
Linköpings universitetSE–581 83 Linköping+46 13 28 10 00 , www.liu.se

Linköping University | Department of Computer and Information Science
Master’s thesis, 30 ECTS | Datateknik

Spring term 2022 | LIU-IDA/LITH-EX-A--2022/082--SE

Confidence in Release Candi-dates
– Maintaining confidence levels when moving from traditionalrelease management to continuous delivery
Förtroende för releasekandidater - Bibehållande av förtroen-
denivåer vid byte från traditionell releasehantering till kontin-
uerlig leverans

Linus Aarnio

Supervisor : Manali ChakrabortyExaminer : Kristian Sandahl

http://www.liu.se

Upphovsrätt

Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer-ingsdatum under förutsättning att inga extraordinära omständigheter uppstår.Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko-pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis-ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annananvändning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker-heten och tillgängligheten finns lösningar av teknisk och administrativ art.Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning somgod sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentetändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman-nens litterära eller konstnärliga anseende eller egenart.För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet - or its possible replacement - for aperiod of 25 years starting from the date of publication barring exceptional circumstances.The online availability of the document implies permanent permission for anyone to read, to down-load, or to print out single copies for his/hers own use and to use it unchanged for non-commercialresearch and educational purpose. Subsequent transfers of copyright cannot revoke this permission.All other uses of the document are conditional upon the consent of the copyright owner. The publisherhas taken technical and administrative measures to assure authenticity, security and accessibility.According to intellectual property law the author has the right to bementionedwhen his/her workis accessed as described above and to be protected against infringement.For additional information about the Linköping University Electronic Press and its proceduresfor publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

© Linus Aarnio

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

When shortening release cycles and moving towards continuous delivery, a different ap-
proach for quality assurance may be needed than in traditional release management. To
allow the transition, all stakeholders must retain a sense of confidence in the quality of
release candidates. This thesis proposes a definition for confidence consisting of 30 confi-
dence factors to take into account to ensure confidence from all stakeholders. Confidence
factors have been found through interviews with 11 stakeholders, analyzed and catego-
rized using grounded theory analysis. The found factors are grouped into two main cate-
gories: Process and Verification Results.

The thesis additionally contains a literature review of quality measurements and ex-
plores how confidence can be expressed in a continuous delivery pipeline. It is found that
it is not possible to comprehensively express confidence only with metrics displayable in a
pipeline when including only currently well-researched metrics, but with the combination
of processes known to be followed in the organization some metrics provide coverage for
many of the confidence factors.

Acknowledgments

This thesis would not exist without the help and support of many people. I want to thank
Kristoffer Berglund and Kim Gunell at Crosskey for allowing me to work with them, coming
up with the base idea, and being of great assistance in forming the first version of the idea
into the plan it finally became. I also want to give a big thank you to both of them for all the
motivational as well as practical support during the months this work was carried out.

I want to thank all the respondents from the interviews for taking time out of their reg-
ular work to participate in this study and for providing such valuable answers.

I also want to thank my supervisor Manali Chakraborty for finding examples and answers
to all my method-related questions and for explaining that things do not always happen
quickly in research, as well as my examiner Kristian Sandahl for motivational cheering at the
small victories in the weekly letters and good feedback.

Finally, I want to thank my wife for telling me I was wrong when I thought I could not
finish this work. Had you not told me that, I might not have been wrong.

Linus Aarnio
Linköping, August 2022

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Motivation . 1
1.2 Aim . 1
1.3 Research questions . 2
1.4 Delimitations . 2

2 Theory 3
2.1 Continuous Delivery . 3

2.1.1 Difference from other continuous practices 3
2.1.2 Benefits . 3
2.1.3 Problems . 4

2.2 Quality measurements . 4
2.2.1 Software metrics . 4

2.2.1.1 Traditional metrics . 4
2.2.1.2 Object-oriented metrics . 5
2.2.1.3 Process metrics . 5

2.2.2 Code smells . 6
2.2.3 Testing . 7

2.2.3.1 Automated or manual . 8
2.2.3.2 Unit testing . 8
2.2.3.3 Integration testing . 8
2.2.3.4 System testing . 8
2.2.3.5 User acceptance testing . 8

2.2.4 Test quality . 8
2.2.4.1 Test coverage . 9
2.2.4.2 Mutation testing . 9

2.2.5 Code review . 9

3 Related Work 11
3.1 Related work . 11
3.2 Quality assurance in continuous delivery . 11
3.3 Confidence . 12

4 Method 14
4.1 Research Design . 14
4.2 Grounded theory approach to confidence factors 14

4.2.1 Interviews . 14
4.2.1.1 Subject selection . 14
4.2.1.2 Interview structure . 15

v

4.2.1.3 Interview implementation . 16
4.2.2 Analysis . 18

4.2.2.1 Open coding . 18
4.2.2.2 Axial coding . 18
4.2.2.3 Memoing . 18
4.2.2.4 Theoretical sampling . 19

4.3 Literature Study of quality measurements . 19
4.3.1 Source material gathering . 19
4.3.2 Selection . 19

4.4 Mapping of quality measurements to confidence factors 20

5 Results 21
5.1 Grounded theory approach to confidence factors 21

5.1.1 Process . 21
5.1.1.1 Differing needs for QA depending on the change 21
5.1.1.2 Following defined steps . 23
5.1.1.3 Information availability . 24
5.1.1.4 Time . 26
5.1.1.5 Trust . 27

5.1.2 Verification Results . 28
5.1.2.1 Automated or manual testing 28
5.1.2.2 Environments . 31
5.1.2.3 Test cases . 31
5.1.2.4 External . 31
5.1.2.5 Non-functional . 32
5.1.2.6 Attainable verification level . 33

5.2 Literature Study of quality measurements . 34
5.2.1 Software metrics . 34

5.2.1.1 Traditional metrics . 34
5.2.1.2 Object-oriented metrics . 34
5.2.1.3 Process metrics . 35

5.2.2 Code smells . 35
5.2.3 Testing . 35

5.2.3.1 Automated or manual . 35
5.2.3.2 Unit- and integration testing . 36

5.2.4 Test quality . 36
5.2.4.1 Test coverage . 36
5.2.4.2 Mutation testing . 36

5.2.5 Code review . 36
5.3 Expressing confidence level . 37

6 Discussion 40
6.1 Results . 40

6.1.1 Relative importance of the main themes 40
6.1.2 Relative importance of subcategories . 40
6.1.3 Measurable and immeasurable factors . 40
6.1.4 Expressibility in pipeline . 41
6.1.5 Suggested alternative solution . 41

6.2 Method . 41
6.2.1 Grounded theory approach to confidence factors 41

6.2.1.1 Literature review before data collection 41
6.2.1.2 Bias risk . 41
6.2.1.3 Left out theoretical sampling . 42

vi

6.2.1.4 Risk of information loss in translation 42
6.2.1.5 Subject selection . 42

6.2.2 Literature review . 42
6.3 Source Criticism . 42
6.4 The work in a wider context . 43

6.4.1 Economic and societal aspects . 43
6.4.2 Ethical aspects . 43

7 Conclusion 45
7.1 Research Questions . 45
7.2 Consequences of the work . 46
7.3 Future work . 46

Bibliography 47

List of Figures

4.1 The research methods used in the study and their relationship to each other and
to the research questions . 15

5.1 The categories under the main category Process . 22
5.2 The categories under the main category Verification Results 22
5.3 The Secure Software Development Lifecycle for Crosskey 33

viii

List of Tables

2.1 CK metrics . 5
2.2 Code smells . 6
2.3 Example of a mutation where an arithmetic operator has been exchanged 9
2.4 Example of an equivalent mutant . 9

4.5 Updates and additions to the interview guide . 17
4.6 Search terms used for additional literature review material gathering 20

5.7 Number of references for each code found in open coding 29
5.8 Respondent notes on suitability of manual and automated testing practices in cer-

tain situations . 29
5.9 Effectiveness of CK metrics . 34
5.10 Suggested data sources to display in the pipeline to satisfy confidence factors, with

motivation for the choice. 37

ix

1 Introduction

The introduction aims to give the reader an understanding of how releases have traditionally
been handled within large organizations, how they are proposed to be improved by modern
practices, and the challenge of establishing confidence in a release candidate. The research
questions and delimitations for this thesis are presented.

1.1 Motivation

The traditional way of delivering software is to plan a few releases each year, each release
preceded by a staging period to make sure all internal dependencies are satisfied and perform
manual testing. The releases are done with downtime, where all systems are taken offline and
scripts are run manually to upgrade to the new version. New methods, such as continuous
delivery allow releases to be more frequent and more automated. It is also possible to do
deployments without downtime [11]. Continuous delivery involves setting up a pipeline that
performs automated testing, building, and deployment of the software. Several prominent
organizations have moved from the traditional model to different rapid release models [31].
To allow for this transition, the organization must ensure that a similar level of confidence
is attained for each release candidate even though the release cycles are shorter. To ensure
this, the organization must know which factors stakeholders take into account to establish
confidence as well as which methods are available to satisfy those factors.

1.2 Aim

Crosskey is a company providing banking systems to Nordic banks. They use a traditional
release cycle where five releases are planned each year, each release preceded by a month-
long staging period where versions are fixed and extensive manual testing is performed. The
goal of this thesis is to analyze how one department within Crosskey can ensure confidence
levels are preserved if they were to move to shorter release cycles and ultimately continuous
delivery. This improves the chances that there is an organizational acceptance of the new
process and improves the chances for a positive outcome of the transition. Since several of
Crosskey’s customers are highly involved in the release process and continuously get infor-
mation about quality assurance efforts, their acceptance of a new process is needed as well.

1

1.3. Research questions

The thesis will investigate how confidence levels can be maintained in both external and in-
ternal stakeholders.

1.3 Research questions

1. Which factors do stakeholders in an organization take into account in order to establish
confidence for a release candidate?

2. Which quality measurements are most effective in a continuous delivery pipeline to
establish confidence in a release candidate?

3. How can the confidence level of a release candidate be expressed in a continuous deliv-
ery pipeline to stakeholders?

1.4 Delimitations

The study will be done with a focus on a specific department in Crosskey, the Capital Markets
department. The starting point will be the process and product of this team. All definitions
of confidence are based on this department and are not guaranteed to be applicable to other
organizations. Due to time limits, the scope of quality measurements included to answer
research question 2 and 3 only extends to those examined by papers included in existing
literature reviews.

2

2 Theory

This chapter presents theory and central concepts related to continuous delivery and quality
assurance of releases.

2.1 Continuous Delivery

Continuous delivery (CD) is the practice of developing software in short cycles, and utilizing
automation to ensure that the newly developed software is ready to release [11, 48]. It is part
of a group of practices called continuous practices which additionally includes continuous
integration (CI) and continuous deployment.

2.1.1 Difference from other continuous practices

The continuous practices are highly related. Continuous integration focuses on frequently in-
tegrating newly developed source code to shared repositories, building and testing the code.
Continuous delivery uses all practices of CI, but adds additional steps to enable the resulting
build to be deployed to production, creating a release candidate but does not perform de-
ployment. Continuous deployment adds the step of automatically doing the deployment for
every release candidate [48].

2.1.2 Benefits

The benefits of adopting CD have been widely studied. One natural and important result of
implementing CD is that it shortens the time until the customer can see the resulting product.
This enables earlier opportunities for feedback which has been perceived as a major benefit
by both developers and customers. Fewer errors are found in production, they are instead
caught in the CD pipeline and are fixed before deployment to production. This results in a
higher product quality for the customer. Productivity and efficiency improve when develop-
ers and testers spend less time setting up and maintaining manual test environments. They
also improve since there is significantly less effort required to deploy software to production
and there is a lower risk of being forced to pause all other work to troubleshoot issues that
may arise in production after a release [11, 26].

3

2.2. Quality measurements

As mentioned above, the risk of major release failure is reduced compared to traditional
releases. This is the result of a reduced number of manual steps involved in the release,
the reduced difference between environments resulting in fewer environment specific errors,
increased testing of the deployment process itself and a decreased number of code changes
in every release [11, 26].

2.1.3 Problems

While CD solves several problems for the organizations who adopt them, it also introduces
new problems. In a systematic literature review by E. Laukanen et al.[30] 40 different prob-
lems were identified and classified into themes. The three main themes were, in order of
decreasing prominence: testing, integration and system. One of the main issues found was
ambiguous test results, which means that the test result does not guide to action with a clear
pass or fail. Another was flaky tests, which means that the tests might pass or fail randomly
and can not be trusted. In addition to this, testing problems include test suites that take too
long to run to be practically usable and specific issues such as the need for hardware- or UI
testing which introduces complexity.

Integration problems arise when code cannot be seamlessly merged into the mainline,
causing merge conflicts and/or broken builds. These issues can arise when CD is introduced
because of long-running tests causing developers to wait longer before committing to the
mainline or flaky tests preventing the build from passing and in turn making the time until
merge to mainline longer.

System design problems means that the system might not be directly compatible with
processes needed for CD. It was found that if a system is not designed for the processes
needed for CD issues such as complex builds and lack of testability arise.

2.2 Quality measurements

This section describes and explains the theory behind different quality measurements which
are researched as part of the literature study described in section 4.3.

2.2.1 Software metrics

There exists a range of software metrics used for fault prediction which in a systematic liter-
ature review performed in 2013 by Radjenovic´ et. al. [41] was grouped into the following
categories:

1. Traditional: size and complexity metrics.

2. Object-oriented: coupling, cohesion and inheritance source code metrics used at a
class -level.

3. Process: process, code delta, code churn, history and developer metrics.

Of these, the one found to be most commonly used in the reviewed papers was object-
oriented metrics, followed by traditional metrics and the least used was process metrics.

2.2.1.1 Traditional metrics

Size metrics is dominated by measuring lines of code (LOC). It is trivial to measure. Com-
plexity metrics can include size, but also factors such as the control structure of the software
where a higher number of decision paths indicate a higher complexity. A higher complexity
makes comprehension of the software more difficult which in turn makes the development
and testing more difficult. A common measure of complexity is McCabe´s cyclomatic com-
plexity.

4

2.2. Quality measurements

McCabe´s cyclomatic complexity is based on a graph representation of the control flow of
the program. The graph is built by letting nodes be blocks of code in the program and edges
be branches in the control flow. The cyclomatic complexity v is defined as

v = e ´ n + 2p

where e is the number of edges, n is the number of nodes and p is the number of connected
components (units)[33]. When measuring a single unit (program, method, etc), p is equal to
1 which is a common situation. It can be hard to distinguish complexity metrics from size
metrics, and some consider complexity to be a form of size metric as it is highly correlated to
LOC [35, 18].

2.2.1.2 Object-oriented metrics

Object-oriented metrics are the most researched form of software metrics, prevalent in ap-
proximately two times as many papers than traditional and process metrics in the literature
review by Radjenovic´ et. al. [41]. There exists a large range of object-oriented metrics, with
the most common being the CK metrics suite proposed by S.R. Chidamber and C.F. Kemerer
in 1994 [13]. This includes several metrics which are described in Table 2.1.

Metric Abbreviation Description
Weighted
Methods Per
Class

WMC Measured by calculating the complexity of each method in
a class using some complexity metric and adding the mea-
surements together to form a WMC metric for that class.

Coupling
Between Ob-
ject Classes

CBO Measured by counting the number of collaborations for
each class

Response
For Class

RFC The number of different methods that can be executed
when an object of the class receives a message

Lack Of
Cohesion In
Methods

LCOM Measures the cohesion of methods through connected
components. A connected component is a set of releated
methods, where two methods are related if they access the
same class-level variable or call each other. A higher score
indicates lower cohesion.

Depth of
Inheritance
Tree

DIT Measured for a class by following the inheritance tree of
the class hierarchy and recording the greatest depth.

Number Of
Children

NOC Measured for a class by counting the number of children
of the class.

Table 2.1: CK metrics as described in [13]

2.2.1.3 Process metrics

Process metrics are usually based on either traditional or object-oriented metrics, but instead
of measuring the software only at a given point of time, they give information about the
change in metrics value. Process metric can be either of the kind code delta or code churn.

Code delta is the difference between two builds as computed for a particular metric [21].
If we apply code delta to the simplest metric, LOC, then the measurement would represent
the number of lines of code added or removed between the builds. A weakness with code
delta is that it fails to express changes of a kind where 5 lines are removed and five lines are

5

2.2. Quality measurements

added which would represent a code delta of 0. To solve this, code delta can be supplemented
with code churn.

Code churn adds the metric value of additions to the absolute metric value of deletions.
For our simple example, this would mean a code churn LOC value of |5| + | ´ 5| = 10. Sim-
ilarly to code delta, code churn can be used for any metric. Together, code delta and -churn
represent the evolution of a system in regard to how much it has changed since a given point
[21].

Process metrics can also measure other data about the history of the source code. These
include number of past faults, number of changes, the age of the changed module and the
number of modules changed together with the module (change set). Additionally, they can
involve developer metrics such as the number of developers who changed the file or the
number of new developers who changed the file [41].

2.2.2 Code smells

Related to software metrics is the concept of code smells. Both categories use quantifiable
properties of the source code to perform fault prediction. Code smells are signs of bad soft-
ware development practises that can be seen in the source code. The term was coined by
Martin Fowler and Kent Beck, possibly under the influence of the odors of Beck’s newborn
daughter [19]. The occurrence of a code smell indicates that there may be deficiencies in
the design and/or programming style of a software system. Multiple tools exist to discover
code smells using different methods, but the most common and most fitting for automation
is metric-based. The different code smells are described in Table 2.2.

Table 2.2: Code smells as described in [19]

Code Smell Symptom Reason for being a smell

Duplicated
Code

The same code structure exists in more
than one place.

Bugs can be introduced if the code
needs to be changed and the developer
misses to change one or more of the
places.

Long
Method

There exists a method which is longer
than some given limit on LOC.

The method is harder to reason about.

Large Class A class is doing too much and has too
many instance variables or too much
code.

High probability of duplication.

Long Pa-
rameter
List

A method is declared with many pa-
rameters.

Long parameter lists are hard to under-
stand, they become inconsistent and
difficult to use, they need change more
often.

Divergent
Change

One class is commonly changed in dif-
ferent ways for different reasons.

It becomes unclear which part of the
system a change should be applied to.

Shotgun
Surgery

Every time you make a kind of change,
you have to make a lot of little changes
to a lot of different classes.

It is easy to miss an important change.

Feature
Envy

A method that seems more interested
in a class other than the one it actually
is in. An example is using many getters
in another object.

The method is likely in the wrong
class, and might be missed when the
other class changes.

Data
Clumps

Some data items are "clumped" to-
gether in many places.

Grouping data clumps together into
classes reduces parameter lists and
can open possibility to reduce Feature
Envy.

6

2.2. Quality measurements

Primitive
Obsession

Primitive types are overused com-
pared to record types.

Type safety and guaranteed validation
opportunities are lost.

Switch State-
ments

There is an abundance of switch state-
ments.

The same switch statement is often du-
plicated.

Parallel In-
heritance
Hierarchies

Every time you make a subclass of one
class, you have to make a subclass of
another. Recognizable through pre-
fixes of class names in one hierarchy
being the same as the prefixes in an-
other.

Same issues as Shotgun surgery.

Lazy Class Classes which do not do much exist. The useless classes still need to be
maintained.

Speculative
Generality

The ability to do many things in the fu-
ture has been built in, even though it
is not needed. Recognizable by abun-
dance of abstract classes, unused pa-
rameters and unused methods.

Increases difficulty to understand and
maintain the code.

Temporary
Field

Objects with instance variables which
are only set in certain circumstances

The code is difficult to understand.

Message
Chains

The client asks one object for another
object, only to ask that for another ob-
ject and so on.

The code gets tightly coupled to the
structure of the navigation.

Middle Man A class uses delegation in all or most of
its methods.

The class becomes hard to reason
about.

Inappropriate
Intimacy

Two classes are coupled too tightly to-
gether, using many methods of each
other.

The same problems as Feature Envy.

Alternative
Classes with
Different
Interfaces

Classes with methods doing the same
thing but with different signatures ex-
ist.

The code becomes harder to under-
stand.

Incomplete
Library
Class

A library is used but does not cover the
needs of the software.

The library might be exchanged for
a developers own implementation or
duct-taped.

Data Class There are many classes with only
fields, getters and setters.

They are probably manipulated too
much by other classes, and that behav-
ior should instead live in the data class
to increase code quality.

Refused Be-
quest

A subclass is not using data and meth-
ods of its parents.

The code becomes confusing.

Comments There is an abundance of comments in
the code.

There is a high probability that the
comments are there because the code
is bad.

2.2.3 Testing

The basic way of preventing faults is software testing. This can be done either manually by
using the software and checking if the functionality works as intended, or in various auto-
mated ways. The focus of testing may also differ, with goals such as verification of function-
ality, security, performance or other factors.

7

2.2. Quality measurements

2.2.3.1 Automated or manual

Testing can be done in either automated or manual fashions. Automated testing includes
unit-, integration- and system testing using specific code libraries such as JUnit [28] or REST-
assured [44], as well as acceptance testing using scripted tests using tools such as Selenium
[47] or Cypress [17]. Manual testing focuses on system- and acceptance testing and is done by
using the software in specific ways to exercise test cases documented in a tool like REQ-test
[43].

2.2.3.2 Unit testing

Unit testing is a common method of functional testing, often seen as the first step in a series
of tests. It is usually performed by the developer writing the code. Unit testing starts with
identifying a discrete unit in the software. This unit may be a function, a class or even a set of
these classified together as a Unit of work, defined by Roy Osherove as "the sum of actions that
take place between the invocation of a public method in the system and a single noticeable
end result by a test of that system" [38]. The benefits of unit tests include that they are easy
to understand and analyze, as well as to implement. This allows for early implementation
in the development phase and frequent runs to be able to discover faults in the software at
an early stage. However, for the unit test to have these characteristics the code needs to be
written with testability in mind. It is important that the units are sufficiently isolated and that
the expectations on their API are clear to allow for good unit tests [38].

2.2.3.3 Integration testing

In integration testing, the units are combined and tested to evaluate the interaction among
them [25]. This is seen as a natural step after unit testing, and before system testing. Integra-
tion testing can use the same tools as unit testing.

2.2.3.4 System testing

System testing involves testing all of the software involved in the system together. It may
test for functionality, but in addition to functionality this is often the stage where testing of
factors such as security and performance can be performed.

2.2.3.5 User acceptance testing

User acceptance testing is the last stage of testing. The system is used in a realistic manner
either by the end user or other stakeholder who has set the requirements. The main goal is
not to examine specific details of the software as in earlier stage of testing, but to see if the
software can deliver the expected business benefits when operated by its designated users
[23]. The shape of this testing can vary, but to be considered a performed acceptance test
there needs to exist an acceptance criteria and a structured way to perform the test to provide
evidence of the acceptability of the system.

User acceptance testing is traditionally performed manually, but can be fully or partially
exchanged for automated tests using tools such as Selenium or Cypress.

2.2.4 Test quality

There can be quality differences in tests, with two test suites of the same codebase being able
to detect a differing number of faults. In the same way quality of code can differ, so can the
quality of tests.

8

2.2. Quality measurements

// Original
if (i > 10) {

...
}

// Mutant
if (i >= 10) {

...
}

Table 2.3: Example of a mutation where an arithmetic operator has been exchanged

// Original
for (int i = 0; i < 10; i++) {

...
}

// Mutant
for (int i = 0; i != 10; i++) {

...
}

Table 2.4: Example of an equivalent mutant

2.2.4.1 Test coverage

A common way of measuring test suites is coverage which commonly takes the form of
statement- or decision coverage. Statement coverage is the measure of statements being run
by the test suite, and decision coverage is the proportion of decision branches being run by
the test suite. They can easily be measured by automated tools and provide a good overview
of the extent of testing on the code base.

2.2.4.2 Mutation testing

There are other ways of measuring test suites, such as that of mutation testing. Mutation test-
ing is a technique where small changes are introduced to the source code, producing mutants.
These mutants have altered behavior with regards to the original source code. The test suite
is run against the mutants, to measure a mutation score which expresses the degree to which
a test suite can detect changes in behavior. The change introduced to the source code is called
a mutation operator. A typical example of mutants is exchanging operators, such as the one
seen in Table 2.3. There are several additional mutation operators [27].

There are inherent problems with mutation testing which have hindered wide industry
adoption. The main problem is that the creation of large amounts of mutants requires large
amounts of resources and time which makes it impractical to run often. Another core problem
of mutation testing is that of equivalent mutants, where a mutant created might have equiv-
alent behavior to the original source code and thus should not be detected as a failure by the
test. An example of a created equivalent mutant can be seen in Table 2.4. There are tech-
niques available to mitigate these problem which allows mutation testing to be automated
and scalable [27].

2.2.5 Code review

Code review is the process of not merging commits to production branches before it has been
manually inspected and approved by one or more developers other than the author. What
this inspection includes varies between practitioners, both between organizations and within
organizations. The process of code review is mainly used to ensure quality and maintainabil-
ity of the code itself and to share knowledge between developers, but it is also seen as a way
to detect faults in the product [7].

9

2.2. Quality measurements

Code review before merging can be optional or mandatory within an organization.
Mandatory code reviews can be enforced by popular version control management software
such as Gitlab, Bitbucket and GitHub [15, 20, 4].

10

3 Related Work

3.1 Related work

This chapter describes other work on software quality and confidence in continuous delivery,
and compares it to the work of this thesis.

3.2 Quality assurance in continuous delivery

The quality assurance practices to be followed by a QA professional in continuous delivery
have been investigated by Cheriyan et. al in 2018 [12]. Based on a literature review, they
propose a model called ACID-QA, with the six steps: Fitness Function, Continuous Delivery
Readiness, Quality Assurance in the Pipeline, Quantitative and Causal Analysis, Learning
Development and Team Culture. The step most related to this thesis is Quality Assurance in
the Pipeline. They propose several practises, tools and frameworks to implement in the con-
tinuous delivery pipeline. These include practises such as unit testing and threat modeling,
tools such as Checkstyle for static code quality and frameworks such as the testing pyramid
for determining proportions between different test activities. However, they provide no
reasoning for why these specific practises, tools and frameworks are chosen and what benefit
they provide to the quality assurance process but instead they are simply listed. There is
also no description of the method and extent of the literature review, which unfortunately
lowers the credibility of the study. This work aims to build upon the quality process with
clear motivations on why to include quality practises and scientific backing of the effect from
chosen practises and metrics.

The quality of a candidate is expected to mostly be measured by different test activities.
D. Ståhl et al. have written a paper presenting a model for including test activities in CI and
CD, called the Test Activity Stakeholder (TAS) model [32]. The model suggests different test
activities to support the stakeholder interests Check changes, Secure stability, Measure progress
and Verify compliance. The importance of these interests to be validated was found through
interviews with participants from four different companies. For each stakeholder interest the
authors use another round of interviews to determine whether the interest is best supported
by unit tests or system tests, whether it is best supported by tests run in a simulated test en-
vironment or on real hardware and finally whether it is best supported by automated testing

11

3.3. Confidence

or manual testing. In total, 25 interviews were conducted. The result is the TAS model which
presents a set of test activities to be performed in different stages of the pipeline to properly
support all stakeholder interests. The paper is delimited by only including large companies
with more than 2000 employees, which all develop complex products that also "include a
significant amount of mechanical and electronic systems". The test activities suitable for
this kind of company may differ from the kind of test activities suitable for a company like
Crosskey which has less than 500 employees and purely software products. The TAS model
presents which kind of tests should be used for the different stakeholder interests, but does
not present how to ensure the extent of testing is enough to guarantee that the stakeholders
can have confidence in the release candidate.

3.3 Confidence

A major trade-off that has to be considered is that between velocity and confidence, and
deciding how high the level of confidence has to be to be enough. This is explored in a paper
by G. Schermann et al. [46]. They define confidence as "the amount of confidence gained
on the three quality gates automated testing, manual testing, and code reviews" and de-
scribe the need to include multiple factors when quantifying confidence, but do not attempt
to formulate how to do this quantification. They define velocity as "the pace with which
changes are running through the quality gates, starting with the commit of a change until it
reaches the production environment" but simplify it to "the time needed to assess each single
quality gate and to build and deploy the application" including time for manual decisions for
deployment and maintaining automated test suites. They present four categories a company
can belong to with regards to these metrics: Cautious where the company maintains high
confidence but low velocity. The case studies describe having 100% test coverage and six to
eight weeks of time reserved for staging period. This was shown to lead to an unmaintain-
able test suite which ultimately decreased release confidence. A company in the Problematic
category has both low velocity and low confidence. A company in the Madness category
has high velocity, but no confidence due to lack of quality assurance. A company in the
Balanced category has both high velocity and high confidence in releases. It is described as
the vision for continuous delivery, and ways to transition towards it from both Madness and
Cautious are presented. This paper describes the importance of knowing the confidence of a
release, but does not present how it should be measured and quantified which would be an
improvement for a company uncertain of the category it falls into. The authors propose this
kind of quantification as suggested future work.

The information needs in continuous integration and delivery have been explored in a
paper by Ahmad et al. [2]. The authors performed a multiple case study to identify the type
of information that different stakeholders seek, and found confidence to be one of the main
categories of information. There were three specific information needs in the confidence
category:

1. How much confidence do we have in the release to deploy to the customers?

2. How much confidence do we have in the test suites?

3. How much confidence do we have in stand-alone projects to be merged into the master
branch/baseline?

Which together were of interest to all stakeholders (development, testing, project man-
agement, release team, compliance authority). The confidence questions were among the
information needs considered most important and most frequently mentioned, and at the
same time requiring the most effort and time to answer compared to other identified infor-
mation needs. The study regards confidence as an informed opinion by the stakeholders

12

3.3. Confidence

based on an aggregate of all data sources. Additionally, the authors discuss that there is
a need for an understanding of the concept of confidence, including which information is
needed and from which sources as well as to which extent it can be calculated through
automation. They note that these needs are "notoriously unquantifiable". This thesis aims to
add to the work by answering the question of which information is needed, as well as begin-
ning to explore which data sources could satisfy these needs. Good knowledge of the specific
factors to consider may reduce the time and effort needed to find information in this category.

The conclusion from the related work is that confidence is considered important in con-
tinuous contexts, but is not properly defined and therefore hard to measure and guarantee
for all stakeholders.

13

4 Method

This chapter describes the methods used for reaching an answer to the research questions. It
describes the research design as well as details on how the data gathering and analysis was
performed with the intention to promote replicability of the study. Additionally, it motivates
the choices of each research method to assure the conclusions are trustworthy.

4.1 Research Design

The study consisted of three research activities, which each answered one of the research
questions. Two of the activities were performed separately, and the third consisted of com-
bining results from the others. The relationship between research methods and the research
questions can be seen in Figure 4.1. The method to answer RQ 1 is described in section 4.2
and results can be found in section 5.1, the method to answer RQ 2 is described in section
4.3 and results can be found in section 5.2. The resulting combination of these to suggest
data sources for confidence factors can be found in section 5.3 with Table 5.10 displaying the
mapping between them.

4.2 Grounded theory approach to confidence factors

To answer RQ 1: Which factors do stakeholders in an organization take into account in order to estab-
lish confidence for a release candidate? a qualitative approach using interviews with stakeholders
and Grounded theory analysis was used.

4.2.1 Interviews

The main data gathered for the study was interviews with stakeholders. This section de-
scribes the interview process.

4.2.1.1 Subject selection

The interview subjects were chosen based on roles selected to represent different groups that
had to be confident in a release candidate for it to be considered ready for deployment. The
base selection was

14

4.2. Grounded theory approach to confidence factors

Interviews

Grounded Theory
Analysis

Literature Review

RQ 1

Which factors do stakeholders in an
organization take into account in order to

establish confidence for a release
candidate?

RQ 2

Which quality measurements are most
effective in a continuous delivery pipeline

to establish confidence in a release
candidate?

RQ 3

How can the confidence level of a release
candidate be expressed in a continuous
delivery pipeline to stakeholders?

Combining

Provides confidence factors that need to be met

Provides quality measurements to satisfy confidence factors

Answers

Answers

Answers

Figure 4.1: The research methods used in the study and their relationship to each other and
to the research questions

• developers

• managers

• customers

• product specialists

With the main focus being on product specialists as the role has the main responsibility for
quality assurance in the release process today. While selecting candidates for the roles, the
selection was widened to include specialized roles which did not fit into this enumeration
such as the chief security officer of the company. The interview subjects were found through
a snowballing process, where the researcher initially asked for recommendations from the
company supervisors and then for more recommendations in the end of each interview. This
allowed the search for new candidates to continue until no new recommendations could be
gathered. All of the asked candidates agreed to be interviewed. A total number of 11 in-
terviews were performed, where some candidates left the perspective of multiple roles: one
product specialist/ previous developer and one manager/ previous customer. In addition
to this five product specialists, one manager, one chief information security officer and one
customer was interviewed.

4.2.1.2 Interview structure

The interviews were semi-structured, a choice motivated by the lack of known factors of con-
fidence. As stated by W. Adams [1], one of the situations where semi-structured interviews

15

4.2. Grounded theory approach to confidence factors

(SSI) should be especially considered is when "examining uncharted territory with unknown
but potential momentous issues and your interviewers need maximum latitude to spot useful
leads and pursue them" which is an accurate description of the situation of this study where
a lot of confidence building can be assumed to have been implicitly embedded in the old re-
lease process and could potentially be missed without the possibility to probe into details of
the subjects thoughts.

An interview guide was created to provide a base structure for the interviews. As sug-
gested by Adams, the interview guide was not design to be read verbatim, but instead to act
as a starting point for the probing. It consisted of four main questions and nine suggested
follow-up questions to the question considered by the researcher to be most important. The
interview guide was built as:

• Can you describe what it means for you to have confidence in a release candidate?

• What do you do to establish confidence in the quality of a release candidate today?

– Which manual measures do you use?

* How much do you trust the result?
· Why do you/ do you not trust it?

– Which automated measures do you use?

* How much do you trust the result?
· Why do you/ do you not trust it?

– What do you look at in the software itself?

– What do you look at in addition to the software? (E.g. environments, number of
changes, etc. etc.)

– Are all these metrics general (same for all software products), or product depen-
dent?

• Describe a time when the quality assurance of a release has been lacking.

• What would make you decide that a release candidate is not fit for deployment?

In addition to the follow-up questions suggested in the interview guide, the researcher
was prepared to ask additional follow-up questions depending on the themes lifted by sub-
jects in order to explore as wide areas as possible. In accordance with the method described
by Adams as well as the theoretical sampling methodology described later in this chapter
which is a part of grounded theory [16], the interview guide was re-evaluated after initial
analysis of each interview. This resulted in a few alterations and additions, seen together
with the motivation for introduction in Table 4.5.

4.2.1.3 Interview implementation

The interviews were carried out in person for the respondents who worked at Crosskey head-
quarters in Mariehamn. For respondents who worked in another office or remotely, the in-
terview was carried out over Microsoft Teams. Each interview lasted between 30 and 60
minutes, depending on how much the respondent had to share and the amount of discus-
sions that arose in addition to the questions in the interview guide. While answering the
main questions, each topic mentioned which had importance for the respondent’s confidence
led to a follow up question to extract details.

Before each interview, the respondent was briefed on the conditions. They were informed
about the intended use of the information gathered from the interview and about the fact
that their responses would be anonymous. They were also asked for consent for recording

16

4.2. Grounded theory approach to confidence factors

Original (or ’-’ if new addition) New Motivation
Can you describe what it
means for you to have confi-
dence in a release candidate?

If you tell someone you have
confidence in a release candi-
date, what does that mean?

Respondents did not under-
stand the question as it seemed
too broad and abstract. The
updated variant allowed them
to focus on their subjective
view of confidence which was
the desired result.

In context of manual measures:
How much do you trust the re-
sults?

If the manual test suite has
passed, how confident are you
that everything will work after
the release?

It was discovered that respon-
dents would say they trusted
the results of individual man-
ual tests, but later added fac-
tors such as new additions to
the code base which still made
them unsure that the software
was fault-free.

- If the manual regression tests
would be fully replaced with
automated tests for equivalent
test cases, how would that
change your confidence and
with which conditions?

Many respondents had little or
no experience with automated-
Sttesting which made the ques-
tion about their existing confi-
dence in test automation pro-
vide poor answers. This spec-
ulative question allowed them
to share their views on trust in
automated tests.

- As a final question: Is there
anything else concerning the
confidence in a release candi-
date you would like to share?

After being interrupted by a
subject when attempting to
wrap up the interview, the re-
searcher noted that there might
be factors the subjects have
thought of and waited for the
right time to share

- What impact does the proxim-
ity of a change to the release
date have on your confidence
in the quality of the release
candidate?

It was found that different fac-
tors relating to proximity to
the release date affected the
confidence in release candi-
dates, asking for this allowed
for more findings in the area

- Do you always have confi-
dence that you know what will
be included in a new release?

During the early responses to
the question of when a release
had been lacking in quality as-
surance, a reason that came up
was that a change introduced
in the release was not known
to the person performing QA.

Table 4.5: Updates and additions to the interview guide

of the interview for transcription and analysis purposes. All respondents gave consent to
recording which was performed with a mobile device for the in person interviews and using
the built in recording function of Microsoft Teams for the remote interviews. The recordings
were transcribed manually by the researcher.

17

4.2. Grounded theory approach to confidence factors

4.2.2 Analysis

The data was analyzed using Straussian Grounded Theory (GT) as described in Basics of
Qualitative Research [16]. This method was chosen because of the subjective nature of the
question about how confidence is established for a release candidate. As stated by Corbin
and Strauss "The procedures can be used to uncover the beliefs and meanings that underlie
action, to examine rational as well as nonrational aspects of behavior, and to demonstrate
how logic and emotion combine to influence how persons respond to events or handle prob-
lems through action and interaction". The purpose of the method is to construct theory from
qualitative data.

4.2.2.1 Open coding

The first step of analysis consisted of open coding. It is the process of going through the
data and labeling pieces of data with a code representing the meaning of that data. For this
thesis, the open coding stage was performed on paragraphs in the interview transcripts. Each
interview transcript was imported to the software NVivo [37]. The paragraphs were then
added as references to nodes, where each node represented a concept. For each paragraph,
a new node was created if the concept could not fit under an existing node, otherwise a
reference was added to the existing node which covered the concept.

A primary open coding round was performed on each transcript after the interview, fol-
lowing the best practice in GT of immediate and continuous data analysis. This allowed the
researcher to find opportunities for theoretical sampling, discussed later.

4.2.2.2 Axial coding

After open coding another coding activity was performed, called Axial coding. In axial cod-
ing, the researcher attempts to identify relationships between the existing categories. This is
the step which takes the analysis from describing what is happening, to offering explanations
and theory. In this thesis, it was done through a second round of analysis of all references in
each node. To find relevant context, an analytical tool from Corbin and Strauss called the
paradigm was used. The paradigm consists of looking for conditions, actions-interactions and
consequences or outcomes.

• Conditions answer questions of why, when and how come. In interviews the respondents
usually talk not only about their actions, but also about the reasons for these actions.
Key words suggested by Strauss for identifying conditions are because, since, due to and
when.

• Action-interactions are the actual respones to what a person is doing in a certain situa-
tion. They are here analyzed in the context of which conditions they are performed in,
and which consequenses they have.

• Consequences are the outcomes of action-interactions. Strauss highlights that these
are not only the actual outcomes, but the anticipated outcomes as well. An anticipated
outcome can be seen as the reason the respondent is doing something, which might not
always be the actual result. Sometimes, the difference between the anticipated and the
actual outcome is an important piece of the context as well.

The nodes sharing similar conditions and/or consequences were then grouped together
to form more over-arching categories.

4.2.2.3 Memoing

Memoing is an important part of GT where the researcher writes memos to capture parts of
the theory as it emerges. During the process of this study, memos where written following

18

4.3. Literature Study of quality measurements

the analysis of each interview to describe the researchers immediate impression of the main
theme in the interview. Additionally, memos were written during axial coding to describe
the intuition for the context analysis and the formed group. The memos are what forms the
basis of the result part of this thesis together with the raw data.

4.2.2.4 Theoretical sampling

Theoretical sampling is a GT concept which describes the process of gathering data based on
gaps in the emerging theory identified during analysis, and gathering data until the concept
can be seen as saturated. The theoretical sampling can be both data of the same kind, as
well as different kinds. In this thesis, theoretical sampling was performed in several ways,
described below.

• Identifying factors not mentioned before during the initial analysis and then asking
direct questions about the same context in subsequent interviews. These can be seen in
Table 4.5.

• Asking for, and collecting documentation of current and planned practices. This in-
cluded the documentation of test cases exported from the tool REQ-test [43] as well as
a powerpoint presentation describing a new suggestion for security practises.

• Asking for recommendations of other stakeholders to interview, with regards to the
points that had been taken up in the interview. This included both other respondents
who could give different viewpoints on the same factors as the asked respondent, but
also respondents who could give more information about concepts mentioned by the
asked respondent as important but which they did not know enough about to elaborate
on.

4.3 Literature Study of quality measurements

To answer RQ. 2: Which quality measurements are most effective in a continuous delivery pipeline
to establish confidence in a release candidate?, a semi-structured literature study was performed
on the subject of software quality measurements. The choice to not perform a full structured
literature review was based on a tertiary review of software quality research performed in
2021 by Champion et. al. [9] which found many existing secondary analyses of high quality.
Therefore, this work was done by going through existing literature reviews and making a
selection for the quality measurement methods that are possible to include in a continuous
delivery pipeline and have been consistently found to be effective for fault detection.

4.3.1 Source material gathering

The literature was found through two main sources: direct search and snowballing. For the
quality measurement areas where the material found in the searched literature reviews was
not deemed sufficient, additional sources were gathered through search. The snowballing
was performed starting with gathering secondary sources cited in [9] and then continued
with gathering primary sources cited in those secondary sources. The direct search was
performed through the Linköping University library using EBSCOhost to search through a
number of databases, including but not limited to IEEEXplore digital library, ACM Full text
collection and arXiv. The search terms used are found in Table 4.6.

4.3.2 Selection

A selection was made on quality measurement methods to include in the study. The criterion
was that the method had to:

19

4.4. Mapping of quality measurements to confidence factors

Search terms
unit testing manual testing

automated manual testing software fault prediction metrics
software fault prediction metrics continuous delivery quality assurance

code review mutation testing
test environments test environment quality

Table 4.6: Search terms used for additional literature review material gathering

1. Be usable in a continuous delivery pipeline

2. Have been consistently found to perform well in the context of fault prediction

From the sources found through the source material gathering, a loose selection was done
based on excluding sources where the title or abstract made it obvious that no methods ful-
filling the criterion was included in the paper. For the studies not included in an existing
structured literature review, a quality assessment was performed to verify that the study had
low bias and high internal and external validity.

4.4 Mapping of quality measurements to confidence factors

To answer RQ. 3: How can the confidence level of a release candidate be expressed in a continuous
delivery pipeline to stakeholders? the analysis of confidence factors was continued together
with the knowledge about quality measurements to map which confidence factors could be
expressed by different quality measurements. No new data was introduced to answer this
question, it relied exclusively on the results from the rest of the study as seen in Figure 4.1.

20

5 Results

This chapter presents the findings that were produced by following the method described in
chapter 4. The results are only presented in this chapter, and are analyzed and discussed in
chapter 6.

5.1 Grounded theory approach to confidence factors

Through the grounded theory analysis, a total of 30 codes were created in the open coding of
the interviews with each code representing a confidence factor. The number of references for
each code can be seen in Table 5.7. These codes were then split up into 11 categories during
axial coding. Finally, the categories were connected into 2 main categories. This section will
present the found categories in a top-down fashion, with description of the data collected in
interviews for each category and explanation of the connections between them.

5.1.1 Process

The first main category for confidence is Process. The category structure can be seen in Figure
5.1. The category contains all categories which relates to how things are done, and how they
change. The analysis has found that a large part of the confidence for a release candidate is
built through process factors, and it also impacts how much confidence is placed in the results
from the second main category, Verification Results. The rest of this section will describe the
subcategories of Process.

5.1.1.1 Differing needs for QA depending on the change

This category results from the findings that multiple stakeholders place importance in what,
how much and how the software has changed from the last release. This is clearly seen by the
example where one of the respondents found it hard to pinpoint what confidence meant to
them, and after spending some time without coming up with anything concrete they said "If
absolutely nothing has changed, I will have confidence in the release candidate!". Although
this statement was said in a comic fashion, the point is undeniable. As will be seen, and
as the same respondent confirmed, there is a gradual scale after the no-change case where
confidence decreases with increasing change.

21

5.1. Grounded theory approach to confidence factors

Differing Needs for QA depending on the change

Complexity of change

Kind of change

Magnitude of change

Following defined steps

Creation, updating and selection of regression tests

Requirement specification

Testing responsibility

Information availability

Documentation of tests

Meetings

Release notes

Test awareness

Time

Lack of time

Release proximity

Stress

Trust

People trust

Proven results

PROCESS

Figure 5.1: The categories under the main category Process

Non-functional

Compliance

Look and feel

Performance

Security

External

Dependencies

Third party integration

Automated or manual testing

Ad-hoc testing

Automated testing

Manual testing

VERIFICATION
RESULTS

Environments

Test cases

Attainable verification level

Desired coverage

Tolerance for small faults

Unexpected changes

Figure 5.2: The categories under the main category Verification Results

Magnitude of change
The first change factor is the magnitude of change. A release with a higher level here can
have both a larger number of individual changes, or more code changed with each change.
Stakeholders from all categories have named this as a factor for their confidence. There is
a consensus that "the more changes you have, the higher the risk is for the release to fail".
The reasons for some are simply that there is a statistically higher risk that a fault might be
present when there is more code deployed, but the increased need for quality assurance is
also mentioned: "If there has been a big change in functionality you will have less overview
of what has happened and less opportunity to carefully think about how existing test cases

22

5.1. Grounded theory approach to confidence factors

should change regarding to the changes and what is affected. That decreases confidence".

Kind of change
In addition to the magnitude of change, the kind of change also matters for stakeholders.
This includes:

• Whether the change is a bug fix or a new feature

• Whether the change is cosmetic or functional

• How big proportion of the users that are affected by the change

• Which system is affected by the change

The reasons for this varies. One customer representative said they have less confidence in
new functionality than bug changes, because of the differing difficulties of communicating
expectations on the desired results. They said that "For new functionality, something that
is obvious to the bank might have big holes if the developer has not understood it". There
is also more uncertainty about what should be included in testing for new functionality
whereas for a bug fix the sentiment is that regression testing combined with verifying that
the bug is fixed provides enough confidence. This adds to the fact that new features have a
more negative impact on the confidence than bug fixes. Stakeholders also agree that there is
a considerably greater need for testing for a cosmetic change than a functional one, and in
the same way there is a greater need for testing of a change that affects a large proportion of
the users as opposed to a limited subset of users. Which system is affected by the change is
a question that ties in to other categories found in the study. Stakeholders have mentioned
that they have less confidence in a change introduced in systems with a previous history of
faults, one that the developer in question has not worked on before or one that is unusually
complex or critical for the functionality of the product.

Complexity of change
When a complex change is included in the release, more testing is needed for the stake-
holders to feel confidence. One customer representative said it was hard to determine how
complex a change is, system-wise. This made the respondent unsure of how much testing
was needed, and lowered overall confidence in the release when the decision was made to
treat the change as not-complex while not knowing the actual complexity. The respondent
wished for developers or other roles with equivalent insight to place risk scores on changes,
to determine how much quality assurance was needed.

5.1.1.2 Following defined steps

The confidence in a release candidate increases when a set of defined steps are followed as
part of a QA process. Stakeholders find that several steps are crucial to include in a process,
these are detailed in this subsection.

Requirement specification
Respondents found it important that requirements and expectations on the software are
clearly specified before the rest of the QA process. A developer said that they always wish
to have requirements specified to the level of "here is how the response should look like in
this api". This allows them to be confident that the developed result does what is expected
and is also a prerequisite to have confidence in automated tests created by the developer.
The same respondent said that a detailed specification allows them to "build in a way where
what we produce does very little which makes it easy to look at e.g. a service, say ’what is
this supposed to do?’ and test the exact specifications". In the same way, a lack of detailed

23

5.1. Grounded theory approach to confidence factors

requirements was described as leading to situations where tests would pass but the product
might still be faulty.

This view is shared by other stakeholder categories. Product specialists reported an
expectation of less faults in the production environment when they were allowed to spend
sufficient time on requirement specification and test case design before any development had
started. When development started before all requirements had been specified, it lowered
confidence throughout the chain all the way to release. Test cases which were specified
during the testing phase as opposed to during the planning phase were reported to be less
trustworthy. Additionally, having the requirements and test cases discussed by multiple
people before development started also increased the confidence in the result.

Testing responsibility
Test may come from several directions. A system can be said to be tested if the developer has
created automated tests based on their understanding of the system. It may also be tested
based on a detailed specification from the product specialist, either performed by the prod-
uct specialist themselves or implemented by a developer. Respondents agree that there is a
higher confidence placed in the results of testing when it is planned by the product specialist
who has created the requirements for the feature. However, they did not find it important
in which way and by whom the test cases were implemented as long as it was clear which
specific test cases from the plan were performed. Similarly, a developer said that they placed
high confidence in a release if both a product specialist and a customer had marked it as
verified: "If they say it is okay, then it is okay".

Creation, updating and selection of regression tests
For the results of a test suite to be trusted, there is a need to know that test cases have been
created for new functionality or updated for changed functionality. Product specialists in
Crosskey rely on a regression suite consisting of both manual and automated tests which are
performed before every release. When new functionality is included, respondents have said
that it is important to include new tests for this, which is up to each product area to do. The
update of test cases is perceived to provide the most confidence when done in the planning
phase as opposed to during the testing phase.

When it comes to selection, there is a prioritization where some test cases are seen as
essential for every release to be confident in the quality, while the rest are chosen "if one feels
it is needed". In the same way, a product specialist is confident that they have tested enough
when they have thought through what functionality might change because of a software
change and tested that. One respondent said that "nothing should be untested of course, but
I think it is important to not just test individual scenarios but to test the entire environment.
To have thought through how the users daily jobs look like and see if anything might have
changed there".

5.1.1.3 Information availability

Information availability is the extent to which a stakeholder feel they know enough about
what has changed in the release, what has been tested and what the results are. It builds
upon the other factors and can make or break them; a release which does not have any faults
and has been thoroughly verified might still be given a low confidence grade by a person
who feels they do not have enough information about it. The findings in analysis about
information availability consists of four subcategories: documentation, meetings, release
notes and test awareness.

Documentation of tests
Documentation of testing might include both carefully written down test cases as well as
reports on which tests have been performed. Stakeholders feel an increased confidence in

24

5.1. Grounded theory approach to confidence factors

tests where the test case is documented in detail, and there is a clear tracking of results for
each test case. The confidence is broken down if it is not noted when testing has taken place.
The reason, in the word of one respondent: "If you go through all the manual test cases in
week 11, things might have changed by week 14. This means you can not trust the results of
those tests".

For customers, the documentation of tests are one of the main factors for confidence. A
report documenting which tests have been performed and their result can both increase and
decrease the confidence of a customer. The proximity to release for delivery of this report
matters, a customer feels less confidence in the release if the test report is delivered very close
to the release date.

Meetings
In practice, documentation is often complemented and occasionally exchanged for meetings.
Particularly managers rely on meetings to establish confidence in the process and verification
results. This ties in to the category people trust, where a stakeholder using meetings as a
confidence source trusts that the release will work as intended if other people do so.

Meetings are also used as a source of knowledge about what is changing for a release, to
determine which parts of the system need stricter or less strict quality assurance. Stakehold-
ers who express a feeling of overview about what is changed and what is tested in a release
through meetings report higher confidence. A caveat is that this effect decreases with the
size of the team. In a team of two persons, all members feel confident that they know about
all changes to their product through daily meetings, whereas in a team of 10 persons there is
a higher need for documentation.

Release notes
Release notes are a special form of documentation which details exactly which changes are
included in the release. During interviews, many respondents specifically noted differences
in the quality of release notes between different products. A common comparison was be-
tween one product which used a "sluice list" where changes were tagged in version control
and verified by stakeholders, and another one where a single person wrote down the release
notes during the staging process. Multiple respondents reported much higher overall con-
fidence in the system using the sluice list. They also talked about several incidents relating
to lacking release notes. Inclusion in a release of changes which had not been visible to
stakeholders and therefore untested was the most common answer to the prompt to describe
a time when quality assurance had been lacking. A manager said that they "question the
system much more" in reference to the system with poorer release notes, while a customer
representative described it as always being tense before a release since something unexpected
could be included. The customer also said that "we learned after a while to also test more
than what was included in the release document".

A product specialist described the effect of this when saying "if there has been a large
change in functionality where you have less knowledge of what has happened, you will not
be able to think about what should change in the test cases and not about what has change
and what might be affected. That affects the confidence".

A common fear is that functionality that is developed for one customer will be included
in the release for another customer. For systems with procedures that do not allow the stake-
holders to accurately verify which customers will get which functionality, overall confidence
is lower. Multiple product specialists express a need to know which changes are included
to which customers to feel confident in the release by verifying if the change is an overall
improvement which is acceptable for the other customer or if it includes a change of working
which is unacceptable for the other customer. They wish to do a filtering for each new change
towards the different customers.

25

5.1. Grounded theory approach to confidence factors

Test awareness
Test awareness is the confidence gained from knowing what is tested and how the tests work.
An example is that many product specialists gain confidence from being able to go through
the test cases documented in REQ-test which they would be able to replicate and see that they
have passed. On the contrary, a common cause for lack of confidence in automated tests is an
opaqueness into the test cases from the outside. One respondent gave an example: "It’s hard
to say how much I trust it. We have detailed test cases, and if the automated testing follows
that I might trust it. But I do not know, since I do not know how the automated testing works.
For that, I need a developer. For the manual testing it is simple to verify that the customer
has the correct balance, got the right shares and received a receipt. Unfortunately, with the
automated testing I do not get to verify this myself but just see that the test is green. it is hard
for me to say that it gives the same level of confidence."

All respondents who distrusted automated tests for this reason, said that they would trust
the tests if they would have insight to exactly what is asserted by the tests. One respondent
even said that they would trust automated tests the most if they would be a part of the test
creation process, but in absence of that opportunity they would want to review the steps
taken by the test. For the automated tests created in efforts purely by developers where
the product specialists, managers and customers have not been thoroughly informed about
the details of the tests there is no added confidence compared to no testing at all. Several
product specialists report that they still manually test parts of the products that are covered
by automated tests, since they are not sure about what is tested.

5.1.1.4 Time

While most process categories relate to how something is done, the categories under Time
releate to when something is done. The same development or QA actions can provide more or
less confidence depending on when they are done. Sometimes, the time taken for some parts
of the release cycle makes other parts have too little time to be done which lowers confidence
in the overall process.

Release proximity
There is a clear relationship between the confidence in a change of the software and the
proximity of the time of change to the release date. One respondent even stated that several
added features after a set ready for release-date about a month before release date would
make them lose confidence completely for the whole release. Several respondents mentioned
occasions where functionality was included too late when answering the question about a
time when they felt the quality assurance had been lacking. Other respondents stated less
severe opinions, but all agreed that the risk for faults caused by a given change is higher the
closer to release date the change is introduced. A customer said that the proportion of release
content which is done at the ready for release date is a large factor for their confidence in the
release. The same customer said that "if something isn’t done at ready for release, the bank
writes a deviation report and assesses the risk". The release proximity effect goes for both in-
dividual changes and for the entire release confidence. If a change is introduced very late, the
risk is seen as higher for that specific change to contain faults. If a big proportion of release
content is introduced close to the release date, the entire release is trusted less. Respondents
noted that when something is introduced late in the process, all acceptance testing up to that
point should be invalidated which lowers the confidence in all of the release.

The proximity to release date of when testing documentation and release notes is made
available is another factor. One respondent said that when they do not have enough time
to process the release notes and plan the testing phase, it lowered confidence in the testing
which was subsequently performed.

Lack of time

26

5.1. Grounded theory approach to confidence factors

Even when good quality assurance is planned, the fact that there is a set release date can
lead to a situation where there is not enough time to perform all planned activities. One
respondent who could not think of a specific time when quality assurance had been lacking
answered "Sometimes there was not enough time and you had to prioritize between the test
cases. Then you did not feel that everything was completely safe". The same situation was
mentioned by several respondents as the trivial case for lacking quality assurance, something
that is always a possibility before a release. There is a prioritization made in the test suite
where some tests are considered to be minimum and the release can not be trusted if they
are not performed. The remaining tests provide progressively more confidence in the release
depending on how large proportion of them are performed. This lack of time also existed
on the customer side. One customer said that they tried to perform testing of all systems
themselves, but when time was lacking they instead trusted the green check-marks on testing
protocols. They also mentioned they would like to see detailed test cases, but were not sure
if there would be enough time to go through them.

Several product specialists mentioned exploratory testing as important for their confi-
dence but later explained that they rarely have time to perform this kind of testing. Their
time would instead go towards performing the manual tests in the existing regression test
suite. The same situation seems to exist with test planning. All respondents agreed that the
planning phase is the best time for agreeing on tests needed for new functionality and bug
fixes as well as for deciding which existing tests had a need for update, but they found that
this time rarely existed during that phase and these processes were instead pushed to the
testing phase. One respondent described the situation this way: "You should always bring
a compromising mindset, you only get limited time and resources to assure the quality both
through tests and maybe through corrections and development so it is a bit of give and take.
You are rarely satisfied, but instead usually have to agree on what is good enough. At least
when it comes to planning of new development".

Stress
The final time factor is stress. When there is less than normal time available to do something,
the confidence decreases even if the time suffices. One developer said that "fixes introduced
in a late stage gives space for worry. It is the human factor when people are stressing. It is
easy to become speed-blinded and miss obvious deficiencies at that stage. The risk is high.
That is when you can feel worried, when changes are pushed through quickly. At that point,
you can almost forebode that there will be a need for additional measures after release."
Other respondents pointed out that both the time available for planning and development
are important to avoid stressed-out solutions. The reasons given were that it gives time for
multiple people to take part in the process and prevents the solution from being a result of
stress.

5.1.1.5 Trust

Sometimes, confidence arises simply because of trust from the stakeholder. In certain situa-
tions they do not feel any need to inspect the process or verify hard data to ensure the quality.
These situations are typically when they trust the people involved or when there is a history
of proven results for a process and/or system.

People trust
People trust is especially common in the manager and customer categories of respondents.
They sometimes rely completely on one or multiple other persons for their confidence in a
release candidate, by not doing any quality assurance activities on their own. For managers
and customers, they trust the judgement of product specialists for providing confidence in
the release. Product specialists on the other hand, sometimes trust developers. This is the
case with some kind of automated tests, where they simply read the results from the auto-

27

5.1. Grounded theory approach to confidence factors

mated test runs and trust the developers to have implemented sufficient tests. The product
specialist are not always comfortable with this however, since they have the responsibility
for quality there is a wish to not have to rely on this trust. Developers in their turn trust the
verdict from product specialists and customers, when they deem a release candidate to have
high enough quality the developer tends to have confidence in the candidate as well.

Another factor of people trust is in the development work. Development done by an
experienced developer with a good track record of fault-free code and good knowledge of
the system is given higher confidence. A product specialist also said that they put less time
in testing for a change delivered by a senior developer than the same change done by a junior
developer.

Proven results
All systems and quality assurance processes increase in the amount of confidence they
provide after time has passed and their results have been proven to be good. The factors
mentioned to be trusted more over time are:

• Automated test suites becomes more trusted by all stakeholders over time when they
are proven to find bugs and no additional bugs are found after a passing test suite.

• General quality of a new product becomes more trusted by customers after several con-
secutive successful releases.

• The release schedule with quality assurance activities becomes more trusted by all
stakeholders after several consecutive releases when no need has been found to add
any activities to the schedule

• Test environments become more trusted after several consecutive releases where no
difference has been found in functionality of the product in the test environment and in
the production environment.

5.1.2 Verification Results

The second main category is Verification Results. It relates all categories where stakeholders
use the results from verification of hard data, such as test results or facts about the software
itself, to establish confidence in the release candidate. Verification results are what most peo-
ple first think of when it comes to quality assurance. Categories under this main theory are
mostly about functional testing, but there are also categories relating to factors such as com-
pliance to regulations and knowledge about the test environments. A summary of stated
situations in interviews of where different kinds of testing provides the most confidence is
seen in Table 5.8.

5.1.2.1 Automated or manual testing

As noted in other section of this thesis, there is a big debate about the relative importance of
automated and manual testing in continuous delivery. This debate applies also to the ques-
tion of the level of confidence placed in the tests, where respondents see factors increasing
and decreasing their confidence in both manual and automated tests. They use the different
kinds of tests for different purposes, and all agree there is still a need for both kinds of testing
in a continuous delivery context to establish sufficient confidence in the quality.

Manual testing
Manual testing is done with several sets of test cases which include

1. A set of standard regression test cases which are always done.

28

5.1. Grounded theory approach to confidence factors

Code Found in interviews Total references
Complexity of change 5 5

Kind of change 4 12
Magnitude of change 5 7

Creation, updating and selection of regression tests 5 11
Requirement specification 3 9

Testing responsibility 3 3
Documentation of tests 5 8

Meetings 2 3
Release notes 6 20

Test awareness 7 19
Lack of time 9 15

Release proximity 7 17
Stress 2 3

People trust 8 13
Proven results 5 10
Ad-hoc testing 4 6

Automated testing 11 42
Desired coverage 2 4
Manual testing 11 36
Environments 3 4
Dependencies 2 4

Third party integration 4 4
Compliance 1 1

Look and feel 2 2
Performance 4 5

Security 3 6
Small faults 3 3
Test cases 8 19

Unexpected changes 7 13

Table 5.7: Number of references for each code found in open coding

Situation Most suitable testing kind
Process utilizing external services and systems Manual
Process spanning multiple days Manual
Regression testing of generally stable systems Automated
New functionality Both manual and equivalent automated for

the first release, automated for subsequent re-
leases

Verifying look and feel Manual
Testing systems in a state of rapid change Manual
Verifying versions of third-party dependencies Automated
Security testing of critical systems Manual
Security testing of non-critical systems Automated
Performance Mostly automated, but manual for new or

problematic systems

Table 5.8: Respondent notes on suitability of manual and automated testing practices in cer-
tain situations

29

5.1. Grounded theory approach to confidence factors

2. A set of regression test cases which might be picked depending on perceived need.

3. Exploratory testing based on the changes introduced to the release.

Cases from 1 and 2 are stored in the REQ-test tool and their results are documented in the
same to provide confidence for all stakeholders. Cases in 3 are usually performed ad-hoc and
are intended to uncover bugs and provide confidence only for the performers of the testing
themselves. A typical manual test might be quite complicated: involving several systems,
each with many facts asserted and spanning multiple days to emulate real life behavior of
e.g. a transaction.

The reported pros of manual testing is that it is easier to spot faults in pieces which are not
explicitly searched for in the test case. As a concrete example, one respondent said that they
might be testing a change in the stock trading functionality, but during testing notice that
something looks different in the derivative part of the window. These kind of discoveries
comes naturally for a human eye but would require substantial dedicated effort to ensure
coverage in a completely automated fashion. This fact results in stakeholders having slightly
less confidence in a system which has not had any manual testing, since they have to trust that
the automated tests cover all expected and unexpected changes. It is also easier to adapt the
testing when test cases are manual. If the system has changed slightly to require a test to be
performed differently there is usually little or no extra work for the manual tester, compared
to automated tests which might break and require rewriting. This makes manual testing
more suitable than fully automated testing for systems which are in a state of rapid change,
while the advantages drop off when the system stabilizes to allow tests to be run in identical
manners each time.

Some aspects of manual testing lowers the respondents confidence in the results. One
aspect is the human factor, as one respondent put it: "There is always a risk [with manual
testing], it may happen that you lose focus, that someone just has to ask a question and
you forget where you were in the testing process". This lowers the confidence in manual tests
especially for other stakeholders than the one performing the tests, who can not verify exactly
which steps have been performed to attain the test results. Another problem is the time
consumption, which frequently results in the manual test suites not being fully performed as
they grow to include more test cases. This is in fact the most common reason stated in this
study for distrust in manual test suites, that while the test suite itself is enough to provide
full confidence there is rarely enough time to work through the entire suite. A continuous
delivery context makes this issue even larger, since it makes long periods of time to perform
extensive manual test suites impossible.

The last issue which lowers confidence is the time of performing. Since manual regression
tests are commonly only performed once before a release, there might be changes appearing
after the tests have been performed which invalidate the results. The solution would be to
redo all tests, but this is hindered by the previous point of great time consumption from the
product specialists who need to perform other tasks as well before a release.

Automated testing
Automated testing covers all stages of software quality assurance. It includes the lower
levels of testing such as unit and integration testing, but in this discussion it most commonly
refers to system level testing and automated acceptance testing using tools such as Selenium
and Cypress. The automated tests can be created solely by developers, solely by product
specialists or by developers but guided by product specialists. There is a difference in the
kind of tests which provide confidence for different stakeholders. Customers, managers and
product specialists mainly trust automated acceptance tests while developers place higher
trust in unit- and integration tests.

Interviewed stakeholders agree that a higher level of test automation gives a better confi-
dence. The main reason is that it ensures that a sufficient number of tests can still be run in

30

5.1. Grounded theory approach to confidence factors

the reduced testing time that a continuous delivery context brings. The quick and effortless
run of tests also allows it to be run multiple times, to enable the entire test suite to be run
after every change of the software. The rise in confidence applies to all categories of stake-
holders, including customers who may not necessarily see the tests or their results but report
increased confidence from the knowledge that a system is covered by automated tests.

Respondents have consistently approximated the ratio of test cases in the currently ex-
isting regression test suite to be replaceable with automated tests to be 70-90%. They report
that performing automation of this percentage would allow product specialists to focus their
efforts on the remaining test cases which would allow for the entire regression test suite to be
done in every release, effectively increasing overall confidence.

As discussed in section 5.1.1, the confidence placed in automated tests depend largely on
how they are implemented. A common reason for a lack of confidence in a release candidate
despite passing tests is the lack of knowledge about what is tested. When knowledge was
present, there could still be issues if the quality of the test suite was not perceived to be high
enough or it had historically missed bugs in the software.

Ad-hoc testing
In addition to the planned and structured testing, some respondents felt they could not fully
trust the release candidate unless they had a chance to do ad-hoc testing in the end of the
testing process. They wanted to go through what had been tested and do a few extra test
cases based on hunches and feelings.

5.1.2.2 Environments

To trust the results from testing, stakeholders require the test environments to be of sufficient
quality. One respondent said that "There is very varying quality of the data in some test
environments. It is a lottery to know if the results of tests are correct in those environments.
If they pass they tend to be correct but when they fail there are many parameters that can play
into why it went wrong." This brings similar confidence issues as the breaking tests discussed
in the previous section.

5.1.2.3 Test cases

Apart from how the tests are performed, stakeholders generally place highest importance
in the test cases themselves. This means that they require test cases to sufficiently cover
scenarios which they deem important for the functionality of the product. They also feel a
need to assert that the existing test cases are enough to discover a fault. Several respondents
said that they want to see that "something becomes red" if they try breaking a part of the
software.

5.1.2.4 External

The quality assurance against parts of the system which were not developed by the company
itself were handled in separate ways from the software developed in-house. Stakeholders
found the presence of external pieces to be problematic both for its primary impact on confi-
dence and for the impact it had on testability.

Third-party integration
Services which are tightly integrated to third party systems tend to receive less confidence.
The reason for this is mainly that test environments become unrealistic. An example reported
is market connection, where the test market is not guaranteed to behave the same as the real
market which makes confidence in the testing done on systems depending on the market
integration lower. In some third party testing integrations there was also problems with
resetting testing entities, which resulted in an inability to introduce automated tests. Since a

31

5.1. Grounded theory approach to confidence factors

higher percentage of automation heightened the confidence, this has a negative impact.

Dependencies
Third party dependencies are seen as a risk. Since they can not be tested in the normal
way but instead have to be trusted to work, the presence of external dependencies adds
possibilities for both general software faults and for security vulnerabilities. The main
worry about third party dependencies are security vulnerabilities, since there is a high risk
of any particular vulnerability in a third-party module being discovered by a threat actor
and exploited in all systems depending the module. There is also a concern of licensing,
where careless inclusion of any dependency might cause the software to include licenses not
compatible with the intended usage. There is more confidence placed in the fault-freedom
of a release of software containing fewer third party dependencies than in one containing
more. Stakeholders feel more confidence in the release when they know that they are using
the latest version of a dependency where no bugs or vulnerabilities have been found.

5.1.2.5 Non-functional

While most verification is done of the functional requirements, several non-functional factors
have been raised by respondents as important for the overall confidence of the release candi-
date. These include compliance, look and feel, performance and security.

Compliance
For those in charge of verifying compliance, it is a strict requirement for letting a release
candidate move to deployment. The category includes both compliance to regulatory de-
mands and to customer agreements. Compliance is usually stated as a set of criteria which
needs to be fulfilled, and when any of the criterion is not fulfilled there is no confidence
in the candidate while there is room for confidence if all are fulfilled. The stakeholders in
charge of compliance feel confident when they can verify compliance is fulfilled. The criteria
for most regulatory and customer agreements include regular security tests at given intervals.

Security
Similarly to compliance, security is a strict requirement in the sense that all confidence is

lost in the release candidate if a vulnerability is found to be present. It is different since
there is not a list of easily verifiable criteria, but instead there is a defined secure software
development lifecycle where the confidence in security level increases with the rigor of each
step. The secure software development lifecycle as defined for Crosskey can be seen in Figure
5.3

Performance
In some cases, the verification of performance is important for stakeholders. However, the
respondents saw it as something they worry about for new systems and in cases where
bad performance was an issue in the previous release. In those cases, they needed to see
dedicated testing of performance done in a very production-like environment. In other cases,
all respondents were satisfied with trusting that performance had not degraded from the
latest release as long as the automated tests passed their timeouts.

Look and feel
Look and feel was discussed by respondents to be something which was not explicitly
checked, but could marginally lower the overall confidence if it was poor. Product specialists
and customers reported that while it would not stop a release, they always noted if elements
were not in logical positions or if pages do not look okay. To trust that this was the case, they
wanted to manually take a decision for all new or changed pages.

32

5.1. Grounded theory approach to confidence factors

Requirement
Analysis

• Security

Requirements

• Compliance

requirements

• Governance

requirements

• Other requirements

Design

• Secure Architecture

Design

• Threat Modeling

• Risk Assessment

Development

• Code Reviews

• Code Analysis

• Automated Security

Testing

Test
QA

• Security Testing

• Penetration Testing

• Risk Assessment

Review

Release

• Final Security

Review

Maintenance

• Operational

Security

• Incident Response &

Management

• Security Monitoring

Security Awareness Training & Culture

Figure 5.3: The Secure Software Development Lifecycle for Crosskey

5.1.2.6 Attainable verification level

Even with all existing verification, respondents note that the goal is not to verify 100% of
the quality expectations which is seen as impossible. There is always a perceived possibility
for unexpected changes or errors, and the overall confidence of a release may still be high
enough even when there are known errors.

Unexpected changes
As previously mentioned, one respondents summarized their view of release confidence as
"you were always tense before a release, since something unexpected could be included".
Even with rigorous testing, they noted that there was room for unintended changes to the
system where "no one had thought that this thing could affect this other thing" and therefore
no testing was in place.

The perceived risk of unexpected faults or other changes was especially high for changes
in the system coming from other departments withing the organization, where insight into
the quality assurance procedure was not as high as for their own department.

Tolerance for small faults
Respondents said that in some cases, the confidence for a release candidate can be seen as
high enough even when faults have been found. The criteria for a fault to not stop a release
was that it had to be present in a scenario that rarely occurs in production or affects very few
customers. The intended functionality which broke also had to be deemed to be replaceable
by manual interventions or other kinds of workarounds. Additionally, a fault in the look and
feel could be seen as insignificant enough to not affect the release decision.

Desired automated coverage
It is not desired by any of the stakeholders to have an automated test suite covering 100%
of the software with all possible scenarios and they do not require it to feel confident in the
release candidate. One respondent said "I do not think anyone has 100% coverage, that is too
extreme", while still being of the opinion that "It is always motivated to add as much tests as

33

5.2. Literature Study of quality measurements

possible. Not just for the sake of it, but when you do changes somewhere else in the system
you do not get unexpected breaking changes".

Respondents have found that a too-high coverage does in fact decrease coverage. The
reason for this is the fact that changes to the software will make tests break, the tests will fail
even though the functionality still works as intended. One respondent who was in the process
of recreating a suite of Selenium tests in Cypress commented on this: "There [in Selenium] we
have tests which go through everything. Now we are thinking about how we want to have
it. Currently in Cypress we only do the happy-case and see that all scenarios work in normal
cases. [...] With the Selenium suite there were tests breaking every release. You only had to
switch names on a field or something and then you had to fix the test." The result of this was
that unless the organization allocated unusually large resources to test maintenance the test
suite never showed fully positive results which decreased overall confidence in the suite.

5.2 Literature Study of quality measurements

This section presents the results of the literature study described in section 4.3. The effective-
ness and potential usages of each method is described in this section, for explanations of the
different measurements and quality assurance practices see section 2.2.

5.2.1 Software metrics

From the categories of metrics enumerated in 2.2.1, the papers reviewed by Radjenovic´ et.
al. [41] found process metrics to be the most effective for fault prediction, followed by object-
oriented metrics and lastly traditional metrics.

5.2.1.1 Traditional metrics

Regarding size metrics, a higher number of LOC has been shown to be correlated with in-
creased fault-proneness of the measured software [41]. The increased difficulty of compre-
hension, development and testing of software caused by a high complexity has been shown
to lead to a higher number of faults in the finished product, and also to a higher number of se-
curity vulnerabilities [29, 14]. As a complexity measurement, the commonly used McCabe´s
cyclomatic complexity measure is a good predictor of fault-proneness in large projects using
object oriented languages [41].

5.2.1.2 Object-oriented metrics

In the CK suite described in Table 2.1, the different metrics have been found to have differing
levels of effectiveness for fault prediction [41]. Table 5.9 shows the results of effectiveness in
the different CK metrics.

Metric Performance
WMC ++
CBO ++
RFC ++
LCOM 0
DIT 0
NOC 0

Table 5.9: The effectiveness of CK metrics as found in [41] in the scale [–, -, 0, +, ++]

34

5.2. Literature Study of quality measurements

5.2.1.3 Process metrics

The age, number of changes and change set metrics have been found to be effective for pre-
dicting faults in a software release, while there is mixed data on the performance of developer
and past fault metrics [41].

An important benefit of using process metrics over static metrics is the false positive factor
of many static metrics. As Moser et al. [36] states, a complex file can be fault free even though
it is classified as fault-prone based on the metrics since the developer may have done a very
thorough job in coding and avoiding errors. However, with a lot of changes the probability
that one of those changes introduce a fault is high. Similarly, a complex module that has
been observed to work well for a long time might be considered fault-free, while a complete
rewrite of the module can be expected to introduce faults even if the resulting complexity is
the same as it was before the rewrite. Moser et al. found process metrics to be more efficient
than static code metrics, and the conclusion is shared by several other studies who find that
process metrics are superior in finding post-release faults compared to source code metrics
[41].

5.2.2 Code smells

Code smells overall have been proven to indicate an increased probability of bugs in the fin-
ished software [3]. However, this is not universal for all code smells. For instance, the code
smell Switch statements which says that a high number of switch statements in the code is
a smell, have been found to not be connected to increased fault-proneness of the software
[22]. Other code smells have been found to have mixed results, only provide small increase
in faults or even reduce faults in some cases. These include Data Clumps, Speculative Gener-
ality, Message Chains, and Middle Man [22].

Tools such as Checkstyle [10] and PMD [40] using metric-based detection of code smells
have shown good results in detecting a number of code smells [34].

5.2.3 Testing

This section describes the results found on the testing-related categories.

5.2.3.1 Automated or manual

It is sometimes thought that a CD pipeline must be completely freed from manual testing.
However in a study with 25 interviews on test activities in the continuous delivery pipeline,
ten of 17 interviewees talking about automated testing described manual test activities as
"an important complement to automated testing" [32]. They found that some stakeholder
interests are better served by automated testing while some are better served by manual test-
ing. Automated testing was found to be best in cases where the test activities are repeated,
for their classified stakeholder interests Secure stability, Check changes and Measure progress.
An interesting finding was the need for exploratory testing, about which they stated that
"Whereas automated test activities in the pipeline are able to rapidly provide feedback to de-
velopers and to verify requirements, exploratory testing can provide more in-depth insights
about the system under test." This further adds to the view that a combination of manual and
automated tests is a desired approach.

Rafi et. al. found supporting views in a structured literature review where they evalu-
ated the benefits and limitations of automated testing in contrast to manual testing. They
found the benefits of automated testing to include Improved product quality with fewer defects
present, High test coverage which allowed for extensive regression testing and reduction in
reduction in cost, testing time and human effort [42]. They also found an increase in confi-
dence in the quality of the system as perceived by developers. The most important limitation
found was that "Not all testing tasks can be easily automated, especially those that require

35

5.2. Literature Study of quality measurements

extensive knowledge in a domain." In the same paper, a survey was performed with industry
practitioners. Among 115 answers, 84,35% were satisfied or Highly satisfied with the use of
automated testing practices, but still the statement "Automated testing fully replaces manual
testing" was rejected by 80% of the respondents. The general view was that automated testing
should be used as a tool to make the work of testers more efficient and allow them to work
on tasks where they provide more value.

Same as in general quality assurance, the question of automated or manual testing comes
up in security testing. Similarly to quality testing there is a view that the preferable approach
is a combination of manual and automated testing as shown in a paper by Sing et. al. [49].
Automated testing is seen to speed up the checking of common vulnerabilities and scanning
through large numbers of locations to check for sensitive data. However, there is still a need
for manual penetration testing to find unique vulnerabilities.

5.2.3.2 Unit- and integration testing

The trade-off between unit testing and integration testing is one of run speed to confidence
and maintenance. Integration tests typically take more time to run since actual services need
to be used, but since they do not rely on mocked objects having the same implementation we
can be more confident that a passed test means that the code will work in reality while at the
same time reducing the burden of maintaining mocks [45].

5.2.4 Test quality

This subsection describes the results found on effectiveness for different ways of measuring
test quality.

5.2.4.1 Test coverage

It has been established that the metric of test coverage is not enough to provide a guarantee
of test suite effectiveness, in a paper by L. Inozemtseva and R. Holmes [24]. This paper
evaluates the relationship between test suite size, coverage, and effectiveness for large Java
programs. They conclude that "coverage, while useful for identifying under-tested parts of a
program, should not be used as a quality target because it is not a good indicator of test suite
effectiveness". It has also been found that developers do not have confidence in a test suite to
prove the code is bug free when code coverage is the only test quality measure [6].

5.2.4.2 Mutation testing

Mutation testing has been found to accurately identify weaknesses in test suites and measure
test quality. It has outperformed test coverage measures in finding issues in tests, as well as
been able to find issues in test cases which are too obscure to be detected by manual review
[5].

5.2.5 Code review

In addition to detecting functional faults, it has been found that code review can identify
common types of security vulnerabilities [8].

Since code review is a manual and subjective process, the ability of a reviewer to detect
faults depends on several factors and can be negatively affected by the number of directories
under review, the number of total reviews by a developer, and the total number of prior
commits for the file under review [39]. This means that a review becomes less effective at
detecting vulnerabilities when performed by a developer who has a big review burden or
when the changes are big or complex.

36

5.3. Expressing confidence level

5.3 Expressing confidence level

To state that confidence has been established for a release candidate, each factor should be
satisfied. For some of the factors, it is not feasible to try expressing them in a continuous
delivery pipeline. An example of this is the factors belonging to the category Information
Availability (5.1.1.3). For other factors, the quality measurements presented in section 5.2 can
be used as a data source to determine the confidence level. As suggested by Ahmad et al. [2],
the ultimate decision on whether there is confidence in the release candidate is still a matter
of informed opinion based on this data.

In Table 5.10, examined quality measurements suitable for specific confidence factors are
presented. Factors excluded from this table are considered by the researcher to be unfit for
expression in a pipeline based on the research done for this study.

Each confidence factor in Table 5.10 belongs to a category from section 5.1. The subsection
number for the category is mentioned in the first factor, each subsequent row belongs to the
same category until a new subsection number is mentioned. The source of data is either
a measurement from section 5.2 or a description on how this could be achieved manually
based on how it is currently done by the interviewed stakeholders.

Table 5.10: Suggested data sources to display in the pipeline to
satisfy confidence factors, with motivation for the choice.

Confidence Factor Source of data to pipeline Motivation

5.1.1.1: Type of
change

Automated metrics gathering, some
manual entry. Detailed below.

Magnitude of
change

Code delta and code churn (2.2.1.3) of
LOC (2.2.1.1).

As described in 5.2.1.3, the combina-
tion of code delta and code churn gives
a good view of how much a metric has
changed. LOC is the standard metric
for size and has been correlated with
increased fault-proneness (5.2.1.1).

Complexity of
change

Code delta and code churn (2.2.1.3)
of McCabe´s cyclomatic complex-
ity (2.2.1.1) , WMC, CBO and RFC
(2.2.1.2).

As described in 5.2.1.3, the combina-
tion of code delta and code churn gives
a good view of how much a metric has
changed. McCabe´s cyclomatic com-
plexity is the standard metric for com-
plexity, and WMC, CBO and RFC have
shown good effectiveness for fault pre-
diction (5.2.1.2).

Kind of change The system affected by the change can
be automatically fetched from version
control, while the others have to be
manually entered. This can be done
e.g. in an issue tracker or with prefixes
in branch names or commit messages.

While the system is directly correlated
to where a specific commit has been
made, no reliable metrics have been
found for the other types enumerated
for kind of change.

5.1.1.2: Following
defined steps

Manual entry. For each step in the cat-
egory, the relevant stakeholder has to
note whether it is fulfilled or not (bi-
nary yes/no entry). This can be done
e.g. in issue tracking.

There is no way to automatically check
whether these steps have been taken,
yet they are important for confidence.
If tracked in issue tracker, it is known
whether the steps have been done for a
particular issue included in the release
candidate.

37

5.3. Expressing confidence level

5.1.1.4: Time Irrelevant in a continuous context Without a release date, there is no in-
formation on the time factors available.

5.1.1.5: Trust Measuring historical data about the
system and developers. Code review.

People trust Check whether a code review (2.2.5)
has been performed. Use developer
metrics (2.2.1.3).

Code review has been shown to effec-
tively detect faults and security vulner-
abilities introduced in a change, thus
eliminating the need to trust a single
developer to not introduce them. De-
veloper metrics can be used to affect
the confidence level based on the de-
veloper committing the change, but
have shown mixed results in effective-
ness which suggests caution in how
much weight it is given.

Proven results Measure the number of releases pass-
ing the criteria enumerated under
proven results in section 5.1.1.5 and in-
crease score for each pass

For each successful release for each cri-
teria, the confidence for the correctness
of the entity (system, test suite, etc.)
concerned rises.

5.1.2.1: Automated
or manual testing

Results from automated or manual
testing according to the reported re-
sults in Table 5.8.

The test results are the most impor-
tant metric, after being influenced by
results from other metrics they depend
on.

Manual testing Manual test results recorded in a test
management tool.

Automated testing Automated unit tests(2.2.3.2), integra-
tion tests (2.2.3.3), system tests (2.2.3.4)
and acceptance tests (2.2.3.5). Secu-
rity scanning. Measurement of tradi-
tional (2.2.1.1) and object-oriented met-
rics (2.2.1.2), as well as detection of
code smells (2.2.2).

All of these methods have been proven
to reliably detect faults and/or indicate
quality levels in the software.

5.1.2.2: Environ-
ments

No good data source found in the
scope of this study, future work should
find suitable data sources.

5.1.2.3: Test cases Mutation testing (2.2.4.2) and code re-
view (2.2.5) of tests.

Mutation testing can accurately iden-
tify weaknesses in test suites. A code
review additionally heightens the con-
fidence in that the correct things are
tested.

5.1.2.4: External Automatic scanning and manual entry
Dependencies Dependencies can be monitored with

automatic scanners detecting outdated
versions.

Third party inte-
gration

The presence of a third party integra-
tion of a system has to be manually en-
tered.

5.1.2.5: Non-
functional

Varied, detailed below.

Compliance Manual entry

38

5.3. Expressing confidence level

Security Manual entry of requirement analy-
sis, then either automated scanning or
both automated scanning and manual
testing based on analysis results. Code
review.

See Figure 5.3.

Performance Assumed no extra verification needed,
unless manually entered need in which
case manually entered results are
needed

Performance was usually seen as in-
cluded in normal automated tests, and
only in special cases needed to be done
explicitly.

Look and feel Manual entry Stakeholders did not trust any auto-
mated ways to measure look and feel,
and required a person to have looked
at it before release

39

6 Discussion

This chapter contains a discussion by the author of the results and method of the thesis.

6.1 Results

In this section, the results of the different parts are discussed. Interesting and divergent re-
sults are lifted for analysis and discussion.

6.1.1 Relative importance of the main themes

Many confidence factors were found in the Process-theme. This is interesting, since the bulk
of quality assurance work, both practical tasks and research about quality assurance, lies
in testing which belongs to the Verification results-category. Respondents were clear that the
source of truth usually lies in the verification results, but process factors influenced how much
confidence was attached to a positive result. It should be noted that there might also be a
possibility that process factors were mentioned more simply because they are less established,
and a good base for verification results is already in place which leads to the respondents not
thinking much about it.

6.1.2 Relative importance of subcategories

It should be noted that all categories do not have the same weight in the final decision of
whether to release a candidate or not. This is mentioned by stakeholders under the heading
Tolerance for small faults in section 5.1.2.6. For instance, a failure to fulfill compliance criteria
would make it impossible to take the release to production even if all the other confidence
factors are fulfilled. Meanwhile, a failure to check look and feel would not disqualify the
release and it could even go to production with known faults in this area. The importance
of the compliance category motivates the choice to keep the factor even though it was only
referenced by one respondent.

6.1.3 Measurable and immeasurable factors

Some views on continuous delivery are based on the assumption that quality can be mea-
sured and quantified. While this is true to a certain degree, this thesis challenges the thought

40

6.2. Method

that confidence can be established solely from the results of tests. Many other factors need to
be considered for the test results to say something about the actual quality of the software.
An example is the category Information availability (5.1.1.3), which shows how stakehold-
ers can lose confidence in a release with perfect quality scores if there is no insight into how
these scores were measured. The information availability itself, however, is not possible to
measure.

6.1.4 Expressibility in pipeline

As shown in Table 5.10, many of the confidence factors are not directly quantifiable or take
significant effort to quantify. In addition to this, many of the confidence factors described in
section 5.1 are more related to underlying organizational factors than factors differing from
time to time. This does not mean that the confidence factors are impossible to satisfy in a
continuous context, but it indicates that expressing a general confidence level in a pipeline
might not be the best way to retain quality assurance when moving to continuous delivery.

6.1.5 Suggested alternative solution

The results indicate more towards a solution of satisfying some confidence factors (such as
those mentioned in section 5.1.1.3: Information availability) through organizational changes.
The measurable results from Table 5.10 should still be included to get a picture of the pre-
dicted fault-proneness of the change, but the manually entered ones might slow down the
process more than if they are assumed to be done, without adding additional quality guaran-
tees if they are seen as a chore by the stakeholders. This would hinder, rather than help, the
move towards shorter release cycles.

6.2 Method

This section discusses and criticizes the method. Potential risks and shortcomings of the
study are discussed and their potential consequences for the results are analyzed.

6.2.1 Grounded theory approach to confidence factors

The validity of the study is supported by coding all interview data, leaving out only side
discussions not related to the subject. This combined with ensuring that the respondents
have shared all factors they consciously use to establish confidence ensures that the analysis
included all factors possible to include from the data.

6.2.1.1 Literature review before data collection

In classic grounded theory, no literature should be consulted before the theory is emerging
and the researcher should start with a clean theoretical slate. In Straussian grounded theory,
it is seen as acceptable to consult literature throughout the process [50]. In this study, the liter-
ature review on quality metrics was done before the grounded theory study. This allowed the
researcher to have better knowledge of which methods could be used to acquire confidence,
heightening the theoretical sensitivity by having knowledge of surrounding areas while not
influencing the clean slate of emerging theory by performing a literature study in the direct
subject of study. The positive influence of performing literature studies on subjects adjacent
to the subject studied in GT has been described by Thistoll et al. [51].

6.2.1.2 Bias risk

With qualitative research, there is an inherent subjective component which makes the results
more prone to bias than in quantitative research. Seeing that the main result of this thesis are

41

6.3. Source Criticism

from analysis done by the researcher, it is likely that it would be interpreted slightly differ-
ently if performed by another researcher. To combat this, all results are correlated directly to
transcripts of the interviews which makes it verifiable and grounded. If another researcher
would have similar background knowledge, the reliability of the analysis process should
be relatively high and produce the same categories. Many qualitative studies attempts to
lessen the subjective impact of a researcher by having one researcher perform the coding and
another researcher verify and criticize the codes. Some even perform blind coding where
several researchers code the same data and then compare the codes for similarities and dif-
ferences. This study was limited by having only one researcher, which heightens the risk for
subjective bias introduced in the coding.

6.2.1.3 Left out theoretical sampling

There was a theoretical sampling performed in addition to the interviews and the security
presentation, which consisted of records exported from the test management tool REQ-test.
The intent was to find ways in which confidence was defined through the analysis of test
cases since the specific test cases were mentioned as sources of confidence. The records were
not included in the final analysis, since the results were found to not converge and provided
little information of value.

6.2.1.4 Risk of information loss in translation

The interviews were performed in Swedish and transcribed in Swedish. The analysis and
formation of categories were performed in English, and direct citations were translated by
the researcher who is not a professional translator. This leaves a risk for information loss and
misunderstandings in the translations, which could influence the meaning and interpretation
of respondent statements included in categories. This risk was lessened by double-checking
important translations with machine translation.

6.2.1.5 Subject selection

As stated in the delimitations of the study, the respondents were chosen from the capital
markets department. This allowed for a good view of what confidence means for the stake-
holders who are a part of this department. However, some respondents mentioned interest
from other departments in a release of capital markets products. An example is performance
testing, which most respondents did not consider necessary but some mentioned that the In-
frastructure and operations department might do performance tests of capital market prod-
ucts before release. This implies that there might be additional factors in other departments
which need to be satisfied, which could be found in an extended future study involving larger
parts of the organization.

6.2.2 Literature review

The literature review was limited by focusing on established results already appearing in an
existing systematic literature review. This excluded newer results which might prove to be
more efficient than the existing measurements.

6.3 Source Criticism

The literature used in this thesis is mainly peer-reviewed journal articles and conference pro-
ceedings. The sources included in the literature review were mostly secondary sources in-
cluded in the tertiary review by Champion et al. [9] who included only peer-reviewed ar-
ticles and explicitly removed items published through predatory publishers. It should be
noted that the tertiary review itself was a preprint at the time of this study, so measures were

42

6.4. The work in a wider context

taken to verify the claims of the secondary sources. For the sources included in the literature
review through search, care was taken to apply the same quality criteria.

Some theory on quality measurements and method was based on textbooks. The text-
books are well cited and from established authors in their fields, and are therefore considered
to be reliable sources. A single use of a blog post exists to explain the practical trade-offs
between unit- and integration testing. This is considered the least reputable source but was
published in the engineering blog of Spotify which is an established technology company
which gives the arguments some credibility.

6.4 The work in a wider context

This section reviews the societal and ethical aspects of this work in a wider context.

6.4.1 Economic and societal aspects

The usage of the results from this thesis can have a positive societal impact by allowing the
time and effort needed to assert confidence in a release candidate to go down, which allows
the organization to move towards shorter release cycles. This is positive for the company
since there are less resources needed for quality assurance, resulting in a better economical
situation. The staff of the company can better focus their quality assurance efforts when
they are aware of which factors to work towards which would allow more staff members to
feel they are doing useful work as well as allowing them better career opportunities based
on others experiencing the value of their work. Having more confidence together with a
faster release model could even result in the company increasing profits as a consequence of
accepting new projects they otherwise would not have accepted since they know it can be
done reliably and efficiently.

Similarly, it is also positive for the customers, since they are able to order more function-
ality and there is less time between ordering and delivery of functionality. Having increased
confidence in the quality of the delivered product will cause less resistance to ordering new
projects and allow more room for incremental improvements of their product.

There is a positive impact for all involved parties from using carefully researched quality
measurement, because of the lesser number of faults in the finished software. This is espe-
cially beneficent for end users, who obtain a lesser risk of disruption in their day-to-day usage
of the software. Since the products created by Crosskey are banks that are critical infrastruc-
ture, the improved quality impacts society as a whole by avoiding banking outages which
could hinder daily life by not allowing people to pay for what they need. The increased in-
cremental improvements discussed earlier in this section has a positive societal impact by
creating better banking systems to be used by end users.

There are also negative impacts. Doing more quality assurance in continuous delivery
requires more infrastructure since tests and metric collections are run more often. Some of
the suggested methods such as mutation testing require very large computational resources
to work on large code bases. This causes increased consumption of hardware and energy,
which has a negative economic impact for the company as well as a negative environmental
impact.

6.4.2 Ethical aspects

Removing manual effort placed in quality assurance carries an ethical risk, which stems from
replacing humans with automation. If enough confidence factors are eventually satisfied
through automated means, the risk is that the people checking these factors today could lose
their employment. However, this risk is seen as low because of two factors:

• Multiple confidence factors require human judgment and no automated measurements
are anticipated for these in the near future

43

6.4. The work in a wider context

• The product specialists have reported being overworked rather than underworked to-
day, and expressed a want to focus on more important tasks than manual repeatable
quality assurance.

This makes it likely that the effect would be a more valuable output from the human staff,
rather than a reduction of staff.

There is a risk of over-reliance on standardized and automated processes for confidence
establishment. There might be severe faults released in the software which would have been
easily discovered with exploratory testing but missed in the new process since they are out-
side of the regular confidence factors. In the context of banking, this could cause massive
economical damage with only the process to blame.

44

7 Conclusion

The purpose of this thesis was to explore the definition of confidence in the quality of a release
candidate, specifically which factors stakeholders use to establish confidence. Additionally, it
was to map established quality measurements to confidence factors to express the confidence
level of a release candidate in the continuous delivery pipeline. The results are a good view
of the requirements for confidence in a release candidate from stakeholders at the Capital
Markets department at Crosskey. This is useful for all parties involved in transitioning from
traditional release handling to shorter release cycles and ultimately continuous delivery, as
it is important to ensure these factors are satisfied either with the metrics presented in this
thesis or with alternative methods.

7.1 Research Questions

In section 1.3, three research questions were presented. These questions are answered below,
based on the results presented in chapter 5 and discussion in 6.1.

Which factors do stakeholders in an organization take into account in order to estab-
lish confidence for a release candidate?
Stakeholders at the Capital markets department at Crosskey consider both process factors
and verification results to establish confidence for a release candidate. They rely on ver-
ification results to ensure the quality level and attach differing amounts of confidence to
the results depending on how well the process factors are fulfilled. The complete set of
confidence factors are described in section 5.1.

Which quality measurements are most effective in a continuous delivery pipeline to
establish confidence in a release candidate?
Quality measurements can be split into metrics that can be measured directly and testing
which has to be planned for the specific use case and actively performed. Among metrics,
process metrics are the most effective, followed by object-oriented and lastly traditional met-
rics. Internally, these categories have specific metrics with varying effectiveness described in
section 5.2.1. In testing, neither automated nor manual testing can be said to be universally
superior. Instead, each kind of testing have their respective areas where they are a better fit,
outlined in section 5.2.3.1 and with specific results for Crosskey presented in table 5.8. The

45

7.2. Consequences of the work

confidence in tests themselves is not sufficiently measured by coverage alone. It can be better
ensured by a combination of mutation testing and code review of tests. In addition to the
mentioned measurements, measuring the number of code smells present and the presence of
code reviews can also improve confidence in a release candidate.

How can the confidence level of a release candidate be expressed in a continuous de-
livery pipeline to stakeholders?
Expressing confidence in a release candidate can currently not be done effectively and com-
prehensively with quality measurements alone. Several confidence factors, mainly from
the process category, rely either in large amounts on manual inputs or are unsuitable to be
expressed at all in a pipeline with the quality measurements reviewed by the examined liter-
ature reviews. The factors not fit for direct expression are mostly static in the organization,
meaning that a general knowledge that they are always fulfilled can be achieved. If this is
known and can be trusted, the measurements described in table 5.10 can be used in a pipeline
to express the confidence level.

7.2 Consequences of the work

The motivation as presented in section 1.1 was to find how an organization can ensure stake-
holders have the same confidence in release candidates when moving to shorter release cycles
and ultimately continuous delivery, as they have when using traditional release management.
To fulfill this goal, the organization must ensure that the confidence factors presented in this
thesis are satisfied. This should be done by a combination of established processes known by
all stakeholders and measurement results expressed in the pipeline for the release candidate.

7.3 Future work

The confidence factors found in this thesis are the result of a qualitative study. Qualitative
methods generate theory and produce hypotheses. The population size in this study is 11
which is not the full set of Capital Markets stakeholders, only a small proportion of the size
of the entire organization and very small compared to the industry at large. The statement
that these results comprehensively cover the factors stakeholders use to establish confidence
in a release candidate, in this organization or any other organization, should therefore at this
point be seen as a theory and not an indisputable fact. To verify this theory, a quantitative
approach involving a survey for the usage of these confidence factors and for whether they
are enough for all stakeholders in the implementing organization could be performed.

If a wish for expressing a larger proportion of the confidence factors directly in the
pipeline using quality measurements exists, this study can be used as a basis for a more
thorough exploration of available measurements. This study was constricted by including
only measurements that have already been covered by several studies included in existing
literature reviews. There may be more recent and/or less studied measurements that could
provide data for specific confidence factors. A researcher interested in quality measurements
can use this study to determine confidence factors not yet mapped by quality measurements
and test new approaches in order to provide data to satisfy these factors in a more automated
fashion.

46

Bibliography

[1] William Adams. Conducting Semi-Structured Interviews. Aug. 2015. DOI: 10 . 1002 /
9781119171386.ch19.

[2] Azeem Ahmad, Ola Leifler, and Kristian Sandahl. “Data visualisation in continuous
integration and delivery: Information needs, challenges, and recommendations”. In:
IET Software 16.3 (2022), pp. 331–349. ISSN: 1751-8814. DOI: 10.1049/sfw2.12030.

[3] Aloisio S. Cairo, Glauco de F. Carneiro, and Miguel P. Monteiro. “The Impact of
Code Smells on Software Bugs: A Systematic Literature Review”. In: Information 9.11
(Nov. 2018). Publisher: MDPI AG, pp. 273–273. ISSN: 2078-2489. DOI: 10 . 3390 /
info9110273.

[4] Atlassian. Bitbucket code review: Merge with confidence. en. URL: https://bitbucket.
org/product/features/code-review (visited on 04/04/2022).

[5] Richard Baker and Ibrahim Habli. “An Empirical Evaluation of Mutation Testing for
Improving the Test Quality of Safety-Critical Software”. In: IEEE Transactions on Soft-
ware Engineering 39.6 (June 2013). Conference Name: IEEE Transactions on Software
Engineering, pp. 787–805. ISSN: 1939-3520. DOI: 10.1109/TSE.2012.56.

[6] Maik Betka and Stefan Wagner. “Extreme mutation testing in practice: An industrial
case study”. In: 2021 IEEE/ACM International Conference on Automation of Software Test
(AST). May 2021, pp. 113–116. DOI: 10.1109/AST52587.2021.00021.

[7] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan Orbeck, and Christopher
Chockley. “Process Aspects and Social Dynamics of Contemporary Code Review: In-
sights from Open Source Development and Industrial Practice at Microsoft”. In: IEEE
Transactions on Software Engineering 43.1 (Jan. 2017). Conference Name: IEEE Transac-
tions on Software Engineering, pp. 56–75. ISSN: 1939-3520. DOI: 10.1109/TSE.2016.
2576451.

[8] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni.
“Identifying the characteristics of vulnerable code changes: an empirical study”. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. FSE 2014. New York, NY, USA: Association for Computing Machinery,
Nov. 2014, pp. 257–268. ISBN: 978-1-4503-3056-5. DOI: 10.1145/2635868.2635880.
URL: http://doi.org/10.1145/2635868.2635880.

47

https://doi.org/10.1002/9781119171386.ch19
https://doi.org/10.1002/9781119171386.ch19
https://doi.org/10.1049/sfw2.12030
https://doi.org/10.3390/info9110273
https://doi.org/10.3390/info9110273
https://bitbucket.org/product/features/code-review
https://bitbucket.org/product/features/code-review
https://doi.org/10.1109/TSE.2012.56
https://doi.org/10.1109/AST52587.2021.00021
https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1109/TSE.2016.2576451
https://doi.org/10.1145/2635868.2635880
http://doi.org/10.1145/2635868.2635880

Bibliography

[9] Kaylea Champion, Sejal Khatri, and Benjamin Mako Hill. “Qualities of Quality: A Ter-
tiary Review of Software Quality Measurement Research”. In: arXiv:2107.13687 [cs]
(July 2021). arXiv: 2107.13687. URL: http://arxiv.org/abs/2107.13687.

[10] Checkstyle. URL: https://checkstyle.org/ (visited on 08/22/2022).

[11] L. Chen. “Continuous delivery: Huge benefits, but challenges too”. English. In: IEEE
Software 32.2 (2015). Publisher: IEEE Computer Society 50, pp. 50–54. ISSN: 07407459.
DOI: 10.1109/MS.2015.27.

[12] Anish Cheriyan, Raju Ramakrishna Gondkar, Thiyagu Gopal, and Suresh Babu S.
“Quality Assurance Practices in Continuous Delivery - an implementation in Big Data
Domain”. In: 2018 IEEE 8th International Advance Computing Conference (IACC). ISSN:
2473-3571. Dec. 2018, pp. 7–13. DOI: 10.1109/IADCC.2018.8692131.

[13] S.R. Chidamber and C.F. Kemerer. “A metrics suite for object oriented design”. In: IEEE
Transactions on Software Engineering 20.6 (June 1994). Conference Name: IEEE Trans-
actions on Software Engineering, pp. 476–493. ISSN: 1939-3520. DOI: 10.1109/32.
295895.

[14] Istehad Chowdhury and Mohammad Zulkernine. “Using complexity, coupling, and co-
hesion metrics as early indicators of vulnerabilities”. en. In: Journal of Systems Architec-
ture. Special Issue on Security and Dependability Assurance of Software Architectures
57.3 (Mar. 2011), pp. 294–313. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2010.06.
003.

[15] Code Review. en. URL: https : / / about . gitlab . com / stages - devops -
lifecycle/code-review/ (visited on 04/04/2022).

[16] Juliet M. Corbin and Anselm L. Strauss. Basics of qualitative research : techniques and pro-
cedures for developing grounded theory. SAGE, 2015. ISBN: 9781412997461.

[17] Cypress End to End Testing Framework. URL: https://www.cypress.io/ (visited on
08/22/2022).

[18] N.E. Fenton and N. Ohlsson. “Quantitative analysis of faults and failures in a complex
software system”. In: IEEE Transactions on Software Engineering 26.8 (Aug. 2000). Confer-
ence Name: IEEE Transactions on Software Engineering, pp. 797–814. ISSN: 1939-3520.
DOI: 10.1109/32.879815.

[19] Martin Fowler and Kent Beck. Refactoring: improving the design of existing code. en. 28.
printing. The Addison-Wesley object technology series. Boston: Addison-Wesley, 2013.
ISBN: 978-0-201-48567-7.

[20] GitHub features: Intuitive code review tools. en. URL: https : / / github . com /
features/code-review/ (visited on 04/04/2022).

[21] Gregory A. Hall and John C. Munson. “Software evolution: code delta and code churn”.
en. In: Journal of Systems and Software. Special Issue on Software Maintenance 54.2 (Oct.
2000), pp. 111–118. ISSN: 0164-1212. DOI: 10.1016/S0164-1212(00)00031-5.

[22] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. “Some Code Smells Have a Signif-
icant but Small Effect on Faults”. en. In: ACM Transactions on Software Engineering and
Methodology 23.4 (Sept. 2014), pp. 1–39. ISSN: 1049-331X, 1557-7392. DOI: 10.1145/
2629648.

[23] Brian Hambling and Pauline Van Goethem. User acceptance testing : a step-by-step guide.
BCS Learning and Development Ltd, 2013. ISBN: 978-1-78017-167-8.

[24] L. Inozemtseva and R. Holmes. “Coverage is not strongly correlated with test suite
effectiveness”. English. In: Proceedings - International Conference on Software Engineering.
Issue: 1 435. IEEE Computer Society, 2014, pp. 435–445. DOI: 10.1145/2568225.
2568271.

48

http://arxiv.org/abs/2107.13687
https://checkstyle.org/
https://doi.org/10.1109/MS.2015.27
https://doi.org/10.1109/IADCC.2018.8692131
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.295895
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1016/j.sysarc.2010.06.003
https://about.gitlab.com/stages-devops-lifecycle/code-review/
https://about.gitlab.com/stages-devops-lifecycle/code-review/
https://www.cypress.io/
https://doi.org/10.1109/32.879815
https://github.com/features/code-review/
https://github.com/features/code-review/
https://doi.org/10.1016/S0164-1212(00)00031-5
https://doi.org/10.1145/2629648
https://doi.org/10.1145/2629648
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271

Bibliography

[25] “ISO/IEC/IEEE International Standard - Systems and software engineer-
ing–Vocabulary”. In: ISO/IEC/IEEE 24765:2017(E) (Aug. 2017). Conference Name:
ISO/IEC/IEEE 24765:2017(E), pp. 1–541. DOI: 10.1109/IEEESTD.2017.8016712.

[26] Juha Itkonen, Raoul Udd, Casper Lassenius, and Timo Lehtonen. “Perceived Bene-
fits of Adopting Continuous Delivery Practices”. In: Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement ; ISBN
9781450344272 (Jan. 2016). Place: United States, North America Publisher: ACM. ISSN:
978-1-4503-4427-2. DOI: 10.1145/2961111.2962627.

[27] Yue Jia and Mark Harman. “An Analysis and Survey of the Development of Muta-
tion Testing”. In: IEEE Transactions on Software Engineering 37.5 (Sept. 2011). Conference
Name: IEEE Transactions on Software Engineering, pp. 649–678. ISSN: 1939-3520. DOI:
10.1109/TSE.2010.62.

[28] JUnit 5. URL: https://junit.org/junit5/ (visited on 08/22/2022).

[29] Joseph P. Kearney, Robert L. Sedlmeyer, William B. Thompson, Michael A. Gray, and
Michael A. Adler. “Software complexity measurement”. In: Communications of the ACM
29.11 (Nov. 1986), pp. 1044–1050. ISSN: 0001-0782. DOI: 10.1145/7538.7540.

[30] Eero Laukkanen, Juha Itkonen, and Casper Lassenius. “Problems, causes and solutions
when adopting continuous delivery—A systematic literature review”. In: Information
and Software Technology 82 (Feb. 2017). Publisher: Elsevier B.V., pp. 55–79. ISSN: 0950-
5849. DOI: 10.1016/j.infsof.2016.10.001.

[31] Mika V. Mäntylä, Bram Adams, Foutse Khomh, and Emelie Engström. “On rapid re-
leases and software testing: a case study and a semi-systematic literature review”. In:
Empirical Software Engineering 20.5 (Jan. 2015). Publisher: Springer, pp. 1384–1425. ISSN:
1573-7616. DOI: 10.1007/s10664-014-9338-4.

[32] D. Mårtensson T. Ståhl and J. Bosch. “Test activities in the continuous integration and
delivery pipeline”. English. In: Journal of Software: Evolution and Process 31.4 (2019). Pub-
lisher: John Wiley and Sons Ltd. ISSN: 20477481. DOI: 10.1002/smr.2153.

[33] T.J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software Engineering
SE-2.4 (1976), pp. 308–320. DOI: 10.1109/TSE.1976.233837.

[34] Rana S. Menshawy, Ahmed H. Yousef, and Ashraf Salem. “Code Smells and Detection
Techniques: A Survey”. In: 2021 International Mobile, Intelligent, and Ubiquitous Comput-
ing Conference (MIUCC). May 2021, pp. 78–83. DOI: 10.1109/MIUCC52538.2021.
9447669.

[35] T. Menzies, J.S. Di Stefano, M. Chapman, and K. McGill. “Metrics that matter”. In: 27th
Annual NASA Goddard/IEEE Software Engineering Workshop, 2002. Proceedings. Dec. 2002,
pp. 51–57. DOI: 10.1109/SEW.2002.1199449.

[36] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. “A comparative analysis of the
efficiency of change metrics and static code attributes for defect prediction”. In: Pro-
ceedings of the 30th international conference on Software engineering. ICSE ’08. New York,
NY, USA: Association for Computing Machinery, May 2008, pp. 181–190. ISBN: 978-1-
60558-079-1. DOI: 10.1145/1368088.1368114.

[37] NVivo. URL: https://www.qsrinternational.com/nvivo- qualitative-
data-analysis-software/home (visited on 04/27/2022).

[38] Roy Osherove. The Art of Unit Testing : With Examples in C, Second Edition. Manning
Publications, 2014. ISBN: 9781617290893.

[39] Rajshakhar Paul, Asif Kamal Turzo, and Amiangshu Bosu. “Why Security Defects Go
Unnoticed during Code Reviews? A Case-Control Study of the Chromium OS Project”.
In: arXiv:2102.06909 [cs] (Feb. 2021). arXiv: 2102.06909.

49

https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1145/2961111.2962627
https://doi.org/10.1109/TSE.2010.62
https://junit.org/junit5/
https://doi.org/10.1145/7538.7540
https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1007/s10664-014-9338-4
https://doi.org/10.1002/smr.2153
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/MIUCC52538.2021.9447669
https://doi.org/10.1109/MIUCC52538.2021.9447669
https://doi.org/10.1109/SEW.2002.1199449
https://doi.org/10.1145/1368088.1368114
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home

Bibliography

[40] PMD Source Code Analyzer. URL: https://pmd.github.io/ (visited on 08/22/2022).

[41] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. “Software fault
prediction metrics: A systematic literature review”. en. In: Information and Software Tech-
nology 55.8 (Aug. 2013), pp. 1397–1418. ISSN: 0950-5849. DOI: 10.1016/j.infsof.
2013.02.009.

[42] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen, and Mika V.
Mäntylä. “Benefits and limitations of automated software testing: Systematic literature
review and practitioner survey”. In: 2012 7th International Workshop on Automation of
Software Test (AST). June 2012, pp. 36–42. DOI: 10.1109/IWAST.2012.6228988.

[43] ReQtest: Requirements, Test Management, Bug Tracking Tool. URL: https://reqtest.
com/ (visited on 08/22/2022).

[44] REST-assured | Github. URL: https : / / github . com / rest - assured / rest -
assured (visited on 08/22/2022).

[45] André Schaffer. “Testing of Microservices”. In: Spotify Engineering (Jan. 2018). URL:
https : / / engineering . atspotify . com / 2018 / 01 / testing - of -
microservices/ (visited on 04/07/2022).

[46] Gerald Schermann, Jurgen Cito, Philipp Leitner, and Harald C. Gall. “Towards quality
gates in continuous delivery and deployment”. In: 2016 IEEE 24th International Con-
ference on Program Comprehension (ICPC), Program Comprehension (ICPC), 2016 IEEE 24th
International Conference on (May 2016). Publisher: IEEE, pp. 1–4. ISSN: 978-1-5090-1428-6.
DOI: 10.1109/ICPC.2016.7503737.

[47] Selenium. URL: https://www.selenium.dev/ (visited on 08/22/2022).

[48] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “Continuous Integration, De-
livery and Deployment: A Systematic Review on Approaches, Tools, Challenges and
Practices”. In: (2017). DOI: 10.1109/ACCESS.2017.2685629.

[49] Navneet Singh, Vishtasp Meherhomji, and B. R. Chandavarkar. “Automated versus
Manual Approach of Web Application Penetration Testing”. In: 2020 11th International
Conference on Computing, Communication and Networking Technologies (ICCCNT). July
2020, pp. 1–6. DOI: 10.1109/ICCCNT49239.2020.9225385.

[50] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. “Grounded theory in software engi-
neering research: a critical review and guidelines”. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering. ICSE ’16. New York, NY, USA: Association
for Computing Machinery, May 2016, pp. 120–131. ISBN: 978-1-4503-3900-1. DOI: 10.
1145/2884781.2884833.

[51] Tony Thistoll, Val Hooper, and David Pauleen. “Acquiring and developing theoretical
sensitivity through undertaking a grounded preliminary literature review”. In: Quality
& Quantity 50 (Feb. 2015). DOI: 10.1007/s11135-015-0167-3.

50

https://pmd.github.io/
https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1109/IWAST.2012.6228988
https://reqtest.com/
https://reqtest.com/
https://github.com/rest-assured/rest-assured
https://github.com/rest-assured/rest-assured
https://engineering.atspotify.com/2018/01/testing-of-microservices/
https://engineering.atspotify.com/2018/01/testing-of-microservices/
https://doi.org/10.1109/ICPC.2016.7503737
https://www.selenium.dev/
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1109/ICCCNT49239.2020.9225385
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1007/s11135-015-0167-3

	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations

	Theory
	Continuous Delivery
	Difference from other continuous practices
	Benefits
	Problems

	Quality measurements
	Software metrics
	Traditional metrics
	Object-oriented metrics
	Process metrics

	Code smells
	Testing
	Automated or manual
	Unit testing
	Integration testing
	System testing
	User acceptance testing

	Test quality
	Test coverage
	Mutation testing

	Code review

	Related Work
	Related work
	Quality assurance in continuous delivery
	Confidence

	Method
	Research Design
	Grounded theory approach to confidence factors
	Interviews
	Subject selection
	Interview structure
	Interview implementation

	Analysis
	Open coding
	Axial coding
	Memoing
	Theoretical sampling

	Literature Study of quality measurements
	Source material gathering
	Selection

	Mapping of quality measurements to confidence factors

	Results
	Grounded theory approach to confidence factors
	Process
	Differing needs for QA depending on the change
	Following defined steps
	Information availability
	Time
	Trust

	Verification Results
	Automated or manual testing
	Environments
	Test cases
	External
	Non-functional
	Attainable verification level

	Literature Study of quality measurements
	Software metrics
	Traditional metrics
	Object-oriented metrics
	Process metrics

	Code smells
	Testing
	Automated or manual
	Unit- and integration testing

	Test quality
	Test coverage
	Mutation testing

	Code review

	Expressing confidence level

	Discussion
	Results
	Relative importance of the main themes
	Relative importance of subcategories
	Measurable and immeasurable factors
	Expressibility in pipeline
	Suggested alternative solution

	Method
	Grounded theory approach to confidence factors
	Literature review before data collection
	Bias risk
	Left out theoretical sampling
	Risk of information loss in translation
	Subject selection

	Literature review

	Source Criticism
	The work in a wider context
	Economic and societal aspects
	Ethical aspects

	Conclusion
	Research Questions
	Consequences of the work
	Future work

	Bibliography

