:

e′y = (1− eyκγ) tan(eψ),

e′ψ =
1− eyκγ
cos(eψ)

κ− κγ ,
(7.2)

where (·)′ = d(·)/ds.
Equation (7.2) describes the evolution of the lateral and orientation error

of the bus rear axle, and it is so far, not different from the model introduced
in Chapter 5. However, we note that this model does not contain any in-
formation related to the lateral error of the bus front axle ebusy with respect

to the reference path γ(·). The lateral error of the bus front axle ebusy is
essential in order to ensure a full centering of the vehicle body around the
reference path γ. It becomes therefore necessary to represent this auxiliary
state ebusy as a function of the rear axle variables [ey eψ]T . With the ex-
ception of straight reference paths, this relationship cannot be written in a
purely algebraic form, as it involves a line integral [118].

To be able to consider the lateral error of the bus front axle ebusy , we

introduce its approximation êbusy . Similar to the approximations introduced
in Chapter 6 to model the trailer rear axle, it is also possible to numerically
compute an approximate relationship of ebusy which depends linearly on the

states [ey eψ]T . We consider a linearization point [s̄ ēy ēψ]T , and make use
of finite differences and iterative projection of the bus front axle in order to
compute a linear model for the lateral error of the bus front axle ebusy as a

function of [ey eψ]T . The approximation is then given by

êbusy = ēbusy +
∂ebusy

∂ey
(ey − ēy) +

∂ebusy

∂eψ
(eψ − ēψ), (7.3)

where the partial derivatives
∂ebusy

∂ey
and

∂ebusy

∂eψ
are computed numerically as

described in Section 6.2.
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The spatial model is discretized and linearized in order to be suit-
able for numerical optimization. The reference path is discretized along
its length with a given sampling distance ∆s, resulting in {si}Ni=0 and
{κγ(si)}Ni=0, where si = i∆s. We define the state vector for the bus as
zbus = [ey eψ ebusy ]T and use Euler-forward discretization to obtain the
discrete-time nonlinear model of Equation (7.2) and Equation (7.3) that is
represented compactly as

zbus,i+1 = fbus(zbus,i, κi). (7.4)

Road-aligned tractor-trailer model

The tractor-trailer vehicle in the road-aligned coordinate frame is illustrated
in Figure 7.3. The geometric lengths for the tractor are defined analogously
to the bus case and its kinematics modeled accordingly. The length L2

is the distance between the trailer’s axle and the hitch connection at the
tractor, Lr2 is the trailer’s rear overhang, and M1 is the signed hitching
offset at the tractor. This hitching offset is negative if the hitch connection
is in front of the tractor’s rear axle and positive otherwise. To model the
tractor-trailer vehicle’s kinematics, one needs to additionally consider state
β1, the joint angle between the tractor and the trailer. Its temporal model
is given by [112]:

β̇1 = v

(
κ− sin(β1)

L2
+
M1

L2
cos(β1)κ

)
, (7.5)

and as in Equation (7.2), the equivalent spatial model is

β′
1 =

1− eyκγ
cos(eψ)

(
κ− sin(β1)

L2
+
M1

L2
cos(β1)κ

)
. (7.6)

Similarly to the bus case,the models in Equation (7.2) and Equation (7.6)
only provide information about the axle of the tractor, and as such, there
is no explicit information regarding the axle of the trailer’s lateral error
etty with respect to the reference path γ(·). As no closed-form expression

exists to express etty as a function of [ey eψ β1]T for paths with nonzero
curvature, we compute an approximation êtty using the techniques presented

in [18]. Given a working point [s̄ ēy ēψ β̄1]T , using finite differences and
by iteratively projecting the trailer’s axle to the reference path γ(·) a linear
model of etty as a function of [ey eψ β1]T is obtained

êtty = ētty +
∂etty
∂ey

(ey − ēy)

+
∂etty
∂eψ

(eψ − ēψ) +
∂etty
∂β1

(β1 − β̄1), (7.7)
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Figure 7.3: Illustration of the tractor-trailer in the road-aligned frame and
definitions of its dimensions and vehicle states.

where the partial derivatives
∂etty
∂ey

,
∂etty
∂eψ

and
∂etty
∂β1

are computed numerically

(see [18] for details).
We define the state vector as ztt = [ey eψ β1 etty ]T . As in the bus

case, the reference path is discretized and by performing Euler forward
discretization, a discrete-time nonlinear model of the tractor-trailer vehi-
cle Equation (7.2), Equation (7.6), and Equation (7.7) is obtained that is
represented compactly as

ztt,i+1 = ftt(ztt,i, κi). (7.8)

Unified numerical optimization formulation

We can now present the on-road path planning problem for the bus (j = bus)
and tractor-trailer vehicle (j = tt), in a unified formulation, as the following
nonlinear programming (NLP) problem:

minimize
κ

ωκJκ(κ) + Jj(ey, e
j
y) (7.9a)

subject to zj,i+1 = fj(zj,i, κi), i ∈ {0, ..., N − 1}, (7.9b)

zj,0 = zstart, κ0 = κstart, (7.9c)

pobst,sey ≤ gj(zj,i), i ∈ {1, ..., N}, (7.9d)

|κi| ≤ κmax, i ∈ {1, ..., N − 1}, (7.9e)

|κi − κi−1| ≤ κ′max, i ∈ {1, ..., N − 1}, (7.9f)

where ey = [ey,1 . . . ey,N ]T ∈ RN is the vector of lateral displacements

along the planned horizon. ejy = [ejy,0 . . . ejy,N ]T ∈ RN is the vector of
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auxiliary lateral displacements, corresponding to the front axle for the bus
case, and the rear axle of the trailer for the tractor-trailer case. κ = [κ0
κ1 . . . κN−1]T ∈ RN is the vector of vehicle curvatures corresponding to
the actuated control input variables to be optimized. The equality con-
straint Equation (7.9b) corresponds to the vehicle model, where j = bus
implies that the bus model Equation (7.4) is used, or alternatively, in the
case when j = tt, that tractor-trailer model Equation (7.8) is used. Con-
straints Equation (7.9c) are the initial constraints on vehicle’s state and
curvature, needed to ensure that the planned path starts from the actual
vehicle state. The collision avoidance constraints as well as constraints that
ensure that the vehicle wheels are kept inside of the road boundaries are
implemented in Equation (7.9d). The formulation of Equation (7.9d) is
done in an analogous way to that presented in Chapters 5 and 6. The
vehicle maximum curvature magnitude κmax and maximum curvature rate
κ′max limits are ensured via constraints Equation (7.9e) and Equation (7.9f),
respectively.

The optimization objective Equation (7.9a) is made up of two distinct
terms. The first term Jκ penalizes changes in the curvature control inputs
and is defined as

Jκ(κ) =

N−1∑
i=1

(κi − κi−1)2.

This term promotes a smooth curvature profile that in turn results in com-
fortable driving behavior for the passengers of the vehicle. The weight ωκ
defines the importance of driving in a smooth and comfortable manner.

The second term Jj penalizes the vehicle’s lateral offsets and is defined
as

Jj(ey, e
j
y) =

N∑
i=1

(Kj,iey,i + ejy,i)
2, (7.10)

where Kj,i > 0 is a design parameter. Since ey and ejy are signed lateral

errors, it is possible that Jj = 0 even though ey and ejy are nonzero. We ex-
ploit this property in the following section, where we make use of geometric
techniques to select a value of Kj,i that encourages a desired driving behav-
ior. We remark that Kj,i > 0 is analogous to the K parameter introduced
in Equation (6.6). However, in this chapter, we allow this parameter to
change along the planning horizon as that allows for an improved centering
performance.
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7.2 Optimal Driving Behavior

In this section, we discuss and present a desired driving behavior, which is
assumed optimal, for long and multi-body vehicles. Based on this desired
behavior, term Kj,i in optimization objective (7.10) can be found using
geometric derivations. We present these geometric derivations first for the
bus system, and then for the tractor-trailer system. With the proposed
optimization objective and proper value of Kj,i obtained from the geometric
derivations, we show that the optimal solution to (7.9) yields the desired
driving behavior for the particular case of roads with constant curvature.

Desired driving behavior

As already discussed in Chapter 6, the formulation of optimization objec-
tives for multi-body vehicles is non-trivial. In fact, due to the constraints
imposed by the need to solve the optimization problem in real time, the op-
timization objectives used, are often simple mathematical expressions that
make the optimal solution behave well according to a certain performance
metric. We now proceed to present one such performance metric which will
help us define an optimal behavior for a vehicle driving along a road.

When driving vehicles with large dimensions, such as long buses, or
multi-body vehicles such as a tractor-trailer, simply centering one of the
vehicle’s axles on the center of the road does not suffice to center the whole
vehicle body. Instead, one needs to pay particular attention to the whole
vehicle body (or bodies), and ensure that all of it is kept as close to the
center of the road as possible. We note that the same is true for regular
sized vehicles, such as passenger vehicles. However, for passenger vehicles it
is most often the case that driving with the rear axle centered on the road
suffices to achieve an acceptable driving behavior. For long and multi-body
vehicles however, this would only work when driving on roads with very low
curvatures, i.e., almost straight roads.

The swept area of a vehicle corresponds to the totality of the space that
the vehicle body occupied while driving along the road. we will define the
desired driving behavior as that which results in a swept area centered along
the road. We define that sewpt area is centered if the maximum extent to
which the area extends to the left and to right of the center of the road are
equal. Figure 7.4 illustrates the desired driving behavior. Figure 7.4 (Top)
shows the resulting swept area when considering an optimization objective
that only centers the rear axle of the vehicle. As a result, the area swept
by the vehicle body, as it progresses along the road, does not have an equal
distance to the left and right boundaries of the road. On the contrary,
in Figure 7.4 (Bottom), the green vehicle has a more desirable driving be-
havior. Even though its rear axle is not centered on the road, the spread of
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Figure 7.4: We define the desired behavior to be that which achieves the
best centering of the whole vehicle swept area. Top: The vehicle rear axle
follows the center of the road, shown as a dotted line. The swept area is
shown in red. It can be seen that the swept area tends to the right side of
the road. Bottom: The vehicle has a swept area, shown in green, that is
equally distant to both the left and right limits of the road, corresponding to
the desired driving behavior defined earlier. This desired driving behavior
is only possible because the rear axle is allowed to deviate from the center
of the road.

its swept area is at equal distances to the left and the right boundaries of
the road. In the following sections, we formulate an optimization objective
expression that can achieve this desired optimal driving behavior for the
bus and tractor-trailer cases.

Derivation for the bus case

Figure 7.5 illustrates the scenario of a bus driving along a road with a con-
stant radius Rroad and achieving the desired driving behavior. We assume
that the bus drives with a constant curvature κ > 0 which in turn results
in a constant, but unknown, turning radius R1 = 1/κ. Since |κ| ≤ κmax,
the bus turning radius satisfies |R1| ≥ 1/κmax. Without loss of generality,
we assume as well that the bus is driving in a left turn, resulting in R1 > 0.
While making a left turn, the swept area is delimited by the radius Rbus,l
corresponding to the path traveled by the bus rear left wheel, and by the
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radius Rbus,r corresponding to the path traveled by the front right corner of
the bus body. In order for the area swept by the vehicle body to be equally
spread to the right and to the left of the road center, the following must
hold:

Rroad =
Rbus,l +Rbus,r

2
. (7.11)

Since we consider a constant bus turning radius R1, basic trigonometry gives
that the inner and outer radii Rbus,l and Rbus,r are given by:

R2
bus,r =

(
R1 +

W

2

)2

+
(
L1 + Lf1

)2

,

Rbus,l = R1 −
W

2
,

(7.12)

where it is assumed that R1 > W/2. We remark that this assumption
does not pose any practical restrictions on the derivations, as the minimum
turning radius of a bus is typically much larger than its body width. Since
Rbus,r > 0 in a left turn, inserting (7.12) in (7.11) yields:

Rroad =

√(
R1 + W

2

)2
+
(
L1 + Lf1

)2

+R1 − W
2

2
, (7.13)

which is a nonlinear equation in the unknown variable R1. For roads with
radius Rroad such that R1 > W/2, the unique and positive solution to (7.13)
is

R1 =
−
(
L1 + Lf1

)2

+ 4R2
road + 2WRroad

4Rroad + 2W
. (7.14)

Equation (7.14) gives the optimal turning radius of the bus R1 as a function
of the road curvature Rroad, which is optimal in the sense that the bus
left swept width, given by Rroad − Rbus,l, and right swept width, given by
Rbus,r −Rroad, are equal. This is what we previously defined as the desired
behavior since it perfectly centers the area swept by the vehicle body around
the road center.

From the derived turning radius of the bus R1 we can obtain the constant
signed lateral errors of the front axle, ebusy , and of the rear axle, ey, as:

ebusy = Rroad −
√
L2
1 +R2

1,

ey = Rroad −R1,
(7.15)

where ebusy < 0 and ey > 0. To make the optimization objective Jbus = 0

at this stationary configuration, we get from (7.10) that Kbusey + ebusy = 0
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Figure 7.5: Geometric illustration of optimal road centering for a bus on a
counterclockwise turn (left turn) with constant radius Rroad.

must hold. This condition together with (7.15) gives the optimal tuning
strategy

Kbus(Rroad) =

√
L2
1 +R2

1 −Rroad

Rroad −R1
. (7.16)

The above derivation considered a vehicle driving counter-clockwise (taking
a left turn), however for the case of a clockwise turn (right turn) with equal
radius, the same geometrically derived tuning of Kbus can be used.

With the proposed tuning of Kbus, and assuming that no obstacles or
other vehicle constraints are present, the optimization objectives Jbus and
Jκ will obtain their minimum value of zero when the vehicle moves along
the road with a constant curvature κ = 1/R1, where R1 is given by (7.14).
Therefore, when using this tuning strategy, the optimization-based path
planner is encouraged to find a solution with the desired behavior defined
in Section 7.2.

Derivation for the tractor-trailer case

We now derive the optimal value Ktt for the tractor-trailer case. The deriva-
tion is similar to that of the bus case, however with some extra steps related
to computing the stationary equilibrium configuration of the articulation
angle of the tractor-trailer.

Figure 7.6 shows the tractor-trailer vehicle driving with the desired driv-
ing behavior along a road with radius Rroad. The tractor-trailer vehicle is
in a stationary circular equilibrium configuration where the tractor has a
constant curvature κ and the articulation angle is static (β′

1 = 0). In these
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conditions the articulation angle β1 can be obtained by [123]:

β1 =

(
arctan

(
M1

R1

)
+ arctan

(
L2

R2

))
, (7.17)

where the signed radii R1 = 1/κ and R2
2 = R2

1 +M2
1 − L2

2. The area swept
by the vehicle bodies is determined by radius Rtt,l corresponding to the
path traveled by the rear left wheel of the trailer, and by the radius Rtt,r
corresponding to the path traveled by the front right corner of the tractor
body. As in the bus case, in order to achieve the desired driving behavior,
the following must hold:

Rroad =
RL +RR

2
. (7.18)

Since the turning radius of the tractor R1 = 1/κ and the joint angle β1 are
constant, from trigonometry we get that Rtt,l and Rtt,r are given by:

R2
tt,r = (R1 +W/2)

2
+
(
L1 + Lf1

)2

,

Rtt,l = R2 −W/2.
(7.19)

Here, we have assumed that the turning radius of the trailer axle R2 > W/2,
which is typically true when considering on-road driving. Since Rtt,r > 0,
inserting (7.19) in (7.18) gives

2Rroad =

√
R2

1 +M2
1 − L2

2 −W/2

+

√
(R1 +W/2)

2
+
(
L1 + Lf1

)2

, (7.20)

which is a nonlinear equation in the variable R1.
The positive solution to (7.20) can then be represented as

R1 = g(Rroad,W,L1, L2,M1, L
f
1 ). (7.21)

Function g can be found using a symbolic equation solver, in this work we
have used MATLAB’s Symbolic Math Toolbox. Function g is computed
using the amentioned toolbox, however, due to its extensive length, it is not
presented in written here.

We can now compute R2 and the joint angle β1 using (7.17). From the
derived R1 and R2, the constant signed lateral errors etty and ey are given
by:

ey = Rroad −R1,

etty = Rroad −
√
R2

1 +M2
1 − L2

2,
(7.22)
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Figure 7.6: Geometric illustration of the stationary and optimal road center-
ing of a tractor-trailer vehicle around a counterclockwise turn with constant
radius Rroad.

where ey < 0 and etty > 0. As in the bus case, in order to make the optimiza-
tion objective Jtt = 0 at this stationary configuration, we get from (7.10)
that Kttey + etty = 0 must hold. This condition together with (7.22) gives
the optimal tuning parameter:

Ktt(Rroad) =
R1 −Rroad

Rroad −
√
R2

1 +M2
1 − L2

2

, (7.23)

where R1 is obtained from (7.21). We note that in case we consider a
clockwise turn with equal radius, the same geometrically derived tuning of
Ktt can be used.

With the proposed optimal value of Ktt, and in the absence of obstacles
or other additional vehicle constraints, the optimization objectives Jtt and
Jκ will be exactly zero when the tractor-trailer vehicle moves along the
road with a constant curvature of the tractor κ = 1/R1 and a constant joint
angle (7.17). As a result, when using this tuning strategy the optimization-
based path planner is encouraged to find a solution that achieves the desired
behavior of having a balanced swept area of the tractor-trailer bodies to the
left and the right of the road center, corresponding to the desired behavior
defined in Section 7.2.

Roads with varying curvature

The geometrically derived values of tuning parameters Kbus and Ktt can
now be used in the path planner’s optimization objective (7.10). If the road
has a constant curvature, one can simply define Kj,i in (7.10) to be equal
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to the derived Kj in Section 7.2 and Section 7.2. We note however that
the geometric derivations in Section 7.2 and Section 7.2 assume a road with
constant curvature, which is not true when considering a generic driving
situation in which the road has a varying curvature. To deal with this
limitation of the geometric derivation we propose to update Kj,i along the
planning horizon.

We choose the value Kj,i at each point along the sampled reference
path {γ(si)}Ni=0 to be computed based on the current curvature κγ(si) at
that sampled point. Unfortunately we can no longer state that this tuning
strategy is optimal for road with varying curvature, but we show in the
following results section, that this strategy does have its benefits. First, we
show that this strategy results in planned paths that have a behavior that is
close to the one expected based on constant curvature assumptions. Second,
we show that using this adaptive strategy is provides better centering results
than considering a constant value of Kj,i along the whole planning horizon.

7.3 Results

Here we present results showing the advantages brought forward by the
usage of the optimally tuned trade-off parameter. The results are obtained
using a computer with an Intel Core i7-6820 HQ@2.7GHz CPU, and with
motion planning framework implemented in MATLAB code. We use the
convex quadratic program solver OSQP [124] to solve the intermediate SQP
iterations of the motion planning problem.

Bus in a U-turn

The vehicle dimensions are those of the prototype autonomous bus shown
in Figure 5.6, and correspond to a wheelbase length of L1 = 6 m, a front
overhang length of Lf1 = 3.34 m, a rear overhang length of Lr1 = 2.66 m,
and a vehicle width W = 2.54 m.

Figure 7.7 presents the path planning results for a bus driving on a U-
turn, when considering the planning framework introduced in Chapter 5
and when considering the planning framework proposed in this chapter. It
can be seen that the planning framework of Figure 7.7 results in the bus
driving excessively close to the outer road limits. This is a direct result
of the optimization objective only considering the lateral displacement of
the rear axle ey. The bus only tries to center its rear axle, and therefore
it has no incentive to center the front axle on the road, resulting in the
front right corner of the vehicle driving on top of the lane limit. We note
that the vehicle body is kept inside of the lane limits due to the overhang
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Figure 7.7: The swept area in blue corresponds to the planned path when
using the planning framework developed in Chapter 5. It can be seen that
the bus drives with the body corner exactly on the lane limit. The swept
area in yellow corresponds to the planned path when considering the method
proposed in the current chapter. Using the optimal tuning derived earlier
results in the bus centering itself on the road and keeping a significant
clearance to the lane limit.

minimization objective that penalizes unnecessary exiting of the overhangs
from the drivable region.

Figure 7.7 presents as well the planned path when considering the ex-
tensions proposed in this chapter. It can be seen that when using the opti-
mization objective that considers both the rear and the front axle results in
the vehicle not driving too close to the lane limits. Furthermore, when using
the analytical derivation to compute the optimal trade-off parameter Kbus

results in the bus swept area being centered on the road, keeping an equal
distance to the left and right lane limits. This illustrates the benefits of
using an optimization objective that considers both the rear and front axle,
as well as the importance of computing an appropriate parameter Kbus.
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Tractor-trailer in a roundabout

We now consider the tractor-trailer driving in a roundabout scenario as
previously considered in Section 6.4. The dimensions of the system are given
by a tractor wheelbase L1 = 3.47 m, a tractor front overhang Lf1 = 1.16 m,
a tractor rear overhang Lr1 = 1.34 m and a hitch length M1 = −0.30 m.
The trailer dimensions correspond to an axle length L2 = 9.40 m and a
rear overhang Lr2 = 3.03 m. Both the tractor and the trailer have a width
W = 2.54 m. The considered roundabout has a turning radius of 17.88 m.

Figure 7.8 shows the swept area of the planned path when considering
the proposed geometric method to obtain the optimal weighting parameter.
It can be seen that the area swept by the tractor-trailer bodies are precisely
centered during the roundabout maneuver. We note that unlike the results
presented in Section 6.4, here we did not have to find a suitable K parameter
through time-consuming offline computations. Instead, the optimal Ktt is
obtained using the geometrical derivations, that can be computed in an
online fashion. This represents a significant advantage over the previous
framework considered in Chapter 6.

Figure 7.9 presents in close detail the envelope corresponding to the
area swept by the vehicle bodies. Figure 7.9 shows both the envelope corre-
sponding to the planned path obtained by solving the nonlinear optimiza-
tion problem Equation (7.9) and the geometrically derived envelope. The
geometrically derived envelope corresponds to the expected envelope width
(according to the derivations in Section 7.2) when considering a road with
a constant curvature equal to the curvature at the current road length s.
Figure 7.9 shows that the vehicle envelope is well centered along the whole
maneuver, as the maximum envelope widths to the left and right of the
road center only differ by 0.04 m. Furthermore, it can be seen that the
executed envelope width is very close to the geometrically derived envelope
width. A transient behavior occurs at the entrance and exit of the round-
about, however, for most of the maneuver, the vehicle drives according to
the geometrically derived optimal stationary behavior.

To further validate our geometrical approach, we compare the derived
optimal vehicle curvature with the curvature of the planned path. Fig-
ure 7.10 (Top) shows the derived optimal vehicle curvature, obtained along
the road length s, with the curvature of the planned path obtained as a so-
lution of the nonlinear optimization problem Equation (7.9). Similar to the
behavior noticed with the vehicle envelopes (see Figure 7.9), the planned
curvature follows the optimal curvature very closely, with the exception of
transients at the entrance and exit of the roundabout. Figure 7.10 (Bottom)
also compares the planned and optimal articulation angles β. The planned
articulation angle also follows its geometrically derived equivalent, however,
it is characterized by significantly longer transient behavior due to a slower
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Figure 7.8: The planned path results in the tractor-trailer vehicle centering
its whole body as it drives along the roundabout. The swept area keeps a
similar clearance distance to both the left and right lane limits, mimicking
the desired driving behavior introduced in Section 7.2.

response time of the articulation angle.

Results in S-turns

The geometric derivations in Section 7.2 assume roads with constant cur-
vature, however this assumption does not hold in practice. Section 7.2
proposes that the values of Kbus,i and Ktt,i are computed online and up-
dated along the planning horizon. For each state in the planning horizon,
we compute its respective Kbus,i or Ktt,i value in accordance with the road
curvature at that point. In this way, we can use the derivations from the
stationary case that assume a road with constant curvature, in arbitrary
roads with varying curvature.
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Figure 7.9: Envelopes of the geometrically derived optimal path and of the
planned path as the vehicle progresses along the roundabout in Figure 7.8.
The proposed motion planner achieves a balanced tractor and trailer cen-
tering, where the maximum left and right widths correspond to 2.30 m and
2.26 m respectively. Both the left and right widths are close to the geomet-
rically derived width of 2.27 m.

We compare the results of using a varying Kbus,i and Ktt,i that adapts
to the road curvature against using a fixed Kbus and Ktt. The fixed Kbus

and Ktt strategy computes the tuning parameters based on the maximum
curvature of the road. Both strategies are evaluated by solving the path
planning problem Equation (7.9) on a wide range of S-turns. The different
S-turns are created by varying the maximum curvature of the turns, as
well as the sharpness (rate of curvature change) of the transition segments
connecting the straight segments, turns, and counter-turns.

For each sampled path point i along a planned path we measure di,
corresponding to how much the vehicle envelope extends towards the left
side of the road subtracted by the amount that it extends towards the right
side. We then define the total envelope displacement along each planned
path as D =

∑N
i=1 di. For a perfectly centered maneuver, one gets D = 0,

corresponding to the desired driving behavior where the vehicle is equally
distant to both the left and right limits of the road.

We measure Dfixed and Dvarying corresponding to the total envelope
displacement for planned paths assuming a fixed or varying Kj,i in Equa-
tion (7.9), respectively. The overall improvement in percentage is defined as
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Figure 7.10: Comparison between the geometrically derived and the planned
tractor-trailer vehicle states. Top: Curvature of the tractor. Bottom:
Tractor-trailer articulation angle β.

100× (Dvarying −Dfixed)/Dfixed, and its value is for a large set of possible
S-turns and for both the bus, Figure 7.11 (Top), and tractor-trailer, Fig-
ure 7.11 (Bottom). For the bus case, using a varying Kj,i instead of a fixed
one results in planned paths that improve the average displacement D by
ip to 10%. This effect is more noticeable in S-turns with high curvature.
When considering the tractor-trailer case, we see that the benefits are much
more accentuated in S-turns with high curvature and low sharpness, where
the improvement of the average displacement D is around 5%. The mea-
sured improvements in the displacement D, together with the capability
to compute the optimal varying Kj,i values online, represent significant im-
provements over the offline tuning strategy of a fixed Kj value, as previously
considered in Chapter 6.

7.4 Conclusions

This chapter has presented an extension to the on-road motion planning
frameworks presented in Chapters 5 and 6. The proposed extension tar-
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Figure 7.11: Improvement of the average displacement D when using a
varying Kj,i compared to using a fixed Kj . Top: Improvement for the bus
case j = bus. Bottom: Improvement for the tractor-trailer case j = tt.
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gets both buses and tractor-trailer vehicles resulting in a unified framework
that can tackle a large number of possible heavy-duty vehicle configura-
tions. Simulation results have shown that the proposed framework is able
to improve the driving behavior of both long and multi-body vehicles.

To achieve these improvements we have first defined a desired driving
behavior as that resulting in the whole vehicle body driving as centered on
the road as possible. This is, intuitively, a desired property, as it indicates
the the vehicle body is equally distant to both the left and the right limit,
keeping a balanced clearance to both lane limits. Once the desired driving
behavior is defined, we derive, via geometric arguments, an optimization
objective that can achieve this driving behavior in roads with constant cur-
vature. This optimization objective is suitable for real-time implementation,
as it is a computationally friendly optimization objective that lends itself
suitable for numerical optimization approaches. The geometric derivations
are also computationally modest, allowing for a continuous adaptation of
the optimization objective to the current road curvature profile.

Directions of possible future work include the generalization of the de-
veloped framework to more complex vehicles, such as vehicles with multiple
actuated steering axles, and articulated vehicles composed of a tractor, a
dolly, and a trailer. Furthermore, it would be of interest to see the if the
benefits of the geometrically derived optimization objective also translate to
other on-road motion planning approaches that are not based on numerical
optimization, such as RRT or lattice-based planners. It is also of interest
to consider different desired driving behaviors besides that of keeping equal
distance to both lane limits. As an example, based on the current traffic
situation, it might be beneficial to plan paths that maximize the distance
between the vehicle swept area and oncoming traffic. In such traffic situa-
tions, it might be valuable to reduce the clearance to one of the lane limits,
in order to increase clearance, and thefore safety distance, to the opposing
traffic lane.
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Chapter 8

On-road Path Planning
Experimental Results

The motion planning module is tightly integrated with other autonomous
vehicle modules. Therefore, it is essential to study the performance of the
whole autonomous driving framework in real systems in order to under-
stand the suitability of the proposed motion planning solutions. In this
chapter we present several practical experiments perfomed in an prototype
autonomous bus. This chapter can be seen partially as an extension of the
results presented in Chapters 5 and 7, and partially as further development
of the approaches previously presented so as to bring the proposed path
planning frameworks from simulation environments and into the real world.

Several aspects that have not been studied in previous chapters can im-
pact the overall performance of the motion planning framework. First, the
motion planning module uses information from the vehicle’s sensing, per-
ception, and localization modules. These modules give the motion planner
the information about the environment surrouding the vehicle, and the cur-
rent vehicle state. In simulations one often assumes to have the real state
of the vehicle and an accurate description of the environment, however in
reality, sensor noise and localization uncertainties can affect this informa-
tion. Practical experiments are therefore necessary to study the feasibility
towards these innacuracies. Second, the planned paths are never precisely
executed by the vehicle. When a path is planned, it is sent to the vehi-
cle control module, which will try to follow the path as closely as possible.
However, it is in practice impossible to follow a planned path exactly, and
the path planner must be adapted to deal with this. Finally, when con-
sidering a real system one needs to pay extra attention to computational
times. It is important to ensure that the implemented algorithms can run
in real-time, respecting the computational time allowed for each planning
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cycle. This becomes extra challenging, when considering a computational
unit that needs to run multiple modules (besides the path planning module)
of the autonomous driving software stack.

The contributions of this chapter are the following:

• extensions and modifications to the previously developed path planner
that lead to successful real-life implementation;

• proposal of the novel concept of wheel-aware planning that explicitly
considers that the front wheels of the vehicle move relative to the
chassis, possibly protruding and colliding with curbs;

• experimental validation of the proposed method by navigating an au-
tonomous bus on urban-like roads;

• demonstration of the benefits of the proposed planner through prac-
tical experiments in challenging scenarios.

The chapter is organized as follows.
Section 8.1 details the numerical optimization formulation and the solv-

ing technique used to find a solution path. The section also describes im-
portant design choices that are made in order to tackle issues arising from
the implementation on a real vehicle. Namely, we present adaptations to
the planned solution paths so as to simplify the task of the downstream
controller module.

Section 8.2 presents extensive results of the motion planning framework.
These results are obtained by implementing the proposed approach on a
Scania prototype bus driving on a test track. Several experiments corre-
sponding to challenging urban driving scenarios are presented, highlighting
the benefits of the method. Finally, a study of the computational times is
presented.

Section 8.3 presents conclusions related to the performed real life exper-
iments, and lists challenges and future work directions that were identified
during tests with the real vehicle. Most importantly, a significant limita-
tion, associated with bus stop maneuvers is presented, motivating the future
study and development of wheel-aware planners.

8.1 Motion Planning Framework

This section details the numerical optimization formulation considered dur-
ing the practical experiments. The formulation is based on the formulations
already introduced in Chapters 5 and 7. From Chapter 5 we make use of the
formulation which tackles the challenges of buses driving on urban scenar-
ios, and from Chapter 7 we use the optimal centering derivations suitable

180



8.1. MOTION PLANNING FRAMEWORK

for long vehicles driving on roads. We present in detail the strategy of re-
ceding horizon planning, used to alleviate the computational burden of the
motion planner. Finally we introduce the idea of planning paths that are
consistent for the motion controller module, something that is crucial for
good path tracking performance.

Numerical optimization formulation

The on-road path planning problem is formulated by combining Equa-
tion (5.14) and Equation (7.9) into the following nonlinear programming
problem:

minimize
κ

Jcenter + Jsmooth + Joverhang (8.1a)

subject to zbus,i+1 = fbus(zbus,i, κi), i ∈ {0, ..., N − 1}, (8.1b)

zbus,0 = zstart, κ0 = κstart, (8.1c)

pobst,sey ≤ gbus(zbus,i), i ∈ {1, ..., N}, (8.1d)

|κi| ≤ κmax, i ∈ {1, ..., N − 1}, (8.1e)

|κi − κi−1| ≤ κ′max, i ∈ {1, ..., N − 1}. (8.1f)

where Equation (8.1b) enforces the vehicle model, in this case the road-
aligned vehicle model presented in Equation (5.1). Equation (8.1c) corre-
sponds to the initial vehicle state and input constraints. For implementation
in a real vehicle, some adaptations to the initial constraints are required.
These adaptations are explained in the coming subsections. Equation (8.1d)
enforces the bus body constraints, so as to comply with the environment
classification (drivable, sweepable, and obstacle) detailed in Section 5.3. The
steering actuator magnitude and rate constraints are enforced via Equa-
tions (8.1e) and (8.1f).

The optimization objectives are composed of three terms. Jsmooth min-
imizes the squared rate of change of the input,

Jsmooth =

N−1∑
i=1

(κi − κi−1)
2
, (8.2)

prioritizing a smooth and comfortable ride. To avoid the vehicle body from
excessively exiting the lane limits, Joverhang penalizes the amount of over-
hang that goes into the sweepable areas. Finally, Jcenter tries to center the
whole vehicle body, according to the formulation introduced in Chapter 7:

Jcenter =

N∑
i=1

(Kbus,iey,i + ebusy,i )2, (8.3)
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where the tuning parameter Kbus,i is computed using the geometric deriva-
tions in Section 7.2.

To find a solution, not necessarily optimal, to the nonlinear optimization
problem Equation (8.1), we make use of Sequential Quadratic Programming
(SQP). The SQP implementation is specially adapted to usage in real-world
settings, by solving the problem in a receding horizon fashion, as explained
below.

SQP implementation in receding horizon fashion

Sequential Quadratic Programming (SQP) is a popular technique for solving
optimization problems with nonlinear constraints [125]. In the SQP tech-
nique the nonlinear constraints of Equation (8.1) are linearized, resulting
in an optimization problem, with a quadratic objective function and linear
constraints. We note that all terms Jcenter, Jsmooth, and Joverhang in Equa-
tion (8.1a) are quadratic and convex, resulting in a quadratic and convex
objective function.

The original nonlinear problem is linearized around linearization refer-
ences ū, ēy, ēψ. After linearization, the new optimization problem can then
be solved using a Quadratic Program solver such as [124]. The resulting so-
lution from the solver gives us the optimal inputs u∗, and vehicle states e∗y,
e∗ψ. The process is then repeated several times, by making the linearization
references ūk, ēy,k, ēψ,k of SQP iteration k, equal to the optimal solution
u∗
k−1, e∗y,k−1, e∗ψ,k−1 of the previous SQP iteration. This SQP procedure is

shown in Algorithm 5.
The SQP loop stops once it fulfills the termination condition. This

termination condition can either be a limit on the number of loop iterations
to be computed, a limit on the computational time allowed, or requirement
for the solution to converge. For the latter, the solution is said to converge
if

∥ūk−1 − u∗
k∥2 ≤ ϵu,

∥ēy,k−1 − e∗y,k∥2 ≤ ϵey ,
∥ēψ,k−1 − e∗ψ,k∥2 ≤ ϵeψ ,

where ϵu, ϵey , ϵeψ , are user-defined tolerances. As the SQP progresses along
iterations, and as the optimal solutions get closer to the linearization ref-
erences, the fidelity of the linearized QP improves, leading to an accurate
approximation of the original nonlinear optimization problem.

A variant of the SQP method detailed in Algorithm 5 can be developed
for the case when the vehicle is moving along the road. In this variant of the
SQP method, the motion planning framework will only run one iteration
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Algorithm 5: Sequential Quadratic Programming

Input: ū0, ēy,0, ēψ,0
Output: u∗, e∗y, e∗ψ

1 k ← 1;
2 repeat
3 Obtain QP problem by linearizing the nonlinear optimization

problem Equation (8.1) using references ūk−1, ēy,k−1, ēψ,k−1;
4 Solve QP problem to obtain optimal solution u∗

k, e∗y,k, e∗ψ,k;

5 ūk ← u∗
k;

6 ēy,k ← e∗y,k;

7 ēψ,k ← e∗ψ,k;

8 k ← k + 1;

9 until termination condition;
10 u∗ ← u∗

k−1;

11 e∗y ← e∗y,k−1;

12 e∗ψ ← e∗ψ,k−1;

of the SQP loop in Algorithm 5 at each planning cycle. Let us consider
that each planning cycle occurs at time t = k∆T , where ∆T is the planning
cycle period, and k indicates the k-th planning cycle. At the k-th planning
cycle, the vehicle uses linearization references ūk∆T , ēy,k∆T , ēψ,k∆T , and
computes the optimal solution u∗

k∆T , e∗y,k∆T , e∗ψ,k∆T .
As the vehicle drives along the road the road references shift, and as

such, the linearization references of the previous k − 1-th planning cycle
do not fully cover the planning horizon of the current k-th planning cycle.
As an example consider Figure 8.1 that shows a vehicle moving along the
road at three time instants, corresponding to three consecutive planning
cycles. It can be seen that at each planning cycle the planning horizon is
shifted forwards, the so-called receding horizon. Since the planning horizon
moves forward, and since we are considering only one iteration of the SQP
loop per planning cycle, the linearization references of the previous planning
cycle ū(k−1)∆T , ēy,(k−1)∆T , ēψ,(k−1)∆T cannot directly be used in the k-th
planning cyle. To deal with this, a few modifications to the SQP algorithm
need to be made.

It can be seen in Figure 8.1 that even though the planning horizon is
shifting, the majority of the horizon in between consecutive planning cycles
is still overlapping. Let the linearization reference be defined as:

ūk∆T = [ū1, ū2, . . . , ūM , ūM+1, . . . ūN ]T ∈ RN ,

and equivalently for ēy,k∆T , and ēψ,k∆T . The first M elements of the lin-
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t = k

t = k + 1

t = k + 2

Figure 8.1: The planning horizon during successive planning cycles, as the
bus progresses along the road. It can be seen that a planning horizon has a
large overlap with the horizon of the previous planning cycle.

earization references correspond to elements which overlap with the previous
k − 1-th planning cycle horizon. The remaining N −M elements are those
which are located in a new section of the road that was previously unseen.
To reuse the computed results of the previous planning cycle the first M
elements are set according to the optimal solution of the previous planning
cycle. The remaining N −M elements are set to be equal to the M -th ele-
ment. By doing so, we create a new linearization reference that make uses
of the previously computed solution where possible, resembling the original
SQP formulation in Algorithm 5.

There are different ways to set the first M elements of the linearization
reference. One possibility is to interpolate the state and input values ac-
cording to the respective road s coordinate. Each reference and solution
vector has an associated set of s coordinates [s1, . . . , sN ]T ∈ RN , that
associates each element of the reference vector to a road location. When
computing the new reference vector to be used for the sampled states of the
current planning horizon, one can use interpolation to infer the reference
values at the new road locations.

A second possible way to set the first M elements, and the one that
we use in these experiments, is to sample points along the road in a way
that is consistent with previous planning cycles. To do this, we ensure
that at every planning cycle, the sampled states in the planning horizon
section that overlaps with the previous planning horizon, have the same s
coordinates as the samples in the previous cycle. An illustration of this is
shown in Figure 8.2.
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Road s [m]

t = k

t = k + 1

t = k + 2

Figure 8.2: The planning horizon during successive planning cycles, as the
bus progresses along the road. Depending on the bus velocity the planning
horizon might shift a different number of samples. Furthermore, the bus is
not always aligned with a planning sample.

As can be by the vehicle position at t = k+1 and t = k+2 in Figure 8.2,
when using this method, is often the case that the current vehicle state does
not lie exactly on one of the sampled states in the planning horizon. This
then introduces an additional challenge on how to set up the initial vehicle
state and input constraints Equation (8.1c), that will be addressed in the
coming subsection.

Figure 8.2 illustrates as well that consecutive planning horizons might
have shorter or longer overlapping sections depending on the vehicle velocity.
From planning cycle t = k to t = k + 1, the planning horizon only shifts
one sample, whereas from planning cycle t = k + 1 to t = k + 2, the
planning horizon shifts two samples. The required shifting is computed
online depending on the current vehicle position at the start of the planning
cycle.

We note that when considering a long planning horizon, there is a large
overlap between the planning horizons of consecutive planning cycles. Fur-
thermore, with our current planning cycle frequency, sampling distance ∆s,
and vehicle working speeds, it is often the case that the vehicle moves only
one or two samples per planning cycle. Therefore, only one or two new
samples in the planning horizon are novel/unseen at each SQP iteration.
This allows the receding horizon SQP solution to quickly converge, even as
the vehicle moves along the road.
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t = k
t = k + 1

t = k + 2

Figure 8.3: Illustration of a naive implementation of path planning initial
state constraints. The planned solution paths are always starting at the
current position and orientation of the autonomous bus.

Ensuring planned paths consistency

An important aspect to consider when implementing the motion planning
framework in the autonomous system is the requirements of the motion
control module. The motion control module determines the actuation re-
quest to be sent to the vehicle actuators so as to make the vehicle follow the
planned path. The paths planned by the planning module serve therefore as
a reference for the controller to track. For best performance it is important
that the controller receives a consistent path reference, that does not change
at every planning cycle.

As an example consider the motion planning implementation where the
initial state constraints are always set to be equal to the current vehicle
state. This results in the vehicle planning a new path that starts from
its current position and orientation at every planning cycle, as illustrated
in Figure 8.3. Although intuitive from a planning perspective, implementing
the initial state constraints in this way actually makes the controller task
very challenging. At every planning cycle, the reference path provided to
the controller is updated, and the tracking error that the controller observes
becomes zero. This happens because the new reference path always starts
from the current vehicle position, leading the controller to have an initial
error of zero at each new reference path.

It is important that the error does not get reset to zero, otherwise the
controller will not be able to properly determine the actual actuation signals
required for the vehicle to properly follow the planned paths. In extreme
cases, it might happen that considering this naive implementation of the
planned path leads the vehicle to slowly deviate more and more from the
desired road center.

To avoid the problem of generating paths that reset the vehicle con-
troller error to zero, the initial state constraints are adapted so that the
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t = k
t = k + 1

t = k + 2

Figure 8.4: To improve controller performance, the planned path is con-
strained to start from the previous planned path. The initial state con-
straint is determined by projecting the current vehicle state into the previ-
ously planned path.

new planned path starts at a point along the previous planned path. This
type of initial state constraint update is illustrated in Figure 8.4. To deter-
mine the initial state constraint, one projects the current vehicle position
into the previous planned path. In order to comply with the path sampling
discretization scheme shown in Figure 8.2, we choose the path sample that
is closest, as well as behind, the projected vehicle position. Using this strat-
egy, we now avoid the problem of resetting the control error to zero at each
planning cycle.

There is one more aspect to take into account when considering that
the planned paths are provided as references to the controller. It can be
seen in Figure 8.4 that every new planned path differs slightly from the
previously planned path. This happens even in the regions of the horizon
that are overlapping with the previous planning horizon. Even though the
planned paths are constrained to start along the previously planned path,
the new information associated with the new section of the planning horizon,
i.e., the non-overlapping section, is enough to change the optimal path to
not coincide with the previously computed optimal path.

Many controller approaches make use of path information ahead of the
vehicle, such as look-ahead controllers [126] and Model Predictive Control
(MPC) [127]. In the considered prototype vehicle, the control module is im-
plemented via an MPC [127] which has an optimization horizon of Hcontrol

meters. When computing the actuation signals, the MPC simulates the ve-
hicle model Hcontrol meters into the future, and tries to make the simulated
vehicle follow the path as well as possible. Therefore, the MPC takes into
account the reference path from the current vehicle position until Hcontrol

meters ahead, where Hcontrol is usually much shorter than the planning
horizon.

In an argument similar to that of resetting the error to zero, it is also im-
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t = k
t = k + 1

t = k + 2

Figure 8.5: The initial state constraints are adapted so that the planned
path starts from the previous path, as already shown in Figure 8.4, but now
starting Hcontrol meters ahead of the current vehicle state projection.

portant for the MPC performance that the reference path is kept consistent
along planning cycles. In order to achieve this, we further adapt the initial
vehicle constraints in the optimization problem, so that the planner path
starts Hcontrol meters ahead of the projected vehicle path. This mechanism
is illustrated in Figure 8.5. This allows the MPC to receive a reference path
that is consistent with the ones previously received, which leads to improved
path tracking performance.

It should be noted that setting the initial state constraints to start
Hcontrol ahead of the vehicle results in the planner not being able to adapt
to new obstacles appearing up to Hcontrol meters ahead of the vehicle. This
can be dealt with by an using an extra safety planner that either stops the
vehicle, or quickly reacts to such obstacles. However, this is out of the scope
of the considered work.

8.2 Results

We hereby present results obtained using the prototype vehicle shown in Fig-
ure 5.6. The vehicle is a Scania bus used for research and development of
autonomous transport solutions. The bus is equipped with multiple sensors,
computing units, and a full autonomous driving software stack, which our
planning framework is part of. In the following, we present experimental
results of the autonomous bus when driving through selected scenarios on
Scania’s test track in Södertälje, Sweden.

Sharp turn

We start by presenting results on a sharp turn as shown in Figure 8.6. This
is a turn located on the bus depot of Scania’s test track and serves a relevant
example of a tight and sharp turning road that requires a driver, or in this
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Figure 8.6: Experimental result for the bus driving autonomously in a sharp
left turn (counter-clockwise direction).

case the autonomous system, to use the full steering actuation capabilities
of the vehicle.

Figure 8.6 shows that the planned path starts by driving the bus towards
the right side of the road, even before the turn, so as to better place the bus
for the upcoming maneuver. Thereafter, while turning, the bus drives with
the left wheels very close to the left lane boundaries, so as to minimize the
amount of overhang that exits the lane limits on the opposite side. Once
the bus has driven past the turn, it slowly returns to the center of the road,
so as to minimize curvature changes and maximize passenger comfort. The
vehicle approaches the turn at a speed of 24 km/h, slowing down to a speed
of 7 km/h during the turn, and afterwards accelerating back to a speed of
24 km/h.

Figure 8.7 presents the planned curvature magnitude and curvature rate
profiles of the maneuver in Figure 8.6. We start by noticing the smoothness
of the curvature profile in Figure 8.7 (Top), which results in a comfortable
ride for the passengers. It can also be noted that this is a challenging ma-
neuver for the bus, as the motion planner needs to make use of the whole
steering actuation capabilities. During a 15 meter-long section starting at
around s = 190 m, the planned curvature corresponds to the maximum
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Figure 8.7: Curvature magnitude and rate profiles for the maneuver in Fig-
ure 8.6. Top: Curvature magnitude profile. Bottom: Curvature rate profile.

allowed curvature. This shows that the planner is able to make use of the
full capabilities of the vehicle steering, and robustly respect the constraints
related to the steering actuator limits. Figure 8.7 (Bottom) presents the
curvature rate profile, which is characterized by a relatively smooth behav-
ior, and that is contained within the rate limits associated with the steering
actuator limits.

Roundabout

Figure 8.8 presents experimental results for the autonomous bus driving on a
roundabout. While driving in the roundabout, the bus keeps its rear axle to
the left of the road center (and towards the inside of the turn). This is done
in order to center the area swept by the vehicle body, and keep a clearance
towards the left lane that is approximately equal to the clearance towards
the right lane. This is achieved by optimally choosing the tuning parameter
Kbus,i according to the geometric methods introduced in Section 7.2.

Figure 8.9 presents in more detail the area swept by the vehicle body
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Figure 8.8: Experimental result for the bus driving autonomously in a
roundabout (counter-clockwise direction).

while driving along the roundabout. The swept area is presented in the
road aligned frame, which more clearly shows the balanced centering of
the whole vehicle body. In the beginning and end of the maneuver, at
around s = 10 m and s = 190 m the vehicle is entering and exiting the
roundabout, respectively. During the entering and exiting, the bus has a
transient behavior where the vehicle body needs to approach the lane limits.
However, during most of the roundabout maneuver, the swept area is evenly
balanced and fairly contained within the lateral offset values ey ∈ [−2, 2],
which results in an even clearance to both the left and right lane limits.
An exception to this happens around s = 130 m, where the road has an
irregular and non-smooth shape.

The curvature magnitude and rate profiles have a smooth behavior as
can be seen in Figure 8.10. This smooth behavior is achieved even in the
presence of a road reference that has an irregular and non-smooth curvature
profile, as shown in Figure 8.11. The non-smoothness of the road reference
can be caused by low-resolution of the pre-stored maps, uncertainties and
noisy measurements occurring in the perception module, or even poor road
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Figure 8.9: The vehicle swept area envelope in the road-aligned frame for
the maneuver in Figure 8.8. The vehicle envelope is kept fairly centered
during most of the roundabout maneuver, having an even clearance to both
the left and right lane limits.

quality, maintenance, or lane markings. We note that even when following
a road reference that has a non-smooth behavior, the motion planner is
largely unaffected by this, being able to plan a path that is smooth and
comfortable for passengers.

Figure 8.12 presents a compilation of frames taken at three different time
instants from a video recorded during the roundabout experiments.

Bus stop

We now consider a maneuver that occurs often during daily bus operations,
the approach and departure from a bus stop. During the maneuver the
vehicle needs to depart from the road center and drive into the designated
bus stop area to pick up and drop off passengers. Once passengers have
entered and exited the bus stop, the vehicle needs to drive back onto the
road center. Even though the bus needs to stop close to the curb in order
to facilitate boarding and alighting of passengers, it is important to ensure
that the vehicle body does not drive over it.

Figure 8.13 presents the results for a bus stop maneuver performed with
the autonomous prototype bus. The bus stop curb is inflated by 30 cm in
order to deal with possible control module path following errors and limited
accuracy of the perception module. During initial experiments, we have
measured a maximum deviation between the planned and executed path
of 20 cm, although the deviation often lies significantly below that value.
The inflation value of 30 cm was therefore chosen, in a conservative way, to
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Figure 8.10: Curvature magnitude and rate profiles for the maneuver in Fig-
ure 8.8. Top: Curvature magnitude profile. Bottom: Curvature rate profile.

20 40 60 80 100 120 140 160 180 200 220 240 260

−0.1

−5 · 10−2

0

5 · 10−2

0.1

Road length s [m]

κ
[m

-1
]

Road κ
Planned κ
Maximum κ

Figure 8.11: Planned path curvature and road curvature profiles for the ma-
neuver in Figure 8.8. Even though the road has a non-smooth and irregular
curvature profile the motion planner is able to find a path with a smooth
and comfortable curvature profile.
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time = 8 s
time = 17 s

time = 25 s

Figure 8.12: The autonomous bus performing the roundabout maneuver
in Figure 8.8. This prototype autonomous bus is used in the experimental
results presented in this chapter (courtesy of Scania CV AB).
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Figure 8.13: Experimental result for the autonomous bus approaching the
bus stop, coming to a halt by the curb, and departing back onto the road.

reflect these measured deviations. As seen in Figure 8.13, the bus comes to
a halt at the bus stop, being very close to the inflated bus stop curb and
well aligned with it. After a short stop, the vehicle starts driving again, and
converges back to the road center.

Figure 8.14 presents the curvature magnitude and rate profiles for the
bus stop maneuver, including the approach and departure. It can be seen
that the curvature magnitude profile is fairly smooth, as expected already
from previous experimental results. There is however a small peak in the
curvature rate profile, happening at around s = 100 m, corresponding to
the bus starting the departure maneuver. When starting the departure,
the bus quickly turns the wheels, resulting in a temporary high curvature
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Figure 8.14: Curvature magnitude and rate profiles for the maneuver in Fig-
ure 8.13. Top: Curvature magnitude profile. Bottom: Curvature rate pro-
file.

rate. This is done to quickly converge back onto the road. The remaining
of the maneuver is characterized by a smooth steering behavior and a low
curvature rate profile.

We present as well in Figures 8.15 and 8.16 the disparity between the
planned and executed paths during the bus stop approach maneuver. The
accuracy with which the vehicle executes the planned path is particularly
important during the bus stop approach, as this maneuver defines how close
the bus is to the bus stop curb, and therefore, if passengers can easily board
and alight the bus. As can be seen in Figure 8.15 the executed path follows
closely the planned path, resulting in a final lateral displacement slightly
below 10 cm, which we deem to be acceptable for our current experimental
settings. We note as well that the bus stop curb inflation of 30 cm allows for
appropriate extra safety margins during the bus stop approach, as the lateral
displacement is significantly below the inflation value. As for the disparity
between vehicle planned and executed orientation, shown in Figure 8.16, it
can be noted that it is also quite small. At the end of the maneuver, i.e.,
when at the bus stop, the bus has an actual orientation that is only 0.25
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Figure 8.15: Detail of the planned and executed bus path for the bus stop
approach maneuver of the experimental results in Figure 8.13.
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Figure 8.16: Detail of the planned and executed bus orientation for the bus
stop approach maneuver of the experimental results in Figure 8.13.

degrees offsetted from the planned final orientation.
During the approach to the bus stop there is a critical moment in which

the motion planner formulation is modified by adding the final constraint

zbus,N = zbus stop (8.4)

to optimization problem Equation (8.1). Figure 8.17 shows the planned
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Figure 8.17: Planned paths for the planning cycles before and after the bus
stop constraint is formulated. Even though the planned paths are signifi-
cantly different, the vehicle behavior is smooth and comfortable due to the
first Hcontrol meters of the latest planned path being consistent with the
previous planned path.

paths for the planning cycles immediately before and after final constraint
Equation (8.1) is added. The planned paths are strikingly different, as one
of them tries to stay in the road center, and the other tries to converge into
the newly observed bus stop location. Despite being significantly different,
a smooth behavior of the vehicle is guaranteed thanks to considering an
initial state constraint that is Hcontrol meters ahead. This results in the
motion controller receiving consistent planned paths, and in turn the bus
having a comfortable behavior for the passengers, even when transitioning
between two different motion planning formulations.

Obstacle avoidance maneuver

We consider as well the scenario where an obstacle is located on the side
of the road. The capability to deal with unforeseen changes to the envi-
ronment, such as obstacles, is essential for autonomous vehicles deployed in
urban environments. Figure 8.18 presents an experimental scenario where
a simulated obstacle is located on the side of the road. This obstacle could
correspond to illegally parked vehicles, construction works, or other types
of obstructions affecting the drivable area. The obstacle is inflated by 30
cm, similarly to the bus stop curb inflation, in order to reflect the disparity
between planned and executed vehicle paths.

The result presented in Figure 8.18 shows that the bus is able to avoid
the inflated obstacle, and thus safely avoid the actual obstacle with good
clearance. Furthermore, Figure 8.19 shows that the executed maneuver is
barely noticeable to passengers, as both the curvature magnitude and rate
profiles have a smooth behavior and values close to zero.
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Figure 8.18: Experimental result for the bus autonomously avoiding an
unexpected obstacle on the road.
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Figure 8.19: Curvature magnitude and rate profiles for the maneuver in Fig-
ure 8.18. Top: Curvature magnitude profile. Bottom: Curvature rate pro-
file.
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Figure 8.20: Histogram of measured planning cycle computational times for
the experiments considered in this chapter.

Computational times

Figure 8.20 presents an histogram of the measured computational times
of planning cycles during the experiments presented in this chapter. The
computational time of each planning cycle can be divided into two compo-
nents, the setup time and the solver time. The setup time consists of the
computational time required to setup the optimization problem. Setup of
the optimization problem involves, linearizing and discretizing the vehicle
model, as well as creating the vehicle body constraints, which involves a
large number of Cartesian frame to Road-aligned frame conversions. The
average setup time in each planning cycle is measured to be 15.49 ms. The
solver time corresponds to the time used by the convex solver, in this case
OSQP [124], and its average time in each planning cycle is measured to be
136.59 ms. We limit the solver computation time to a maximum of 400
ms, which is enforced by a stopping criterion readily available in the OSQP
solver interface [124]. The average time of a full planning cycle is then
152.09 ms.

The vehicle body constraints are responsible for most of the optimization
problem complexity, and in turn for most of the computational time in the
planning cycle. This can be partially visualized in Figure 8.21 where it can
be clearly seen that the computational times are significantly higher just
before the bus approaches the turn. When approaching the turn, most of the
planning horizon of the bus is within the turn, where the body constraints
are active and significantly increase the problem complexity. Here we use
the term active to indicate that the current optimal solution x∗ of the convex
problem with inequality constraints gi(x) ≥ 0 results in gi(x

∗) = 0. The
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Figure 8.21: Visualization of the computational times during the maneuver
in Figure 8.6.

body constraints are always formulated and considered in the optimization
problem, however, only in more complex scenarios do they become active.
When driving in the straight sections of the road the computational times
are much lower, due to the simpler driving case, where body constraints are
then not active.

In the presented experimental results the motion planner framework ran
at a frequency of 2 Hz, and with a planning horizon length of 40 m. We
consider urban driving applications, where vehicle speeds are expected to be
under 50 km/h, resulting in a minimum planning horizon time of 2.9 s. This
setup allows the vehicle to safely react to new obstacles and events appearing
at the end of the planning horizon. A higher frequency of the motion planner
would be desirable to quickly react to new information appearing close to
the vehicle, however, to achieve that, one would need to either reduce the
number of vehicle body constraints, the planning horizon, or both. In these
experiments, we consider that a long planning horizon and a high number
of vehicle body constraints are more important, as the proposed motion
planner is designed to deal with the particular problems associated with
buses. An additional safety planner with a high planning frequency could
however be implemented, that would act as an extra layer of safety, quickly
reacting to unexpected obstacles that might jump into the paths planned
by our proposed motion planner. Nevertheless, the computational times
measured during these experiments, show the suitability of the proposed
motion planner to be implemented and used in autonomous buses driving
in urban environments.
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8.3 Conclusions

This chapter presented the implementation details and practical experi-
ments of a motion planning framework deployed on an autonomous bus.
We presented a series of practical considerations and implementation tech-
niques that allow us to bring the motion planner developed in previous
chapters from a simulation environment into the real world. Afterward, we
showcase the motion planner performance by running the autonomous bus
in several scenarios resembling urban driving.

To solve the complex and computationally-heavy optimization problem,
we use an SQP approach. To reduce computational times while maintaining
a high solution quality, we use the SQP in a receding horizon fashion, solving
only one QP at each planning cycle. As the motion planner is tightly coupled
with other modules in the system, some further adaptations are in order.
In order to improve the performance of the underlying motion controller
module, we propose a path sampling technique that ensures consistency
between solution paths at consecutive planning cycles.

An extensive set of experiments is then carried on, studying different
aspects of the planning framework. We show that the proposed method
can deal with sharp turns and tight maneuvering areas while keeping the
vehicle wheelbase inside the road and minimizing the overhangs exiting the
driving lane. Further experiments show that despite the large dimensions of
the considered vehicle, the planning framework properly centers the whole
vehicle body, keeping a balanced clearance to both the left and right sides
of the road limits. Furthermore, the approach is robust against noisy road
references and poor environment perception. The planning approach is also
tested on both a bus stop and an obstacle avoidance maneuver, successfully
tackling both. In all considered experiments, the proposed approach guar-
antees a comfortable ride for the passengers, as evidenced by the smooth
curvature profiles planned. Finally, we present a summary of the measured
computational times, which confirm that the method is suitable for real-life
implementations.

It was noticed during some of the bus stop experiments that, on a few
occasions, the vehicle’s front wheels would climb over the curb if no curb
inflation was considered, see Figure 8.22. During bus stops, the vehicle
must stop within centimeters of the curb. In such situations, the wheels
might come in contact with the curb, possibly climbing onto the sidewalk
or damaging the steering column actuator. When turning, the wheels can
protrude beyond the body, which is not captured when only considering
wheelbase collision avoidance constraints. Therefore, it becomes essential
to explicitly consider the wheels instead of assuming them to be static and
fully contained inside the chassis. Therefore, one should consider novel
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Figure 8.22: Experimental scenario where the wheel climbed the curb.

collision checking methods that explicitly consider the current steering angle
and the wheel dimensions [20]. This new challenge justifies the concept of
wheel-aware planning, which we believe to be a promising avenue for future
research.
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Chapter 9

Decision Making using Branch
MPC

In order to achieve full self-driving capabilities, autonomous vehicles have
to deal with the presence of other traffic participants, such as human-driven
vehicles and pedestrians. Sharing the road with humans is, to date, one
of the biggest challenges hindering autonomous vehicle deployment. Al-
though sensor and perception technology allows the autonomous vehicle to
obtain a fairly accurate understanding of the current state of the traffic scene
(positions and velocities of other traffic participants) the unpredictability
of human behavior makes the prediction task, i.e., understanding how the
traffic scene evolves, reliable only for a few seconds into the future. Further-
more, the traffic scene evolution is directly impacted by the decisions of the
planner, as human-driven vehicles react differently to different maneuvers of
the autonomous vehicle. Therefore, this requires that a joint prediction and
planning problem is solved, instead of the more common motion planning
problem where other traffic participant predictions are assumed fixed, and
the robot plans so as to avoid them.

In this chapter, we introduce an MPC framework that jointly predicts
the human future states and plans the autonomous vehicle optimal actions.
Three challenging aspects arising from interactions with humans are ad-
dressed, multi-modality, interactive behavior, and decision making. Human
drivers, and driving in general, is characterized by multi-modality. Often
times, a certain situation can develop into different outcomes that are sig-
nificantly different than one another, corresponding to different modes. As
an example, a vehicle approaching an intersection, can either keep its speed,
or slow down to a stop, two very distinct outcomes. Interactive behavior
follows from the fact that driving takes place in an environment where other
vehicles have an impact on us, and the other way around. In the case of
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packed traffic, a vehicle slowing down causes the vehicle directly behind it
to also slow down (in more drastic cases resulting even in phantom traffic
jams [128]). Finally, human drivers are inherent decision makers. A driver
approaching an intersection, will decide to cross depending on factors ex-
ternal to oneself. In the simpler case of a signalized intersection, the (law
abiding) human driver will decide to cross the intersection or not, depend-
ing on the current state of the traffic light. In the more complicated case of
an unsignalized intersection, the human driver will assess the situation, by
observing other vehicles approaching the intersection, and make a decision
based on its own and other vehicles’ distance to the intersection and driving
speed.

The contributions of this chapter are the following:

• addressing the multi-modality of human drivers by considering mul-
tiple future outcomes associated with different decisions taken by the
human driver;

• considering the interactive nature of humans by modeling them as
reactive agents impacted by the actions of the autonomous vehicle;

• approximating the decision making process of human drivers by con-
sidering a model developed in neuroscience studies with human drivers
as subjects.

The chapter is organized as follows.
Section 9.1 introduces some of the challenges associated with driving in

the presence of other traffic participants. Toy examples illustrating different
driving scenarios present the concepts of multi-modality, interactive behav-
ior, and decision making of human drivers. Finally, we present related work
and research currently happening on the topic.

Section 9.2 focuses on the models considered to express the human driv-
ing policies. The section present both non-interacting models as well as
interacting models that adapt their behavior to the current traffic scene.
Finally, a behavioral model of human decision making is presented. The
model is later used to predict the probability of future outcomes.

Section 9.3 integrates the concepts of the previous sections into an MPC
formulation that constitutes our motion planning framework. The con-
cept of scenario tree is introduced as a suitable way of modeling the multi-
modality of human drivers, as well as their decision making. We then present
an MPC that uses a scenario tree to optimize over the expected cost of fu-
ture outcomes.

Section 9.4 presents simulation results of the proposed method. The ap-
proach is first compared to other planning frameworks and its performance
is quantitatively evaluated. A merging scenario is then consider, which
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highlights the benefits of considering the multi-modality aspects of human-
drivers. Joint prediction and planning is compared against a prediction then
planning approach, showing the importance of considering interaction-aware
human models. Finally, the decision making aspect of humans is studied
through simulations on an intersection scenario.

Section 9.5 summarizes the chapter, identifying contributions and high-
lighting directions for further improvement and future work.

9.1 Introduction

We briefly introduce three particular challenges associated with driving in
the presence of human-driven vehicles: multi-modality, interaction, and
decision-making. We then present related work in the area and compare
different approaches according to their capability of dealing with the previ-
ous challenges.

Challenges

Multi-modality

When driving, human drivers change constantly between different types of
behavior. If a vehicle is arriving at an intersection, as illustrated in the
Initial state of Figure 9.1, the driver (red car) can choose between multiple
significantly different driving behaviors. In the case of a defensive driver, it
can slow down and come to a stop, so as to safely check for oncoming cars,
shown in the Possible outcome 1 of Figure 9.1. A more aggressive driver,
could instead decide to speed through the intersection, accepting a high risk
of collision at the benefit of a shorter traveling time, shown in the Possible
outcome 2 of Figure 9.1.

These distinct behaviors can be seen as different modes that a perception
module, as well as a motion planning module, need to consider when pre-
dicting the future state evolution of the human driver. The multi-modality
of the human introduces a first challenge, as the different outcomes require
significantly different driving maneuvers from the autonomous vehicle. Fur-
thermore, since the outcome is not known beforehand, the motion planner
has the task of finding a maneuver that is able to deal with both outcomes.

Interaction

Driving is a highly interactive task, where drivers must constantly adapt
their actions in response to the actions of other drivers. As an example,
consider a human-driven vehicle (red car) and an autonomous vehicle (yel-
low car) approaching the intersection shown in Initial state of Figure 9.2.

205



CHAPTER 9. DECISION MAKING USING BRANCH MPC

Figure 9.1: Challenge 1: Multi-modality.

Suppose the autonomous vehicle turns right at the intersection, merging
into the lane of the human-driven vehicle. In that case, the human driver
will slow down to avoid a collision, as shown in Possible outcome 1 of Fig-
ure 9.2. On the other hand, if the autonomous vehicle proceeds through the
intersection, the path of the human-driven vehicle will be free, and the hu-
man driver will keep its speed and drive through the intersection, as shown
in Possible outcome 2 of Figure 9.2.

Figure 9.2 illustrates a significant challenge that motion planners need
to consider: human behavior is affected by the decisions taken by the au-
tonomous vehicle. Interactions occur in numerous traffic situations, such as
merges and lane changes. Considering these interactions is crucial to guar-
antee that autonomous vehicles do not drive too conservatively [67, 72].

Decision making

Human drivers often make decisions during the driving task. These decisions
are related and give rise to the multi-modality aspect of human behavior.
As an example, consider the scenario shown in Initial state of Figure 9.3.
The human-driven vehicle (red car) has to decide if it will cross the inter-
section or not. This decision is affected by its perception of the intended
behavior of the autonomous vehicle (yellow car). In case the autonomous
vehicle approaches the intersection with a high speed, shown in Possible
outcome 1 of Figure 9.3, the human decides to stop and not cross the inter-
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Figure 9.2: Challenge 2: Interaction.

section. However, if the autonomous vehicle would have slowed down when
approaching the intersection, shown in Possible outcome 2 of Figure 9.3,
the human driver would have driven through the intersection. Figure 9.3
highlights an interesting aspect of human drivers approaching intersections,
that their decision to cross or stop is dependent on the distance and velocity
of the oncoming vehicle [129].

This example shows how the traffic scene, in particular the position and
velocity of the autonomous vehicle, affects the decision taken by the human
driver. We note that this example significantly differs from the interaction
aspects shown in Figure 9.2, in this particular case there isn’t an imminent
collision forcing the human driver to stop. Instead, there is a clear intent
shown by the autonomous vehicle to drive through or stop at the intersection
that is understood by the human, resulting in the human-driven vehicle
stopping at or driving through the intersection, respectively.

Joint Prediction and Planning

A vast majority of planning approaches takes as input the prediction of a
traffic scene, namely the prediction of human-driven vehicles, and plans a
trajectory for the autonomous vehicle that adapts to the given predictions.
The typical architecture for these approaches is shown in Figure 2.12a. This
architecture separates the problem of prediction and planning into different
modules, which fairly simplifies the development of both modules, and of
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Figure 9.3: Challenge 3: Decision making.

the overall autonomous driving software stack. This type of approach is
useful and practical, and works well in non-interactive situations.

However, the architecture is not suited for autonomous vehicles that
drive in complex and traffic heavy scenarios. When considering driving
scenarios that rely on heavy interaction with other traffic participants, the
autonomous vehicle will often get stuck [130], as there is no possible driving
maneuver that can comply with the predictions provided by an upstream
perception module. In less serious cases, failing to model other drivers’ re-
actions to the autonomous vehicle future maneuvers, leads to sub-optimal
self-driving behavior, as the autonomous vehicle will act conservatively in-
stead of assertively. Therefore it becomes necessary to assume that the
predictions of other vehicles will adapt to the decisions of the autonomous
vehicles.

An architecture that considers how the predictions of human-driven ve-
hicles are affected by the planned maneuver of the autonomous vehicle is
shown in Figure 2.12b. In this type of architecture the planning module
plans a trajectory for the autonomous vehicle at the same time as it pre-
dicts the behavior of other traffic agents in response to that trajectory.
A perception module is still providing predictions, therefore it is impor-
tant that these predictions come in a representation that is suitable for the
downstream planning [77, 78]. The architecture in Figure 2.12b, allows for
joint prediction and planning, allowing the autonomous vehicle to interact
with other traffic participants, reducing conservatism while at the same time
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ensuring safe driving behavior.

Related Work

The work in [67] proposes an interaction aware planning framework for
merge scenarios. The work is motivated by the fact that in congested traffic
it can be impossible to merge without the cooperation of other vehicles.
To deal with this challenge, the authors make use of a model for traffic
participants that takes into account the effect of the planned autonomous
vehicle trajectory, effectively modeling the cooperation of other vehicles.
The method is based on simulating the traffic scene evolution for a large
set of minimal jerk velocity profiles of the autonomous vehicle, and then
choosing the best velocity profile. In our approach we achieve greater plan-
ning flexibility by considering a continuous optimization approach that is
not limited to a finite number of profiles of minimal jerk. Furthermore we
consider the possibility that other vehicles can be multi-modal, instead of
following a single Intelligent Driver Model, and also how our actions affect
the decision making of the human driver.

An MPC approach for tackling uncertainties stemming from the multi-
modality of other road users is introduced in [131]. Combining ideas from
tube-based and scenario-based MPC, the authors show that their approach
achieves better expected performance than a Robust MPC while still guar-
anteeing safety through robust constraint satisfaction. The proposed ap-
proach reduces conservativeness by planning a feedback policy which con-
siders different scenarios as a function of the mode of the prediction model.
However, the approach is only targeted towards uncertainties stemming
either from the possible existence of static obstacles, or from the multi-
modality of pedestrians.

The works in [132, 133] consider the multi-modality arising from the
uncertainty over the different maneuvers types of other drivers. It is as-
sumed that other vehicles might keep their lane or change it to neighboring
lanes. An additional uncertainty aspect is considered emerging from uncer-
tain parameters in the prediction model within each possible maneuver. By
sampling a small number of future scenarios according to these two uncer-
tainties, the proposed framework then formulates chance constraints that
are used to limit the risk of dangerous events. Noticing that Scenario MPC
might require an unreasonably large number of samples to accurately pre-
dict other vehicle’s motions, the authors of [134] combine Scenario MPC
with Stochastic MPC. The uncertainties arising from the multiple possible
maneuvers of other drivers and the uncertain execution of these maneuvers
are handled individually, which allows for less conservative motion planning.

The work in [135] proposes Branch Model Predictive Control as a strat-
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egy for tackling the multi-modality arising from other human driver’s deci-
sion making. To model the human, the authors use a finite set of policies to
build a scenario tree, then a feedback policy in the form of a trajectory tree
is planned, accounting for every possible scenario. The proposed planner op-
timizes over a risk measure of the cost function, instead of optimizing for the
expected value of the cost function. This is achieved through Conditional
Value at Risk (CVaR), a risk measure that encourages risk-averse solutions.
Although the CVaR formulation puts more focus on worse outcomes, it can
be tuned to tradeoff between performance and robustness of the planner.
In [135], the uncontrolled agent policies are propagated independently of
other agents, and therefore do not adapt to the autonomous vehicle deci-
sions, this can lead to the freezing robot problem [67, 130]. Furthermore,
the decision making models considered for the human are based on Control
Barrier Functions and lack a sociological motivation. One could argue as
well that the considered tree structure does not accurately reflect the be-
havior of humans, which do take a decision at a fixed point in time/space,
instead of continuously delaying this decision, as is modeled in [135].

Current autonomous vehicles deployed in the real world tend to predict
the future trajectories of human-driven vehicles and plan to stay out of their
way, resulting in defensive and conservative behaviors. To tackle this exces-
sive conservatism, [72] take into account how the actions of an autonomous
car affect other human drivers. They start by modeling human driving
maneuvers as the result of an optimization with respect to a given reward
function, that depends on the autonomous vehicle planned maneuver, cor-
responding to a simplification of a partially observable stochastic game. In
simulation and user studies the authors successfully show the benefits of
their approach. The autonomous vehicle is able to perform complex be-
havior in interaction with humans, such as accelerating or slowing down at
an intersection to show intent to cross or to give way, respectively. The
autonomous vehicle is also encouraged to gather information about the hu-
man, resulting it nudging the human vehicle, in order to better estimate the
parameters behind the human’s reward function. The approach is shown
to deal with several complex traffic scenarios and result in intricate driving
maneuvers, simply as a result of optimizing for driving efficiency, instead of
having to rely on hand-coded strategies.

One impressive aspect of the framework proposed in [72] is that the
planned trajectories exhibit communicative behavior, i.e., they are legible.
A legible maneuver supports other traffic participants in correctly infer-
ring the autonomous vehicle’s intentions. The work in [136] proposes a
legible MPC to improve the readability of the planned maneuvers. Re-
sults show that considering legibility as a goal in the optimization objective
increases the readability of the planned maneuvers, improving safety and
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performance.

The work in [137] proposes Contingency MPC (CMPC), a framework
that tracks a desired path while simultaneously maintaining a contingency
plan that can deal with possible emergencies. The MPC considers both a
nominal plan and a contingency plan into different horizons, where the first
control input is shared between both horizons. In this way the controller
never chooses between the nominal and contingency trajectories. It tracks
the desired nominal path to its best effort, and in case the contingency event
occurs, it returns a safe trajectory that safely deals with it. Experiments
in a real vehicle show that the Contingency MPC intuitively deviates from
the desired nominal path in order to approach turns more conservatively,
and deal with the emergency scenario, in their case, a road covered with ice.
By being selective against which disturbances/emergencies to consider, the
CMPC achieves responsible but practical conservatism, avoiding the exces-
sive conservatism of Robust MPC approaches. The authors further extend
their approach by considering the probability of the contingency event oc-
curring Pc [138], where c stands for contingency. The MPC objective cost
then becomes the expect cost from the two possible outcomes, that the con-
tingency occurs, Pc, or that it does not, 1 − Pc. They show how Pc can
be used a tuning parameter that determines the CMPC’s focus on nominal
performance objectives. As Pc increases to 1, the more conservative the
approach, eventually converging to the Robust MPC avoidance at Pc = 1.

The challenging task of driving an autonomous vehicle through an in-
tersection is studied in [139]. The authors present a planning framework
based on Stochastic MPC that considers multi-modal predictions of sur-
rounding vehicles. The multi-modal predictions of other agents take the
form of Gaussian Mixture Models, allowing the proposed SMPC framework
to consider probabilistic collision avoidance constraints. The authors in-
troduce a novel parameterized policy class which the SMPC optimizes over.
This policy class depends on the predictions of the autonomous and human-
driven vehicle states. Optimizing over this policy class, instead of optimizing
over an open-loop input sequence allows the autonomous vehicle to safely
plan maneuvers while reducing conservative behavior. The authors pose the
SMPC optimization problem as a Second-Order Cone Program, which can
be solved efficiently, allowing for real-time implementation. Extensive re-
sults highlight the benefits of optimizing over parameterized policies in the
SMPC formulation and the suitability of the method to deal with multi-
modal predictions.

Table 9.1 compares the different approaches mentioned previously re-
garding the challenges introduced in Section 9.1. It can be seen that no
single approach considers all challenges simultaneously. This motivates the
approach proposed in this chapter. We build upon the work [135] where a
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Branch Model Predictive Control approach is proposed to tackle the multi-
modal behavior of humans. We improve upon [135] by considering the reac-
tive behavior of humans, i.e., the fact that humans will adapt their behavior
in response to the actions taken by the autonomous vehicle. Furthermore,
we consider that humans do take a decision at a particular point on the
road, instead of assuming that the human is constantly making or delaying
decisions to a moving point ahead of it. Finally, we study a novel way of
formulating the human decision making process, by considering a cognitive
neuroscience model developed in human studies [129].

Table 9.1: Comparison of different planning approaches in the literature
according to the challenges identified in Section 9.1.

Approach Multi-modal Interactive Decision making
Ward et al. [67] × ✓ ×
Batkovic et al. [131] ✓ × ×
Cesari et al. [133] ✓ × ×
Chen et al. [135] ✓ × ✓
Sadigh et al. [72] × ✓ ✓
Alsterda and Gerdes [138] ✓ × ×
Nair et al. [139] ✓ × ×
Our approach ✓ ✓ ✓

9.2 Modeling

Considered scenarios

In this chapter we consider two scenarios that force the autonomous vehicle
to interact with another human-driven vehicle. In the first scenario, the
autonomous vehicle is merging onto a road, as shown in Figure 9.4. There
are no priority rules in this scenario, and as such no vehicle has the right
of way over the other. Therefore the two vehicles approaching the merging
point need to negotiate the maneuver between themselves, deciding on which
to go first.

The second case considers a non-signalized intersection, i.e., an inter-
section without traffic lights Figure 9.5. Similarly to the previous scenario,
here there are no obvious priority rules. Therefore, to safely traverse the
intersection, the two vehicles must interact and decide between themselves
which vehicle drives through the intersection first.
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Figure 9.4: The considered merging scenario. The autonomous vehicle (yel-
low car) needs to merge into a lane where a human-driven vehicle (red car)
is also merge into.

Figure 9.5: The considered intersection scenario. The autonomous vehicle
(yellow car) and the human-driven vehicle (red car) need to ensure that
they do not cross the intersection simultaneously, which would result in a
collision.
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Figure 9.6: Coordinates of the merging scenario shown in Figure 9.4.

Modeling the scenarios

We assume that a vehicle i, i ∈ {H,A}, human-driven (H) or autonomous
(A), moves along the road centerline along a path length si. In the merging
scenario, Figure 9.4, the vehicles are on separate lanes until the merging
point sconflict. After sconflict the vehicles are effectively on the same lane,
and therefore must keep a distance between them in order to avoid a colli-
sion. It is assumed that as the human driver approaches the merging point,
it will eventually make a decision at sbranching, possibly changing its behav-
ior. sbranching is a point located before sconflict, and it is chosen so as to
represent a point on the road where the human driver becomes aware of the
autonomous vehicle. When the human driver becomes aware of the road
it will take a decision, to either continue driving normally, or to adapt its
behavior, possibly slowing down or speeding up, depending if the driver is
altruistic or egoistic [76]. An illustration of the merging scenario together
with the locations of sconflict and sbranching is shown in Figure 9.6.

The coordinates sconflict and sbranching are shown for the intersection
scenario in Figure 9.7. Similarly to the merging scenario, the human-
driven and autonomous vehicle can collide after a point sconflict. At a point
sbranching < sconflict, the human-driven vehicle starts interacting with the au-
tonomous vehicle, changing its behavior according to its preferences, driving
style, and even the intention shown by the autonomous vehicle [129].

Vehicle models

In the scenarios considered, we assume the vehicle to drive along the lane
center and only plan for its longitudinal motion. This assumption is mo-
tivated by the fact that there is little room for lateral movement in these
scenarios. Therefore, there is little to no advantage in considering the pos-
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Figure 9.7: Coordinates of the intersection scenario shown in Figure 9.5.

sibility of steering the vehicle laterally and away from the lane center. Fur-
thermore, not considering lateral movement simplifies the planning problem
complexity. Both vehicles follow the model

x =

[
s
v

]
, ẋ =

[
v
u

]
. (9.1)

Where s is the current position along the centerline path, v is the vehicle
longitudinal velocity, and u is the acceleration, corresponding to the control
input. Remark: Planning only with respect to longitudinal motion is com-
monly referred to as velocity planning. We note that this approach could
be easily modified into a complete motion planning approach by extending
the vehicle states to include lateral motion. However, this would result in
higher computational complexity.

The autonomous vehicle input uA is determined by the solution planned
by the planning framework presented in Section 9.3. The human-driven
vehicle is assumed to follow a certain driving policy πbefore, up to sbranching,
and afterwards πafter. The input uH is then:

uH =

{
πbefore(sH , vH) if sH < sbranching

πafter(sH , vH , sA, vA) if sH ≥ sbranching
(9.2)

Note that πafter is a function of sA and vA, since the evolution of the human-
driven vehicle states is affected by the autonomous vehicle.

Human driving policies

We assume the human-driven vehicle to have two types of policies, one for
when there is no leading vehicle ahead of it, velocity tracking, and the other
for when there is a vehicle ahead, vehicle following.
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Velocity tracking

When there is no leading vehicle ahead, the human-driven vehicle will at-
tempt to track a desired reference speed vref. We then have uH = πvref,track,
and the policy is defined as:

πvref,track
(
vH , vref

)
= Kv

(
vref − vH

)
. (9.3)

Policy πvref,track takes as inputs the current vehicle velocity vH and the
desired reference velocity vref, and outputs an acceleration command pro-
portional to the difference between them. This makes the vehicle accelerate
or brake until arriving at its desired speed of vref.

Vehicle following

If there is another vehicle ahead of the human-driven vehicle, it becomes
necessary for the human-driven vehicle to adapt its speed to avoid a rear-
end collision. In this case uH = πva, where va stands for vehicle ahead.
Policy πva is defined as:

πva =

{
πvf

(
sH , vH , sA, vA

)
if vH ≥ vref

πvref,track
(
vH , vref

)
if vH < vref

(9.4)

with πvf, where vf stands for vehicle following, is given by

πvf
(
sH , vH , sA, vA

)
= Kv(v

A − vH) +Kd (d− dref) , (9.5)

where d = sA − sH corresponds to the distance from the human-driven
vehicle to the vehicle ahead.

Policy πva includes two cases. When vH ≥ vref, the vehicle velocity
is greater than its desired velocity, and therefore the current vehicle will
simply track its desired velocity vref, resulting in braking. For the case
when vH < vref, the vehicle velocity is smaller than its desired velocity, and
therefore it should speed up. In order to safely speed up, the vehicle needs
to take into account the vehicle ahead of it. The policy is then defined by
two terms, Kv(v

A−vH), which ensures velocity tracking, and Kd (d− dref),
which tries to keep a safe distance dref to the vehicle in front. Policy πva is
inspired by the more complex Intelligent Driver Model [140].

Human decision making

In the considered scenarios we assume the human has two different be-
haviors, one before arriving at sbranching, and another after it, as given
by Equation (9.2). Before arriving at sbranching, the vehicle is following a
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velocity tracking policy, and driving at a constant speed, as there is no vehi-
cle ahead of it. After sbranching the human-driven vehicle starts interacting
with the autonomous vehicle, and adapts its behavior to a new, possibly
equal, policy.

The policy chosen after sbranching depends on the type of driver profile
and preferences, and on the traffic scene, and it is often not known in
advance. Therefore, a motion planning algorithm should deal with the
multiple possible policies that the human driver can decide on. In the merge
scenario, Figure 9.4, we consider three types of behavior, corresponding to
three types of driver:

• πva,fast - Corresponding to an egoistic driver who speeds up, so that
vref = vfastref ,

• πva,keep - Corresponding to a neutral driver who keeps its speed, so
that vref = vkeepref remains unchanged,

• πva,slow - Corresponding to an altruistic driver who slows down, so
that vref = vslowref .

In the intersection scenario, Figure 9.5, we consider two types of behavior:

• πcross - Corresponding to the human driver keeping its speed, so that
vref = vkeepref remains unchanged,

• πstop - Corresponding to the driver slowing down and stopping at the
intersection.

At point sbranching the human decides on one of the policies to follow.
We make use of research in the field of neuroscience, namely we consider
the work in [129], where the authors study the decision making process
of human drivers approaching an intersection. The authors propose that
drivers’ decision making is depends on the degree of safety of the two co-
existing possibilities of either crossing or stopping at the intersection. The
degree of safety can be quantified by the critical time to cross CTcross, and
the critical time to stop CTstop.

The critical time to cross CTcross is defined as the last time to safely
cross the intersection by accelerating Amax = 2m/s2. CTcross is given by
the positive root of the following second order polynomial

Amax

2
x2 + (−TTCAmax)x+

(
TTC2Amax

2
+ TTCv − d

)
where d is the distance of the of the human vehicle to the intersection.
TTC = do/vo is the time until the oncoming vehicle arrives at the crossing,
assuming that the oncoming vehicle drives at a fixed speed.
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The critical time to cross CTstop is defined as the amount of time left
until the human driver can decide to apply the full braking capabilities of
the vehicle and come to a safe stop. It is given by

CTstop =
d

v
− v

2Dmax
,

where d is the distance of the vehicle to the crossing point, v is the vehicle
velocity, and Dmax is the maximum deceleration of the vehicle.

With CTcross and CTstop now defined, the authors of [129] define the
probability of the human driver choosing to cross, i.e., applying policy πcross,
as:

Pπcross =
w

1 + e−aCTcross
+

1− w
1 + e−bCTstop

. (9.6)

Where the parameters a, b, and w are found by fitting the model Equa-
tion (9.6) to experimental data. The experimental data is obtained from
thirty experienced drivers whose decision making is studied in a driving
simulator. The paper [129] builds a dataset of human decision making at
an intersection by exposing the drivers to several different intersection sce-
narios and analysing their responses. The tuned coefficients resulting from
this study are a = 1.67, b = −1.69, and w = 0.57.

Equation (9.6) provides a decision making model that can be used to
estimate the probabilities of the human driver taking different decisions.
This then allows the autonomous vehicle to understand the likelihood of
different future scene outcomes stemming from different decision taken by
the human driver. Moreover, the dependency of Equation (9.6) on both
the human driver vehicle state as well as the oncoming vehicle, in this case
the autonomous vehicle, allows the planner to reason about how different
maneuvers can affect the likelihood of different scenarios. This is funda-
mental in order to achieve assertive behavior from the autonomous vehicle.
The following section proposes a framework that can take advantage of
model Equation (9.6), providing the planner with a better knowledge of
human driver behavior and allowing the autonomous vehicle to drive as-
sertively.

9.3 Motion Planning Framework

Tree formulation - human-driven vehicle

In order to take into account the possible future decisions of the human, and
the resulting states of its vehicle, we use a tree structure [135]. Figure 9.8
shows a tree with J + 1 branches (branches [2, . . . , J − 1] not visible). Each
branch j in the tree has an associated human driver policy πj . Within a
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Figure 9.8: Diagram of the tree structure used to model the human-driven
vehicle possible future states.

branch j, the human-driven vehicle states are propagated assuming that
they follow the associated policy πj . The evolution of states corresponds to
a discretized model of Equation (9.1) so that

xH,π
j

t+1 = fH,π
j
(
xH,π

j

t , xA,π
j

t

)
, (9.7)

where the vehicle input uH,π
j

t is determined according the active policy πj ,
and can depend on the autonomous vehicle state, as in Equation (9.5). For
the transition states between branches we have

xH,π
j

tbr+1 = fH,π
j
(
xH,π

0

tbr
, xA,π

0

tbr

)
, (9.8)

where uH,π
j

tbr
already follows the policy πj .

The tree in Figure 9.8 is composed of a root branch and J branches
descending from it, corresponding to the set of branches J = {0, 1, 2, . . . , J}.
The root branch splits into different branches at time tbr, corresponding
to the state at which the human-driven vehicle crosses the path length
sbranching. At this path length sbranching, the human changes to a policy that
corresponds to interacting with the autonomous vehicle. Since, there are

multiple policies that the human can take, xH,π
0

tbr
propagates into J different

states xH,π
j

tbr+1, corresponding to the different branches with policies πj that
the human can take. Each of the branches has an associated probability Pπj
of happening. For the first branch Pπ0 = 1, and for the remaining branches∑J
j=1 Pπj = 1.
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Figure 9.9: Diagram of the tree structure used to model the autonomous
vehicle possible future states. The arcs between states in branch 1 and
branch J correspond to autonomous vehicle states that are forced to be
equal, according to Equation (9.11).

Tree formulation - autonomous vehicle

The autonomous vehicle state evolution follows a similar tree structure as
the human-driven vehicle, and is illustrated in Figure 9.9. The evolution of
states corresponds to a discretized model of Equation (9.1) so that

xA,π
j

t+1 = fA,π
j
(
xA,π

j

t , uA,π
j

t

)
. (9.9)

The vehicle input uA,π
j

i is determined by the solution to the optimal control
problem that is introduced later in Section 9.3. Similarly, for the branching
states, we have:

xA,π
j

tbr+1 = fA,π
j
(
xA,π

0

tbr
, uA,π

j

i

)
. (9.10)

In a practical setting, it is not possible to estimate the policy decision
made by the human-driven vehicle immediately after it crosses sbranching,
that is, at time tbr. Instead, the sensor and prediction systems of the au-
tonomous vehicle have a delay until accurately estimating the new behavior
of the human. To deal with this, we force the autonomous vehicle states to
be equal between the different branches [1, . . . , J ] for the first ∆tobs seconds
of the branch:

xA,π
j

ti = xA,π
j′

ti ,∀ti ∈ [tbr + 1, . . . , tbr + ∆tobs], {∀j, j′ ∈ J |j ̸= j′}. (9.11)

Equation (9.11) forces the planned solutions to not assume immediate knowl-
edge of the human-vehicle policy, and instead delay by ∆tobs the adaption
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to the new behavior. ∆tobs is experimentally tuned based on considerations
of expected time to perceive a new vehicle behavior and feasibility of the
planning problem.

MPC formulation

For each branch j ∈ J , consider the vectors

xHj = [xH,π
j

tji
, xH,π

j

tji+1
, . . . , xH,π

j

tjf
],

xAj = [xA,π
j

tji
, xA,π

j

tji+1
, . . . , xA,π

j

tjf
],

uAj = [uA,π
j

tji
, uA,π

j

tji+1
, . . . , uA,π

j

tjf
],

where tji and tjf are initial and final times associated with the first and last

states in branch j. xHj corresponds to the human-driven vehicle states, and

xAj , uAj to the autonomous vehicle states, and inputs, respectively.
The MPC is solved at the beginning of every planning cycle at time t,

its formulation is as follows:

minimize
{uAj }j∈J

∑
j∈J

PπjJ(xHj ,x
A
j ,u

A
j ) (9.12a)

subject to Equation (9.7),∀i = tji , t
j
i + 1, . . . , tjf ,∀j ∈ J (9.12b)

Equation (9.8),∀j ∈ J \ {0}, (9.12c)

Equation (9.9),∀i = tji , t
j
i + 1, . . . , tjf ,∀j ∈ J , (9.12d)

Equation (9.10),∀j ∈ J \ {0}, (9.12e)

Equation (9.11),∀j ∈ J \ {0}, (9.12f){
Pπ0 = 1 if t ≤ tbr
Pπ0 = 0 otherwise

, (9.12g){
Equation (9.6), j ∈ J \ {0} if t ≤ tbr + ∆tobs

Pπj′ = 1, Pπj′ = 0, j ∈ J \ {0, j′} otherwise
,

(9.12h){
xH,π

0

t = xHinit, x
A,π0

t = xAinit if t ≤ tbr
xH,π

j

t = xHinit, x
A,πj

t = xAinit, j ∈ J \ {0} otherwise
.

(9.12i)

Equations (9.12b) and (9.12d) encode the state evolution constraints
within the branches, for the human-driven and autonomous vehicles, respec-
tively. Similarly, Equations (9.12c) and (9.12e) encode the state evolution
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constraints between branches. Equation (9.12f) sets the observation con-
straints forcing the autonomous vehicle states to be equal across branches
j ∈ J \{0}, from time tbr until time tbr+∆tobs. Equation (9.12g) defines the
probability of the root branch: in case the current planning cycle happens
before the human-vehicle has taken a decision, t ≤ tbr, the branch exists
and is certain, Pπ0 = 1. Otherwise, the branch does not exist anymore, and
it is not regarded in the optimization objective, Pπ0 = 0. Equation (9.12h)
defines the probabilities of the leaf branches: in case the current planning
cycle happens before the autonomous vehicle can identify the true mode
of the human, t ≤ tbr + ∆tobs, its probability is given by the behavioral
decision making model in [129]. Otherwise, the probability of the branch
corresponding to the true mode is set to 1, and the probability of all other
branches is set to 0, and therefore ignored from the optimization objective.
Finally, Equation (9.12i) makes the initial human-driven and autonomous
vehicle states of the root branch correspond to the current measured states
xHinit, x

A
init of the vehicles if t ≤ tbr. Otherwise it makes the initial state of

all possible branches equal to xHinit, x
A
init.

Solving optimization problem Equation (9.12), we find the optimal au-
tonomous vehicle input vectors uAj

⋆
for each branch of the tree. At each

planning cycle, the optimization problem Equation (9.12) is solved, consid-
ering the latest sensor measurements xHinit, x

A
init. The first element of the

root branch input vector uA0
⋆

is used as a vehicle control input if t ≤ tbr.
Otherwise, the first element of an active branch is used as the vehicle control
input.

9.4 Results

The following results are obtained in a custom Python simulation envi-
ronment. The MPC problem presented in Equation (9.12) is formulated
using CasADi [141] and the corresponding nonlinear optimization problem
is solved using Ipopt [142].

Uncertain Traffic Light

We present the results of a scenario where a traffic light on the road cannot
be properly perceived by the vehicle sensors. In this scenario, illustrated
in Figure 9.10, the autonomous vehicle is approaching a traffic light. The
vehicle knows about the existence of the traffic light, due to information
contained in maps or since the perception systems can detect the existence
of the traffic light pole. However, the vehicle does not know the state of
the traffic light due to poor visibility conditions. As the vehicle approaches
the traffic light, it is eventually able to correctly perceive its actual state.
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Figure 9.10: Scenario with an uncertain traffic light.
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Figure 9.11: Diagram of the tree structure used in the uncertain traffic light
scenario illustrated in Figure 9.10.

We assume that at sbranching the vehicle accurately detects the state of the
traffic light.

The corresponding tree structure diagram for this scenario is shown
in Figure 9.11. After the vehicle crosses sbranching, at time tbr, it can take
one of two policies, either continue driving in case the traffic light is green,
πgreen, or come to a stop in case the traffic light is red, πred.

We study the expected performances for a Robust MPC, a Prescient
MPC, a Contingency MPC, and the proposed Branch MPC. The different
MPC formulations are as follows:

• Robust MPC - An MPC that assumes that the traffic light is red until
sbranching, afterwards it knows the actual traffic light state;

• Prescient MPC - An MPC with perfect perception that knows the
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Figure 9.12: Average costs of Robust, Prescient, Contingency, and Branch
MPC for different probabilities of the traffic light being red.

state of the traffic light even before sbranching;

• Contingency MPC - An MPC optimizing the driving behavior as if
the traffic light was green, but always keeping a contingency plan in
case the traffic light is red, as in [137];

• Branch MPC - The proposed approach considering both traffic light
possibilities as illustrated in Figure 9.11, and assuming Pπgreen =
Pπred = 0.5.

We run closed-loop simulations for different probabilities of the traffic
light being red. The closed-loop performance of the different approaches,
for different probabilities of the obstacle existing, i.e., of the traffic light
being red, is shown in Figure 9.12.

The Robust MPC has an expected cost that is never better than the Pre-
scient or Branch MPCs, no matter the probability of the obstacle existing.
Robust MPC also performs worse than Contingency MPC for most situa-
tions, however when the probability of the obstacle is high (> 0.8), Robust
MPC actually outperforms Contingency MPC on the expected cost. Since
Robust MPC always assumes that the obstacle exists, it actually achieves
a good performance (compared to the Prescient and Branch alternatives)
and a better performance (compared to Contingency MPC) when the prob-
ability of the obstacle is high enough. However, for lower probabilities of
the obstacle, assuming that an obstacle exists, when it in fact does not, is
detrimental for the Robust MPC, which achieves the worst performance of
all methods.
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Figure 9.12 shows that Prescient MPC achieves the best performance for
all possible probabilities of the obstacle. This is expected, as the Prescient
MPC knows about the actual existence or not of the obstacle, and therefore
is able to optimize its maneuver according to a future observation that is
still unknown to all other methods.

As seen in Figure 9.12, the performance of Contingency MPC is com-
parable to the Branch and Prescient MPCs for lower obstacle probabilities.
However, as the obstacle probability increases the performance of Contin-
gency MPC degrades, becoming worse even than Robust MPC. This can
be explained by the fact that Contingency MPC is an optimistic planner,
assuming that the obstacle does not exist until proven otherwise. Assum-
ing that the obstacle does not exist turns out to be problematic when the
obstacle indeed exists. Since Contingency MPC ignores the obstacle until
it becomes visible, it must perform a very abrupt braking maneuver, which
although being safe, results in a poor performance. On the other hand,
in case when the obstacle has low probability of existing, the Contingency
MPC actually achieves a performance on part with Prescient and Branch
MPC.

Finally, our proposed method, Branch MPC, achieves on average a per-
formance that is always better than Robust MPC, while being equally safe.
For lower probabilities of an obstacle existing, the Branch MPC performance
is comparable to that of Contingency MPC. However, for higher probabil-
ities of an obstacle, Branch MPC outperforms Contingency MPC, due to
not being optimistic about the obstacle existence.

Figure 9.13 shows the solution of a single planning cycle, for the differ-
ent MPC approaches starting at the same vehicle initial state. The initial
vehicle state is chosen so as to reflect the situation where the vehicle is
aware that there might be an obstacle, but does not know yet if the ob-
stacle exists with certainty. In this case, the Robust MPC plans a single
velocity profile that assumes the existence of the obstacle, and that brings
the vehicle to a stop. Contingency MPC plans two velocity profiles to deal
with the possibility of existence, or not, of the obstacle. The velocity profile
associated with the obstacle existence is not penalized in the cost function,
resulting in the contingency maneuver being sudden and uncomfortable. On
the other hand, Branch MPC reduces its driving speed (increasing travel
time) in order to comfortably deal with the possible existence of the obsta-
cle. Branch MPC is therefore choosing a tradeoff between the performances
in both future possible scenarios.
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Figure 9.13: Single planning cycle for the autonomous vehicle approaching
an uncertain obstacle, under different planning frameworks: Branch, Ro-
bust, and Contingency MPCs.

Multi-modality

We now consider the merging scenario shown in Figure 9.4. The human
driver is assumed to have three possible future velocity tracking policies
πva,fast, πva,keep, or πva,slow. For these policies the resulting tree diagram
is shown in Figure 9.14, where the human driver keeps a constant speed
policy π0 until the branching point, where it then chooses one of the three
possible policies. We note that although chosen manually in this study, the
future tracking policies could be instead the result of a prediction module
providing a multi-modal set of outcomes, as in [77, 143].

Figure 9.15 (bottom) shows the planned velocity profiles of a planning
cycle occurring during the merge scenario. This planning cycle occurs when
both the human-driven vehicle and the autonomous vehicle are heading
towards the merging point, but still significantly far from it. It can be seen
that the human vehicle is predicted to take three different possible velocity
profiles, corresponding to accelerating, keeping its speed, or slowing down.
The autonomous vehicle plans a set of velocity profiles that results in it
going behind the human driven vehicle in case it decides to keep its speed
or accelerate, or in going ahead of the human in case it decides to slow
down. The autonomous vehicle plan can be better visualized by looking at
the planned path lengths in Figure 9.15 (top). The path lengths (subtracted
by the predicted path length of a human vehicle with policy πva,keep) show
the distinct decisions made by the planner to either go behind or ahead of
different possible future policies of the human driver.
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Figure 9.14: Diagram of the tree structure used to model the human-driven
vehicle possible future state evolution in the merge scenario.

Figure 9.17 shows the same scenario when solved by a Robust MPC
approach. In this case, it can be seen that the planned maneuver is a very
conservative one, that decides to go behind all possible realizations of the
possible future human policies.

Comparing the Branch MPC with the Robust MPC highlights the ben-
efits of the former, as well as the importance of considering the multi-
modality of the human driver. Considering the multi-modality of the human
driver, and planning feedback policies dependent on the actual mode that
the human eventually decides upon, allow the planned solutions to squeeze
in between different possible policies, something that would not be possible
with more conservative approaches.

Finally, Figure 9.18 presents the executed velocity profile when using the
Branch MPC in closed loop simulations. At a certain point in time, t = tbr,
the human makes a decision (human branching, highlighted in Figure 9.18),
and starts following policy πva,fast. After a few seconds, at t = tbr + ∆tobs,
the autonomous vehicle is able to accurately estimate the new human policy
(accurate prediction, highlighted in the Figure 9.18), and the Branch MPC
reverts to a single prediction policy MPC.

Non-interaction vs. interaction-aware human models

In order to allow for assertive and efficient driving, it is essential to consider
that human-driven vehicles react and adapt to the autonomous vehicle. We
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Figure 9.15: Planned autonomous vehicle trajectory (solid line) and pre-
dicted human-driven vehicle trajectory (dashed line) for the Branch MPC
case. Top: Path lengths (centered around the path executed by πva,keep).
The rounded markers correspond to the instant when the vehicles cross the
conflict point. Bottom: Velocity profiles. A zoomed version is shown in Fig-
ure 9.16.

now consider the case of an autonomous vehicle that needs to accelerate
from a standstill and merge onto a road with an oncoming vehicle driving
at a high speed, similar to the scenario considered in [67]. We consider a
Branch MPC which can take a decision of either going ahead of the other
vehicle, or waiting for it to pass and then go behind of it.

Figure 9.19 shows the results for a single planning cycle, where the au-
tonomous vehicle is at a standstill, and there is an oncoming vehicle driving
at a speed higher than the desired cruising speed of the autonomous vehi-
cle. In the non-interacting vehicle model case, the Branch MPC predicts
the human to keep its speed constant, and therefore decides to wait for it
to pass, and afterwards, go behind of it. In case of packed traffic, i.e., if
there were several oncoming vehicles, the autonomous vehicle could be stuck
indefinitely at the junction [67]. However, when considering an interaction
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Figure 9.16: Detail of Figure 9.15. Top: Path lengths (centered around the
path executed by πva,keep). The rounded markers correspond to the instant
when the vehicles cross the conflict point. Bottom: Velocity profiles.

aware model, the Branch MPC decides to go ahead of the oncoming vehicle.
This is possible as the prediction of the human behavior takes into account
that a human driver will slow down and adapt its speed for a vehicle cutting
into traffic.

To further highlight the benefits of considering an interaction-aware
model, Figure 9.20 shows a comparison of the planning solution costs for
different scenarios, where in each scenario the oncoming human-driven vehi-
cle starts at a different distance s0 from the junction. The planner using the
non-interaction model always decides to go behind of the oncoming vehicle.
Due to the higher velocity of the oncoming vehicle, the planner predicts that
going ahead of it results in a rear-end collision, and therefore it chooses to
go behind of the oncoming vehicle.

On the other hand, the planner with the interaction aware model is
able to correctly predict that the oncoming vehicle will slow down when
the autonomous vehicle merges into traffic, and takes advantage of it to go
ahead, reducing the optimal plan cost. However, when the oncoming vehicle
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Figure 9.17: Planned autonomous vehicle trajectory (solid line) and pre-
dicted human-driven vehicle trajectory (dashed line) for the Robust MPC
case. Top: Path lengths (centered around the path executed by πva,keep).
The rounded markers correspond to the instant when the vehicles cross the
conflict point. Bottom: Velocity profiles.

Figure 9.18: Closed loop executed velocity profiles on the merging scenario.
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Figure 9.19: Comparison of predicted and planned velocity profiles when
considering non-interacting and interaction-aware human-driven vehicle
models.

is already too close to the junction, s0 > −390, the planner decides to go
behind of it, as going ahead would either cause a collision, or it would cause
the human to brake past its limits. The braking limits of the human are
set to a reasonable deceleration, to guarantee that the autonomous vehicle
does not act in a way that is uncomfortable or discourteous to other traffic
participants [144].

Intersection scenario

We now consider the intersection scenario shown in Figure 9.5. In this
scenario, both vehicles approach a non-signalized intersection, while having
a clear sight of each other. Since there are no traffic lights or priority
rules, the vehicles have to negotiate between themselves who goes first.
The considered tree structure for this scenario is shown in Figure 9.21.

Figure 9.22a shows the planned velocities when considering that both
human-driven vehicle policies have an equal fixed probability Pπcross =
Pπstop = 0.5. It can be seen that the autonomous vehicle decides to slow
down so as to deal with both possible outcomes of the human decision. In
case the human-driven vehicle keeps its speed, that is, it takes policy πcross,
the autonomous vehicle further slows down to ensure collision avoidance.
Otherwise, if the human-driven vehicle comes to a stop, policy πstop, the
autonomous vehicle increases its velocity to its desired reference velocity.

We note that this intersection scenario resembles the one considered
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Figure 9.20: Comparison of expected costs for a non-interacting human-
driven vehicle model and an interaction-aware model for different initial
conditions sH0 of the human-driven vehicle.
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Figure 9.21: Diagram of the tree structure used to model the human-driven
vehicle possible future states in the intersection scenario.
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(a) Fixed probabilities.

(b) Adapting probabilities.

Figure 9.22: Intersection scenario for different configurations of human-
vehicle policy probabilities.

in [129]. Therefore we use the human decision making model Equation (9.6)
to determine the probability Pπstop , and its counterpart Pπcross = 1−Pπstop .
Figure 9.22b shows the results for this scenario when considering that the
human policy probabilities follow the human decision model in Equation (9.6).
In this case the planner decides to speed up slightly so as to approach the
intersection earlier. Furthermore, at around t = 5 s, the planner further
speeds up, so as to clearly indicate to the human driver that it intends to
pass. This results in a higher predicted probability of the human deciding
to slow down and give way to the autonomous vehicle, Pπstop = 0.91. With
a lower probability of the human keeping its speed, Pπcross = 0.09, the au-
tonomous vehicle plans a more aggressive maneuver in the more unlikely
event that this branch occurs.

These results show that considering the human decision making model
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to determine the probabilities of the possible future branches allows the
planner to make assertive driving maneuvers. The autonomous vehicle ma-
neuvers in a way that shows intent to other human vehicles, in order to
improve its expected driving outcomes. This comes naturally as a result of
minimizing the objective cost of Equation (9.12a), and therefore does not
require manually tuned driving strategies for different traffic situations.

9.5 Conclusions

This chapter presented a motion planning framework for tackling the chal-
lenges of autonomous vehicles interacting with human drivers. Three chal-
lenges associated with human drivers, multi-modality, interactive behavior,
and decision-making, were introduced. In order to tackle these challenges,
a planning solution must perform joint prediction (of human drivers) and
planning (of the autonomous vehicle).

We introduce scenario trees as a suitable model to express human drivers
and the multiple outcomes of their decisions. We then present recent re-
search in the field of neuroscience that attempts to model the driver decision-
making process at intersections. An MPC problem is then formulated that
combines these two concepts.

Through a toy example with an uncertain traffic light, we show how the
Branch MPC achieves a better performance than a Robust MPC while still
being safe. Furthermore, we show that the Branch MPC is not as optimistic
as a Contingency MPC, leading to better performance on average. We also
show how the Branch MPC can consider the multi-modal predictions of the
human driver. We present a scenario where the autonomous vehicle decides
to squeeze between two policies of the human driver’s future outcomes,
something that would not be possible with a Robust MPC. The interaction-
aware models show their advantage when considering a merging scenario
where the autonomous vehicle needs to merge ahead of another vehicle. By
considering interactions, the human vehicle merges into the lane earlier,
with only little disturbance to the following incoming vehicle. Finally, we
study the effects of using a decision-making model for the human and show
how this leads the planner to find assertive maneuvers and display intent to
the human vehicle.

Considering the three challenges mentioned earlier, multi-modality, in-
teraction, and decision-making, we developed a motion planner that in-
teracts with human drivers, planning assertive driving maneuvers and can
influence human drivers into making decisions that have favorable outcomes
for the autonomous vehicle. The proposed framework is a promising solu-
tion to enable self-driving technology in urban traffic, where interactions
and assertiveness are needed to drive efficiently.
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As future work, it is interesting to evaluate the some of the assumptions
when modeling the problem. The assumption that a human-driver makes
a single decision at a point sbranching along the road might not capture the
true nature of human decision making. Moreover, it would be interesting to
consider behavioral decision making for more scenarios than the intersection
one, and study if assertive behavior of autonomous vehicles can be achieved
in those as well. Finally, a practical implementation on an autonomous
vehicle is needed to validate the suitability of the proposed approach to
accurately model and solve the joint prediction and planning problem.
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Chapter 10

Conclusions and Future Work

This thesis focused on motion planning algorithms for autonomous heavy-
duty vehicles. The trending field of autonomous driving promises to disrupt
current transportation systems, and fundamentally shape the mobility of
the future [145]. Heavy-duty vehicles represent a significant share of ve-
hicles driving on- and off-roads today. Due to its fundamental differences
when compared to passenger vehicles, they require special education for
drivers [146], and a special adaptation of autonomous driving algorithms,
as highlighted throughout this thesis.

In Section 10.1 we summarize the conclusions made so far in our research.
These conclusions provide some insight into the key problems that arise
when motion planning algorithms move from the passenger vehicle domain
into the heavy-duty vehicle one. Future work and research directions are
provided in Section 10.2. Based on our previously developed work, we
suggest promising research avenues that can be further investigated. We
also enumerate a few parallel topics within motion planning, that were not
addressed in this thesis. These topics are, in our opinion, expected to play
an important role in the development, and eventual deployment of safe and
reliable autonomous vehicles.

10.1 Conclusions

A recurrent insight that can be seen across the whole thesis, is that motion
planning for autonomous heavy-duty vehicles cannot be reliably achieved
using algorithms developed for passenger vehicles. An extensive body of
literature exists when it comes to motion planning for passenger vehicles,
however, there is relatively little work published that explicitly considers
trucks and buses. This thesis, and contributions herein, tries to address
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this gap, by identifying and proposing solutions to different challenges that
hinder the arrival of autonomous heavy-duty vehicles.

Slow actuator dynamics

When developing motion planning algorithms, it is important to consider
as realistic as possible vehicle models, in order to reduce resulting errors
between planned and executed motions. Most motion planning approaches
ensure quality of the planned paths, by setting constraints on the curvature
profile of the paths. However, these constraints lack a direct connection to
the vehicle steering actuator limits.

We have developed, in Chapter 3 a motion planner that explicitly takes
into account the steering actuator limits. From the steering actuator limits,
the motion planner is able to compute the necessary curvature profile con-
straints required for the planned paths. Steering actuator limits are often
easier to measure and understand than its curvature constraints counter-
part, and as such are a better input to a motion planning algorithm. The
proposed motion planner is generalizable to any car-like vehicle, requiring
only the knowledge on the limitations of its steering actuator.

Due to their large weight, heavy-duty vehicles are often characterized
by slow actuator dynamics [147]. In order to plan paths that respect these
dynamics, we take into account limits not only in the maximum steering
angle magnitude and rate, but also in the applicable torque. This results
in smoother planned motions that effectively respect all three actuator lim-
itations. The controller effort is thus minimized, and path tracking perfor-
mance is improved, resulting in more comfortable and safer driving.

Complex obstacle environments

A significant share of heavy-duty vehicles is targeted for use in unstructured
off-road environments. These types of environments are often populated
with numerous obstacles that are part of a changing landscape. Thus, vehi-
cles need to have motion planning capabilities that allow them to navigate
safely, but also efficiently, in order to achieve their intended tasks.

Motion planning in these kinds of environments has been studied for long
in the field of robotics. Unlike traditional robotic systems, heavy-duty ve-
hicles are subject to severe kynodynamic constraints, which have motivated
the development of new motion planning algorithms. These algorithms usu-
ally rely on sampling of the search space, which results in sub-optimality
and in some cases, in a drastic reduction of vehicle efficiency.

Chapter 4 tackles the issues resulting from sub-optimality, namely, os-
cillations of the solution path, and discretization of the goal state. The pro-
posed solution, targeted for lattice-based planners, is able to significantly
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remove the oscillations present in solution paths, and increase the length of
straight driving sections. This allows for increased vehicle performance, as
the vehicles can achieve higher velocities due to the reduced turning mo-
tions. With regard to the discretization of the goal state, we show that the
proposed solution is often able to successfully plan paths arriving at specific
target destinations. This allows heavy-duty vehicles to successfully be used
in applications requiring precision driving, such as when it is necessary to
precisely stop beside other heavy machinery or fixed infrastructure.

Bus driving behavior

Buses are characterized by a particular chassis design significantly differ-
ing from that of other vehicles. In order to be able to increase passenger
capacity, the vehicle body is quite large, however, to maintain vehicle struc-
tural robustness and increase maneuverability, the wheelbase is kept short.
The sections of the chassis extending beyond the wheelbase are known as
overhangs.

Overhangs are quite tall and can sweep over curbs and low height ob-
stacles, an attribute that professional bus drivers take advantage of. By
allowing the overhangs to sweep over curbs, bus drivers increase the ma-
neuverability of the vehicle. This is of crucial importance when driving in
urban environments, and is often observed during sharp turn maneuvers or
bus stop approaches.

This type of driving is not observed in any other type of vehicle, and
when it comes to motion planning algorithms it is an unaddressed issue.
To deal with this, Chapter 5 proposes a new environment classification
scheme, which explicitly takes into account that curbs and other low height
obstacles can be swept by the bus overhangs. Furthermore, new driving
objective functions are defined, which seek to mimic professional bus driver
behavior. The result is a motion planning algorithm that is able to tackle
the challenges of bus driving, and does so while increasing the safety and
maneuverability of buses.

Wide vehicle dimensions

Trucks and buses are distinguished from other vehicles by their wide dimen-
sions. When driving on roads or in constrained environments, it is often the
case that drivers struggle in order to successfully drive their vehicles with-
out colliding. The same is true for most motion planning algorithms, which
are often plagued with the inability to plan motions that require the vehicle
to pass through narrow environments.

In Chapter 5, we develop a motion planning algorithm that can find
solutions in arbitrarily narrow roads. The algorithm takes advantage of
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the convexity of the environment, which can be assumed for the case of
on-road driving. The motion planning problem is solved using a numeri-
cal optimization method. We introduce new vehicle body approximations
to ensure safe but non-conservative collision checking, which is of the ut-
most importance when considering vehicles with large dimensions or on
narrow roads. The proposed vehicle body approximations, together with
the numerical optimization framework used, result in a motion planner that
successfully tackles the driving task for buses in urban environments.

Optimal driving behavior for long and multi-body vehicles

Driving in the center of the road is essential to good road driving behavior.
To formulate this objective, most motion planners focus on minimizing the
distance of a point in the vehicle, usually the rear axle center or the center
point of the vehicle, to the road’s centerline. In practice, this works well, as
long as the vehicle has a short wheelbase, as in passenger vehicles. However,
for truck-trailers and buses, formulating the objective of driving in the road
center is not trivial, as is observed in Chapter 6.

Chapter 7 starts by defining the optimal driving behavior as that which
keeps the area swept by a vehicle equally distant to both lane limits. Using
geometric arguments, Chapter 7 proposes a framework that designs cost
objectives that, when minimized, force the vehicle to have this optimal
behavior. The geometric derivation assumes a road with constant curvature.
However, both simulations in Chapter 7 and experiments with a prototype
bus in Chapter 8 show that the proposed approach is suitable for roads with
varying curvature profiles. The proposed framework for designing objectives
is algorithm-agnostic, only requiring that the motion planning algorithm
relies on optimizing towards a cost function, which most approaches do.

Interactions with human-driven vehicles

Interacting with human-driven vehicles is a challenge that is highly relevant
to all autonomous vehicles nowadays, not only heavy-duty vehicles. When
driving with human-driven vehicles, particularly in dense traffic scenarios,
autonomous vehicles must consider how humans adapt and possibly coop-
erate with the autonomous vehicle. Such reasoning is essential to be able to
drive in the presence of other humans while not being overly conservative.
This challenge is aggravated when considering heavy-duty vehicles due to
their slower dynamics and sheer size. During a merge maneuver or lane
change in dense traffic, the heavy-duty vehicle requires significantly larger
gaps between the other vehicles to perform the maneuver successfully. Un-
derstanding the intentions of human drivers becomes essential to predict if
other participants will cooperate in the desired maneuver or not.
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Chapter 9 proposes a decision making and motion planning approach
to tackle the challenge of interacting with human-driven vehicles. The pro-
posed approach jointly predicts and plans maneuvers for the autonomous
vehicle, reasoning about other drivers’ cooperativeness or lack of it. To more
accurately predict the actions of humans, a behavioral model of decision
making for human drivers approaching intersections is used. The proposed
planning approach tackles several challenges of human-autonomous vehicle
interaction, namely, multi-modality, interactions, and decision making of
the human. The autonomous vehicle is shown to have a safe but not too
conservative behavior and an assertive driving style, conveying its intentions
to humans.

10.2 Future work

The work developed in this thesis has identified and helped solve some of
the issues currently impairing motion planning for autonomous heavy-duty
vehicles. However, during this research process, new problems previously
overlooked have emerged, and with them, promising directions for future
work. We hereby list these directions, some of them correspond to natural
improvements to the work already presented, while others correspond to
new frameworks and approaches to motion planning.

Controller performance guarantees

The trend seen in motion planning to consider ever more accurate vehicle
models and kinodynamic constraints, can be seen as an attempt to reduce
the disparity between planned motions and executed motions. In extreme
scenarios, this disparity can result in unsafe systems, since collision checking
is performed for the planned path, not for the executed path. Thus, if the
vehicle deviates from the planned path, as it will always happen as long as
there are modeling errors, collision avoidance is not guaranteed. This can
be partially addressed by improving the vehicle models used, however at
the cost of requiring system identification procedures. Furthermore, more
complex vehicle models will also increase computational times for motion
planning algorithms. Alternatively, conservative collision checking proce-
dures can be used, which inflate the vehicle states or the obstacle regions.
However, the conservativeness can render planning algorithms useless in
narrow environments.

Formal verification techniques such as those presented in [90, 148] are
able to deal with parametric model uncertainty and bounded disturbances.
Using these techniques, it is possible to compute the set of reachable vehicle
states, i.e., an occupancy funnel, in which the vehicle is guaranteed to be
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contained when executing a certain maneuver. These occupancy funnels are
often expensive to compute and are not suitable for online computations.
However, this challenge can be addressed by remembering that some motion
planning methods, such as those presented in Chapter 3 and Chapter 4
make use of precomputed motions primitives. Motion primitives and their
associated funnels can be computed offline, and then used in an online
fashion.

These formal verification techniques are a promising avenue of future
work. They provide motion planners with the ability to explicitly mini-
mize the vulnerability of planned paths to disturbances and uncertainties
in a systematic way. They also provide a measurement of risk for differ-
ent planned actions, which could, in the future, help certify and legislate
autonomous vehicles.

Wheel-aware planning

The practical experiments with a prototype autonomous bus in Chapter 8
revealed that precise maneuvering near curbs requires the motion planner
to consider the vehicle’s wheels. As autonomous vehicle technology matures
and its deployment broadens, the complexity of maneuvers performed in-
creases. In the case of buses, approaching and departing from a bus stop is
a common maneuver. The distance from the vehicle to the bust stop curb
should be minimized to allow for easier boarding of passengers. To minimize
this distance while guaranteeing the safety of the maneuver, one needs to
consider how the wheels protrude outwards from the vehicle body and how
they depend on the current steering of the vehicle. One can imagine similar
scenarios with autonomous passenger light vehicles, particularly those used
in Mobility as a Service businesses, which frequently pick up and drop off
passengers.

From CPU to GPU

The solutions presented in this thesis all assumed a sequential implementa-
tion in a central processing unit (CPU). However, the performance of graph-
ics processing units (GPUs) has dramatically increased in recent years. The
usage of GPUs can allow for a significant reduction in the computational
time of motion planning algorithms [92]. Furthermore, new motion planning
frameworks can be used, which are based on parallel computing, instead of
traditional sequential computing.
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From model-based to learning-based

Machine learning approaches have made their way into many areas of en-
gineering, and in autonomous driving, they excel at computer vision and
perception tasks. Motion planning can benefit from machine learning ap-
proaches. These approaches already permeate the decision making process
of autonomous vehicles in many implementations. Machine learning can be
incorporated to improve specific procedures of planning algorithms, such as
predicting traffic participants’ behavior, or they can provide high-level de-
cision making guidance to a simplified planner. Some authors even propose
end-to-end approaches where a neural network completely replaces the mo-
tion planner [149]. Learning-based approaches are promising solutions to
tackle some of the not-yet-solved autonomous driving challenges. However,
research efforts are still needed to increase their explainability and validate
their safety.
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[108] P. Zips, M. Böck, and A. Kugi. An optimisation-based path planner
for truck-trailer systems with driving direction changes. In Proc. IEEE
Int. Conf. on Robotics and Automation, pages 630–636, Seattle, WA,
USA, May 2015. doi: 10.1109/ICRA.2015.7139245.

[109] B. Li, T. Acarman, Y. Zhang, L. Zhang, C. Yaman, and Q. Kong.
Tractor-trailer vehicle trajectory planning in narrow environments
with a progressively constrained optimal control approach. IEEE
Transactions on Intelligent Vehicles, 5(3):414–425, 2020. doi:
10.1109/TIV.2019.2960943.

[110] K. Bergman and D. Axehill. Combining homotopy methods and nu-
merical optimal control to solve motion planning problems. In 2018
IEEE Intelligent Vehicles Symposium (IV), pages 347–354, 2018. doi:
10.1109/IVS.2018.8500644.

[111] N. Evestedt, O. Ljungqvist, and D. Axehill. Motion planning for
a reversing general 2-trailer configuration using Closed-Loop RRT.
In Proceedings of the 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3690–3697, 2016.

[112] O. Ljungqvist, N. Evestedt, D. Axehill, M. Cirillo, and H. Pettersson.
A path planning and path-following control framework for a general
2-trailer with a car-like tractor. Journal of Field Robotics, 36(8):1345–
1377, 2019.

[113] O. Ljungqvist, K. Bergman, and D. Axehill. Optimization-based
motion planning for multi-steered articulated vehicles. IFAC-
PapersOnLine, 53(2):15580–15587, 2020.

257

https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/distraction-or-disruption-autonomous-trucks-gain-ground-in-us-logistics
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/distraction-or-disruption-autonomous-trucks-gain-ground-in-us-logistics
https://www.mckinsey.com/industries/travel-logistics-and-infrastructure/our-insights/distraction-or-disruption-autonomous-trucks-gain-ground-in-us-logistics


BIBLIOGRAPHY

[114] F. Lamiraux, J. Laumond, C. Van Geem, D. Boutonnet, and G. Raust.
Trailer truck trajectory optimization: the transportation of com-
ponents for the airbus a380. IEEE Robotics Automation Maga-
zine, 12(1):14–21, March 2005. ISSN 1070-9932. doi: 10.1109/
MRA.2005.1411414.

[115] S. Beyersdorfer and S. Wagner. Novel model based path planning
for multi-axle steered heavy load vehicles. In Proceedings of the 16th
International Conference on Intelligent Transportation Systems, pages
424–429, Oct 2013.

[116] N. van Duijkeren, T. Keviczky, P. Nilsson, and L. Laine. Real-time
NMPC for semi-automated highway driving of long heavy vehicle com-
binations. IFAC-PapersOnLine, 48(23):39–46, 2015.

[117] C. Altafini. Following a path of varying curvature as an output reg-
ulation problem. IEEE Transactions on Automatic Control, 47(9):
1551–1556, 2002.

[118] C. Altafini. Path following with reduced off-tracking for multibody
wheeled vehicles. IEEE Transactions on Control Systems Technology,
11(4):598–605, 2003.

[119] B. A. Jujnovich and D. Cebon. Path-Following Steering Control for
Articulated Vehicles. Journal of Dynamic Systems, Measurement, and
Control, 135(3), 03 2013. ISSN 0022-0434.

[120] M. Micha lek. Motion control with minimization of a boundary off-
track for non-standard n-trailers along forward-followed paths. In
2015 IEEE International Conference on Automation Science and En-
gineering (CASE), pages 1564–1569. IEEE, 2015.

[121] X. Liu and D. Cebon. A minimum swept path control strategy for
reversing articulated vehicles. In Proceedings of the 2018 IEEE Intel-
ligent Vehicles Symposium, pages 1962–1967, June 2018.

[122] Xuanzuo Liu, Anil K. Madhusudhanan, and David Cebon. Minimum
swept-path control for autonomous reversing of a tractor semi-trailer.
IEEE Transactions on Vehicular Technology, 68(5):4367–4376, 2019.
doi: 10.1109/TVT.2019.2895513.

[123] C. Altafini, A. Speranzon, and B. Wahlberg. A feedback con-
trol scheme for reversing a truck and trailer vehicle. IEEE Trans-
actions on Robotics and Automation, 17(6):915–922, 2001. doi:
10.1109/70.976025.

258



BIBLIOGRAPHY

[124] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad,
and Stephen Boyd. Osqp: An operator splitting solver for quadratic
programs. Mathematical Programming Computation, 12(4):637–672,
2020.

[125] Jorge Nocedal and Stephen J Wright. Numerical optimization.
Springer, 1999.

[126] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA
urban challenge: autonomous vehicles in city traffic, volume 56.
Springer, 2009.

[127] G. Collares Pereira, P. F. Lima, B. Wahlberg, H. Pettersson, and
J. Mårtensson. Reference aware model predictive control for au-
tonomous vehicles. In 2020 IEEE Intelligent Vehicles Symposium
(IV), pages 376–383, 2020. doi: 10.1109/IV47402.2020.9304670.

[128] Fangyu Wu, Raphael E. Stern, Shumo Cui, Maria Laura Delle
Monache, Rahul Bhadani, Matt Bunting, Miles Churchill, Nathaniel
Hamilton, R’mani Haulcy, Benedetto Piccoli, Benjamin Seibold,
Jonathan Sprinkle, and Daniel B. Work. Tracking vehicle trajec-
tories and fuel rates in phantom traffic jams: Methodology and
data. Transportation Research Part C: Emerging Technologies, 99:
82–109, 2019. ISSN 0968-090X. doi: https://doi.org/10.1016/
j.trc.2018.12.012. URL https://www.sciencedirect.com/science/
article/pii/S0968090X18318345.

[129] Geoffrey Marti, Antoine HP Morice, and Gilles Montagne. Drivers’
decision-making when attempting to cross an intersection results from
choice between affordances. Frontiers in human neuroscience, 8:1026,
2015.

[130] Peter Trautman and Andreas Krause. Unfreezing the robot: Naviga-
tion in dense, interacting crowds. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 797–803, 2010.
doi: 10.1109/IROS.2010.5654369.

[131] Ivo Batkovic, Ugo Rosolia, Mario Zanon, and Paolo Falcone. A robust
scenario mpc approach for uncertain multi-modal obstacles. IEEE
Control Systems Letters, 5(3):947–952, 2020.

[132] Georg Schildbach and Francesco Borrelli. Scenario model predic-
tive control for lane change assistance on highways. In 2015 IEEE
Intelligent Vehicles Symposium (IV), pages 611–616, 2015. doi:
10.1109/IVS.2015.7225752.

259

https://www.sciencedirect.com/science/article/pii/S0968090X18318345
https://www.sciencedirect.com/science/article/pii/S0968090X18318345


BIBLIOGRAPHY

[133] Gianluca Cesari, Georg Schildbach, Ashwin Carvalho, and Francesco
Borrelli. Scenario model predictive control for lane change as-
sistance and autonomous driving on highways. IEEE Intelligent
Transportation Systems Magazine, 9(3):23–35, 2017. doi: 10.1109/
MITS.2017.2709782.
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[136] Tim Brüdigam, Kenan Ahmic, Marion Leibold, and Dirk Woll-
herr. Legible model predictive control for autonomous driving
on highways. IFAC-PapersOnLine, 51(20):215–221, 2018. ISSN
2405-8963. doi: https://doi.org/10.1016/j.ifacol.2018.11.016.
URL https://www.sciencedirect.com/science/article/pii/
S2405896318326703. 6th IFAC Conference on Nonlinear Model
Predictive Control NMPC 2018.

[137] John P. Alsterda, Matthew Brown, and J. Christian Gerdes. Con-
tingency model predictive control for automated vehicles. In 2019
American Control Conference (ACC), pages 717–722, 2019. doi:
10.23919/ACC.2019.8815260.

[138] John P Alsterda and J Christian Gerdes. Contingency model
predictive control for linear time-varying systems. arXiv preprint
arXiv:2102.12045, 2021.

[139] Siddharth H Nair, Vijay Govindarajan, Theresa Lin, Chris Meis-
sen, H Eric Tseng, and Francesco Borrelli. Stochastic mpc with
multi-modal predictions for traffic intersections. arXiv preprint
arXiv:2109.09792, 2021.

[140] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic
states in empirical observations and microscopic simulations. Physical
review E, 62(2):1805, 2000.

260

https://www.sciencedirect.com/science/article/pii/S2405896318326703
https://www.sciencedirect.com/science/article/pii/S2405896318326703


BIBLIOGRAPHY

[141] Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and
Moritz Diehl. Casadi: a software framework for nonlinear optimization
and optimal control. Mathematical Programming Computation, 11(1):
1–36, 2019.
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