
Form data enriching using a post
OCR clustering process

Measuring accuracy of field names and field values
clustering

Adil Aboulkacim

Computer Engineering BA (C), Final Project
Main field of study: Computer engineering
Credits: 15 credits
Semester, Year: Spring, 2022
Supervisor: Karl Petterson
Examiner: Patrik Österberg
Course code: DT099G
Programme: Master of Science in Engineering - Computer Engineering

Abstract
With OCR technologies the text in a form can be read, the position of
each word and its contents can be extracted, however the relation
between the words cannot be understood. This thesis aims to solve
the problem of enriching data from a structured form without any
pre-set configuration using clustering. This is done using the method
of a quantitative measurement of a developed prototype counting
correctly clustered text boxes and a qualitative evaluation. The
prototype works by feeding an image of an unfilled form and another
image of a filled form which contains the data to be enriched to an
OCR engine. The OCR engine extracts the text and its positions
which is then run through a post-processing step which together with
a modified Euclidean and fuzzy string search algorithm, both
together is able to cluster field names and field values in the filled in
form image. The result of the prototype for three different form
structures and 15 different images for each structure ranges from
100% to 92% accuracy depending on form structure. This thesis
successfully was able to show the possibility of clustering together
names and values in a form i.e., enriching data from the form.

Keywords: Optical Character Recognition, Form Processing, Data
enrichment

i

Sammanfattning
Med OCR teknologier kan innehållet av ett formulär läsas in,
positionen av varje ord och dess innehåll kan extraheras, dock kan
relationen mellan orden ej förstås. Denna rapport siktar på att lösa
problemet med att berika data från ett strukturerat formulär utan
någon förinställd konfiguration genom användandet utav klustring.
Detta görs med en kvantitativ metod där mätning av en utvecklad
prototyp som räknar antal korrekt klustrade textrutor och en
kvalitativ utvärdering. Prototypen fungerar genom att mata en bild
av ett ofyllt formulär och en annan bild av ett ifyllt formulär och en
annan bild av ett ifyllt formulär som innehåller informationen som
ska berikas till en OCR-motor. Utdatan från OCR-motorn körs genom
ett efterbearbetningssteg som tillsammans med en modifierad
euklidisk algoritm och en oskarp strängsökningsalgoritm kan klustra
fältnamn och fältvärden i den ifyllda formulärbilden. Resultatet av
prototypen för tre olika formulärstrukturer och 15 olika bilder
vardera gav en träffsäkerhet från 100% till 92% beroende på
formulärstruktur. Denna rapport kunde visa möjligheten att grupper
ihop fältnamn och fältvärden i ett formulera, med andra ord utvinna
information från formuläret

Nyckelord: Optisk teckenläsning, Formulärbearbetning,
Databerikning

ii

Acknowledgements
First and foremost, I would like to thank Karl Petterson as my
supervisor at Mid Sweden University, with his invaluable advice and
guidance many mistakes were avoided, and a lot of time was saved in
both creating the prototype and writing the report.

Secondly, I’d like to thank Magnus Eriksson at Mid Sweden University
for the idea of extracting information from forms in the key-value pair
format.

iii

Contents
Abstract i

Sammanfattning ii

Acknowledgements iii

List of Figures vi

List of Tables vii

Terminology viii

1 Introduction 1
1.1 Background and problem motivation 1
1.2 Overall aim . 2
1.3 Problem statement . 2

1.3.1 Goal 1 . 2
1.3.2 Goal 2 . 2

1.4 Scope . 3
1.5 Outline . 3

2 Theory 4
2.1 Optical character recognition 4
2.2 OCR pipeline . 5
2.3 Data extraction . 6
2.4 Information extraction . 6
2.5 Implementation specific theory 7

2.5.1 Euclidean distance 7
2.5.2 Euclidean distance modified 7
2.5.3 Piecewise Euclidean distance modified 8

2.6 Intelligent character recognition 9
2.7 Related work . 9

2.7.1 Android application for digitization of forms 9
2.7.2 Digitization of handwritten numbers on physical

forms . 10
2.7.3 Interpretation of handwritten numbers in forms . . 11
2.7.4 Automatic Classification of Handwritten and

Printed Text in ICR Boxes 11
2.7.5 Azure form recognizer 13
2.7.6 Tesseract . 13

3 Methodology 14
3.1 Scientific method description 14

iv

3.2 Project method description 14
3.3 Evaluation method . 14

4 Implementation 15
4.1 OCR engine . 16

4.1.1 Pre-processing implementation 16
4.1.2 Text detection implementation 17
4.1.3 Text recognition implementation 18

4.2 Blank form clustering . 19
4.3 Filled form clustering . 20

5 Result 21
5.1 Measurement . 21

5.1.1 First measurement 22
5.1.2 Second measurement 23

5.2 Accuracy results . 24
5.2.1 Left-oriented form 24
5.2.2 Right-oriented form 25
5.2.3 Bottom-oriented form 26

6 Discussion 27
6.1 Analysis and discussion of results 27
6.2 Project method discussion 27

6.2.1 Chosen method . 27
6.2.2 Chosen approach 27
6.2.3 Chosen metrics . 28
6.2.4 Goals . 28

6.3 Scientific discussion . 28
6.4 Ethical and societal discussion 29
6.5 Problems with OCR . 29
6.6 Indefinite forms . 30

7 Conclusion 31
7.1 Future Work . 31
7.2 Example of a future work 31

References 33

A Left-oriented results 1

B Right-oriented results 2

C Bottom-oriented results 3

D Piecewise Euclidean distance modified in Python 4

v

List of Figures

1 Optical Character Recognition [3] 4
2 OCR pipeline visualized 5
3 Euclidean distance visualized 7
4 Modified Euclidean algorithm visualized 8
5 Piecewise modified Euclidean algorithm visualized . . . 9
6 Trained model detecting handwritten digits in form [13] . 10
7 Results of two models trained with 10 and 30 images

respectively [14] . 11
8 Selected zones before and after ICR cell detection [15] . . 12
9 Identifying the midpoint and ICG of the characters [15] . 12
10 Application overview . 15
11 Example of input images 15
12 OCR engine . 16
13 pre-processing . 16
14 Image after pre-processing 17
15 Text detection . 18
16 Bounding boxes visualized 18
17 Example blank form . 19
18 Example filled form . 20
19 First measurement visualized 22
20 Second measurement visualized 23
21 Sample of clustering a left-oriented form 24
22 Left-oriented form results from appendix A 24
23 Sample of clustering a right-oriented form 25
24 Right-oriented form results from appendix B 25
25 Results of clustering a bottom-oriented form 26
26 Bottom-oriented form results from appendix C 26

vi

List of Tables

1 Example of the text recognition output 19
2 Table of results using the left-oriented form 1
3 Table of results using the right-oriented form 2
4 Table of results using the bottom-oriented form 3

vii

Terminology
API Application Programming Interface
CNN Convolutional neural network
EAST Efficient and Accurate Scene Text detector
ICR Intelligent Character Recognition
LSTM Long short-term memory
OCR Optical Character Recognition

viii

1 Introduction
What do a postal office and a blind person have in common? Both
want to have an easy and convenient way to read text written on
physical mediums. Through transformation to an electronic system
these mediums can more easily be understood and used. In our
current time it is becoming more common to digitize and read our
physical environment using a technique called optical character
recognition (OCR) into machine-encoded text for an easier and more
convenient usage using computers. Not only does digitizing make
our common day to day lives easier, allows for automation and
further ease of life improvements, but it also aids the most
unfortunate ones of us who cannot easily read.

This question of how to understand text either electronically or
mechanically has been studied since early 1900s [1]. OCR is a
scientific subfield of the combination of pattern recognition, computer
vision, and in recent times, artificial intelligence. It is the
transformation of images which contains text of typed, handwritten,
or printed character into machine-encoded text which can be
understood and used by digitally.

1.1 Background and problem motivation
Humankind has since the ancient civilization of Sumer from 3200
BCE [2] been writing and printing symbols and text on various
physical mediums to later be read and understood visually. Not only
is physical text created for long-term usage but also for short-term in
forms of letters, paper invoices, reports, which are sent to be
consumed, processed, digitized, and then promptly discarded.

The constant growth of information in physical form and the need for
digitization creates an increasing problem for both those who want to
share information and those who want to consume information.
Bridging the gap between producers and consumers of information
whilst also including those with hindrance to consume information
easily (Vision impairment, reading disability, etcetera) is a problem
that exists in the present and has never been more current to be
solved.

The OCR technology can save countless working hours in various job
sectors, it can enable access to information for more people, and it can
help those with reading hindrances in one form or another. As OCR
increases its reliance on various artificial intelligence techniques such
as neural networks which steadily becomes easier to implement,
more accurate in prediction, and faster to compute, this future
becomes closer to our present each day.

1

1.2 Overall aim
The aim of this project is to give an introductory understanding to
why and how to enrich textual data from an OCR system, construct a
prototype for automatically reading and enriching data from images
containing text, as well as measuring the reliability of the prototype to
enrich data accurately automatically from text found in images. This
is to give an understanding if automatic data enriching from an OCR
system is possible and to which degree it is possible through analytic
measurements and higher-level discussion later in the report.

1.3 Problem statement
The thesis investigates the problem statement of whether it is feasible
to use an automatic postprocess step, relying on OCR system, to
enrich extracted data from images containing text in a structured
form. To which degree it is achieved, which is measured and reported
in results chapter while the over-aiming feasibility shall be answered
and discussed in discussion chapter.

1.3.1 Goal 1
First goal is to be able to detect, recognize, and group text such that
each field value in a form is grouped with the right field names from
the form. Reaching this goal will allow for further development of
clustering and trying to extract relations between field names and field
values.

1.3.2 Goal 2
Next goal is of this project is to be able to some degree extract the
relation between of field names and field values. Each group contains
inputted information from the user in the form of handwriting, and
field name that represents the field in which the information was
written in. Measuring the accuracy of correctly separated information
from the fields will reach goal 2.

2

1.4 Scope
The project scope is focused on a subsection of the subfield OCR, this
is to solely focus on the automatic data enriching and not the
workings of optical character recognition in terms of pattern
recognition, computer vision, or artificial intelligence. Furthermore,
this project will focus on providing a limited prototype to test and
prove the feasibility of introducing automatic textual data enriching
into OCR systems, this will not result in a fully developed software
solution instead a steppingstone for further development and
research.

1.5 Outline
Any figure with no source explicitly cited has been created by the
author. Chapter 2 goes over the theory for OCR and ways of
extracting data and information, as well as related works to give a
better understanding of OCR and ways others have solved enriching
data from forms. Chapter 3 describes the scientific and project
method, as well as the two goals for the project, and lastly how the
projects success will be evaluated. Chapter 4 the implementation will
cover the workings of OCR engine and the postprocess clustering
step which enriches data. Chapter 5 presents the results of running
the prototype over different forms and a number of images. Chapter
6 discusses not only the results but the project as a whole from a
subjective point of view. Lastly chapter 7 contains the conclusions
drawn from finished work.

3

2 Theory
The aims of this chapter are to cover introductory information to
understand the basics of OCR, information extraction, and how the
reliability is going to be measured, which will give the reader enough
understanding to interpret the rest of this thesis. Furthermore, this
chapter is going to cover the theory needed to understand technical
aspects of chosen methods, algorithms, libraries, and frameworks.

2.1 Optical character recognition
The subfield optical character recognition (OCR) is in simple terms
the technique of trying to get a computer to understand the text on an
image. This conversion from text on an image to machine-encoded
text is the core function of OCR. How this task has been achieved has
changed from conventional methods using pattern recognition, to
more advanced methods within computer vision, and to most recent
times now also using neural networks from the field of artificial
intelligence. This technique bridges the gap between our physical
world and digital world through conversion of text present
physically to digitized text which can be further understood and
processed by computers.

Figure 1: Optical Character Recognition [3]

OCR systems work by first detecting text and putting a bounding box
around them. This box is processed by a text recognition module
which outputs the predicted text [4]. Figure 1 visualizes the bounding
box around a word and the recognized text.

4

2.2 OCR pipeline
In general, modern OCR applications contain four steps in succession
that can be referred to as the OCR pipeline as seen in figure 2. These
four steps are defined as technical operations with clear boundaries in
duties and order. These four steps are pre-processing, text detection,
text recognition, and post-processing. Some applications combine text
detection and text recognition into a single step, and some call the final
step restructuring instead.

Figure 2: OCR pipeline visualized

Pre-processing usually contains conventional methods to convert a
raw unedited image into an image more suitable for image
processing. This step is essential to produce a better result in the later
steps as the processed image is pipelined to the next step. Some
operations that the pre-processing step may include are deskewing,
grayscaling, binarization, noise reduction, and image scaling [5].

The grayscaling done in the implementation uses the library OpenCV
[6] which converts the three-colour space RGB to a singular value to
represent the amount of light.

RGBtoGray : 0.299R + 0.587G + 0.114B → Y

Equation conversion from RGB to grayscale [7]

The second step is text detection which originally used conventional
methods but now finds more success using artificial intelligence in
the form of neural networks. This step’s main purpose is to find
regions of interest which may contain text. The recognized regions
may differ in size and rotation with an accompanying score to dictate
how likely that there is text present. Further conventional methods
such as IoU (Intersection over Union) and thresholding is executed to
produce more accurate results.

Third step is the most crucial which is text recognition which takes
an image or subsection of an image and outputs a list of most likely

5

character for each position. This is used to output the most recognized
string of characters.

Lastly is the step of post-processing which is usually uses conventional
methods to further improve the accuracy of the output. This includes
methods of comparing recognized text to lexicon, which might be all
the words of a certain language, or a specific subset of words of a field.

2.3 Data extraction
The difference from a scanner to an OCR system is that a scanner
creates an image representing the paper, without being able to store,
locate, or manipulate each individual character, word, or sentence.
Without extracting the textual data using OCR the image data is
mostly unusable. The OCR system extracts data from the image
representing the paper without understanding the actual text. [8]

The process of retrieving data out of a data source is called data
extraction. This enables further processes such as data processing or
data storage on the extracted data. Usually, data is transformed and
put into some context through the use of metadata before being
exported to another program or directly to the user. The exported
data is what is called unstructured data which means it is not
arranged to any pre-set schema. [9]

2.4 Information extraction
The next more advanced and complex extraction is information
extraction which automatically converts previously unstructured data
into structured information. This is done for the end goal of allowing
either further computation to be done or for a user to draw inferences
based on logical reasoning. The overall goal of understanding the
data can be divided into several different tasks and sub tasks. One of
these tasks is template filling which aims to extract a set collection of
attributes from a data source (text, document, article) into a
hierarchical structure of one or more key-value pairs [10].

6

2.5 Implementation specific theory
This subsection will include theory specific for the implementation.

2.5.1 Euclidean distance
For the implementation the formula for Euclidean distance was used
which calculates the distance of a straight path between two points
on a plane. The formula as follows: d(P, Q) =

√
(x − a)2 + (y − b)2.

Where the distance between point P = (x, y) and point Q = (a, b) are
calculated, visualized in figure 3. In the following figure the Euclidean
distance formula is visualized where lighter regions denote a higher
distance to the origin.

Figure 3: Euclidean distance visualized

2.5.2 Euclidean distance modified
The formula can be modified to give a higher weight to a certain axis.
In the implementation a modification to the formula was done to give
higher weight to the vertical axis. The formula is as follows, visualized
in figure 4:

d(P, Q) =
√
(x − a)2 ∗ 0.5 + (y − b)2 ∗ 2

This is used in the implementation to allow individual text boxes
containing field names to be clustered together. Using the formula
two field names are inputted as points and if the weight is below a
certain threshold the field names are considered part of the same
cluster.

7

Figure 4: Modified Euclidean algorithm visualized

2.5.3 Piecewise Euclidean distance modified
The second modified Euclidean distance formula is created using a
piecewise equation, visualized in figure 5. Where the weight is higher
for negative x and/or positive y. This formula is used to cluster field
values to field names. The formula has lowest weight for the fourth
quadrant, medium weight for first and second quadrant, and highest
weight for second quadrant. When clustering field values to field
names this gives field values a lower weight if they are positioned to
the bottom-right, then directly below and to the right, and lastly the
highest weight if they are positioned top-left.

d(P, Q) =

√
(x − a)2 ∗ 2 + (y − b)2 ∗ 0.5 x ≤ 0 y ≤ 0√
(x − a)2 ∗ 2 + (y − b)2 ∗ 2 x ≤ 0 y > 0√
(x − a)2 ∗ 0.5 + (y − b)2 ∗ 0.5 x > 0 y ≤ 0√
(x − a)2 ∗ 0.5 + (y − b)2 ∗ 2 x > 0 y > 0

8

Figure 5: Piecewise modified Euclidean algorithm visualized

2.6 Intelligent character recognition
The successor to OCR is a more advanced system which incorporates
learning new fonts and handwriting, this is called intelligent
character recognition (ICR). While OCR systems may also contain
more advanced techniques such as neural networks and learning, this
approach was first used by ICR systems. It’s considered that OCR is
more suitable to read printed text and ICR more suitable to read
handwritten text. [11] Generally however, the term OCR can be
referred to both OCR and ICR systems as both techniques solve the
same problem using similar methods.

2.7 Related work
This sub chapter contains the works which this thesis was inspired
by. Furthermore, this sub chapter will go over related works found in
the scientific community which covers the same or similar problems
to give both a broader and deeper knowledge on the problem.

2.7.1 Android application for digitization of forms
Erik Fahlén wrote the thesis "Tolkning av handskrivna siffror i formulär:
Betydelsen av datauppsättningens storlek vid maskininlärning" on
digitizing forms using object recognition which was written at Mid
Sweden University 2019 as a bachelor thesis. The purpose of the
thesis was to see which combination of dataset and hardware using
the machine learning library TensorFlow produced the best results in
the metrics of accuracy, speed, and cost. This was done by training a
model called Single Shot MultiBox Detector MobileNet version using
Google Clouds Machine Learning Engine, after which the trained

9

model was converted to a phone fitted model which was used in an
android application. The model’s purpose was to detect handwritten
filled and unfilled boxes in physical forms [12]. While the thesis
mostly covers which configuration provides best accuracy, speed, and
cost, it also describes the methods of reading a form by using object
recognition which is useful since not all forms exclusively only text as
input.

2.7.2 Digitization of handwritten numbers on physical
forms

Jonathan Manousian wrote the thesis "Digitalisering av handskrivna
siffror på fysiska formulär: Utvärdering av tillförlitlighet och träningstid"
on reading forms in specific reading handwritten numbers which
proves to be very tricky for OCR engines to handle which was written
at Mid Sweden University during 2020 as a bachelor thesis. The
purpose of the thesis was to measure the accuracy of OCR tools found
online compared to a model trained for the thesis using the
TensorFlow framework. The model was fed manually cropped
regions containing digits of photos taken or scanned of physical
forms. Results of the thesis show that training a model to recognize
specific handwriting yields higher accuracy of 80% on similar
handwriting style as shown in figure 6, than the general-purpose
OCR tools on handwritten digits which produced on average a lower
accuracy of 37.5% [13]. This work describes the issues of handwritten
text on forms which may give a lower than a workable accuracy
when using traditional OCR tools compared to newer tools which use
machine learning.

Figure 6: Trained model detecting handwritten digits in form [13]

10

2.7.3 Interpretation of handwritten numbers in forms
Engin Kirik wrote the thesis "Tolkning av handskrivna siffror i formulär:
Betydelsen av datauppsättningens storlek vid maskininlärning" [14] on the
growth in accuracy of an OCR engine using machine learning when
reading handwritten numbers in a form which was written at Mid
Sweden University during end of 2020 as a bachelor thesis. The
purpose of the thesis was to measure the accuracy of a trained OCR
model using different sizes of training dataset. This is to find out how
important size of dataset affects results of object recognition. The
model was created using both TensorFlow and PyTorch frameworks
with a training size from 10 images to 30 images as shown in figure 7.
This work proves the importance of a large dataset for training
learning models in OCR for handwritten text.

Figure 7: Results of two models trained with 10 and 30 images
respectively [14]

2.7.4 Automatic Classification of Handwritten and
Printed Text in ICR Boxes

One paper by Abhishek and Mohd at Newgen Software Technologies
researched the possibility and the accuracy of a proposed method to
automatically recognize zones of either printed or handwritten text.
[15]. The idea is that by separating the work of recognizing characters
of printed text to an OCR system and handwritten text to an ICR
system the recognition rate and production rate can be increased
compared to feeding both types of text to the same system. This is
done by a manually selecting regions of interest which contains either
printed or handwritten text as seen in figure 8. These regions are then
divided into cells using ICR cell detection to isolate each potential
character, the cells which previously resided in one region are now
considered part of one zone. The zone is treated to be either printed
or handwritten, however each cell may or may not contain a valid

11

character.

Figure 8: Selected zones before and after ICR cell detection [15]

Firstly, for each cell in each zone, the possibility of a present character
is predicted using an eight-neighbour connected component-labelling
algorithm. Three features of valid characters in each zone are then
extracted, these features are inter-character gap (ICG) shown in figure
9, character height, and baseline. If one of these features of every
character in a zone fails to reach a certain threshold, the whole zone is
considered to contain handwritten text. However, if all three features
of all characters reach the threshold for acceptance, then the zone is
considered to contain printed text.

Figure 9: Identifying the midpoint and ICG of the characters [15]

This is important to discern between printed and handwritten text in
each zone, as these characters are passed to an OCR system for printed
text and ICR system for handwritten text. The implemented solution
managed to properly detect handwritten zones with 96.24% accuracy
and printed zones with 91.17 % accuracy. The paper suggests that by
passing different texts to different engines the recognition rate can be
increased, however this is not tested in the paper.

While this paper presents a novel idea on how to extract information
from a form using predefined zones and designated character boxes,
it also presents ways of identifying objects out of pattern using

12

measurements and averages creating thresholds for said object being
in the group or not. This is used as inspiration for the implementation
of this project.

2.7.5 Azure form recognizer
Microsoft developed a tool to extract key-value pairs, text, and tables
from images and documents. The tool uses machine-learning models
to analyse forms and documents, extracts the text and data, maps
field relations as key-value pairs, and lastly returns the output result
in a computer friendly JSON format. [16] Azure form recognizer uses
several underlying tools such as OCR, text analytics, and custom text
classification. The underlying OCR tools works in both extracting text
from printed and handwritten documents, and extract information to
provide more structure and information to the text extraction. [17]
The Azure form recognizer uses deep learning technology to extract
tables from documents and images. This has been proven to be more
successful than other methods in computer vision applications, which
include OCR. [18] The neural network type which predicts tables is
called Mask R-CNN which is an extension of Faster R-CNN by
adding another branch to predict object mask and work in parallel
with bounding box in an image. The overhead of another branch is
relatively small while adding a more effective generalized approach.
[19].

While an in-depth explanation of the inner workings of this
proprietary OCR software is not available, the high accuracy Azure
for recognizer provides is both a proof of such advanced OCR
engines existing as well as the possible usage in future workings.

2.7.6 Tesseract
Originally developed by Hewlett-Packard but from 2006 and onwards
by Google Tesseract is an open-source engine for OCR. Tesseract uses
neural networks called Long short-term memory (LSTM) [20] which
focuses on line recognition to recognize characters. While the engine is
open-source, the package is distributed as a library or binary for out-
of-the-box usage. [21] Tesseract does not solve form recognition but
serves as a well-functioning alternative as OCR engine which could be
used in future works.

13

3 Methodology
In this thesis both a qualitative and quantitative method will be
conducted to measure the results of the project through the
implementation. An iterative approach is taken to progress the thesis
and the implementation simultaneously each cycle. Two milestones
are noted, first one for recognizing groups of text containing
information, and the second one for enriching the data for recognized
groups. Lastly, the success of this thesis lays not in its degree of
successful implementation, but to which degree this thesis helps the
reader understand the problem and advantage of automatic data
enrichment from OCR systems.

3.1 Scientific method description
To measure the success of the implementation a quantitative method
is used. Measurements are done by counting the amount of correctly
and incorrectly clustered text boxes from which an accuracy can be
calculated. The measurements will be the basis of proving the
feasibility of solving the problem presented in this thesis 1.3. This
measurement will be unique for each type of form tested and how the
measurement is done specifically is explained in 5.1

3.2 Project method description
The project that has been conducted is done through an agile
methodology where an iterative approach is being taken. This will
mean that most parts of the thesis will be continuously written, and
the prototype will be developed simultaneously. This is to combine
the scientific research and software development in a suitable
iterative workflow that progresses the thesis incrementally each cycle.
Problem of certain parts of the thesis not being able to advance due to
it inherit nature of relying on previous chapters or parts is a
possibility. Furthermore, could the technical complexity prove to be a
problem for the scope.

3.3 Evaluation method
The degree of how much understanding into automatic data
enrichment on OCR systems dictates if the thesis was successful or
not. As this thesis does not aim to give a definite answer to the
possibility of the chosen problem. No matter the results from the
implementation, this thesis aims to show but a subsection of what
could possibly be done with these technologies.

14

4 Implementation
The implementation is done using the Python language with the
notable library OpenCV [6] as main image manipulation library.
Implementation starts with inputting two images, one of which is of a
blank form and the other of the same form but with filled field values
called filled form. The two input images both go through the same
OCR engine and then later go through a postprocess clustering step
as shown in figure 10. Clustering the filled form image is done using
the results from clustering the blank form image with a various
conventional algorithm.

Figure 10: Application overview

The images used in the implementation is taken to be as alike as
possible in terms of camera angle, lighting, scaling, etc. as shown in
figure 11

(a) Blank form (b) Filled form

Figure 11: Example of input images

15

4.1 OCR engine
The heart of any OCR engine is the text detection and text recognition
parts, these parts together with pre-processing and postprocessing
(such as error correction) make up the basic functioning OCR.
However in this implementation no postprocess for the OCR engine
is being used, as shown in figure 12

Figure 12: OCR engine

In this project three different approaches were considered to speed up
development of a prototype: using a ready-built online API [22], using
closed-source software or binaries, using and modifying open-source
or creating new code. For the most control over the implementation
and possibility to modify and analyse the code the last option with
open code was chosen.

4.1.1 Pre-processing implementation
The first part of the implemented OCR engine is pre-processing
which contains 3 separate steps to enhance the ability to detect and
recognize text, as shown in figure 13. Pre-processing is the first
contact the inbound image has with the engine. Simply this step has
the input of a taken image and output is a modified image which is
more suitable for text detection and text recognition.

Figure 13: pre-processing

Colour in an OCR engine is not used as algorithms that detect and
recognize text do so from 2D-arrays containing the intensity values.

16

Furthermore, running computations on all three colour channels (red,
green, blue) increases computational costs with no benefit. The colour
conversion implementation is using the OpenCV [6] colour space
conversion functions which converts from RGB/BGR to grayscale
which has been described in the theory chapter 2.2.

Images contains noise such as Gaussian noise and salt-and-pepper
noise which both affect the ability to run any further detection and
recognition on the image. To combat this the technique called
Gaussian blurring was used which first blurs the image, then divide
each pixel value with the blurred pixel value.

Lastly a thresholding algorithm called binarization is run on each pixel
to either convert the pixel value to 0 (black pixel) or 255 (white pixel).
This produces an image with strictly either black or white pixels with
low to no noise as shown in 14.

Figure 14: Image after pre-processing

4.1.2 Text detection implementation
The neural network EAST (Efficient and Accurate Scene Text
Detector) [23] was used for text detection for the reason of being both
fast and accurate. First step is to prepare the image to fit the width
and height into multiples of 32. The image is the sent through the
EAST neural network which outputs geometry, also called bounding
boxes, and a score for each box. This score is used in thresholding to
remove low score boxes. Non-max suppression is used to remove
overlapping boxes. Finally, the image is readjusted into original
width and height. These five steps can be seen in figure 15. The
values for the bounding boxes are sent to the next step in the pipeline.

17

Figure 15: Text detection

An output image is also created for debugging and analysing purposes
where each bounding box is visualized using a green rectangle over
the pre-processed image as shown in 16.

Figure 16: Bounding boxes visualized

4.1.3 Text recognition implementation
The image with bounding boxes is iterated over to recognize text in
each box using a pre-trained convolutional recurrent neural network.
Bounding boxes are used to cut sections of the image to be sent
individually to the neural network for each to be recognized. The
network produces a list for each character position with an ordered
list containing the most likely character from the English alphabet
and numerals in that position. In this implementation the most likely
character was always chosen for that character position. For each
bounding box an array of characters was predicted to be contained
within. The output of this step is a list of box positions together with
predicted text.

18

X Y text
222 136 name
471 166 johy
788 178 dioe
265 292 occupation
...

Table 1: Example of the text recognition output

4.2 Blank form clustering
This implementation inputs two images, one of which is an image of
an unfilled form used to extract each word and cluster words that
belong together. The first clustering is called blank form clustering in
that it clusters words into individual or into other clusters. This is
done using the prior steps of the OCR engine which results in blank
form clustering receiving the box positions jointed with predicted text
for each box. An example of a blank form with the bounding box for
the boxes are drawn in green can be seen in figure 17.

Figure 17: Example blank form

Clustering is first done by calculating the average distance between
each box’s midpoint and its closest neighbour. This is used as a
reference point to determine if neighbouring boxes belong in the
same cluster. Distance calculating is done using a modified variant of
Euclidean distance which a higher weight on vertical distance than
horizontal distance described in section 2.5.2. For another box to be
contained in a cluster with another box they must be closer than the
average distance with a certain threshold, current implementation
uses 90% as threshold which means for a box to be clustered with
another box it has to be closer than 90% of the mean. In the example
of a blank form 17 the boxes containing "favorite" and "animal" got

19

rightfully clustered together while the other boxes were put in
individual clusters.

4.3 Filled form clustering
Clustering a filled form uses an image such as 16 where both field
names and field values are present as shown in figure 18. Identified
words from blank form clustering are used to verify which words in
filled form are field names and not field values. The verification is
through using a method called fuzzy string search [24]. As the words
recognized in the blank and filled form are not always exactly equal
e.g., "name" field name can get recognized as "names" due to
semi-colon present. The function used is implemented in the
standard library for Python called SequenceMatcher [25] which finds
the longest contiguous matching sub-sequence between two strings.

Figure 18: Example filled form

Secondly clustered field names get converted into a larger box which
spans over the clustered boxes with its new midpoint being the new
mid of the box. This is done to treat a multi-word field name as a single
box in terms of position and recognized text.

Lastly a conventional clustering method is used where boxes in more
common positions are preferred. This is done using a piecewise
function with conditions if the field value box is horizontally to the
right or left of field name box and if the field value box is vertically
above or below of field name box described in section 2.5.3. In the
code below the distance between an answer box (field value) and a
question box (field name) is calculated which can be seen in appendix
D

20

5 Result
This chapter presents the results of testing the systems accuracy on
various types of forms. The system has been tested by inputting
different images of handwritten filled in forms with the same image
of a blank form. Furthermore, three different types of forms
(left-oriented, right-oriented, down-oriented) were chosen to test a
variety of different structures a form can follow. For each type of form
15 different images were taken and computed through the
implementation. The input for each field value in the images are
randomized to contain different words and different number of
words.

5.1 Measurement
This project aims to evaluate if an automatic system to extract
key-value pairs from forms is suitable to be used in practice through a
quantitative measurement. The measurement will not focus on the
degree of correctly recognized words nor the amount of correctly
detected text as this depends on the OCR system in use which can be
swapped or improved without any modification to the rest of the
system. The measurements will solely focus on the degree of correctly
clustered boxes which contain field value to the correct field name.

21

5.1.1 First measurement
First measurement is the amount of correctly number of clusters for
boxes containing field names (Questions in the form) and the correct
clustering for multi-word field names. The correctness of a
multi-word field name will be determined by the degree of native
contra non-native text boxes. In figure 19 the field name box
containing ’Occupation’ and ’Doctor’ results in one correct and one
wrong text box, while the field name box containing ’Favorite’ and
’animal’ results in two correct text boxes. The text boxes in the picture
are ’Name’, ’Occupation’, ’Hometown’, ’Favorite’, ’animal’, ’Doctor’,
these text boxes belong to one of 4 field name clusters. In total the
picture has 5 correctly clustered text boxes and 1 wrongly clustered
text box (Doctor does not belong to Occupation field name).

Figure 19: First measurement visualized

22

5.1.2 Second measurement
Second measurement is the percentage of boxes containing field values
that is clustered to the correct field name box, where the order, box
size, or recognized word is not considered. In figure 20 the field value
box containing ’York’ is wrongly clustered to ’Occupation’ rather than
’Hometown. This in consideration to the other field value text boxes
gives 8 correct and 1 wrongly clustered box.

Figure 20: Second measurement visualized

23

5.2 Accuracy results
Using the results of each form orientation the accuracy of correctly and
wrongly clustered field names and field values can be derived as such.
To calculate accuracy of each implementation the formula used was:

accuracy =
correctly clustered text boxes

total amount of text boxes

5.2.1 Left-oriented form
The left-oriented form follows the structure of most forms where the
field name is present to the left of the area to input the field value.
Sample of such form shown in 21 and the results of all left-oriented
forms shown in 22.

Figure 21: Sample of clustering a left-oriented form

Correctly clustered 100%

(a) Field name

Correctly clustered 98%
Wrongly clustered 2%

(b) Field value

Figure 22: Left-oriented form results from appendix A

24

5.2.2 Right-oriented form
The right-oriented form follows a structure not commonly used. This
was done for testing purposes only with no practical usage as a goal.
Sample of such form shown in 23 and the results of all left-oriented
forms shown in 24.

Figure 23: Sample of clustering a right-oriented form

Correctly clustered 100%

(a) Field name

Correctly clustered 100%

(b) Field value

Figure 24: Right-oriented form results from appendix B

25

5.2.3 Bottom-oriented form
Bottom-oriented form is common for large open-space boxes for field
values. Sample of such form shown in 25 and the results of all left-
oriented forms shown in 4.

Figure 25: Results of clustering a bottom-oriented form

Correctly clustered 92%
Wrongly clustered 8%

(a) Field name

Correctly clustered 92%
Wrongly clustered 8%

(b) Field value

Figure 26: Bottom-oriented form results from appendix C

26

6 Discussion
Here will the results be analysed while the methods, approaches,
metrics, and milestones will be discussed. Furthermore, a scientific,
ethical and societal discussion will also be presented.

6.1 Analysis and discussion of results
As shown in 5.2 the accuracy for different types of form structure
differs. This shows clearly that the resulting application and solution
has its strengths and weaknesses and is suitable for a subsection of
form types. From the measurements we can conclude that solution
performs better with left-oriented and right-oriented forms than
bottom-oriented forms. The small difference of accuracy between
left-oriented and right-oriented could be due to a small sample size
(N = 15). To solve issue with low accuracy either the solution could be
modified, or the form could be changed. Modifying the solution to
better solve one of the form structures will in probability increase
accuracy for that form but in return lower the accuracy for other form
structures and as a result seize to be a solution for general purpose
forms. Adapting the forms structure before reading it in as an image
may also improve the accuracy, as attributes such as average text box
distance and the intraclass cluster distance affect the results.

6.2 Project method discussion
The method used in this project will be discussed in both terms of
thought behind the choices and in terms of the resulting impact of the
choice.

6.2.1 Chosen method
Using the agile methodology for developing the project solution and
thesis was critical to work in a limited time whilst also being able to
produce a functioning solution. As problems using OCR may not be
apparent at the start of the project it is important to get a working
prototype and identify the weaknesses of OCR and the implemented
solution which uses it. The problem that arose with an agile
methodology was reaching the first working prototype took a lot
more time than each future iteration.

6.2.2 Chosen approach
Approaching the problem two specific important decisions had to be
made.

• Firstly, how to implement the OCR engine which outputs text
box coordinates and recognized words. Three options were
considered, firstly using an external API such as Azure OCR,
see 2.7.5. Secondly using the Tesseract OCR engine, see 2.7.6,

27

and thirdly implementing an own OCR engine using
pre-trained neural network models. For this project the third
option was chosen as an OCR engine for the reason of high code
transparency and ability to modify as many parameters as
possible. While the third option gave a deeper understanding to
OCR, implementing the OCR engine proved to take longer time
and have a lower accuracy than pre-made solutions.

• The second decision to approach the problem is what type of
clustering algorithm to be used in the post-process step.
Algorithms such as k-means and mean-shift were considered,
however the time to implement the algorithm to the project
problem and able to modify the algorithm to fit the project were
considered too costly for this project, and instead implementing
a custom Euclidean distance algorithm deemed more suitable.

6.2.3 Chosen metrics
Measuring the results of the solution were not straightforward as the
images used for developing the solution and for measuring had no
predefined correct solution to compare with. As the postprocess
primarily works in two steps, firstly correctly clustering the field
names and the correctly clustering the field values depending on the
field names it was deemed suitable to measure both those parameters
for accuracy. This was suitable for giving an overview for the
effectiveness of the solution and its accuracy with different types of
forms. In hindsight figuring out more metrics to measure would give
a better insight into the degree of success for the prototype and
chosen approach.

6.2.4 Goals
The two goals which were set which were both achieved by the
technical solution. At the time of writing the goals a different type of
clustering approach was considered but not pursued, which would
allow for separately achieving goal 1 and then goal 2 in sequence.
Such approach would focus on clustering first and secondly
separation of field name and field value. However, the resulting
approach works in reverse as the first step is separating the field
name and then clustering the field names with field values, meaning
goal 2 was reached before goal 1.

6.3 Scientific discussion
The main scientific knowledge gained from this work is proving that
understanding the information present in forms read through OCR
using clustering is possible without any pre-set configurations such
as marking regions of interest on a form. Furthermore, a general

28

understanding for OCR is presented in this thesis for the reader to
better understand how OCR works and its limitations. As this thesis
may be a steppingstone for further research into automatic data
enrichment in OCR systems, the developed algorithms are too
specific to be applied in a general field outside of structured forms.

6.4 Ethical and societal discussion
Ethically this project builds on previous technologies on the ethical
aspects of those technologies. However, overlooking the underlying
technologies and their ethical discussions, this new solution does not
rely on previous data which could skew the results, nor does it save
any data which could have been a privacy problem. In this regard, the
solution is ethically sound without any doubt.

In terms of the societal discussion this solution is part of the OCR field
which inherently impacts society in both positive and negative ways.
As most uses of OCR allows for automation of simpler tasks which
frees up time from manual work, helps people with disabilities that
affect the ability to read and understand text. As most automation it
could be argued that it takes away work from society leading to higher
unemployment rate. This is however a false possibility of causation as
the technology would not directly replace any work but only improve
existing work, such as a data entry job.

As the risk of misreadings by an OCR engine and a postprocess
clustering step is ever-present another postprocess step could be
introduced to correct misreadings by the OCR engine through actions
alike auto-correct. However, as no system is never completely
foolproof, sensitive data should either be reviewed manually
afterwards or never be read through an OCR application in firsthand
and instead be transmitted digitally in machine-encoded text instead.

6.5 Problems with OCR
The main problem and which cripples any development of practical
usage of data enrichment is the unreliability of OCR. Both in terms of
text detection (finding text boxes) and text recognition (reading the
text) the output various widely when used. As any step in the
prototype relies on the steps before each degree of error not only
propagates through the pipeline but gets exponentially larger with
each degree of error. This was one of the problems down the road on
the project, not taking advantage of well-engineered readymade
solutions for as many steps in the pipeline as possible.

Various methods could be used to resolve this issue, both in the
process of OCR with more error correction processes or simply a

29

better OCR engine and on the physical form to create the best
condition for OCR. One of the methods is to use an out-of-the-box
ready solution as for example [17]

6.6 Indefinite forms
This implementation for form reading is able to read forms that has not
be predefined using alignment features, lines, boxes, or any pre-sets.
This is something that was really important when asking the scientific
question and creating the implementation. A predefined form using
boxes to designate regions of interest can be seen in figure 8.

Using an implementation for indefinite forms allows for both an easier
creation and setup of forms and form collection, but also the possibility
to read foreign forms which has not been created by the user. I think
these two advantages can really save time especially if this work of
reading indefinite forms is further researched on.

30

7 Conclusion
This work successfully to cluster field names and values in a form to a
certain degree of accuracy (92% to 100%) depending on form
structure. The overall aim of the project to provide an easy
introduction of OCR and data enrichment together with its
limitations is done through the report while the problem statement of
examining feasibility of automatically extracting information is
conducted through the project prototype.

While this project does not solve the problem of extracting
information from forms completely, it provides a steppingstone into
the direction of conventional clustering using techniques such as
modified Euclidean distance and fuzzy string search.

7.1 Future Work
This project had to cut down on the amount of work and different
approaches tried due to time constraints. Because of this constraint
there is possibilities to further work on the project, and below is a list
of a few of possible future work.

• A big outside factor of the solution accuracy depends on the OCR
engine, further research into which OCR engine could provide a
better accuracy is to be done in the future, possibly using the
Azure form recognizer as OCR engine to offload problems with
OCR in the project [17]

• Include increasing both the amount of different form structures
as well as number of images to provide a better statistical result

• Using the aid of glyphs, lines, boxes, or markings to indicate the
position of a grouping containing field name and field values.
These aids could be used as anchor points, borders, additional
weights for distance calculations, etc.

• As the Eucledian distance was calculated by using midpoints of
each text box another solution could investigate the possibility
of using points on the edges of text boxes for calculating the
distance. This could provide a better result considering long
and short words have drastically different midpoint.

7.2 Example of a future work
As this project used conventional algorithms to solve the problem a
future work using technologies such as deep learning could provide a
higher accuracy and function better as a general-purpose solution.
This would be done by firstly creating data through manually
inspecting images containing forms and creating accompanying files

31

describing the relationship between field names and field values in
the image. This data creation would provide the means necessary to
establish a deep learning solution to the problem in terms of
clustering names and values together.

32

References
[1] E. E. F. d’Albe. On a type-reading optophone. 1914. URL: https://

royalsocietypublishing.org/doi/10.1098/rspa.1914.0061
(cit. on p. 1).

[2] Wikipedia. History of writing — Wikipedia, The Free Encyclopedia.
2022. URL: http://en.wikipedia.org/w/index.php?title=
History%5C%20of%5C%20writing&oldid=1088553424 (cit. on
p. 1).

[3] Medium. Optical Character Recognition(OCR) — Image, Opencv,
pytesseract and easyocr. 2020. URL:
https : / / medium . com / @nandacoumar / optical - character -
recognition-ocr-image-opencv-pytesseract-and-easyocr-
62603ca4357 (cit. on p. 4).

[4] Vijaysinh Lendave. A guide to text detection and recognition using
MMOCR. 2022. URL: https : / / analyticsindiamag . com / a -
guide-to-text-detection-and-recognition-using-mmocr/
(cit. on p. 4).

[5] Nicomsoft. Optical Character Recognition (OCR) – How it works.
URL: https : / / www . nicomsoft . com / optical - character -
recognition-ocr-how-it-works/ (cit. on p. 5).

[6] OpenCV team. OpenCV modules. URL: https://docs.opencv.
org/3.4/index.html (cit. on pp. 5, 15, 17).

[7] OpenCV team. Color conversions. URL: https://docs.opencv.
org/3.4/de/d25/imgproc_color_conversions.html#color_
convert_rgb_gray (cit. on p. 5).

[8] GRM. What is OCR data extraction. URL:
https : / / www . grmdocumentmanagement . com / what - is - OCR -
data-extraction (cit. on p. 6).

[9] Levity. What is data extraction & how does it work? URL: https:
//levity.ai/blog/what-is-data-extraction (cit. on p. 6).

[10] Raja Kalpana et al. Template Filling, Text Mining. URL: https://
doi.org/10.1007/978-1-4419-9863-7_173 (cit. on p. 6).

[11] Fullsailpartners. What you need to know about ocr and icr
technologies. URL:
https : / / www . fullsailpartners . com / fspblog / what - you -
need-to-know-about-ocr-and-icr-technologies (cit. on p. 9).

33

https://royalsocietypublishing.org/doi/10.1098/rspa.1914.0061
https://royalsocietypublishing.org/doi/10.1098/rspa.1914.0061
http://en.wikipedia.org/w/index.php?title=History%5C%20of%5C%20writing&oldid=1088553424
http://en.wikipedia.org/w/index.php?title=History%5C%20of%5C%20writing&oldid=1088553424
https://medium.com/@nandacoumar/optical-character-recognition-ocr-image-opencv-pytesseract-and-easyocr-62603ca4357
https://medium.com/@nandacoumar/optical-character-recognition-ocr-image-opencv-pytesseract-and-easyocr-62603ca4357
https://medium.com/@nandacoumar/optical-character-recognition-ocr-image-opencv-pytesseract-and-easyocr-62603ca4357
https://analyticsindiamag.com/a-guide-to-text-detection-and-recognition-using-mmocr/
https://analyticsindiamag.com/a-guide-to-text-detection-and-recognition-using-mmocr/
https://www.nicomsoft.com/optical-character-recognition-ocr-how-it-works/
https://www.nicomsoft.com/optical-character-recognition-ocr-how-it-works/
https://docs.opencv.org/3.4/index.html
https://docs.opencv.org/3.4/index.html
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html#color_convert_rgb_gray
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html#color_convert_rgb_gray
https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html#color_convert_rgb_gray
https://www.grmdocumentmanagement.com/what-is-OCR-data-extraction
https://www.grmdocumentmanagement.com/what-is-OCR-data-extraction
https://levity.ai/blog/what-is-data-extraction
https://levity.ai/blog/what-is-data-extraction
https://doi.org/10.1007/978-1-4419-9863-7_173
https://doi.org/10.1007/978-1-4419-9863-7_173
https://www.fullsailpartners.com/fspblog/what-you-need-to-know-about-ocr-and-icr-technologies
https://www.fullsailpartners.com/fspblog/what-you-need-to-know-about-ocr-and-icr-technologies

[12] Erik Fahlén. Androidapplikation för digitalisering av formulär. URL:
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-
35623 (cit. on p. 10).

[13] Jonathan Manousian. Digitalisering av handskrivna siffror på
fysiska formulär. URL: http://urn.kb.se/resolve?urn=urn:
nbn:se:miun:diva-39343 (cit. on p. 10).

[14] Engin Kirik. Tolkning av handskrivna siffror i formulär. URL: http:
//urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-41291
(cit. on p. 11).

[15] Abhishek Jindal and Mohd Amir. “Automatic classification of
handwritten and printed text in ICR boxes”. In: (2014) (cit. on
pp. 11, 12).

[16] Microsoft. What is Azure Form Recognizer? URL: https://docs.
microsoft.com/en-us/azure/applied-ai-services/form-
recognizer/overview (cit. on p. 13).

[17] Microsoft. Form Recognizer FAQ. URL: https://docs.microsoft.
com/en-us/azure/applied-ai-services/form-recognizer/
faq#how-is-form-recognizer-related-to-ocr (cit. on pp. 13,
30, 31).

[18] Lei Sun, Neta Haiby, Cha Zhang, et al. Enhanced Table Extraction
from documents with Form Recognizer. URL:
https://techcommunity.microsoft.com/t5/ai-cognitive-
services - blog / enhanced - table - extraction - from -
documents - with - form - recognizer / ba - p / 2058011 (cit. on
p. 13).

[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, et al. Mask R-CNN.
URL: https://arxiv.org/abs/1703.06870 (cit. on p. 13).

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term
Memory. Dec. 1997. DOI: 10.1162/neco.1997.9.8.1735 (cit. on
p. 13).

[21] Google. Tesseract Open Source OCR Engine (main repository). URL:
https://github.com/tesseract-ocr/tesseract (cit. on p. 13).

[22] Microsoft. Computer vision. URL: https://azure.microsoft.
com/en-gb/services/cognitive-services/computer-vision/
#overview (cit. on p. 16).

[23] Xinyu Zhou, Cong Yao, He Wen, et al. “EAST: An Efficient and
Accurate Scene Text Detector”. In: CoRR abs/1704.03155 (2017).

34

http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35623
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35623
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39343
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39343
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-41291
http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-41291
https://docs.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/overview
https://docs.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/overview
https://docs.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/overview
https://docs.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/faq#how-is-form-recognizer-related-to-ocr
https://docs.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/faq#how-is-form-recognizer-related-to-ocr
https://docs.microsoft.com/en-us/azure/applied-ai-services/form-recognizer/faq#how-is-form-recognizer-related-to-ocr
https://techcommunity.microsoft.com/t5/ai-cognitive-services-blog/enhanced-table-extraction-from-documents-with-form-recognizer/ba-p/2058011
https://techcommunity.microsoft.com/t5/ai-cognitive-services-blog/enhanced-table-extraction-from-documents-with-form-recognizer/ba-p/2058011
https://techcommunity.microsoft.com/t5/ai-cognitive-services-blog/enhanced-table-extraction-from-documents-with-form-recognizer/ba-p/2058011
https://arxiv.org/abs/1703.06870
https://doi.org/10.1162/neco.1997.9.8.1735
https://github.com/tesseract-ocr/tesseract
https://azure.microsoft.com/en-gb/services/cognitive-services/computer-vision/#overview
https://azure.microsoft.com/en-gb/services/cognitive-services/computer-vision/#overview
https://azure.microsoft.com/en-gb/services/cognitive-services/computer-vision/#overview

arXiv: 1704.03155. URL: http://arxiv.org/abs/1704.03155
(cit. on p. 17).

[24] Esko Ukkonen. “Algorithms for approximate string matching”.
In: Information and Control 64.1 (1985). International Conference
on Foundations of Computation Theory, pp. 100–118. ISSN:
0019-9958. DOI:
https://doi.org/10.1016/S0019- 9958(85)80046- 2. URL:
https : / / www . sciencedirect . com / science / article / pii /
S0019995885800462 (cit. on p. 20).

[25] Python Software Foundation. Helpers for computing deltas. URL:
https://docs.python.org/3/library/difflib.html (cit. on
p. 20).

35

https://arxiv.org/abs/1704.03155
http://arxiv.org/abs/1704.03155
https://doi.org/https://doi.org/10.1016/S0019-9958(85)80046-2
https://www.sciencedirect.com/science/article/pii/S0019995885800462
https://www.sciencedirect.com/science/article/pii/S0019995885800462
https://docs.python.org/3/library/difflib.html

A Left-oriented results
Image number Correct name Wrong name Correct value Wrong value
1 5 0 6 0
2 5 0 5 1
3 5 0 4 0
4 5 0 4 0
5 5 0 5 0
6 5 0 4 0
7 5 0 6 0
8 5 0 6 0
9 5 0 5 0
10 5 0 6 0
11 5 0 5 0
12 5 0 4 0
13 5 0 4 0
14 5 0 4 0
15 5 0 5 0
Total 75 0 73 1

Table 2: Table of results using the left-oriented form

1

B Right-oriented results
Image number Correct name Wrong name Correct value Wrong value
1 5 0 6 0
2 5 0 7 0
3 5 0 4 0
4 5 0 5 0
5 5 0 5 0
6 5 0 4 0
7 5 0 4 0
8 5 0 4 0
9 5 0 4 0
10 5 0 4 0
11 5 0 3 0
12 5 0 4 0
13 5 0 4 0
14 5 0 4 0
15 5 0 4 0
Total 75 0 66 0

Table 3: Table of results using the right-oriented form

2

C Bottom-oriented results
Image number Correct name Wrong name Correct value Wrong value
1 5 0 7 0
2 5 0 7 0
3 5 1 8 2
4 5 0 5 0
5 5 0 6 0
6 5 0 7 0
7 5 0 7 0
8 4 1 2 3
9 5 0 7 0
10 5 0 6 0
11 4 2 3 2
12 5 1 6 0
13 5 1 5 0
14 5 0 8 1
15 5 0 10 0
Total 73 6 94 8

Table 4: Table of results using the bottom-oriented form

3

D Piecewise Euclidean distance
modified in Python

Calculate distance between two text boxes
question box = field name
answer box = field value

Set weights for Y-axis
if answer_box_pos[1] < question_box_pos[1]:

y_weight = 2
else:

y_weight = 0.5

Set weights for X-axis
if answer_box_pos[0] < question_box_pos[0]:

x_weight = 2
else:

x_weight = 0.5

Calculate weighted distance
weighted_eucledian_distance = math.sqrt(

pow((answer_box_pos[0] - question_box_pos[0])*
x_weight , 2)

+ pow((answer_box_pos[1] - question_box_pos[1])*
y_weight , 2)

)

4

	Abstract
	Sammanfattning
	<Acknowledgements>
	<List of Figures>
	<List of Tables>
	Terminology
	<Introduction>
	<Background and problem motivation>
	<Overall aim>
	<Problem statement>
	<Goal 1>
	<Goal 2>

	<Scope>
	<Outline>

	<Theory>
	Optical character recognition
	OCR pipeline
	Data extraction
	Information extraction
	Implementation specific theory
	Euclidean distance
	Euclidean distance modified
	Piecewise Euclidean distance modified

	Intelligent character recognition
	<Related work>
	Android application for digitization of forms
	Digitization of handwritten numbers on physical forms
	Interpretation of handwritten numbers in forms
	Automatic Classification of Handwritten and Printed Text in ICR Boxes
	Azure form recognizer
	Tesseract

	<Methodology>
	<Scientific method description>
	<Project method description>
	<Evaluation method>

	<Implementation>
	OCR engine
	Pre-processing implementation
	Text detection implementation
	Text recognition implementation

	Blank form clustering
	Filled form clustering

	<Result>
	<Measurement>
	<First measurement>
	<Second measurement>

	Accuracy results
	Left-oriented form
	Right-oriented form
	Bottom-oriented form

	<Discussion>
	<Analysis and discussion of results>
	<Project method discussion>
	<Chosen method>
	<Chosen approach>
	<Chosen metrics>
	<Goals>

	<Scientific discussion>
	<Ethical and societal discussion>
	<Problems with OCR>
	<Indefinite forms>

	<Conclusion>
	<Future Work>
	Example of a future work

	<References>
	Left-oriented results
	Right-oriented results
	Bottom-oriented results
	Piecewise Euclidean distance modified in Python

