
DOCTORAL THESIS NO. 31

Mohammad Aslani

Gävle University Press

Computational and Spatial Analyses of

Rooftops for Urban Solar Energy Planning

Dissertation for the Degree of Doctor of Philosophy in Geospatial Information Science to be publicly

defended on Friday 18 November 2022 at 09:00 in Room 23213, University of Gävle.

External reviewer: Professor Alison Heppenstall, University of Glasgow

© Mohammad Aslani 2022

Cover illustration: Mohammad Aslani

Gävle University Press

ISBN 978-91-88145-93-2

ISBN 978-91-88145-94-9 (pdf)

urn:nbn:se:hig:diva-39741

Distribution:

University of Gävle

Faculty of Engineering and Sustainable Development

Department of Computer and Geospatial Sciences

SE-801 76 Gävle, Sweden

+46 26 64 85 00

www.hig.se

When nothing seems to help, I go and
look at a stonecutter hammering away
at his rock perhaps a hundred times
without as much as a crack showing in
it. Yet at the hundred and first blow it
will split in two, and I know that it was
not that blow that did it, but all that had
gone before.

Jacob Riis

To my parents
Without them, none of my success would be

possible.

Abstract

In cities where land availability is limited, rooftop photovoltaic panels (RPVs)
offer high potential for satisfying concentrated urban energy demand by using
only rooftop areas. However, accurate estimation of RPVs potential in relation
to their spatial distribution is indispensable for successful energy planning.
Classification, plane segmentation, and spatial analysis are three important
aspects in this context. Classification enables extracting rooftops and allows
for estimating solar energy potential based on existing training samples. Plane
segmentation helps to characterize rooftops by extracting their planar patches.
Additionally, spatial analyses enable the identification of rooftop utilizable areas
for placing RPVs. This dissertation aims to address some issues associated with
these three aspects, particularly (a) training support vector machines (SVMs)
in large datasets, (b) plane segmentation of rooftops, and (c) identification of
utilizable areas for RPVs. SVMs are among the most potent classifiers and have
a solid theoretical foundation. However, they have high time complexity in their
training phase, making them inapplicable in large datasets. Two new instance
selection methods were proposed to accelerate the training phase of SVMs. The
methods are based on locality-sensitive hashing and are capable of handling
large datasets. As an application, they were incorporated into a rooftop extrac-
tion procedure, followed by plane segmentation. Plane segmentation of rooftops
for the purpose of solar energy potential estimation should have a low risk of
overlooking superstructures, which play an essential role in the placement of
RPVs. Two new methods for plane segmentation in high-resolution digital
surface models were thus developed. They have an acceptable level of accuracy
and can successfully extract planar segments by considering superstructures.
Not all areas of planar segments are utilizable for mounting RPVs, and some
factors may further limit their useability. Two spatial methods for identifying
RPV-utilizable areas were developed in this realm. They scrutinize extracted
planar segments by considering panel installation regulations, solar irradiation,
roof geometry, and occlusion, which are necessary for a realistic assessment
of RPVs potential. All six proposed methods in this thesis were thoroughly
evaluated, and the experimental results show that they can successfully achieve
the objectives for which they were designed.

Keywords: machine learning, classification, segmentation, support vector
machines, instance selection, rooftop plane segmentation, photovoltaic panels,
utilizable rooftop areas, geoinformatics

Sammanfattning

I städer där marktillgången är begränsad erbjuder takmonterade solpaneler (eng.
rooftop photovoltaic panels) ett attraktivt alternativ för att tillfredsställa höga
energibehov. Noggrann värdering av deras potential i förhållande till spatial
utbredning och variation är dock oumbärligt för framgångsrik energiplaner-
ing. För detta krävs klassificering och segmentering av plana ytor samt spatial
analys. Klassificering möjliggör extrahering av hustak och uppskattning av
solenergipotentialen baserat på befintliga träningsprov. Segmentering i plan
hjälper till att karakterisera hustaken genom extrahering av deras plana segment
och spatial analys möjliggör identifiering av användbara takytor för placering
av takmonterade solpaneler. Denna avhandlings syfte är att adressera olika
problem associerade med dessa; särskilt: (a) träning av stödvektormaskiner
(eng. support vector machines) för stora datamängder, (b) segmentering i
plan av hustakspunkter och (c) identifiering av lämpliga ytor för placering av
takmonterade solpaneler. Stödvektormaskiner tillhör de mest kraftfulla klassifi-
ceringsmetoderna och vilar på en solid teoretisk grund. Men på grund av hög
komplexitet under träningsfasen är de tidskrävande, vilket gör dem olämpliga
för stora datamängder. Två nya initiala urvalsmetoder (eng. instance selection
methods) för data föreslås för att påskynda träningsfasen i stödvektormaskiner.
Metoderna är baserade på lokalitetskänslig hashning och kan hantera stora
datamängder. De inkorporeras i en applikation i form av extrahering av takyta
följt av segmentering i plan. Segmentering av hustak för uppskattning av solen-
ergipotential bör inkludera låg risk att förbise överbyggnader, som spelar en
viktig roll vid placeringen av takmonterade solpaneler. Två nya metoder för
segmentering i plan för högupplösta digitala ytmodeller har därför utvecklats.
De har en acceptabel nivå av noggrannhet och kan framgångsrikt extrahera plana
segment genom att ta hänsyn till överbyggnader. Alla ytor med extraherade
plana segment är dock inte användbara för montering av takmonterade solpan-
eler, samtidigt som andra faktorer ytterligare kan begränsa ytornas användbarhet.
Två spatiala metoder för att identifiera användbara takmonterade solpanelytor
har utvecklats för detta ändamål. De granskar extraherade plana segment genom
att ta hänsyn till regler för panelinstallationer, solinstrålning, takgeometri och
ocklusion, vilket är nödvändigt för en realistisk bedömning av potentialen av
takmonterade solpaneler. Samtliga sex föreslagna metoder i denna studie har
utvärderats noggrant och de experimentella resultaten visar att de framgångsrikt
kan uppnå de mål som de utformades för.

Nyckelord: maskininlärning, klassificering, segmentering, stödvektormaskiner,
urval av träningsdata, segmentering av takytor, solcellspaneler, utnyttjande av
takytor, geoinformatik

Acknowledgments

This is the most difficult part of the thesis for me to write as I am afraid I will
inevitably fall short of doing it justice, but I will do my best. I would like to
express my sincere gratitude to those who have directly or indirectly made this
Ph.D. thesis possible and this period of my life transformative.

First and foremost, I must thank my main advisor Stefan Seipel for believing
in my potential and helping me design my own research path. I was extremely
fortunate to work with Stefan as my advisor. His enthusiasm, alacrity, support-
iveness, and patience have led me to impactful, engaging initiatives. He is an
incredibly generous collaborator, friend, and insightful mentor; cheers to Stefan
for much more than I can express in acknowledgments. I am also grateful to
my co-advisors, Anders Brandt and Julia Åhlén. They have been helpful to talk
to, and their simple-hearted support and friendliness have been unconditional
during the Ph.D. I truly value our discussions on research and teaching.

I would like to thank Gunilla Mårtensson, the head of the engineering and
sustainable development faculty, for her support. I would like to express my
gratitude to Jonas Boustedt, the head of the computer and geospatial sciences
department, for swiftly handling my concerns and offering me an awesome
workplace. I also thank staff members of the department and those on the
fifth and sixth floors of Building 99, including Goran Milutinovic and Anders
Jackson, for their camaraderie and understanding. I am delighted to start
working with all of them this year as a colleague. I am thankful to Björn O
Karlsson for his patience in answering my questions regarding solar panels,
even though he was retired. Additionally, I thank Uppsala municipality and
Lantmäteriet for providing data for this study.

Saving the best for last, I owe a sincere debt of gratitude to my parents for
providing me with a privileged childhood and instilling the value of education in
me. My heartfelt appreciation to my father, who sparked my interest in math and
engineering and taught me the value of honesty. And my genuine appreciation
to my mother for encouraging me to pursue my passion in whichever career
I desire and for teaching me the value of hard work. Their selfless, unending,
unwavering, and uncomplicated love and support have laid the foundations for
me to build my professional and academic careers. I am eternally indebted to
them for my progress in life, and I hope they know how much I look up to them.

List of Papers

This thesis is based on the following papers, which are referred to in the text by
Roman numerals.

Paper I
Aslani, M., Seipel, S. (2020). A fast instance selection method for support
vector machines in building extraction. Applied Soft Computing Journal, 97
Part B: 106716. https://doi.org/10.1016/j.asoc.2020.106716

Paper II
Aslani, M., Seipel, S. (2021). Efficient and decision boundary aware instance
selection for support vector machines. Information Sciences, 577: 579–598.
https://doi.org/10.1016/j.ins.2021.07.015

Paper III
Aslani, M., Seipel, S. (2022). Automatic identification of utilizable rooftop areas
in digital surface models for photovoltaics potential assessment. Applied Energy,
306: 118033. https://doi.org/10.1016/j.apenergy.2021.118033

Paper IV
Aslani, M., Seipel, S. (2022). A Spatially Detailed Approach to the Assessment
of Rooftop Solar Energy Potential based on LiDAR Data. In: Proceedings
of the 8th International Conference on Geographical Information Systems
Theory, Applications and Management: 56–63. https://doi.org/10.5220/
0011108300003185

Paper V
Aslani, M., Seipel, S. (Under review, Second round). Rooftop segmentation and
optimization of photovoltaic panel layouts in digital surface models.

Reprints were made with permission from the respective publishers.

https://doi.org/10.1016/j.asoc.2020.106716
https://doi.org/10.1016/j.ins.2021.07.015
https://doi.org/10.1016/j.apenergy.2021.118033
https://doi.org/10.5220/0011108300003185
https://doi.org/10.5220/0011108300003185

List of Abbreviations

BPLSH Border Point extraction based on Locality-Sensitive Hashing
CART Classification And Regression Trees
CBCH Clustering-Based Convex Hull
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DRLSH Data Reduction based on Locality-Sensitive Hashing
DSMs Digital Surface Models
GA Genetic Algorithm
GPUs Graphic Processing Units
LiDAR Light Detection and Ranging
LSH-IS-S Locality-Sensitive Hashing Instance Selection by one-pasS
MDDC Minimum Density Divisive Clustering
NASA National Aeronautics and Space Administration
nDSM Normalized Digital Surface Model
NDVI Normalized Difference Vegetation Index
PCA Principal Component Analysis
PSDSP Prototype Selection based on Dense Spatial Partitions
RANSAC RANdom SAmple Consensus
RPVs Rooftop Photovoltaic Panels
SVMKM Support Vector Machines K-Means
SVMs Support Vector Machines

Table of Contents

I Comprehensive summary 1

1 Introduction 3
1.1 Background . 3
1.2 Problem statement . 3

1.2.1 Selecting instances to train support vector machines . 4
1.2.2 Extraction of planar segments of rooftops 5
1.2.3 Identification of utilizable areas for RPVs 6

1.3 Related work . 6
1.3.1 Instance selection for SVMs 7
1.3.2 Extraction of planar segments of rooftops 9
1.3.3 Identification of utilizable areas for RPVs 11

1.4 Research objectives and questions 12
1.5 Research contributions . 13
1.6 Research methodology . 15
1.7 Dissertation outline . 16
1.8 Authorship contribution statement 16

2 Theoretical background 19
2.1 Support vector machines . 19

2.1.1 Hard-margin linear SVMs 20
2.1.2 Soft-margin linear SVMs 22
2.1.3 Soft-margin nonlinear SVMs 24

2.2 Locality-sensitive hashing 25
2.3 Clustering . 26

2.3.1 k-means and k-means++ 26
2.3.2 Euclidean clustering 28
2.3.3 Minimum density divisive clustering 28

2.4 Genetic algorithm . 31
2.4.1 Encoding . 33
2.4.2 Selection . 33
2.4.3 Crossover . 33
2.4.4 Mutation . 34

3 Instance selection methods for SVMs 37
3.1 Introduction . 37
3.2 Instance selection method: DRLSH 37

3.2.1 Algorithm . 37
3.2.2 Parameter analyses 38
3.2.3 Rooftop extraction 40
3.2.4 Dataset preparation 41

3.2.5 Results of evaluation and discussion 42
3.3 Instance selection method: BPLSH 44

3.3.1 Algorithm . 44
3.3.2 Parameter analyses 46
3.3.3 Rooftop extraction and data 47
3.3.4 Results of evaluation and discussion 48

4 Plane segmentation methods 51
4.1 Introduction . 51
4.2 Plane segmentation method I 51

4.2.1 Algorithm . 51
4.2.2 Test sites and data 53
4.2.3 Results of evaluation and discussion 53

4.3 Plane segmentation method II 55
4.3.1 Algorithm . 55
4.3.2 Results of evaluation and discussion 56

5 Spatially detailed methods for automatic identification of RPV-
utilizable areas 59
5.1 Introduction . 59
5.2 Identification of areas based on morphological operations . . . 59

5.2.1 3D-2D conversion 60
5.2.2 Technical constraint 60
5.2.3 Geometric constraint 61
5.2.4 Solar constraint . 63
5.2.5 Results and discussion 63

5.3 Identification of areas considering optimal placement of RPVs 66
5.3.1 Placement of RPVs 66
5.3.2 Results and discussion 67

6 Conclusion and future work 69

References 73

II Papers reprints 87

Part I

Comprehensive summary

1

2

1 Introduction

1.1 Background
Solar energy has been acknowledged as a critical component in achieving energy
sustainability owing to its high availability and capacity. It has the potential
to minimize greenhouse gas emissions while meeting a significant amount of
energy demand (Joshi et al., 2021, Yu et al., 2022). In urban areas, solar energy
can be extensively applied on-site using rooftop photovoltaic panels (RPVs),
which are scalable and technologically robust (Bódis et al., 2019, Li et al., 2020).
In cities where land availability is limited, RPVs can convert buildings to active
power generators using only rooftops (Sánchez-Aparicio et al., 2021, Walch
et al., 2020). They can alleviate congestion on local urban networks and assist
in transitions to nearly zero-energy buildings.

Efficient deployment of RPVs and estimating their energy potential can be
done accurately by the inherent capabilities of geoinformatics. Numerous chal-
lenges that emerge in RPVs planning and estimating their cost-effectiveness are
spatial in nature and require spatial information, which can be properly handled
in geoinformatics. Geoinformatics offers a wide range of spatial methodolo-
gies to acquire detailed knowledge about solar energy potential. Spatial data
management, analysis, and modeling are among salient features of geoinformat-
ics, which can benefit different solar-relevant projects (Gassar and Cha, 2021,
Gawley and McKenzie, 2022, Wu and Biljecki, 2021, Zhong et al., 2022). In
particular, geoinformatics enables modeling and analyzing rooftops and their
surrounding environment, which are necessary for making informed decisions
about RPVs deployment (Szabó et al., 2016).

The rapid growth of computational approaches has fueled the development
of geoinformatics. Advances in machine learning have brought about more
accurate and robust spatial analyses and modeling. Machine learning methods
provide the immense ability to extract underlying patterns and segment desirable
objects in spatial data without requiring human intelligence (Assouline et al.,
2018, Mohajeri et al., 2018, Sun et al., 2022). They can play a pivotal role in
the accurate recognition and modeling of rooftops that are necessary for RPVs
placement. In addition, their combination with optimization methods allows for
an efficient design of RPVs in a spatial context.

1.2 Problem statement
Segmentation and semantic segmentation are active research fields with differ-
ent engineering and non-engineering use cases. Semantic segmentation aims to
identify pixels or points with specific semantic information, whereas segmenta-
tion aims to group together pixels with comparable characteristics regardless
of their semantic content (Dougherty, 2013). In recent decades, advances in
machine learning have led to substantial developments in both fields. Machine
learning approaches can effectively deal with a wide range of use cases by
continuously training or adjusting their abilities. Supervised and unsupervised

3

learning are two broad classes of machine learning (Alpaydin, 2020). In su-
pervised learning, often known as a classification problem, the desired class
labels are provided in advance, and the learning procedure seeks a decision
boundary that best separates classes. In unsupervised learning, often referred
to as a clustering problem, no predefined labels are provided, and the learning
procedure seeks a set of homogenous clusters that are the best representatives
of the dataset (Kubat, 2017). Supervised and unsupervised learning are quite
effective for doing both segmentation and semantic segmentation tasks.

Machine learning has facilitated the recognition and modeling of different
objects in geoinformatics, particularly in urban contexts. Rooftop modeling
has benefited greatly from machine learning techniques (Dixit et al., 2021,
Maulik and Chakraborty, 2017, Ren et al., 2022, Turker and Koc-San, 2015,
Zhong et al., 2021). They allow for accurate recognition of rooftops and their
forming planar patches, which have important practical values in a myriad of
geoinformatics applications, such as rooftop solar energy potential estimation.

1.2.1 Selecting instances to train support vector machines
Support vector machines (SVMs) have been widely recognized as one of the
most powerful classifiers in machine learning due to their structural risk min-
imization (Cortes and Vapnik, 1995, Vapnik, 1998). However, their training
phase involves solving a quadratic programming optimization problem that
poses a computational complexity of O(n3) (Christmann and Steinwart, 2008).
This computational cost hinders SVMs from being used in classification prob-
lems that require handling large datasets. Indeed, SVMs training decelerates
significantly when dealing with large datasets. This is particularly problematic
for pixel-based object extraction (e.g., rooftops) from high-resolution spatial
data, such as aerial images and digital surface models (DSMs). The accuracy of
SVMs for object extraction and their generalization ability for predicting unseen
pixels depend on training samples. Due to the high correlation of neighboring
pixels in spatial data, the produced training datasets are usually large and con-
tain many redundant samples. Although using all training samples may reduce
the misclassification risk on unseen data points, it may drastically increase the
training time of SVMs and even preclude the possibility of training.

Numerous techniques have been proposed to circumvent the computational
burden of the training phase, which may be classified into two categories.
Methods in the first category aim to accelerate the training computations by
reducing the complexity of the underlying optimization problem (Abe, 2010,
Kaufmann, 1999, Pavlov et al., 2000, Platt, 1999). However, most of these
methods are still computationally demanding for processing large datasets and
require substantial memory (Guo and Boukir, 2015, Liu et al., 2017). Methods
in the second category, termed instance selection, are aimed at selecting a small
subset of training instances to reduce the computational complexity of training
(Akinyelu and Ezugwu, 2019, Wang and Shi, 2008). These methods are based
on the fact that a training dataset is not used to characterize classes but rather
to aid in accurate separation (Foody and Mathur, 2006). Instance selection

4

methods strategically choose samples representative of the original training set
and capable of preserving the original classification power of SVMs. Indeed,
instance selection methods accelerate the training of SVMs by filtering out
instances that have a negligible impact on classification accuracy (Cervantes
et al., 2015). The advantage of the second category is that its methods are
usually more general and can be beneficial for classifiers other than SVMs
(Garcia et al., 2012, Olvera-López et al., 2010b).

As a result of the rising number of records in datasets, a variety of instance
selection methods have been developed. Most existing methods either have high
time complexity or ineffectively balance classification accuracy and reduction
rate. An efficient instance selection method should be applicable to large
datasets and satisfactorily maintain the original classification accuracy while
significantly eliminating superfluous instances. Efficient instance selection
methods can be incorporated into automatic feature extraction from spatial data,
particularly rooftop extraction in this thesis.

1.2.2 Extraction of planar segments of rooftops
Rooftop extraction is a necessary process for various spatial applications. How-
ever, accurately characterizing rooftops and reliable analyses of them require
identifying their planar segments (Biljecki et al., 2015). This is particularly true
in designing RPVs layouts and assessing rooftop solar energy potential. RPVs
placement is practically performed at the roof-plane level, and solar suitability
of rooftops relies on the shape of rooftops emerged by their constituent planar
segments (Sánchez-Aparicio et al., 2021, Thebault et al., 2020). Point clouds
and DSMs acquired by airborne laser scanning—also referred to as light detec-
tion and ranging (LiDAR)—or stereophotogrammetry enable automatic roof
plane segmentation. They provide 3D and 2.5D georeferenced spatial data of
the landscape (Jochem et al., 2012).

Plane segmentation divides a rooftop into homogeneous non-overlapping
planar patches, allowing direction, slope, size, area, and border of the forming
roof faces to be determined. Two of the most common strategies for extracting
rooftop planar segments are model-driven and data-driven. In the model-driven
approach, planar segments are extracted based on a predefined library of roof
shapes in a top-down manner (Zheng and Weng, 2015). The approach works by
first defining a library of roof shapes and then choosing a shape that best matches
the corresponding area of the DSM or LiDAR. This approach ensures regularized
planar patches, but its performance highly depends on the defined library. That is,
planar segments of a roof whose shape is not included in the library might not be
correctly identified (Wang et al., 2018). Additionally, this approach is likely to
result in under-segmentation and overlooking superstructures. In the data-driven
approach, on the other hand, each planar segment is derived independently
of the overall roof shape (Chen et al., 2014). This can be quite beneficial
in the adherence of planar segments to their underlying surface. While this
approach is more noise-sensitive than model-driven, it is not limited to a set of
predetermined shapes. Therefore, it is capable of extracting all planar segments

5

of any arbitrary polyhedral rooftop to the extent the spatial resolution allows it
(Benciolini et al., 2018, Gilani et al., 2018). Clustering, region growing, and
random sample consensus (RANSAC) are among the methods widely employed
in the data-driven approach (please refer to Section 1.3). Each of these methods
has distinct benefits and shortcomings, necessitating the development of new
plane segmentation methods that capitalize on the advantages of each.

1.2.3 Identification of utilizable areas for RPVs
All rooftop areas are not usually available for reasonably installing RPVs, and
many factors impose limitations. Available areas for mounting RPVs—referred
to as utilizable areas—are critical for a realistic evaluation of rooftop solar
potential and, consequently, for informed planning of the RPVs contribution to
local networks (Gassar and Cha, 2021, Nelson and Grubesic, 2020). Rooftop
superstructures (e.g., chimneys), shadow effects, and panel installation regu-
lations are among the constraints that limit utilizable areas. Installing RPVs
on occluded segments or small segments may lower their cost-effectiveness.
Indeed, superstructures, multiplanarity of rooftops, and uneven distributions
of solar irradiation over rooftops make the identification of utilizable areas
challenging, especially in large urban areas.

Numerous studies have addressed the issue of determining rooftop areas
utilizable for RPVs when rooftop models are available. A typical approach
to determining these areas is to apply a set of loss coefficients showing the
average reduction of rooftop areas (Romero Rodrı́guez et al., 2017). These
loss coefficients are estimated based on a series of simplified rule-of-thumb
assumptions about rooftops, such as a proportion of rooftop areas mainly in
shadow and used for rooftop components (e.g., air conditioning) and service
areas (i.e., reserved areas for accessibility and safety purposes). However, this
approach provides only a rough estimate of the overall utilizable areas and
does not provide any details about the utilizable parts of each planar segment.
Additionally, adapting coefficients to new datasets is not straightforward, and
incompatible loss coefficients may result in overlooking variations of rooftops.

Recently, more advanced methods have been proposed in which utilizable
areas are identified in a spatially detailed manner, in particular at the panel
level. More specifically, a feasible layout of RPVs is identified and considered
utilizable areas. However, most of the existing methods overlook shadow effects
(Mainzer et al., 2017), roof components (Jung et al., 2021), or even installation
regulations (Sánchez-Aparicio et al., 2021) in determining the layout of RPVs.

1.3 Related work
In this section, a foundation on the topic is provided, and the current state
of knowledge is briefly explained. Specifically, the most relevant methods in
instance selection, roof plane segmentation, and utilizable area identification,
along with their characteristics, are reviewed.

6

1.3.1 Instance selection for SVMs
Instance selection methods aim to lower the number of instances while pre-
serving the original classification accuracy by finding instances that contribute
to the delineation of classes. Manifold instance selection methods have been
proposed in the context of classification, and they can be categorized into five
groups: random-based, clustering-based, distance-based, neighborhood-based,
and tree-based methods. In random-based methods, a small subset of instances
is chosen randomly regardless of the pattern of the data. The most important
features of these methods are their simplicity, data size independence, and low
computational cost, which allow them to be used with a wide range of datasets
(Schmidt et al., 2008). A large standard deviation in classification accuracy,
however, may result from using this group of methods.

In clustering-based methods, critical samples are identified by analyzing
partitions obtained via clustering. They mainly consist of the following steps:
1) clustering the dataset, 2) identification of potential clusters, and 3) selecting
representative samples from potential clusters. Clustering methods such as
k-means (Barros de Almeida et al., 2000, Shen et al., 2016), adaptive clustering
(Boley and Cao, 2004), fuzzy clustering (Cervantes et al., 2006), minimum
enclosing ball (Cervantes et al., 2008), hierarchical micro-clustering (Yu et al.,
2003), and Ward-linkage clustering (Wang and Shi, 2008) have been employed
in previous studies. Identifying potential clusters has been primarily done based
on the heterogeneity of clusters. The methods proposed by Barros de Almeida
et al. (2000) and Olvera-López et al. (2010a) rely on the notion that critical
instances significantly contributing to classification appear only in heteroge-
neous clusters (mixed-class clusters), and homogeneous clusters do not play
any role in classification. In SVMKM developed by Barros de Almeida et al.
(2000), for example, after clustering the data using k-means, all instances of
homogeneous clusters except the centroids are eliminated. However, Cervantes
et al. (2008), Koggalage and Halgamuge (2004) and Shen et al. (2016) suggested
that homogeneous clusters may contain critical instances, and ignoring them
can impair the original classification accuracy. Numerous methods for selecting
representative samples from potential clusters have been applied, including
the safety region (Koggalage and Halgamuge, 2004, Zeng et al., 2008), the
convex-concave hull (López Chau et al., 2013), and Fisher’s discriminate analy-
sis (Shen et al., 2016). For example, Birzhandi and Youn (2019) developed an
instance selection method based on k-means and convex hull algorithms. The
method, known as clustering-based convex hull (CBCH), first clusters the data
using k-means. Then, it preserves all instances of heterogeneous clusters and
exterior instances of homogeneous clusters extracted by a convex hull algorithm.
This reduces the chance of missing key examples appearing in homogenous
clusters. One of the limitations associated with clustering-based methods is
determining the appropriate clustering parameters (e.g., the number of clusters
and the stopping criteria), which directly impacts the instance selection process.

In distance-based methods, critical instances are identified by measuring
the distance between each instance and its opposite-class instances. Euclidean,

7

Mahalanobis, and Hausdorff distances have been used in this group of methods
(Abe and Inoue, 2001, Liu et al., 2003, Wang et al., 2007). Distance-based
methods suffer from high computational and memory complexity due to the
necessity to compute distances between samples.

Neighborhood-based methods identify critical instances by inspecting their
neighborhood property. In this context, Shin and Cho (2002) proposed a
method called NPPS whose underlying idea is that critical samples tend to
have heterogeneous neighbors, whereas insignificant samples do not. Two
heuristics—proximity and correctness—were proposed to evaluate the homo-
geneity and consistency of each instance neighborhood. The proximity of each
instance measures the homogeneity of its neighbors, and a positive proximity
value indicates that the instance has heterogeneous neighbors and hence should
be preserved. Correctness quantifies the consistency of an instance with its
neighbors and is used to identify noisy instances. NPPS requires computing
k-nearest neighbors for all samples, which is computationally demanding in
dealing with large datasets. To overcome this limitation, NPPS was enhanced by
Shin and Cho (2007) so that it does not require calculating k-nearest neighbors
for all samples. Indeed, the enhanced method computes the k-nearest neighbors
for only a small subset of samples located near decision boundaries rather than
the entire dataset. Wang and Kwong (2010) used the proximity heuristic to
develop a new active learning method for selecting critical instances. Zhu et al.
(2020) proposed a novel heuristic for selecting instances named cited count.
Cited count measures the importance of an instance by counting the number of
times it is selected as the nearest neighbor of other-class instances. Instances far
from other classes have cited count close to zero and thus are discarded. In the
mentioned methods, the number of neighbors is an influential parameter.

In the same context, Carbonera and Abel (2018) developed a method called
prototype selection based on dense spatial partitions (PSDSP) that has a linear
time complexity to the number of samples. PSDSP extracts representative
samples by partitioning the data space and analyzing the density of each partition.
The main steps of the algorithm are: 1) dividing the space into non-overlapping
partitions using an n-dimensional grid, 2) determining the density of each
partition based on the number of samples, and 3) picking critical samples from
the first k densest partitions, with k indicating the desired number of samples.
Its linear time complexity enables it to handle large datasets. Another instance
selection method with linear time complexity was proposed by Arnaiz-González
et al. (2016). This method, called locality-sensitive hashing instance selection
by one-pass (LSH-IS-S), aims to decrease the number of instances by removing
similar samples. It first hashes instances into buckets using locality-sensitive
hashing (please see Section 2.2) so that similar instances fall into the same
bucket with a high likelihood. Then, it goes through each instance and preserves
only one instance in each bucket. In simple terms, an instance is preserved
if another instance did not previously occupy its bucket. Therefore, only one
instance in a set of similar instances is preserved. Both PSDSP and LSH-IS-S
are prone to losing some border instances.

8

In tree-based methods, indispensable instances are selected based on the
output of decision trees. The method proposed by Chang et al. (2010) partitions
the data space into subregions using a binary C4.5 decision tree algorithm and
discards instances in homogeneous regions. Guo et al. (2010) proposed an
instance selection method using ensemble learning based on classification and
regression trees (CART) algorithms. In their proposed method, multiple trees are
first trained on randomly selected subsets of instances, and the instances labeled
differently by the trained trees are considered indispensable and preserved.
Their proposed method might be inefficient in handling datasets consisting of a
large number of records and features. To address this problem, Guo and Boukir
(2015) showed that using a low sampling ratio and ensemble size can accelerate
instance selection without sacrificing performance.

1.3.2 Extraction of planar segments of rooftops
Plane segmentation is an essential step in describing the geometry of rooftops.
As explained in Section 1.2, model-driven and data-driven are two approaches
that might be used for plane segmentation. This section reviews only the data-
driven methods, as the proposed plane segmentation methods in the thesis come
within this category. Data-driven methods may be classified as edge-based,
region-growing-based, model-fitting-based, or clustering-based.

Edge-based methods first use edge detection to delineate boundaries of planar
segments and then group the points enclosed by the boundaries (Rabbani et al.,
2006). Boundaries are defined by points that have a major change in their local
surface properties, such as normal vectors, gradients, curvatures, or higher-order
derivatives (Nguyen and Le, 2013). The majority of these methods are directly
derived from 2D image processing. They enable fast segmentation, but they may
provide inaccurate results caused by delivering discontinuous edges, especially
when handling point clouds with noise or uneven density (Castillo et al., 2013,
Grilli et al., 2017).

Region growing is a classical method that uses neighborhood attributes to
merge close points or regions with similar properties. It begins with selecting a
number of seeds and continues by growing the seeds according to some copla-
narity criteria (Vo et al., 2015). A common way for seed selection is based on
curvature, in which a plane is fitted to every point and its neighbors, and points
with low-fitting residuals are picked as seeds. Common coplanarity criteria for
the growing stage are normal consistency (the angle between normal vectors of
neighboring points and the adjusting plane) and point-to-plane distance (Xie
et al., 2020). Owing to the simplicity of region growing, it has been frequently
used for plane segmentation (Dong et al., 2018, Xiao et al., 2013). Huang et al.
(2015) and Jochem et al. (2009) used region growing to extract rooftop planar
segments to assess solar potential. To improve the computational efficiency of
region growing, Deschaud and Goulette (2010) presented a voxel-based method
that replaces points with voxels. Along the same line of research, Araújo and
Oliveira (2020) proposed an adaptive octree-based region growing for fast plane
segmentation of point clouds. The performance of region growing methods

9

highly depends on the arrangement and order of seeds as well as normal and
curvature estimations of points.

Model-fitting-based methods use primitive shapes (e.g., planes) for segmenta-
tion. Several primitive shapes are fitted to the point cloud dataset, and the shape
that best matches the dataset is chosen. The points that fit the chosen shape are
then grouped together as a segment. In this class of methods, RANSAC, as a
popular robust estimator (Fischler and Bolles, 1981), has been widely employed
(Bauer et al., 2005, Chen et al., 2014). The two key processes of RANSAC-
based methods are hypotheses generation and hypotheses verification, both
done in an iterative manner (Grilli et al., 2017). The hypotheses generation step
produces a set of plane parameters by randomly choosing a minimum number
of required data points. The hypotheses verification step chooses the most plau-
sible hypothesis from all the estimated parameter sets. Despite the simplicity
of classical RANSAC, using it for plane segmentation in point clouds may
lead to the detection of spurious planes. Different variants and modifications
of RANSAC have been proposed to address this issue (Raguram et al., 2013,
Xie et al., 2020). In Schnabel et al. (2007), an enhanced RANSAC algorithm
was proposed that draws only adjacent samples using spatial information and
leverages normal vectors of points to improve the inlier function. Li et al. (2017)
proposed to partition the point cloud into planar and non-planar cells and apply
RANSAC only on planar cells, as non-planar cells usually cause the creation
of spurious planes. However, the mentioned methods might still result in the
creation of spurious planes.

In clustering-based methods, planar segments are formed by grouping points
with similar features. Feature definition plays a significant role in this group
of methods and should provide the potential for distinctly delineating planar
segments. Features should be defined such that points on the same planar
segment are mapped close together in the feature space, which is required
to simplify the identification of planar clusters and enhance the speed and
accuracy of clustering. Point position and locally estimated surface normal
vectors are two features that have been widely used (Xie et al., 2020, Xu
and Stilla, 2021). Sampath and Shan (2010) identified planar segments by
clustering local normal vectors using a fuzzy k-means clustering algorithm (Jain
et al., 1999). They incorporated planarity analysis, which separates planar from
non-planar points, to enhance the clustering performance. Lukač et al. (2020)
extracted planar segments of rooftops using density-based spatial clustering
of applications with noise (DBSCAN) (Ester et al., 1996). Position, slope,
azimuth, and shadow are among the employed clustering features. In clustering-
based methods, the employed clustering algorithm highly affects the results,
and thus, choosing a suitable clustering algorithm is crucial. Algorithms with
high time complexity might not be able to handle high-resolution point clouds.
Additionally, unadaptable algorithms such as k-means and DBSCAN that require
manually tuning input parameters for the area or the dataset are not trivial to be
applied.

10

1.3.3 Identification of utilizable areas for RPVs
All parts of rooftop planar segments are not utilizable for RPVs. Utilizable
areas should provide sufficient space and solar irradiation for mounting RPVs.
Planar segments that are small, surrounded by other objects, or north-facing
(in the northern hemisphere) might not be practicable for RPVs. Accurately
estimating utilizable areas is necessary for a realistic rooftop solar energy
potential estimation. In what follows, some recently developed methods to
identify utilizable areas are briefly reviewed.

Romero Rodrı́guez et al. (2017) determined utilizable areas by applying
some loss coefficients to a 3D rooftop model containing only major planar seg-
ments. The employed loss coefficients quantitatively model different factors that
affect utilizable areas, such as shadow effects, service areas, and superstructures.
Adapting the loss coefficients to other areas and datasets is not always trivial.
Szabó et al. (2016) compared LiDAR point cloud and image-derived point cloud
datasets in extracting planar segments and utilizable areas. To determine the uti-
lizable areas, extracted planar segments are scrutinized in terms of azimuth, tilt
(slope), area, and compactness. The study indicates that the LiDAR-based point
cloud dataset leads to superior results for plane segmentation and, accordingly,
identifying utilizable areas. In Huang et al. (2015), a solar irradiation model was
developed for simulating direct and indirect solar irradiation based on DSMs
and by utilizing graphic processing units (GPUs). The model considers position,
orientation, atmospheric conditions, and occlusion. Rooftops and their forming
planar segments are also automatically extracted. Rooftops are extracted by
analyzing the height and vegetation index of pixels, and planar segments of
rooftops are identified using region growing. The results of the solar irradiation
model and rooftop plane segmentation are used to identify utilizable areas.
Unsuitable planar segments are filtered out by defining some thresholds for area,
tilt, aspect, average solar irradiation, and average sunlight duration.

Applying thresholds at the level of planar segments does not provide suf-
ficient flexibility for the identification of utilizable areas. A partly utilizable
segment is either entirely rejected or accepted, i.e., the utilizable area cannot be
identified as an independent subsegment. One potential solution to this problem
is to identify utilizable areas by placing RPVs, which is the same way they are
recognized in practice.

Zhong and Tong (2020) developed a two-step procedure to identify utilizable
areas in DSMs. Firstly, initial suitable rooftop areas are obtained by performing
tilt, azimuth, and solar irradiation analyses. Then, utilizable areas are identified
by designing a layout of RPVs that has a maximum coverage of the initial
suitable areas. The RPVs layout design problem is conceptualized as a maximal
covering problem in which a number of facilities are located such that they
serve the maximum amount of demand. RPVs are considered facilities, and
the initial suitable rooftop areas are considered demand. RPVs location and
orientation (portrait or landscape) are determined so that RPVs (facilities)
provide the maximum coverage of the initial suitable areas (demands). Their
method disregards planar segments; thus, RPVs may be mounted over ridge

11

lines, which does not happen in practice. Udell and Toole (2019) proposed a
method to find a viable layout of RPVs over planar segments. Their method is
based on mixed-integer linear programming to ensure that the designed RPVs
arrays meet a specific desired energy while minimizing the installation cost. It
limits the placement of RPVs parallel to roof faces and prevents placing them
over rooftop edges.

Sánchez-Aparicio et al. (2021) developed a web-based tool for automatically
placing RPVs over rooftops. The tool enables designing RPVs in different
orientations and directions as well as estimating their energy production. Major
planar segments of rooftops are reconstructed by processing LiDAR and aerial
images. Despite the simplicity of the tool, the placement procedure considers
only the geometry of planar segments, and it overlooks shadow effects that
are critical to the efficiency of RPVs. In Yildirim et al. (2021), software for
designing RPVs layouts and simulating their electricity production over 3D
building models was developed. The software supports various configurations of
RPVs and enables placing RPVs in both manual and automatic modes. However,
in placing RPVs, it does not consider service areas and rooftop superstructures.

In Mainzer et al. (2017), the proposed methodology considers the shapes and
superstructures of rooftops in placing RPVs. Rooftop shapes and superstructures
are identified by processing aerial images obtained from publicly available
datasets. More specifically, a method based on edge detection is used for
the purpose of segmentation. RPVs are placed by using an algorithm that
incrementally iterates over the usable roof face areas and fits as many panels
as possible within each rooftop. However, the methodology does not consider
shadow effects in placing RPVs and cannot accurately determine the tilt of roof
faces as no elevation data is used. Another methodology for placing RPVs was
proposed by de Vries et al. (2020). It places RPVs using 3D roof faces obtained
from aerial images and LiDAR datasets. The placement procedure is based
on trial-and-error; that is, it tries different layouts and selects the one with the
highest number of RPVs. Although it considers service areas, it ignores solar
irradiation in placing RPVs, and thus, the placement is done only based on the
geometry of rooftops. Lukač et al. (2020) proposed a methodology that uses
an evolutionary algorithm for finding the optimal layout of RPVs. It considers
solar irradiation when placing RPVs, but service areas and the alignment of
RPVs with the edges of rooftop segments are ignored.

1.4 Research objectives and questions
To address some of the research gaps identified, analyzed, and synthesized
in Sections 1.2 and 1.3, three objectives are specified in the dissertation. To
achieve these objectives, a few critical questions are highlighted. The objectives
and their corresponding questions are as follows:

Objective I: Developing new instance selection methods that are applica-
ble to large datasets and that can adequately balance the reduction rate and
classification accuracy. The following questions are addressed to achieve this

12

objective:
• RQ1: How can similar samples be identified with linear time complexity?
• RQ2: How can border data points (potential support vectors) and interior

data points be quickly distinguished?

Objective II: Developing new plane segmentation methods that are less
sensitive to noise and able to handle high-resolution DSMs with a suitable level
of accuracy. The following questions are addressed in connection with this
objective:
• RQ3: How can clustering-based plane segmentation be enhanced to better

identify roof faces?
• RQ4: How can the impact of seed order in region growing be alleviated?
• RQ5: How can a planarity test be made less sensitive to noise?
• RQ6: How can the generation of spurious planes be avoided in RANSAC-

based plane segmentation?

Objective III: Developing new spatially detailed methods for automatic
identification of utilizable areas of rooftops that consider installation regulations
(service areas), solar irradiation, occlusion, and shape (geometry) of rooftops.
The following questions are answered in relation to objective III:
• RQ7: How can areas of planar segments that cannot accommodate an

RPV be identified?
• RQ8: How can a feasible layout of RPVs that avoids low irradiated areas

and maximizes total energy production be identified?

1.5 Research contributions
Six new methods were proposed, two for each of the mentioned objectives.
These new methods were published in five scientific papers listed at the be-
ginning of the thesis. In what follows, the six contributions that include the
proposed methods are presented. Figure 1 indicates the relationships between
the scientific articles, research objectives, contributions, and questions.
• Contribution 1: A novel instance selection method for SVMs with linear

time complexity and low memory consumption, named data reduction
based on locality-sensitive hashing (DRLSH). It quickly finds and ex-
cludes samples that do not contribute to the description of each class using
local sensitivity concepts. Simplicity, integer-based calculations, and the
reliance of the method on the property of approximate distance-preserving
mapping make it well-suited for dealing with large datasets.

• Contribution 2: A novel instance selection method for SVMs with suit-
able time complexity applicable to large datasets, named border point
extraction based on locality-sensitive hashing (BPLSH). It preserves only
border patterns and a few interior data points without significantly de-
grading the original classification accuracy. It does not require computing

13

the distance between instances; thus, it is appropriate for handling large
datasets.

• Contribution 3: A new plane segmentation method based on clustering
and segment growing integration. Unlike the existing clustering-based
methods, the clustering step does not require any prior knowledge regard-
ing the dataset (e.g., the optimal number of clusters) and has an optimized
computational speed (linear time complexity), making it suited for high-
resolution DSMs. A modified segment growing algorithm is incorporated
to avoid any possible over-segmentation.

13

resolution DSMs. A modified segment growing algorithm is incorporated

to avoid any possible over-segmentation.

• Contribution 4: A new plane segmentation method that integrates model

fitting and segment growing. It is less sensitive to noise and less likely to

produce spurious planes. It includes a new planarity analysis method to

robustly estimate normal vectors and accurately exclude non-planar pix-

els, preventing the creation of spurious planes. Modified region growing

is used to accurately assign the excluded non-planar pixels to the initially

identified planes and avoid the problem of over-segmentation.

• Contribution 5: A new method based on morphological operations for

the identification of RPV-utilizable rooftop areas. It enables the elimina-

tion of service areas and geometrically unsuitable areas from roof faces in

a spatial manner, and it facilitates a realistic assessment of rooftop solar

energy potential.

• Contribution 6: A new method based on metaheuristic optimization for

automatically identifying a layout of RPVs that leads to efficient energy

production. It considers the shape of roof segments, solar irradiation, oc-

clusion, and installation constraints for placing RPVs. It allows for a more

accurate assessment of rooftop solar potential as the number of RPVs is

estimated instead of just raw areas.

Figure 1. Mapping between the scientific articles, research objectives, contributions
(proposed methods), and questions.

Objective I Objective II Objective III

Paper I Paper II Paper III Paper IV Paper V

C
o

n
tr

ib
u

ti
o

n
 1

C
o

n
tr

ib
u

ti
o

n
 2

C
o

n
tr

ib
u

ti
o

n
 3

C
o

n
tr

ib
u

ti
o

n
 4

C
o

n
tr

ib
u

ti
o

n
 5

C
o

n
tr

ib
u

ti
o

n
 6

RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8

Figure 1. Mapping between the scientific articles, research objectives, contributions
(proposed methods), and questions.

• Contribution 4: A new plane segmentation method that integrates model
fitting and segment growing. It is less sensitive to noise and less likely to
produce spurious planes. It includes a new planarity analysis method to
robustly estimate normal vectors and accurately exclude non-planar pixels,
preventing the creation of spurious planes. Modified region growing is
used to accurately assign the excluded non-planar pixels to the initially
identified planes and avoid the problem of over-segmentation.

• Contribution 5: A new method based on morphological operations for the
identification of RPV-utilizable rooftop areas. It enables the elimination
of service areas and geometrically unsuitable areas from roof faces in a
spatial manner, and it facilitates a realistic assessment of rooftop solar
energy potential.

14

• Contribution 6: A new method based on metaheuristic optimization for
automatically identifying a layout of RPVs that leads to efficient energy
production. It considers the shape of roof segments, solar irradiation,
occlusion, and installation constraints for placing RPVs. It allows for a
more accurate assessment of rooftop solar potential as the number of RPVs
is estimated instead of just raw areas.

15

Figure 2. Research strategy of the thesis.

1.7 Dissertation outline

This dissertation is composed of two main parts. Part I summarizes the study,

in which the remainder is organized as follows. Chapter 2 briefly overviews

the concepts and algorithms that underpin the study. It explains SVMs, local-

ity-sensitive hashing, k-means clustering, Euclidean clustering, minimum den-

sity divisive clustering, and genetic algorithms. Chapters 3–5 explain the de-

veloped methods and their performance—presented as five scientific publica-

tions. More specifically, Chapter 3 describes the instance selection methods,

Chapter 4 describes the plane segmentation methods, and Chapter 5 describes

the methods for the identification of RPV-utilizable areas. Figure 3 demon-

strates the connection between Chapters 3–5 and the scientific papers. Finally,

Chapter 6 concludes the thesis and suggests directions for future work. Part II

is the collection of the five scientific publications—four journal articles and

one conference paper.

Literature survey

Research question formulation

Conclusion

New instance

selection methods

Evaluation and

benchmarking on
different datasets

against other

methods

New plane

segmentation
methods

Evaluation and

benchmarking on
different datasets

against other

methods

New methods for the

identification of
utilizable areas

Result analysis

Application:

Rooftop extraction

Application:

Roof face extraction

Figure 2. Research strategy of the thesis.

1.6 Research methodology
The flowchart in Figure 2 gives an overview of the research strategy followed
in this thesis. After conducting a literature review and formulating research
questions, the main core of the thesis, which is developing new methods, was
carried out. Firstly, two new instance selection methods using the concept of
locality-sensitive hashing were developed. The methods are general and can

15

be used in any spatial or non-spatial domain. To verify their effectiveness,
they were applied to different datasets, and in one of the experimental stud-
ies, the methods were incorporated into the procedure of automatic rooftop
extraction using SVMs. They were also benchmarked against some state-of-
the-art instance selection techniques. Secondly, two new plane segmentation
methods were developed based on the integration of clustering, region growing,
RANSAC, and planarity analysis to capitalize on the advantages of each method.
As an application, they were used to extract planar patches of rooftops. They
were compared with some other techniques on two test sites with different roof
morphologies to validate their performance. Following that, new methods for
identifying RPV-utilizable areas from the extracted planar segments were devel-
oped. The results of the methods were compared, and their energy production
was computed. Finally, the major findings of the study were concluded.

1.7 Dissertation outline
This dissertation is composed of two main parts. Part I summarizes the study, in
which the remainder is organized as follows. Chapter 2 briefly overviews the
concepts and algorithms that underpin the study. It explains SVMs, locality-
sensitive hashing, k-means clustering, Euclidean clustering, minimum density
divisive clustering, and genetic algorithms. Chapters 3–5 explain the developed
methods and their performance—presented as five scientific publications. More
specifically, Chapter 3 describes the instance selection methods, Chapter 4
describes the plane segmentation methods, and Chapter 5 describes the meth-
ods for the identification of RPV-utilizable areas. Figure 3 demonstrates the
connection between Chapters 3–5 and the scientific papers. Finally, Chapter
6 concludes the thesis and suggests directions for future work. Part II is the
collection of the five publications—four journal articles and one conference
paper.

16

Figure 3. Relationship between the scientific articles and Chapters 3–5.

1.8 Authorship contribution statement

The contributions of the authors of all papers are as follows. Mohammad

Aslani conceptualized the study with valuable inputs from Stefan Seipel. Mo-

hammad Aslani developed methodologies and did programming, formal anal-

ysis, investigation, writing, and revision. Stefan Seipel contributed to the con-

ceptualization of the methods and with comments and revisions during all re-

search steps and the writing of the papers. Mohammad Aslani is the corre-

sponding author of all papers.

Chapter 3 Chapter 4 Chapter 5

Paper I Paper II Paper III Paper IV Paper V

Figure 3. Relationship between the scientific articles and Chapters 3–5.

1.8 Authorship contribution statement
The contributions of the authors of all papers are as follows. Mohammad Aslani
conceptualized the study with valuable inputs from Stefan Seipel. Mohammad

16

Aslani developed methodologies and did programming, formal analysis, investi-
gation, writing, and revision. Stefan Seipel contributed to the conceptualization
of the methods and with comments and revisions during all research steps and
the writing of the papers. Mohammad Aslani is the corresponding author of all
papers.

17

18

2 Theoretical background

This chapter reviews the methods and concepts necessary for comprehending
the remainder of the thesis. First, the concepts of SVMs and locality-sensitive
hashing that lay the foundations of instance selection are presented. Then the
outlines of some clustering methods and a typical genetic algorithm—used to do
plane segmentation and RPVs placement optimization—are briefly explained.

2.1 Support vector machines
SVMs are among the best supervised machine learning models that have a solid
mathematical basis (Cortes and Vapnik, 1995, Vapnik, 1998) and are capable
of performing linear or nonlinear classification (Murphy, 2012). SVMs were
originally designed for binary classification; however, they can be extended to
handle multiclass classification by decomposing the original problem into a
series of binary problems (Hsu and Lin, 2002). This section explains only the
concepts of binary SVMs to show their potential for accurate classification.

16

2 Theoretical background

In this chapter, the methods and concepts necessary for comprehending the

remainder of the thesis are reviewed. We first present the concepts of SVMs

and locality-sensitive hashing that lay the foundations of instance selection.

Then the outlines of some clustering methods and a typical genetic algorithm—

used to do plane segmentation and RPVs placement optimization—are shortly

explained.

2.1 Support vector machines

SVMs are among the best supervised machine learning models that have a

solid mathematical basis (Cortes & Vapnik, 1995; Vapnik, 1998) and are ca-

pable of performing linear or nonlinear classification (Murphy, 2012). SVMs

were originally designed for binary classification; however, they can be ex-

tended to handle multiclass classification by decomposing the original problem

into a series of binary problems (Hsu & Lin, 2002). This section explains only

the concepts of binary SVMs to show their potential for accurate classification.

The fundamental idea behind SVMs is illustrated in Figure 4. Figure 4a

shows some decision boundaries for classifying a two-class dataset. The model

H1 cannot correctly delineate the classes, and the other two decision bounda-

ries correctly classify the dataset but with a small margin from each class. In

contrast, the decision boundary generated by an SVM and shown as a solid line

in Figure 4b has a maximal distance from the nearest training instances of each

class. It generalizes well in comparison to other possible decision boundaries

and has the minimum risk of misclassification on unseen samples as it has a

maximal distance from each class. SVMs determine the optimal decision

boundaries based on support vectors, which are the training instances that lie

at the edge of each class. Other instances are discarded as they do not contrib-

ute to estimating the decision boundaries. Indeed, SVMs generate decision

boundaries with a high degree of generalizability by using a small set of train-

ing instances.

(a) (b)

Figure 4. Basis of SVM classification for a two-class dataset. (a) Three different linear
classifiers—H1, H2, and H3. The first decision boundary, H1, does not correctly classify
all training instances. H2 and H3 correctly classify all training instances, but they are
close to the border instances. (b) Solid line represents a decision boundary generated
by an SVM. The line separates the classes with the maximal margin from each class.
Circled samples show support vectors. The area between two dashed lines is called the
margin.

X1

X2

X1

X2 H1 H3

H2

(a)

16

2 Theoretical background

In this chapter, the methods and concepts necessary for comprehending the

remainder of the thesis are reviewed. We first present the concepts of SVMs

and locality-sensitive hashing that lay the foundations of instance selection.

Then the outlines of some clustering methods and a typical genetic algorithm—

used to do plane segmentation and RPVs placement optimization—are shortly

explained.

2.1 Support vector machines

SVMs are among the best supervised machine learning models that have a

solid mathematical basis (Cortes & Vapnik, 1995; Vapnik, 1998) and are ca-

pable of performing linear or nonlinear classification (Murphy, 2012). SVMs

were originally designed for binary classification; however, they can be ex-

tended to handle multiclass classification by decomposing the original problem

into a series of binary problems (Hsu & Lin, 2002). This section explains only

the concepts of binary SVMs to show their potential for accurate classification.

The fundamental idea behind SVMs is illustrated in Figure 4. Figure 4a

shows some decision boundaries for classifying a two-class dataset. The model

H1 cannot correctly delineate the classes, and the other two decision bounda-

ries correctly classify the dataset but with a small margin from each class. In

contrast, the decision boundary generated by an SVM and shown as a solid line

in Figure 4b has a maximal distance from the nearest training instances of each

class. It generalizes well in comparison to other possible decision boundaries

and has the minimum risk of misclassification on unseen samples as it has a

maximal distance from each class. SVMs determine the optimal decision

boundaries based on support vectors, which are the training instances that lie

at the edge of each class. Other instances are discarded as they do not contrib-

ute to estimating the decision boundaries. Indeed, SVMs generate decision

boundaries with a high degree of generalizability by using a small set of train-

ing instances.

(a) (b)

Figure 4. Basis of SVM classification for a two-class dataset. (a) Three different linear
classifiers—H1, H2, and H3. The first decision boundary, H1, does not correctly classify
all training instances. H2 and H3 correctly classify all training instances, but they are
close to the border instances. (b) Solid line represents a decision boundary generated
by an SVM. The line separates the classes with the maximal margin from each class.
Circled samples show support vectors. The area between two dashed lines is called the
margin.

X1

X2

X1

X2 H1 H3

H2

(b)

Figure 4. Basis of SVM classification for a two-class dataset. (a) Three different linear
classifiers—H1, H2, and H3. The first decision boundary, H1, does not correctly classify
all training instances. H2 and H3 correctly classify all training instances, but they are
close to the border instances. (b) Solid line represents a decision boundary generated
by an SVM. The line separates the classes with the maximal margin from each class.
Circled samples indicate support vectors. The area between two dashed lines is called
the margin.

The fundamental idea behind SVMs is illustrated in Figure 4. Figure 4a
shows some decision boundaries for classifying a two-class dataset. The model
H1 cannot correctly delineate the classes, and the other two decision boundaries
correctly classify the dataset but with a small margin from each class. In
contrast, the decision boundary generated by an SVM and shown as a solid line
in Figure 4b has a maximal distance from the nearest training instances of each
class. It generalizes better than the other possible decision boundaries and has
the minimum risk of misclassification on unseen samples as it has a maximal
distance from each class. SVMs determine optimal decision boundaries based
on support vectors, which are training instances that lie at the edge of each
class. Other instances are discarded as they do not contribute to the estimation

19

of decision boundaries. Indeed, SVMs generate decision boundaries with a high
degree of generalizability by using a small set of training instances.

Consider T = {(xi,yi) |xi ∈ Rd , yi ∈ {−1,+1}}, i = 1, 2, . . . , t a set of train-
ing instances, where xi is a d-dimensional input feature of the ith instance, yi is
the corresponding class labels, and t is the number of instances. There might
be many decision boundaries that can correctly classify the instances, but only
one of them has the maximal margin. Finding a decision boundary with the
maximal margin, called the optimal decision boundary, is the main purpose
of SVMs. Depending on the data, there are different strategies for finding an
optimal decision boundary, explained in the following sections.

2.1.1 Hard-margin linear SVMs
A hard-margin linear SVM looks for a hyperplane that accurately separates
instances and has the maximum margin from the edge of each class. This
hyperplane, called the maximum-margin hyperplane, lies halfway between two
parallel hyperplanes with the greatest possible distances between them (Figure
5). Any hyperplane in a d-dimensional space can be defined as W T X +b = 0,
where W ∈ Rd denotes the hyperplane normal vector, and b denotes the bias
that controls the position of the hyperplane from the origin. Given a normalized
dataset, the two parallel hyperplanes passing along the edge of each class can
be defined using W T X + b = +1 and W T X + b = −1. A hard-margin linear
SVM finds W and b so that the distance between these two parallel hyperplanes
becomes maximum.

17

Consider T = {(xi, yi) | xi ϵ Rd, yi ϵ {1,-1}}, i = 1, 2, 3, …, t a set of training

instances, where xi is a d-dimensional input feature of ith instance, yi is the

corresponding class labels (for binary classification), and t is the number of

instances. There might be many decision boundaries that can correctly classify

instances T, but only one of them has the maximal margin. Finding a decision

boundary with the maximal margin, called an optimal decision boundary, is

the main purpose of SVMs. Depending on the data, there are different strate-

gies for finding an optimal decision boundary, explained in the following sec-

tions.

2.1.1 Hard-margin linear SVMs

A hard-margin linear SVM looks for a hyperplane that accurately separates

instances and has the maximum margin from the edge of each class. This hy-

perplane, called the maximum-margin hyperplane, lies halfway between two

parallel hyperplanes with the greatest possible distances between them (Figure

5). Any hyperplane in a d-dimensional space can be defined as 𝑊𝑇𝑋 + 𝑏 = 0,

where W ϵ Rd is the hyperplane normal vector, and b is the bias that controls

the position of the hyperplane from the origin. Given a normalized dataset, the

two parallel hyperplanes—pass along the edge of each class—can be defined

using the equations 𝑊𝑇𝑋 + 𝑏 = 1 and 𝑊𝑇𝑋 + 𝑏 = −1. A hard-margin linear

SVM finds W and b so that the distance between these two parallel hyperplanes

becomes maximum.

Figure 5. Maximum-margin line (hyperplane).

Finding the maximum-margin hyperplane requires preventing instances

from falling into the margin (the highlighted region in Figure 5). Thus, the

following constraints are defined according to Equation 1. The function must

return -1 or less for negative instances and +1 or greater for positive instances.

{
𝑊𝑇𝑥𝑖 + 𝑏 ≥ +1, 𝑖𝑓 𝑦𝑖 = +1

𝑊𝑇𝑥𝑖 + 𝑏 ≤ −1, 𝑖𝑓 𝑦𝑖 = −1
 (1)

X1

X2

Figure 5. Maximum-margin hyperplane.

Finding the maximum-margin hyperplane requires preventing instances from
falling into the margin (the highlighted region in Figure 5). Therefore, the
following constraints can be defined according to Equation 1. The function
must return −1 or less for negative instances and +1 or greater for positive
instances. {

W T xi +b≥+1, if yi =+1
W T xi +b≤−1, if yi =−1 (1)

The constraints can be combined as follows:

20

yi
(
W T xi +b

)
−1≥ 0 (2)

The objective function that should be maximized is the distance between
the hyperplanes W T X + b = +1 and W T X + b = −1. The distance between
these two hyperplanes is 2/∥W∥, and its maximization corresponds to the
minimization of ∥W∥. The objective function can be defined in a quadratic form
to simplify the calculations. Equation 3 shows the constrained optimization
problem solved in hard-margin linear SVMs. The solution to this optimization
problem, W and b, produces the maximum-margin hyperplane.

min
1
2
∥W∥2, subject to yi

(
W T xi +b

)
−1≥ 0 ∀i = 1, . . . , t (3)

This formulation of the problem is called the primal form. As the cost
function is quadratic, there is only a single global minimum. Solving the
problem in its present form is difficult because the parameter b plays no role
in the cost function. A method of Lagrange multipliers, a strategy for finding
the optimal points of a function with constraints, is used to solve this problem.
Equation 4 defines the Lagrangian function of the problem, which may be
optimized without further considering the constraints.

Lp(W ,b,α) =
1
2
∥W∥2−

t

∑
i=1

αi
[
yi
(
W T xi +b

)
−1
]

(4)

In this equation, αi ≥ 0 are Lagrangian multipliers. The solution to the
original constrained optimization problem always corresponds to a saddle point
of the Lagrangian function. More specifically, Lp should be minimized with
respect to W and b and should be maximized with respect to α while keeping
αi ≥ 0. Lp may be minimized by differentiating it with respect to W and b and
setting the derivatives to zero (Equations 5 and 6).

∂Lp

∂W
= 0⇒W =

t

∑
i=1

αiyixi (5)

∂Lp

∂b
= 0⇒

t

∑
i=1

αiyi = 0 (6)

Substituting Equations 5 and 6 into Equation 4 yields a new formulation
referred to as the dual form of the primary Lp.

LD =
t

∑
i=1

αi−
1
2

t

∑
i=1

t

∑
j=1

αiα jyiy jxT
i x j (7)

LD =
t

∑
i=1

αi−
1
2

t

∑
i=1

t

∑
j=1

αiHi jα j where Hi j = yiy jxT
i x j (8)

By rewriting Equation 8, the following optimization problem is obtained,
which is dependent on αi, and should be maximized with respect to αi.

21

max
α

[
t

∑
i=1

αi−
1
2

α
T Hα

]
s.t. αi ≥ 0 ∀i and

t

∑
i=1

αiyi = 0 (9)

This is a convex quadratic optimization problem and can be solved by
quadratic programming. After determining the optimized values of αi, W is
computed using Equation 5. The last step is to compute b. According to Karush-
Kuhn-Tucker condition, αi

[
yi
(
W T xi +b

)
−1
]
= 0. When αi > 0 (i.e., αi ̸= 0),

there will be:

αi
[
yi
(
W T xi +b

)
−1
]
= 0⇒ yi

(
W T xi +b

)
= 1⇒W T xi +b = yi (10)

As yi ∈ {−1,+1}, those instances whose α > 0 are on the hyperplanes
(W T X +b =±1), and they are support vectors. The parameter b can be com-
puted using the set of support vectors as follows:

b =
1
|S|∑s∈S

(
ys−W T xs

)
(11)

In this equation, S denotes the set of indices of the support vectors, and it is
determined by finding the indices i, where αi > 0. The optimal values of W and
b define the maximum-margin hyperplane. Each new point x′ is classified by
evaluating y′ = sgn(W T x′+b). Considering Equations 5 and 11 and knowing
that α values of only support vectors are greater than zero, it can be inferred
that only support vectors are used to predict the class of new instances, and
non-support vectors play no role in computing the output. Consequently, it is
not essential to incorporate all instances when classifying using SVMs; only
instances close to decision boundaries may be enough for accurate classification.

2.1.2 Soft-margin linear SVMs
Hard-margin linear SVMs suffer from two drawbacks. First, they cannot handle
data that are not linearly separable. For instance, no decision boundary can be
determined for the dataset in Figure 6a as it is not linearly separable. Second,
hard-margin SVMs are susceptible to overfitting and are sensitive to outliers.
For instance, the existence of only one outlier in Figure 6b has significantly
changed the decision boundary compared with Figure 4b.

To deal with these problems, it is necessary to relax the constraints to allow
for misclassification slightly. This is done by introducing a set of positive slack
variables ξi, i = 1, . . . , t to Equation 1 for each sample:{

W T xi +b≥+1−ξi, if yi =+1
W T xi +b≤−1+ξi, if yi =−1 where ξi ≥ 0 ∀i (12)

ξi denotes the distance between the sample and the hyperplane passing
through the support vectors of the sample class (Figure 7). If a point is on
the correct side of the margin boundary, its corresponding ξ is zero. The two
constraints can be combined to give:

22

19

max
𝛼

[∑ 𝛼𝑖
𝑡
𝑖=1 −

1

2
𝜶𝑇𝑯𝜶] s.t. 𝛼𝑖 ≥ 0 ∀i and ∑ 𝛼𝑖𝑦𝑖

𝑡
𝑖=1 = 0 (9)

This is a convex quadratic optimization problem and can be solved by quad-

ratic programming. After determining the optimized values of 𝛼𝑖, W is com-

puted using Equation 5. The last step is to compute b. According to Karush-

Kuhn-Tucker condition, 𝛼𝑖[𝑦𝑖(𝑊
𝑇𝑥𝑖 + 𝑏) − 1] = 0. When 𝛼𝑖 > 0 (i.e., 𝛼𝑖 ≠

0), we have:

𝛼𝑖[𝑦𝑖(𝑊
𝑇𝑥𝑖 + 𝑏) − 1] = 0 ⇒ 𝑦𝑖(𝑊

𝑇𝑥𝑖 + 𝑏) = 1 ⇒ 𝑊𝑇𝑥𝑖 + 𝑏 = 𝑦𝑖 (10)

As 𝑦𝑖 ∈ {+1,−1}, those instances whose 𝛼 > 0 are on the hyperplanes

(𝑊𝑇𝑋 + 𝑏 = ±1), and they are support vectors. The parameter b can be com-

puted using the set of support vectors as follows:

𝑏 =
1

|𝑆|
∑ (𝑦𝑠 − 𝑊𝑇𝑥𝑠)𝑠∈𝑆 (11)

In this equation, S denotes the set of indices of the support vectors, and it is

determined by finding the indices i, where 𝛼𝑖 > 0. The optimal values of W

and b define the maximum-margin hyperplane. Each new point 𝑥′ is classified

by evaluating 𝑦′ = 𝑠𝑔𝑛(𝑊𝑇𝑥′ + 𝑏). Considering Equations 5 and 11, and

knowing that α of only support vectors are bigger than zero, it can be inferred

that only support vectors are used to predict the class of new instances, and

non-support vectors (inner instances) play no role in computing the output.

Consequently, it will not be essential to incorporate all instances when classi-

fying using SVMs; only instances close to decision boundaries may be enough

for accurate classification.

2.1.2 Soft-margin linear SVMs

Hard-margin linear SVMs suffer from two drawbacks. First, they cannot han-

dle data that are not linearly separable. For instance, no decision boundary can

be determined for the dataset in Figure 6a as it is not linearly separable. Sec-

ond, hard-margin SVMs are susceptible to overfitting and are sensitive to out-

liers. For instance, the existence of only one outlier in Figure 6b has signifi-

cantly changed the decision boundary compared to Figure 4b.

 (a) (b)

X1

X2

No decision boundary

Outlier
X1

X2

Outlier

(a)

20

max
𝛼

[∑ 𝛼𝑖
𝑡
𝑖=1 −

1

2
𝜶𝑇𝑯𝜶] s.t. 𝛼𝑖 ≥ 0 ∀i and ∑ 𝛼𝑖𝑦𝑖

𝑡
𝑖=1 = 0 (9)

This is a convex quadratic optimization problem and can be solved by quad-

ratic programming. After determining the optimized values of 𝛼𝑖, W is com-

puted using Equation 5. The last step is to compute b. According to Karush-

Kuhn-Tucker condition, 𝛼𝑖[𝑦𝑖(𝑊𝑇𝑥𝑖 + 𝑏) − 1] = 0. When 𝛼𝑖 > 0 (i.e., 𝛼𝑖 ≠
0), there will be:

𝛼𝑖[𝑦𝑖(𝑊𝑇𝑥𝑖 + 𝑏) − 1] = 0 ⇒ 𝑦𝑖(𝑊𝑇𝑥𝑖 + 𝑏) = 1 ⇒ 𝑊𝑇𝑥𝑖 + 𝑏 = 𝑦𝑖 (10)

As 𝑦𝑖 ∈ {+1, −1}, those instances whose 𝛼 > 0 are on the hyperplanes

(𝑊𝑇𝑋 + 𝑏 = ±1), and they are support vectors. The parameter b can be com-

puted using the set of support vectors as follows:

𝑏 =
1

|𝑆|
∑ (𝑦𝑠 − 𝑊𝑇𝑥𝑠)𝑠∈𝑆 (11)

In this equation, S denotes the set of indices of the support vectors, and it is

determined by finding the indices i, where 𝛼𝑖 > 0. The optimal values of W

and b define the maximum-margin hyperplane. Each new point 𝑥′ is classified

by evaluating 𝑦′ = 𝑠𝑔𝑛(𝑊𝑇𝑥′ + 𝑏). Considering Equations 5 and 11 and

knowing that α values of only support vectors are greater than zero, it can be

inferred that only support vectors are used to predict the class of new instances,

and non-support vectors play no role in computing the output. Consequently,

it is not essential to incorporate all instances when classifying using SVMs;

only instances close to decision boundaries may be enough for accurate classi-

fication.

2.1.2 Soft-margin linear SVMs

Hard-margin linear SVMs suffer from two drawbacks. First, they cannot han-

dle data that are not linearly separable. For instance, no decision boundary can

be determined for the dataset in Figure 6a as it is not linearly separable. Sec-

ond, hard-margin SVMs are susceptible to overfitting and are sensitive to out-

liers. For instance, the existence of only one outlier in Figure 6b has signifi-

cantly changed the decision boundary compared with Figure 4b.

 (a) (b)

X1

X2

No decision boundary

Outlier
X1

X2

Outlier

(b)

Figure 6. (a) Example that a hard-margin linear SVM is unable to find a decision boundary,
and (b) Sensitivity of hard-margin linear SVMs to outliers.

yi
(
W T xi +b

)
−1+ξi ≥ 0 where ξi ≥ 0∀i (13)

This constraint will be true for any misclassified sample by setting their
corresponding ξ to a sufficiently large value. However, as the classification
objective is to reduce misclassification errors, a regularization term c∑

t
i=1 ξi

is added to the previous objective function (Equation 3) to penalize solutions
for which ξi are large. The parameter c regulates the compromise between the
margin width and the slack variable penalty. The larger the value of c is chosen,
the higher the penalty will be for samples that lie on the wrong side of the
margin boundary. Moreover, the tolerance for misclassification will decrease,
and the likelihood of overfitting will increase. On the other hand, setting c to a
small value may lead to unnecessarily high numbers of support vectors. It is
noteworthy that the optimization problem given by Equation 3 is a specific case
when c→ ∞.

20

Figure 6. (a) Example that a hard-margin linear SVM is unable to find a decision bound-
ary. (b) Sensitivity of hard-margin linear SVMs to outliers.

To address these issues, it is necessary to relax the constraints to allow for

misclassification slightly. This is done by introducing a set of positive slack

variables ξi, i = 1, …, t to Equation 1 for each sample:

{
𝑊𝑇𝑥𝑖 + 𝑏 ≥ +1 − ξ𝑖 , 𝑖𝑓 𝑦𝑖 = +1

𝑊𝑇𝑥𝑖 + 𝑏 ≤ −1 + ξ𝑖 , 𝑖𝑓 𝑦𝑖 = −1
 𝑤ℎ𝑒𝑟𝑒 ξ𝑖 ≥ 0 ∀𝑖 (12)

ξ𝑖 represents the distance between the sample and the hyperplane passing

through the support vectors of the sample’s class (Figure 7). If a point is on the

correct side of the margin boundary, its corresponding ξ is zero. The two con-

straints can be combined to give:

𝑦𝑖(𝑊
𝑇𝑥𝑖 + 𝑏) − 1 + ξ𝑖 ≥ 0 where ξ𝑖 ≥ 0 ∀𝑖 (13)

This constraint can always be true for any misclassified sample by setting their

corresponding ξ to a large value. However, as the classification objective is re-

ducing misclassification error, a regularization term 𝑐 ∑ ξ𝑖
𝑡
𝑖=1 is added to the

previous objective function (Equation 3) to penalize solutions (hyperplanes)

for which ξi are large. The parameter c regulates the compromise between the

margin width and the slack variable penalty. The larger the value of c, the

higher the magnitude of the penalty for samples that lie on the wrong side of

the margin boundary, the lower tolerance for misclassification, and the greater

the likelihood of overfitting. On the other hand, setting c to a small value may

lead to unnecessarily high numbers of support vectors. It should be noted that

the optimization problem given by Equation 3 is a specific case when c → ∞.

min
𝑊,𝑏,ξ

[
1

2
||𝑊||

2
+ 𝑐 ∑ ξ𝑖

𝑡
𝑖=1] s.t.𝑦𝑖(𝑊

𝑇𝑥𝑖 + 𝑏) − 1 + ξ𝑖 ≥ 0 and ξ𝑖 ≥ 0 ∀𝑖 (14)

Figure 7. Soft-margin decision boundary. Misclassification of points is allowed.

X1

X2

Figure 7. Soft-margin decision boundary. Misclassification of points is allowed.

min
W ,b,ξ

[
1
2
||W∥2 + c

t

∑
i=1

ξi

]
s.t. yi

(
W T xi +b

)
−1+ξi ≥ 0 and ξi ≥ 0∀i (14)

Reformulating the optimization problem as a Lagrangian gives Equation 15,
where αi ≥ 0 and µi ≥ 0 are the Lagrangian multipliers.

23

Lp(W ,b,ξ ,α , µ) =
1
2
||W∥2+c

t

∑
i=1

ξi−
t

∑
i=1

αi
[
yi
(
W T xi +b

)
−1+ξi

]
−

t

∑
i=1

µiξi

(15)
Lp should be minimized with respect to W, b, and ξ and maximized with

respect to α and µ . After setting the derivatives with respect to W, b, and ξ to
zero, substituting them back in, and simplification the results, the following dual
form of the optimization problem is obtained, which can be solved by quadratic
programming.

max
α

[
t

∑
i=1

αi−
1
2

α
T Hα

]
s.t. 0≤ αi ≤ c ∀i and

t

∑
i=1

αiyi = 0 (16)

Comparing Equations 16 and 9 shows that adding the regularization term
c∑

t
i=1 ξi has made only one change that is converting 0 ≤ αi to 0 ≤ αi ≤ c.

The parameter W is determined by solving the dual optimization problem and
substituting the optimized values of α into Equation 5. The parameter b is
computed in the same manner as in Equation 11, but the set of support vectors
used to calculate b is obtained using the indices i whose 0 < αi < c.

2.1.3 Soft-margin nonlinear SVMs
The produced decision boundaries of the explained SVMs are linear and may
not perform well in classifying nonlinearly separable data. Therefore, it is
necessary to extend them to allow for nonlinear decision surfaces. For this
purpose, the data are mapped into a high dimensional space, so the mapping
facilitates separating the data using a linear decision boundary. A function
Φ : Rd → F that maps any vector from the input space into a new space F
(sometimes called feature space) is used. To apply this mapping, it is necessary
to replace every x with Φ(x) in the SVM algorithm. As the algorithm can be
entirely expressed in terms of the product of xi and x j (i.e., xT

i x j), only the
products of the mapped inputs (i.e., Φ(xi)

T Φ(x j)) need to be calculated without
requiring calculating Φ(xi) and Φ(x j) separately. Therefore, a kernel function
is substituted for their product as follows:

k (xi,x j) = Φ(xi)
T

Φ(x j) (17)

This is referred to as the kernel trick (Boser et al., 1992), and its advantage
is that computing k(xi,x j) is much less expensive than computing Φ(xi)

T Φ(x j),
especially when the mapping is to a high-dimensional space. There are several
different kernel functions, and one that is widely used is the radial basis kernel
defined using Equation 18, in which σ is the parameter controlling the width of
the Gaussian kernel.

k (xi,x j) = exp

(
−
∣∣xi− x j

∣∣2
2σ2

)
(18)

24

Soft-margin SVMs using Gaussian kernels have two hyperparameters—c and
σ—affecting classification accuracy. With large values of the hyperparameters,
SVMs tend to overfit, and with small values of the hyperparameters, there is a
tendency for SVMs to underfit the training data. Therefore, it is necessary to
tune the hyperparameters for the task at hand carefully. In this thesis, nonlinear
soft-margin SVMs were used, and their hyperparameters were optimized using
Bayesian optimization through a cross-validation scheme (Shahriari et al., 2016)
to ensure proper classification accuracy.

Solving the optimization problems in Equations 9 and 16 involves quadratic
programming, which poses a computational complexity of O(t3) and memory
complexity of O(t2), where t denotes the number of training samples. These
high memory and computational complexities inhibit the applicability of SVMs
on large training samples. As non-support vectors do not play any role in
classification, one immediate remedy to the computational burden of training
SVMs is to eliminate non-support vectors from the training dataset using an
instance selection method with low computational and memory complexities.

2.2 Locality-sensitive hashing
Locality-sensitive hashing is an effective and fast approach for checking the
similarity among items (Leskovec et al., 2014). It relies on the concept of
locality-sensitive hash functions that aim to assign similar items to the same
bucket with a high probability while minimizing the likelihood of allocating
dissimilar items to the same bucket. In addition to having a suitable run time,
locality-sensitive hashing scales well with the data dimension (Indyk and Mot-
wani, 1998). Let X be an n-dimensional space, D be a distance measure, and
H = {h : X →U} be a set of hash functions that maps the original space X to
some universe U. The set H is called (d1, d2, p1, p2)-sensitive if the following
conditions remain valid for every h in H between any two points x and y:

• If D(x,y)≤ d1, then the probability that h(x) = h(y) is at least p1.
• If D(x,y)≥ d2, then the probability that h(x) = h(y) is at most p2.

The property of hash functions drawn from H is that close points have a high
chance of being hashed to the same value, whereas faraway points have a low
probability of being hashed to the same value. p1 should be high (close to 1)
to prevent false negatives, and p2 should be low (close to 0) to prevent false
positives. Nothing in these statements relates to what occurs when the distance
of the objects is between d1 and d2. The distances d1 and d2 can be as close as
possible, but the penalty is that p1 and p2 also get closer. However, it is feasible
to combine hash functions such that p1 and p2 are separated without affecting
the distances d1 and d2.

To decrease the probability of false positive p2, a set of k independently
selected hash functions of H are concatenated for a given integer M to form a
family of hash functions g(X) = (h1(X), h2(X), . . . , hk(X)), where hi ∈ H. As
a result, the probability of true positive p1 decreases as well. To compensate
for the decrease in p1—increase the collision probability of close samples in

25

buckets—a set of hash function families G = {g1, g2, . . . , gl} is constructed.
Datar et al. (2004) proposed a hash function h for the Euclidean metric

according to Equation 19. In this equation, a⃗ denotes an n-dimensional vector
whose components are selected independently from a Gaussian distribution with
a mean of 0 and a standard deviation of 1. The parameter b denotes a random
real value drawn uniformly from [0, r], and the parameter r controls the width
and number of buckets. A small value of w leads to a large number of buckets
with a small width. The hash function indicates in what slice of each hyperplane
the point (object) has fallen.

h⃗a,b(⃗x) =
⌊

a⃗ · x⃗+b
r

⌋
(19)

2.3 Clustering
Clustering is the most important group of unsupervised techniques. It divides
data points into a set of partitions based on a specific pre-defined objective
function, aiming to decrease inter-partition similarity and increase intra-partition
similarity. Indeed, data points are divided so that points within a group are
similar to one another and are dissimilar to points of other groups. Both the
similarity and the dissimilarity should be measurable in a clear and meaningful
manner. From the pattern recognition perspective, clustering should lead to a
representation that best reflects the population being sampled.

Given a set of input patterns T = {xi | xi ∈ Rd}, where t is the number of
instances and xi is the ith d-dimensional sample. In this thesis, clustering is
referred to as techniques that seek a k-partition of T, C = {C1, C2, . . . , Ck} (k ≤
t), such that
• Ci ̸=∅, i = 1, . . ., k;
• ∪k

i=1Ci = T ;
• Ci∩C j =∅, i, j = 1, . . ., k and i ̸= j

There are many well-known clustering methods, and they are used in dif-
ferent applications (Xu and Wunsch, 2005). This study employed k-means++,
Euclidean clustering, and minimum density divisive clustering (MDDC), which
are further explained in the following sections.

2.3.1 k-means and k-means++
k-means is one of the oldest clustering methods, and its concept is still exten-
sively used in different domains for cluster analysis purposes. k-means partitions
the dataset by finding k cluster centroids such that the sum of squared errors
between the centroids and their cluster members is minimized. Formally, the
goal of k-means is to find a set of k clusters (in the dataset T) whose centers are
µ = {µ1, µ2, . . ., µk} such that the following cost function is minimized:

Φ =
k

∑
j=1

∑
xi∈c j

∣∣xi−µ j
∣∣2 (20)

26

A typical way to minimize the cost function is Lloyd’s algorithm (Algorithm
1). It operates in the following steps: First, a set of k data points that serve
as k cluster centers is randomly chosen. Second, data points are assigned
to their nearest cluster center based on a similarity measure, e.g., Euclidean
distance. Third, cluster centers are recalculated as the means of assigned data
points (MacQueen, 1967). The second and third steps are repeated until some
convergence criteria are fulfilled, e.g., the maximum number of iterations or
minimum change in cluster centers. According to research, this algorithm is
likely to converge to the global optimum when the clusters are well-separated
(Meila, 2006).

Algorithm 1 Pseudo-code of Lloyd’s algorithm.

Input: A set of data points T = {xi |xi ∈ Rd}, i = 1, 2, . . . , t
Number of desired clusters k

Output: A set of k clusters C = {c j, j = 1, 2, . . . ,k}

1: Arbitrarily choose k data points from T as initial centroids
2: repeat
3: Assign each data point xi to the cluster that has the closest centroid
4: Calculate a new mean for each cluster
5: until convergence criteria are met

Lloyd’s algorithm has a problem of initialization sensitivity. It may lead to
different solutions for a given k and different initial values of centroids. Indeed,
it may not always lead to the global optimum solution for any initial values of
centroids. One way to overcome this problem is to run k-means multiple times
for the same value of k but with different initializations and choose the clustering
results with the smallest squared error (Equation 20). However, this idea is
computationally demanding, especially in large datasets. To circumvent this
problem, Arthur and Vassilvitskii (2007) developed k-means++ that features
a smart centroid initialization phase. It avoids poor solutions that standard
k-means might produce due to unsuitably chosen centroids. The idea of k-
means++ is that spreading out k initial cluster centroids enhances convergence
speed and decreases the possibility of converging to local minimum solutions.
In k-means++, the following steps are taken to choose initial centroids:
1. Pick the first centroid among the data points randomly.
2. Compute the distance d between each data point and the nearest centroid.
3. Pick the next centroid based on a weighted probability corresponding to

squared distances d2.
4. Repeat steps 2 and 3 until all k centroids are selected.

In both k-means and k-means++, the optimal number of clusters has to be
predefined. If k is less than the optimal value, the result does not reflect the
essence of the underlying data. In contrast, if k is greater than the optimal value,

27

the resulting model may represent unnecessary relationships between the data
points. To determine the optimal number of clusters, some methods have been
developed. In these methods, cluster purity (Manning et al., 2008) is measured
for different values of k, and the value that results in a suitable cluster purity
is chosen. Most of these methods are computationally inefficient, especially
when the dataset is large. It restricts applications of k-means and k-means++
in problems where automatic clustering is required and no domain knowledge
exists.

2.3.2 Euclidean clustering
Euclidean clustering essentially partitions the data points based on the closeness
of points, defined by a distance threshold r in Euclidean space (Klasing et al.,
2008). Clusters are created such that each point of a cluster lies in an r-radius
neighborhood of at least one point in the same cluster. The shape and number
of clusters are determined by the clustering process using the distance threshold
rather than being specified as input parameters to the algorithm. Therefore, this
algorithm is useful when the neighborhood distance is already known, but the
number of clusters is unknown. The major steps of the algorithm are as follows:
1. Go through all points.
2. If the current point has been assigned to a cluster, go to the next point.
3. For the current point

(a) Find all neighbors located within distance r.

(b) If any of these neighbors have been clustered, assign the current
point and all unassigned neighbors to the same cluster.

(c) If the current point has been clustered, and there are neighbors
assigned to different clusters, merge all these clusters.

(d) If the current point and its neighbors have not been assigned to any
cluster, define a new cluster and assign the points to it.

Algorithm 2 shows a detailed pseudo-code description of the clustering
method. The nearest neighbor queries account for the bulk of the computational
demand of clustering. To enhance the computational performance of the algo-
rithm, nearest neighbor queries are performed only for the points that have not
been clustered (lines 2–4). Moreover, a k-d tree can be used to accelerate the
nearest neighbor searches (Bentley, 1975).

2.3.3 Minimum density divisive clustering
MDDC is a density-based hierarchical clustering algorithm, which assumes
clusters are contiguous regions of high-probability density separated by con-
tiguous regions of low-probability density. It starts with a single, all-inclusive
cluster and generates a nested series of partitions by iteratively splitting clusters
until no clusters can be divided further (Algorithm 3). Partitions are formed
by a set of hyperplanes called minimum density hyperplanes (MDHs). MDHs
are determined to pass through regions with low-probability density and avoid

28

Algorithm 2 Pseudo-code of Euclidean clustering algorithm.

Input: A set of data points T = {xi |xi ∈ Rd}, i = 1, 2, . . . , t
Distance threshold r

Output: A set of clusters C

1: for each xi ∈ T do
2: if hasCluster(xi) then
3: go to the next point
4: end if
5: NN← neighbors of xi in radius r
6: for each x j ∈ NN do
7: if hasCluster(xi)&hasCluster(x j) then
8: if clusterO f (xi) ̸= clusterO f (x j) then
9: mergeClusters(clusterO f (xi),clusterO f (x j))

10: end if
11: else
12: if hasCluster(x j) then
13: clusterO f (xi)← clusterO f (x j)
14: else
15: if hasCluster(xi) then
16: clusterO f (x j)← clusterO f (xi)
17: end if
18: end if
19: end if
20: end for
21: if ¬hasCluster(xi) then
22: clusterO f (xi)← makeNewCluster
23: for x j ∈ NN do
24: clusterO f (x j)← clusterO f (xi)
25: end for
26: end if
27: end for

intersections with high-density areas (Pavlidis et al., 2016). In what follows, the
determination of an MDH is explained.

The density on a hyperplane H is defined as the integral of the probability
density function p along the hyperplane:

I(v,b) =
∫

H(v,b)
p(x)dx (21)

In this equation, v and b denote the unit normal vector of the hyperplane and
the displacement of the hyperplane from the origin, respectively. As the density
function p is unknown in practical applications, a continuous density estimator

29

Algorithm 3 Pseudo-code of MDDC.

Input: A set of data points T = {xi |xi ∈ Rd}, i = 1, 2, . . . , t
Output: A set of clusters C

1: Set c← T
2: while there is at least one cluster in C that can split further do
3: Select the largest cluster c among the clusters that can split
4: Split c into two subsets c1 and c2 using a minimum density hyperplane
5: Remove c from C and set C←C∪{c1,c2}
6: end while

with isotropic Gaussian kernels is used:

Î(v,b) =
∫

H(v,b)

1

t (2πh2)
d
2

t

∑
i=1

exp

{
−∥x− xi∥2

2h2

}
dx (22)

In this equation, h denotes the bandwidth for the kernel density estimator, t
denotes the number of instances, and d denotes the dimension of the dataset. The
advantage of this class of kernel density estimator is that Î(v,b) can be exactly
evaluated through a one-dimensional kernel density estimator, constructed by
the projections of the data points onto v and evaluating the density at b:

Î(v,b) =
∫

H(v,b)

1

t (2πh2)
1
2

t

∑
i=1

exp

{
− (b− v · xi)

2

2h2

}
dx (23)

The MDH for clustering is the solution to the minimization problem stated
in Equations 24–26. In this minimization, a projected vector v and intercept b
should be found such that the density distribution has a minimum at some point
between the projected data.

min
v

ϕCL(v) (24)

ϕCL(v) = min
b

fCL(v,b) (25)

fCL(v,b) = Î(v,b)+

(
e1/2h22π

)−1

ηε
max{0, µv−ασv−b,b−µv−ασv}1+ε

(26)
The parameters µv and σv denote the mean and standard deviation of

the projections {v · xi}t
i=1. The second term in Equation 26, (e1/2h22π)

−1

ηε

max{0, µv−ασv−b,b−µv−ασv}1+ε , is a penalty function that ensures the
optimal MDH does not have a large value of |b|. This constraint is necessary to

30

prevent hyperplanes from being placed far from the center of the data as the den-
sity is always close to zero at the tails of density functions. The parameter α > 0
specifies the trade-off between a balanced bi-partition and the ability to identify
hyperplanes with a lower density. Smaller values of α allow more balanced data
partitions at the expense of eliminating low-density hyperplanes that effectively
separate clusters. Increasing α , on the other hand, raises the probability of
separating only a few outlying observations. The parameter ε ∈ (0,1) ensures
globally continuous differentiability of the penalty function. The parameter
η ∈ (0,1) controls the distance between the minimizers of argmin

b
fCL(v,b) and

argmin
b

Î(v,b).

According to Pavlidis et al. (2016), η = 10−2 and ε = 1− 10−6 are suit-
able values and avoid numerical instability. The bandwidth parameter h is
automatically set using Silverman rule (Silverman, 1986). The optimal value
of α is adaptively determined by progressively increasing its value, solving
the optimization problem, and assessing outcomes. The time complexity of
estimating an MDH is linear with respect to the number of samples, making
MDDC suitable to handle large datasets. For more information, readers may
refer to Pavlidis et al. (2016).

Each resulting cluster from bi-partitioning needs to be evaluated to see if
it can split further in the next iterations. This evaluation is done by checking
the form of the density distribution of the cluster. If the distribution is uni-
modal, that is, the detected MDH falls at the endpoints of the search interval
[µv−ασv−b,b−µv−ασv], the cluster is deemed indivisible.

As is evident from Algorithm 3, MDDC does not require any prior knowl-
edge regarding the dataset as input parameters, such as the optimal number of
clusters or distance between points, and it adaptively determines the shape and
number of clusters inherent within the data. This property makes MDDC suit-
able for the tasks that require automatic clustering, such as plane segmentation
employed in this thesis.

2.4 Genetic algorithm
Genetic algorithms (GAs) are well-known metaheuristic optimization tech-
niques inspired by the process of natural adaptation to evolve solutions to
problems (Holland, 1992). They find the fittest solution to a given optimization
problem by repeatedly applying stochastic operators, emulating natural ways
of evolution, to a set of possible solutions (Haupt and Haupt, 2004). They
are more efficient than random and exhaustive search algorithms yet need no
derivative information or other auxiliary knowledge regarding the problem; only
the corresponding fitness levels affect the search directions.

Although there are different variants of GAs, they typically share the follow-
ing structure: A typical GA works by iteratively updating a pool of potential
solutions, known as a population. Each solution encoded into a chromosome-
like data structure is scored at each iteration using the fitness function, and some

31

fit solutions are selected to seed a new population. Some selected solutions are
passed on intact to the next population, and others serve as the basis for gener-
ating new offspring via genetic operations, including crossover and mutation.
The procedure forms a generate-and-test beam-search of solutions, where the
fittest variants of solutions are most likely to be considered next. It enables
GAs to effectively explore spaces of solutions with complex interdependent
components whose effects on the overall solution fitness values may be difficult
to model.

The pseudo-code shown in Algorithm 4 gives the outline of a prototypi-
cal GA. The algorithm begins with an initial set of random solutions P. The
generated solutions are evaluated using a fitness function defined based on the
optimization problem. Then, the next population of solutions Ps is formed by
probabilistically selecting solutions from the current population according to
their fitness as well as by producing new solutions. A part of the new solutions
is produced by applying a crossover operator to pairs of solutions in P, and
the remainder is generated by mutating the resultant solution generation. This
procedure is repeated until a sufficiently suitable solution is discovered. In what
follows, the main components of a GA are elucidated.

Algorithm 4 Pseudo-code of a prototypical genetic algorithm.

Input: A function that evaluates a solution and assigns a score to it, Fitness
The number of solutions in each population, p
The proportion of the population to be replaced by crossover at each

step, r
The mutation rate, m

Output: The most fit solution

1: P← a population of p randomly generated solutions encoded to chromo-
somes

2: Compute Fitness(i) for each i ∈ P
3: while fitness of the most fit solution in P is not sufficient do
4: [Selection]: Probabilistically select (1− r)× p solutions of P to add to a

new generation Ps.
5: [Crossover]: Probabilistically select r× p solutions of P, pair them up,

produce offspring solutions by applying the crossover operator and insert
the offspring solutions into Ps.

6: [Mutation]: Choose m× p members of Ps. For each, invert a random bit
in its representation.

7: P← Ps
8: Compute Fitness(i) for each i ∈ P
9: end while

10: Return the solution with the highest fitness from P

32

2.4.1 Encoding
Encoding is a process of representing solutions so that they can be easily
manipulated by genetic operators (e.g., crossover). All feasible solutions should
relate to at least one possible chromosome in encoding; otherwise, the entire
search space cannot be explored. The most common encoding scheme is binary
encoding, in which each solution is represented as a string of 0 and 1 bits (Katoch
et al., 2021), and each bit shows some characteristics of the solution. This type
of encoding allows for faster implementation of genetic operators; nevertheless,
modifications of the resulting solutions after applying genetic operators are
occasionally required. Value encoding is another common encoding scheme. In
this encoding, every solution is represented by a string of some type of value,
ranging from integers to complex objects. It is particularly beneficial when
the problem values are difficult to be encoded in a binary form. In this thesis,
value encoding was used. Other types of encoding are octal, hexadecimal,
permutation, and tree. Readers can refer to Sivanandam and Deepa (2008) for
more information.

2.4.2 Selection
Selection is a crucial step in GAs that determines whether a particular solution
can participate in the generation of the next population. It is usually stochas-
tically designed to maximize the likelihood of selecting solutions with a high
fitness level while retaining the diversity of the population large enough to avoid
convergence to suboptimal solutions. The most common selection techniques
are roulette wheel, rank, and tournament (Sivanandam and Deepa, 2008). In
roulette wheel, each solution is assigned to a wheel section whose size is pro-
portional to its fitness. Then the wheel is rotated, and the solution occupying
the section where the wheel marker stopped is chosen. In this manner, solutions
are selected with a probability proportional to their fitness. In the roulette wheel
method, solutions are sometimes chosen by using multiple markers equally
placed around the wheel. It eliminates the need to turn the wheel multiple
times as several solutions can be selected with a single spin of the wheel. Rank
selection is a modified form of roulette wheel selection. It uses ranks instead of
fitness values to determine the selection probability. Solutions are first sorted
ascendingly by their fitness values (from worst to best), and the likelihood of
selecting a solution is proportionate to its position in the sorted population.
In tournament selection, several tournaments consisting of a few numbers of
randomly selected solutions are conducted, and the fittest solution from each
tournament is chosen. In this method, the probability of a solution being se-
lected depends much less on its fitness value. In this thesis, rank selection was
used.

2.4.3 Crossover
Crossover is a basic genetic operator that produces offspring by fusing more than
one parent (Sivanandam and Deepa, 2008). As a way to stochastically generate

33

new solutions from existing solutions, it resembles the biological process of gene
recombination between chromosomes. From the optimization standpoint, the
purpose of crossover is to ease the exploitation of the search space and efficiently
evolve populations to optimal points via recombining solutions (Mitchell, 1996).
The most common crossover operators are single-point, multi-point, uniform,
shuffle, and intermediate, each with its own way of exploring and exploiting the
search space. In single-point crossover, parent bit strings are cut at a random
point, called the pivot point or crossover point, and the sections after the cuts
are swapped. Figure 8 illustrates single-point crossover, in which the bits after
the pivot point are swapped to generate offspring.

31

Figure 8. Example of single-point crossover.

2.4.4 Mutation

After crossover, the strings may be subjected to mutation. It is a random pro-

cess, analogous to biological mutation, where some of the bits of strings in the

population are flipped. More specifically, in the mutation step, a fraction of the

new population is first selected with uniform probability (not based on fitness),

and in each of the selected strings, a random bit is then picked, and its value is

inverted (Figure 9). While crossover is meant to leverage the current solutions

to find better ones, mutation is intended to aid in exploring the entire search

space. Indeed, the purpose of mutation is to maintain diversity from one pop-

ulation to the next population and to prevent trapping at a local minimum.

Figure 9. Example of mutation.

10101001011

01001011101

10101011101

01001001011

Initial

strings

Offspring

10101001011 10001001011

Figure 8. Example of single-point crossover.

Multi-point crossover is similar to single-point crossover, but it works with
more than one pivot point. In uniform crossover, solution bits are chosen
randomly for swapping, which may increase the level of disruption of the parents
but allows for better exploration of the search space. In shuffle crossover, bits
are first randomly shuffled in both parents—but in the same manner. Then a
single-point crossover operator by choosing a random pivot point is applied.
Bits in the generated offspring are finally unshuffled in the same manner as
they were initially shuffled. The effect of this crossover is comparable to that of
uniform crossover. Intermediate crossover, which is applicable to real variables,
generates offspring by taking a weighted average of the parents. It is controlled
by a scaling factor selected over a specified interval. This crossover can be
adapted to provide sufficient exploration of the search space. In this thesis,
intermediate crossover was employed.

10101001011 10001001011

Figure 9. Example of mutation.

2.4.4 Mutation
After crossover, the strings may be subjected to mutation. It is a random process,
analogous to biological mutation, where some of the bits of strings in the
population are flipped. More specifically, in a mutation step, a fraction of the
new population is first selected with uniform probability (not based on fitness),
and in each of the selected strings, a random bit is then picked, and its value is
inverted (Figure 9). While crossover is meant to leverage the current solutions to
find better ones, mutation is intended to aid in exploring the entire search space.

34

Indeed, the purpose of mutation is to maintain diversity from one population to
the next population and to prevent trapping at a local minimum.

35

36

3 Instance selection methods for SVMs

This chapter summarizes the contributions of Papers I and II (Aslani and Seipel,
2020, 2021). It accomplishes research objective I and addresses research
questions 1 and 2 (RQ1 and RQ2), introduced in Section 1.4.

3.1 Introduction
As datasets grow in size, many systems and algorithms have difficulty analyzing
them to generate exploitable knowledge. If a supervised learning algorithm
with high time and memory complexity, such as SVMs, is used, this issue can
be momentous and even hinder obtaining results (Nalepa and Kawulok, 2018).
Reducing the size of datasets by picking a representative subset, called instance
selection, is a potential solution that offers two advantages—saving memory
and accelerating classification algorithms (Cervantes et al., 2015, Olvera-López
et al., 2010b). Samples that are very close to one another (similar samples)
or samples far from classes boundaries—called inner samples—often do not
contribute to the classification accuracy and can be discarded. In this study, two
new instance selection methods, named DRLSH and BPLSH, were proposed.
They are inspired by locality-sensitive hashing and have suitable time complexity
to handle large datasets. In what follows, each method is explained in detail.

3.2 Instance selection method: DRLSH

3.2.1 Algorithm
DRLSH, the proposed instance selection method, searches for similar instances
based on partitioning the space into many buckets in several layers. It consists of
two major steps: 1) hashing data points into buckets and 2) measuring similarity
and removing similar instances. The first step is to identify the buckets that each
instance belongs to using a set of hash function families. Let G = {g1, g2, . . .,
gl} be a set of hash function families such that g(x ∈ T) = (h1(x), h2(x), . . .,
hk(x)), where hi denotes a hash function h : Rd → N (Equation 19). T = {(x1,
y1), . . ., (xn, yn)} is a training dataset in which x denotes a d-dimensional
input feature, y denotes the corresponding class, and n denotes the number
of training data. Each hash function family gi splits the input space into a
set of smaller regions known as buckets. Specifically, a hash function family
produces a layer of non-overlapping d-dimensional buckets. The output of a
set of hash function families G with l members can be perceived as l layers of
buckets (Figure 10). Indeed, G projects samples from a d-dimensional decimal
space to an l-dimensional integer space. Each data point in the new space
corresponds to a bucket id in the relevant layer. In the second step, instances
that share a bucket with a given data point are retrieved, and their similarity is
measured. The similarity index between two instances is defined as the number
of buckets they share in all l layers. Closer instances are likely to be hashed
in the same buckets in different layers, resulting in a high similarity index

37

value. Next, instances whose similarity index values to a given instance exceed
a predetermined threshold ST are eliminated. DRLSH is fast as it does not
investigate any possible pairs of samples for similarity measurements.

Figure 10 illustrates the meaning of the similarity index. It contains five
layers of hash function families gi and four data points A, B, C, and D. The
similarity index between A and B is four out of five, whereas that between A
and C is two out of 5. This is because the number of identical buckets for A
and B is four and that for A and C is two. Therefore, B is more similar to A in
comparison to C and D, and it can be considered dispensable.

33

a predetermined threshold ST are eliminated. DRLSH is fast as it does not in-

vestigate any possible pairs of samples for similarity measurements.

Figure 10 illustrates the meaning of the similarity index. It contains five

layers of hash function families gi and four data points A, B, C, and D. The

similarity index between A and B is four out of five, whereas that between A

and C is two out of 5. This is because the number of identical buckets for A

and B is four and that for A and C is two. Thus, B is more similar to A in

comparison to C and D, and it can be considered dispensable.

Figure 10. Example of similarity index concept. Different hyperplanes in each layer are
representations of hi.

Algorithm 5 presents the pseudo-code of DRLSH. The inputs to the algo-

rithm are a training dataset T, a set of hash function families G, and a similarity

threshold ST. The algorithm is composed of two major loops. The first loop

(lines 2–7) computes the bucket id of each instance in all layers, and its time

complexity is linear with respect to the number of instances n as every instance

is included only once. In the second loop (lines 8–26), the samples of class y

whose number of shared buckets with the current sample 𝑥 is greater than ST

are regarded as extraneous instances and removed. The time complexity of the

second loop is also linear with respect to the number of instances n. The num-

ber of layers l, the number of hash functions k, and the similarity threshold ST

are the parameters that directly contribute to the performance of DRLSH. In-

creasing the value of these parameters results in a longer computation time as

more small buckets are formed. The source code of DRLSH can be found at

https://github.com/mohaslani/DR.LSH.

A
B

C

A
B

C

A
B

C

A
B

C

A
B

C

Layer 2 (g2)

Layer 3 (g3)

Layer 1 (g1)

Layer 4 (g4)

Layer 5 (g5)

Bucket

D

D

D

D

D

Figure 10. Example of similarity index concept. Different hyperplanes in each layer are
representations of hi .

Algorithm 5 presents the pseudo-code of DRLSH. The inputs to the algorithm
are a training dataset T, a set of hash function families G, and a similarity
threshold ST. The algorithm is composed of two major loops. The first loop
(lines 2–7) computes the bucket id of each instance in all layers, and its time
complexity is linear with respect to the number of instances n as every instance
is included only once. In the second loop (lines 8–26), the samples of class y
whose number of shared buckets with the current sample x is greater than ST
are regarded as extraneous instances and removed. The time complexity of the
second loop is also linear with respect to the number of instances n. The number
of layers l, the number of hash functions k, and the similarity threshold ST are the
parameters that directly contribute to the performance of DRLSH. The source
code of DRLSH can be found at https://github.com/mohaslani/DR.LSH.

3.2.2 Parameter analyses
This section provides an empirical comparison to demonstrate the effect of
input parameters on the performance of DRLSH. This comparison uses a 2D
synthetic dataset comprised of 9000 instances with two classes (Figure 11a).
Table 1 summarizes the number of preserved samples with respect to k and
ST. For simplicity, the number of layers l is set to 10. The preservation rate

38

https://github.com/mohaslani/DR.LSH

Algorithm 5 Pseudo-code of DRLSH, the proposed instance selection method.

Input: A training dataset T = {(x1, y1), . . . , (xn, yn)}
A set of hash function families G = {g1, g2, . . . , gl} such that
g(x ∈ T) = (h1(x), h2(x), . . . , hk(x)) and hi is a hash function

(h : Rd → N)
ST denotes a similarity threshold and should not be greater than l

Output: A set of selected instances (SI ⊆ T)

1: SI←∅
2: for each x ∈ T do
3: for each function family g ∈ G do
4: bid← bucket id assigned to x by g
5: Add bid to bg

x
6: end for
7: end for
8: for each class y ∈ {y1, y2, . . . , ym} do
9: S←{xi |yi = y}; % S contains all instances in class y

10: for each x ∈ S do
11: I←∅
12: for each function family g ∈ G do
13: bid← bg

x
14: Neighbors← all instances of class y in bid except x
15: Add Neighbors to I
16: end for
17: for each unique z ∈ I do
18: SimilarityIndex← calculate the frequency of z in I
19: if SimilarityIndex >= ST then
20: Remove z from S
21: Remove z from all buckets
22: end if
23: end for
24: end for
25: Add S to SI
26: end for

decreases as buckets become coarser, and ST becomes smaller. It can be seen
that high values of k and ST yields high preservation rates. This is because
DRLSH becomes more rigorous in identifying similar samples when the values
of the input parameters increase. This property enables users to decide the
extent to which instances are preserved. Additionally, Table 2 compares the
execution time of DRLSH for different values of k and ST when l is set to 10.
The computation time increases as the parameters k and ST increase. This is
because the execution time of DRLSH is mostly dependent on the number of

39

preserved samples. The more samples are preserved, the more data points must
be passed through in the algorithm, and the longer the execution time becomes.
Figure 11b shows the selected instances for k = 20, ST = 4, and l = 10. It is clear
that DRLSH successfully preserves the extent of each class.

(a) (b)

Figure 11. (a) Original dataset, and (b) selected instances for k = 20, ST = 4, and l = 10.

Table 1. Number of instances selected for different values of k and ST (l = 10).

Similarity threshold (ST)
Number of hash functions in each layer (k)

30 25 20 15 10 5

8 2084 1661 1216 810 432 146
6 851 646 462 289 151 52
4 368 277 191 120 64 25
2 146 111 79 51 29 12

Table 2. Execution time (sec.) for different values of k and ST (l = 10).

Similarity threshold (ST)
Number of hash functions in each layer (k)

30 25 20 15 10 5

8 0.176 0.140 0.112 0.086 0.064 0.043
6 0.106 0.091 0.080 0.068 0.052 0.036
4 0.092 0.081 0.071 0.060 0.044 0.032
2 0.082 0.073 0.062 0.052 0.040 0.029

3.2.3 Rooftop extraction
The proposed instance selection method is general and can be useful in any
data mining application that requires handling large datasets. As an application,
it was incorporated into a procedure of pixel-based rooftop extraction using
SVMs. The proposed method has also been used in other applications by other

40

researchers, and readers can refer to (Aydin, 2022, Baldini and Hernandez-
Ramos, 2021) to see its performance results.

SVMs as robust classifiers have been widely utilized for rooftop extraction
(Gao et al., 2018, Huang and Zhang, 2013, Turker and Koc-San, 2015, Turlapaty
et al., 2012, Zhang and Guo, 2007). In the pixel-based rooftop extraction
procedure using SVMs, a training dataset based on features of pixels and their
labels is first produced. Features should be able to distinguish rooftops from
other objects; height and vegetation index are typical features for this purpose.
Then, an SVM is trained using the training dataset to predict the labels of other
pixels in the area.

The performance of a trained SVM is mainly a function of the instances used
for training. The generalization ability and accuracy of SVMs in unseen pixels
in test areas are attributable to the employed training instances. The training
dataset should be of a suitable size and properly cover the extent of each known
class (e.g., roof and non-roof). Otherwise, the training step becomes slow, or
the trained SVMs do not become sufficiently accurate. Therefore, selecting a
manageable subset of training pixels that provides a representative description
of each class and leads to suitable classification accuracy on unseen data is
necessary. A prevalent way is to manually select a few small patches of pixels
with a suitable distribution as training instances. However, it is time-intensive
and might not lead to desirable results. Another commonly used method is
randomly selecting a specific number of pixels from each class. Although this
strategy is fast, it might not satisfactorily characterize the spectral responses of
classes in the feature space. Another way is to choose some pixels systematically.
In this context, Jin et al. (2014) evaluated the performance of four conventional
sampling methods, including two methods based on class stratification and two
methods based on spatial stratification. The first group of methods considers
only the class of samples, and the second group considers both the spatial
distribution and class of samples. Although the class and spatial distribution
of samples are regarded, their distribution in the feature space—critical in
training—is overlooked in these methods. To address the mentioned issues,
DRLSH was used to choose informative instances (pixels).

3.2.4 Dataset preparation
The performance of DRLSH was evaluated on a test site located in downtown
Gothenburg. The employed spatial datasets include a true-orthophoto, an image-
derived DSM, LiDAR point clouds, and ground truth data of rooftops. The
spatial resolution of both the DSM and true-orthophoto is 10 cm, and the point
density of the LiDAR data is 3 points per square meter. All datasets were
obtained from the Swedish mapping, cadastral, and land registration authority1.
Noisy points in the LiDAR data were removed based on the difference between
the last and first returns. Moreover, the image-derived DSM was enhanced by

1www.lantmateriet.se

41

www.lantmateriet.se

the first return of the LiDAR data to ensure no gaps in the surface model. All
the collected data were georeferenced in SWEREF99. Figure 12 shows the
true-orthophoto of the test site.

To correctly segment rooftops using SVMs, different features for each pixel
of the area (as explanatory variables) were defined. These features are as
follows: 1) a normalized difference vegetation index (NDVI) estimating veg-
etation growth and biomass, 2) a normalized DSM (nDSM) (Zhang et al.,
2003) showing the height of each pixel, 3) a gradient magnitude image of the
DSM (Gonzalez et al., 2020) showing local height changes, 4) a second spatial
derivative image of the DSM (Gonzalez et al., 2020) showing enhanced sharp
changes of the height values, and 5) a terrain roughness image (Riley et al.,
1999) characterizing the heterogeneity in the DSM.

A training dataset was created based on the above features and the labels
taken from the ground truth data of rooftops. The dataset consists of 23,750,000
samples with five input features and one output feature. The output feature
shows if the sample belongs to a rooftop. Each output class occupies a distinct
area in the feature space based on its inherent characteristic and environmental
context.

Figure 12. True-orthophoto of the study area.

3.2.5 Results of evaluation and discussion
To evaluate the performance of the proposed method, it was benchmarked
against three other methods—random sampling, LSH-IS-S (Arnaiz-González
et al., 2016), and PSDSP (Carbonera and Abel, 2018). LSH-IS-S and PSDSP
have linear time complexity, making them well-suited for the prepared large
dataset. Preservation rate and classification loss are two quantitative metrics
used to evaluate the performance of the instance selection methods. These

42

metrics were estimated using a repeated stratified p-fold cross-validation scheme
(Ishibuchi and Nojima, 2013). In this scheme, the dataset is partitioned into
p folds, and each time p− 1 folds are considered a training set—utilized for
training SVMs after an instance selection method is applied. The remaining
fold is used as a test set to assess the prediction ability of SVMs. The entire
process is repeated r times to reduce the influence of partitioning the dataset.
The final classification loss and preservation rate are computed by averaging the
folds and repetitions. In this study, the parameters p and r were set to 10 and 7,
respectively.

Preservation rate and classification loss metrics are calculated using Equa-
tions 27 and 28. These two metrics were simultaneously employed because
an ideal instance selection method should be able to minimize the preserva-
tion rate while maintaining the original classification performance. In these
equations, NT R denotes the total number of instances in the training set, NST R
denotes the number of selected instances from the training set, x j denotes the
jth sample of the test set, m denotes the number of samples in the test set, f
denotes the decision boundary function obtained by the SVM trained on the
selected dataset, and f (x j) denotes the classification score for x j. Additionally,
c j ∈ {−1,+1} denotes the observed class label, where−1 indicates the negative
class (non-roof) and +1 indicates the positive class (roof) (Hastie et al., 2009).

Preservation Rate =
NST R

NT R
×100 (27)

Classi f ication Loss =
m

∑
j=1

log(1+ exp(− f (x j)c j)) (28)

Figure 13. Comparing the performance of LSH-IS-S, PSDSP, Random, and DRLSH.

Figure 13 compares the performance of DRLSH with the other methods re-
garding the classification loss and preservation rate. The methods were executed

43

for different input configurations (i.e., different values for input parameters)
to make the comparisons fair. Pareto optimality theory (Ehrgott, 2005) was
used to choose the best configuration (and method) as there are two conflicting
performance criteria. According to the Pareto optimality theory, optimal con-
figurations are the ones that are not dominated by others. Black circles show
Pareto points. As can be seen from the figure, DRLSH outperforms the other
methods as all the Pareto points are from the group of DRLSH. The impacts of
DRLSH on the preservation rate, classification accuracy, and execution time of
the SVMs are shown in Table 3. It offers that DRLSH can decrease the number
of instances and execution time significantly without considerably impairing
the original classification accuracy.

Table 3. Comparing DRLSH with the case that no instance selection method is used.

Preservation rate Classification Execution time
(%) accuracy (%) (sec.)

SVM 100 99.99 26915
DRLSH + SVM 0.026 99.98 492

3.3 Instance selection method: BPLSH

3.3.1 Algorithm
BPLSH, the proposed instance selection method, seeks border instances as
they are the samples significantly contributing to the construction of decision
boundaries. It is based on the idea that a border instance has heterogeneous
neighbors and is the closest to a sample from an opposite class. The pseudo-
code of BPLSH is presented in Algorithm 6. The inputs are a training dataset
T and a set of hash function families G, and the output is a subset of selected
instances. BPLSH consists of two phases: 1) identifying the buckets of each
sample (lines 2–9) and 2) finding border samples and removing non-essential
instances (lines 10–42). In the first phase, each instance is assigned to a set of
buckets by using a group of hash function families. The time complexity of the
first phase is O(n× d×M×L), where n is the number of instances, d is the
number of features, M is the number of hash functions, and L is the number
of hash function families. The following definitions are first presented to help
clarify the second phase:

Definition 1. The similarity index between two instances (SimIndex) is
defined as the number of buckets they share in all layers.

Definition 2. Neighbors of a given instance xi are the instances that share at
least one bucket with xi.

Definition 3. Two instances are quite close if their similarity index is equal
to L, where L is the number of layers.

Definition 4. The nearest neighbors of an instance xi are the neighbors that
have the maximum similarity index with xi.

The second phase consists of the following six steps:

44

I Extract the neighbors of sample xi.
II Calculate the similarity index of the neighbors.
III If xi and its neighbors are homogeneous, save xi, remove the neighbors
with SimIndex>= 2 from the training dataset, and go to step VI.
IV If xi and its neighbors are heterogeneous and the nearest neighbors of xi
from opposite classes are quite close, save xi and the nearest neighbors from
each opposite class and go to step VI.
V If xi and its neighbors are heterogeneous and the nearest neighbors of xi
from opposite classes are not quite close to it, save the nearest neighbors from
each opposite class, remove the quite close neighbors to xi with the same class
from the dataset, and go to step VI.
VI Repeat steps I to V until all instances in the dataset are either investigated
or deleted.

Algorithm 6 Pseudo-code of BPLSH, the proposed instance selection method.

Input: A training dataset T = {(xi, yi) |xi ∈ Rd , yi ∈ {1,2, . . . , p}}, i = 1, . . . , t
A set of hash function families G = {g1, g2, . . . , gL}, such that
g(x ∈ T) = (h1(x), h2(x), . . . , hM(x)), and hi is a hash function

(h : Rd → N)
Output: A set of selected instances (SI ⊆ T)

1: SI,bg
x ,bg

bid ←∅
2: for each (x, y) ∈ T do
3: i← index of (x, y)
4: for each function family g ∈ G do
5: bid← bucket id assigned to x by g
6: Add bid to bg

i
7: Add (x, y) to bg

bid
8: end for
9: end for

10: for each (x, y) ∈ T do
11: i← index of (x, y)
12: Neighbors←∅
13: for each function family g ∈ G do
14: bid← bg

i
15: I← all instances in bg

bid except x
16: Add I to Neighbors
17: end for
18: UNeighbors← unique elements of Neighbors
19: SimIndex← similarity index of UNeighbors to x
20: CN ← Classes of UNeighbors
21: CA← {y, CN}
22: if CA is homogeneous then

45

23: Remove UNeighbors with SimIndex >= 2 from T
24: Add (x, y) to SI
25: else if CA is heterogeneous then
26: MS← 0
27: for each C ∈CN except y do
28: NC ←UNeighbors whose class = C
29: SimIndexC← SimIndex of NC
30: M← max(SimIndexc)
31: SN← NC with SimIndexC = M
32: Add SN to SI
33: MS← max(MS,M)
34: end for
35: if MS is equal to L then
36: Add (x, y) to SI
37: else
38: SR←UNeighbors whose class = y & SimIndex = L
39: Remove SR from T
40: end if
41: end if
42: end for

In step III, only one instance from a homogeneous region is preserved.
These regions are not close to the decision boundaries and do not play an
important role in classification. Additionally, the neighbors of xi are removed
from the dataset to prevent exploring them in subsequent iterations, accelerating
the process. To ensure that border instances are preserved, neighbors with
SimIndex>=2 are removed, as neighbors with SimIndex>=1 may contain some
border instances. Steps IV and V process heterogeneous regions to identify
border instances. Both steps save the nearest neighbors from each opposite
class as border instances. The only difference between steps IV and V is the
closeness of xi to border instances. If xi is quite close to border instances, it
is preserved as well (step IV). Otherwise, quite close neighbors are regarded
as interior-redundant instances and removed (step V). The upper bound of the
time complexity of all the mentioned steps is O(n×N), where N is the average
number of neighbors for each instance. The source code of BPLSH can be
found at https://github.com/mohaslani/BPLSH.

3.3.2 Parameter analyses
It is illustrated how the input parameters—M and L—affect the resulting sub-
sets. To this end, BPLSH was executed for different values of M and L on
a synthetic two-dimensional dataset comprising 30,141 instances with three
classes indicated in Figure 14a. Tables 4 and 5 summarize the preservation rate
and execution time for M ∈ {20, 60, 100} and L ∈ {10, 20, 30}. It is observed
that the preservation rate decreases when M or L increases. Furthermore, the
execution time of BPLSH on the dataset lowers when M increases. This is

46

https://github.com/mohaslani/BPLSH

because as the parameter M grows, the bucket sizes reduce, the number of
instances with the homogeneous proximity region increases, and fewer samples
thus need to be assessed. The selected instances of the synthetic dataset for M =
60 and L = 30 are shown in Figure 14b. It is self-evident that BPLSH removes
most interior samples while retaining the patterns placed around the decision
borders.

(a) (b)

Figure 14. (a) Original dataset, and (b) obtained dataset for M = 60 and L = 30.

Table 4. Preservation rate of BPLSH (%).

Number of hash Number of hash functions (M)

function families (L) 20 60 100

10 40.52 18.38 13.61
20 37.16 17.04 11.65
30 33.56 16.13 10.78

Table 5. Execution time of BPLSH (sec.).

Number of hash Number of hash functions (M)

function families (L) 20 60 100

10 2.12 1.64 1.56
20 5.52 3.20 2.71
30 9.48 4.76 3.91

3.3.3 Rooftop extraction and data
The effectiveness of BPLSH was verified by applying it to different datasets.
However, in this dissertation, only the experiment of rooftop extraction is
discussed, and readers can refer to Paper II (Aslani and Seipel, 2021) for the

47

other experiments. The employed rooftop extraction procedure is similar to that
of Section 3.2. The same spatial dataset—including a true-orthophoto, an image-
derived DSM, LiDAR point clouds, and ground truth data of rooftops—was
employed but in a different area in downtown Gothenburg shown in Figure 15.

A training dataset based on the fusion of the true-orthophoto and the DSM
was prepared that consists of about 1,100,000 instances with five input features
and one output feature. The input features were formed based on an nDSM, a
gradient magnitude of the DSM, a second spatial derivative of the DSM, terrain
roughness, and NDVI. The output feature showing the label of points (roof and
non-roof) was obtained from the rooftop ground truth data. The high number
of training instances necessitates applying instance selection to accelerate the
training phase of SVMs.

Figure 15. True-orthophoto and boundary of the study area.

3.3.4 Results of evaluation and discussion
BPLSH was benchmarked against three representative instance selection meth-
ods, namely NPPS (Shin and Cho, 2007), SVMKM (Barros de Almeida et al.,
2000), and CBCH (Birzhandi and Youn, 2019). These methods were chosen ow-
ing to their effectiveness and ease of application. All instance selection methods
were performed for different input configurations to ensure fair comparisons.
The performance of the SVM on the original training set—denoted by NoIS—is
also presented to better appreciate the effect of the instance selection methods.
Like the previous experiment, all methods were evaluated through a repeated
stratified p-fold cross-validation scheme. Moreover, classification errors on test
sets and preservation rates were used to evaluate the performance of the instance
selection methods. The preservation rate and classification error are calculated
according to Equations 27 and 29.

48

Classi f ication Error = 100− NCT E

NT E
×100 (29)

In Equation 29, NT E and NCT E denote the number of instances and the
number of correctly classified instances of the test set, respectively. Figure
16a compares the performance of the methods for different values of input
parameters in terms of preservation rate and classification error. NPPS leads to
the highest classification error, and SVMKM yields the highest preservation rate,
but BPLSH adequately balances the two metrics. The Pareto optimality theory
was used to identify which method has the best performance. The Pareto set in
Figure 16b indicates that BPLSH dominates SVMKM, CBCH, and NoIS. Table
6 also lists the effects of BPLSH on the preservation rate, classification error,
and execution time. It is evident that BPLSH significantly reduces the number of
instances and execution time by maintaining the original classification accuracy.

(a) (b)

Figure 16. (a) Comparing SVMKM, CBCH, NPPS, BPLSH, and NoIS, (b) Pareto-optimal
sets.

Table 6. Effect of BPLSH on preservation rate, classification error, and execution time.

Preservation rate Classification Execution time
(%) error (%) (sec.)

SVM 100 0.014 910
BPLSH + SVM 2.834 0.014 509

49

50

4 Plane segmentation methods

This chapter summarizes parts of Papers III, IV, and V contributions (Aslani and
Seipel, 2022b,a,c). It accomplishes research objective II and addresses research
questions 3–6 (RQ3–RQ6), introduced in Section 1.4.

4.1 Introduction
In automatic rooftop plane segmentation using DSMs, rooftop pixels are grouped
into non-overlapping planar patches. It is a key process for a wide variety of
spatial use cases and is particularly critical for determining ideal places for
RPVs installation. Two methods for plane segmentation were proposed—the
first of which is based on clustering, and the second one is based on model
fitting. In this chapter, these methods are described, and their performance is
assessed.

4.2 Plane segmentation method I

4.2.1 Algorithm
In the first plane segmentation method, initial planar patches are obtained by
clustering. To be able to identify planar segments by clustering, three issues
should be addressed: 1) defining a suitable feature space, 2) managing unclear
cluster boundaries, and 3) maintaining adaptability and computational efficiency
of clustering. A suitable feature space should provide the potential for distinctly
outlining planar segments. Indeed, the feature space should be defined such that
pixels belonging to the same planar segments are mapped close to each other
while remaining distant from pixels belonging to other segments. In this study,
the feature space was defined by the normal vector of each pixel (pixels have x,
y, and z components). This feature space definition is viable as pixels on the
same planar segment usually have similar normal vectors. However, mapping
all pixels of a rooftop in the feature space may make the cluster boundaries of
the planar segments obscure (second issue) and may disturb clustering. This is
because rooftops can have some pixels with ambiguous normal vectors that are
randomly scattered in the feature space and do not match those of nearby pixels.
These pixels are usually located in the vicinity of more than one plane or noisy
pixels, and they are called non-planar pixels. To address this issue, excluding
non-planar pixels from the clustering process is necessary.

Being located in the proximity of multiple planes, the error of plane fitting
to the neighborhood of non-planar pixels is substantial. Therefore, non-planar
pixels may be identified by fitting planes and measuring the fitting errors.
Principal component analysis (PCA) is used to find the best fitting plane. In
PCA, a 3D covariance matrix for each pixel p and its neighboring pixels is first
calculated. Next, eigenvalues λ1≥ λ2≥ λ3 and their corresponding eigenvectors
v1, v2, and v3 of the covariance matrix are computed. The eigenvector v3
approximates the normal vector of a fitted plane whose perpendicular distances

51

to the points are minimal. The eigenvalue λ3 contains the error of plane fitting,
and the larger it is, the more likely the pixel p and its neighbors are to be
non-planar. As a result, pixels whose λ3 is larger than a predefined threshold
are selected as non-planar pixels.

By having planar pixels, initial segments are formed by clustering their
normal vectors. Given the possibly large size of rooftops, as well as the fact
that the shape and number of clusters vary across them, it is necessary to
utilize a clustering algorithm that can handle large datasets and adaptively
determine the shape and number of clusters (third issue). MDDC (Pavlidis et al.,
2016) introduced in Chapter 2 satisfies these requirements. It is a statistically
well-founded clustering algorithm with an optimized computational speed. It
has a linear time complexity with respect to the number of points and can
automatically determine the shape and number of clusters, making it ideally
suited for rooftop plane segmentation.

Each resulting planar patch obtained by clustering may contain multiple
parallel or coplanar segments that are not spatially connected. This is because
pixels are grouped only based on their normal vectors, and their spatial con-
nectivity is not considered in clustering. Therefore, such planar patches are
separated in the original spatial space using Euclidean clustering, introduced
in Chapter 2. Finally, the initially excluded non-planar pixels are assigned to
the best segments using a new segment growing procedure. It employs the
clustering-derived segments as robust seeds, obviating the need for seed se-
lection in traditional segment growing algorithms. In what follows, the steps
of the designed segment growing procedure are described. First, patches are
sorted by their size, and a plane is fitted to the largest patch. Then, if the fitted
plane accurately estimates adjacent non-planar pixels and segments, they are
merged with the patch. The growing criteria are based on the point-to-plane
distance and the angle between normal vectors. In particular, a point-to-plane
distance threshold and an angle threshold are used to check whether adjacent
pixels or segments can be added to the current patch. These thresholds should
be determined based on the accuracy of the DSM. Next, the neighbors of the
expanded patch are evaluated, and the procedure is repeated until no further
segments or non-planar pixels are merged. Once the growth of the largest patch
is complete, its initial seed and all added segments are excluded from the list.
Afterward, the next largest patch is selected, and the above procedure is repeated
until no patch remains on the list.

Non-planar pixels are allowed to be assigned to several patches in segment
growing, and the best segments for those pixels are determined separately in
the end. The distances of each non-planar pixel to the corresponding patches
are first calculated and then assigned to the closest segments. This strategy
alleviates the effects of the growing order on the assignment of non-planar
pixels.

52

4.2.2 Test sites and data
The proposed plane segmentation method was evaluated in two test sites. The
first test site is located in Gothenburg, and it features a heterogeneous mix
of buildings with variations in shape and orientation. Its DSM has a spatial
resolution of 10 cm and has been generated using image matching by Swedish
mapping, cadastral, and land registration authority. The second test site is
located in Uppsala and contains a residential neighborhood with detached
buildings. Its DSM has a spatial resolution of 15 cm and has been produced from
LiDAR point clouds with an average density of 67 pts/m2. The LiDAR point
cloud was kindly provided by Uppsala municipality2 for non-commercial use.
Varied urban morphologies of the test sites along with different dataset properties
make the evaluation of plane segmentation more thorough and trustworthy. For
more details regarding the test sites, please refer to Paper V (Aslani and Seipel,
2022c).

4.2.3 Results of evaluation and discussion
To do rooftop plane segmentation, rooftop boundaries should be extracted first.
The procedures explained in Chapter 3 may be used for this purpose. However,
other methods were employed for the sake of variation. The rooftops of the
first test site were extracted using an analytical method. Properties such as
height, greatest width, and area were used to separate rooftops from other
above-ground objects. For more details regarding the method employed for
rooftop extraction in the first test site, please refer to Paper III (Aslani and Seipel,
2022b). The rooftops of the second test site were extracted using PointNet++, a
deep learning model (Qi et al., 2017). It is a popular neural network for semantic
segmentation of unorganized LiDAR point clouds. It allows for multiscale point
feature learning and can be trained without requiring parameters specific to
objects in point clouds. It captures both the local and global features. Please
refer to Paper IV (Aslani and Seipel, 2022a) for further information on extracting
rooftops using PointNet++.

Planar segments were identified by applying the proposed method on the
extracted rooftops. Figure 17 illustrates some results of plane segmentation.
Visual inspection shows that the proposed plane segmentation method is suc-
cessful in capturing planar segments. Holes in some roof faces occur due to
noise or small rooftop superstructures, including vents and small chimneys, that
cannot be recognized as independent planar segments.

Completeness =
T P

T P+FN
(30)

Quality =
T P

T P+FP+FN
(31)

2www.uppsala.se/

53

www.uppsala.se/

Figure 17. Plane segmentation results over some rooftops. The true-orthophoto is used
only for visualization purposes.

Completeness and quality at the pixel-based level are two metrics used to
quantitatively assess the reliability of the proposed plane segmentation method.
These two metrics are calculated using Equations 30 and 31. In the equations,
TP, FP, and FN denote true positive, false positive, and false negative, respec-
tively, and they are computed by comparing the extracted planar segments
with the manually prepared ground truth data (Cai et al., 2018). RANSAC
and region growing—extensively employed in plane segmentation—were also
applied to benchmark the performance of the proposed method (Grilli et al.,
2017, López-Fernández et al., 2015, Xie et al., 2020), but only the results of
RANSAC are presented in the thesis. Table 7 summarizes the assessment results
for the test sites. According to Rottensteiner et al. (2012, 2014), the proposed
plane segmentation method is practically effective and relevant as completeness
and quality are greater than 70% in both test sites. Moreover, the proposed
method outperforms RANSAC in terms of completeness and quality. It is also
noticed that the methods perform better in the Uppsala test site that is ascribed
to the rooftop complexity and the DSM accuracy of the Uppsala test site. More
specifically, this is because the rooftops are more intricate in the Gothenburg
test site, and the height accuracy of the DSM is lower as well.

Table 7. Assessment results in the test sites.

Method Test site Completeness (%) Quality (%)

Proposed method
Gothenburg 84.74 73.90

Uppsala 98.69 98.22

RANSAC
Gothenburg 50.75 42.16

Uppsala 96.93 94.43

54

4.3 Plane segmentation method II

4.3.1 Algorithm
The second method is based on multi-model fitting. The initial segments are
identified using a RANSAC-like strategy. Using RANSAC to find planar patches
of rooftops is a multi-model fitting problem in the sense that RANSAC must be
applied multiple times. In these problems, RANSAC often produces spurious
planes across the boundaries of roof faces. This is because RANSAC may use
non-planar pixels to generate hypotheses. To avoid this problem, non-planar
pixels must first be excluded from the set of pixels used for hypotheses genera-
tion in RANSAC. For this purpose PCA can be employed, similar to Section
4.2. However, it is sensitive to small changes and may produce inconsistent
normal vectors. To address this limitation, a simple but effective planarity
analysis method shown in Algorithm 7 was proposed. This method identifies
non-planar pixels by re-estimating PCA normal vectors and comparing them
with the original ones. The median estimator is used to re-estimate PCA normal
vectors, and as it is a robust estimator, the resulting normal vectors become more
consistent and less affected by local changes. A pixel is considered non-planar
if one of the angles between its normal vector and those of its neighbors exceeds
a predefined threshold.

Algorithm 7 Planarity test.

Input: Pixels of a rooftop PX
PCA normal vectors L
Angle threshold θ

Output: Planar pixels F
Non-planar pixels G

1: for each pixel p ∈ PX do
2: Lp← Normal vectors of p from L
3: N← [median(Lp

x), median(Lp
y), median(Lp

z)]
4: N← N/∥N∥
5: φ ← angles between N and Lp

6: if max(φ) < θ then
7: Add p to F
8: else
9: Add p to G

10: end if
11: end for

The identified planar pixels are segmented into non-overlapping segments
using RANSAC. Locally optimized RANSAC is used instead of classical
RANSAC for this purpose. This is because classical RANSAC employs the very
minimum sample size, three points, and may not accurately group all pixels in a
segment even when the samples are free of outliers. However, locally optimized

55

RANSAC improves classical RANSAC by performing a local optimization
step on the so-far-the-best plane (Lebeda et al., 2012). In the locally optimized
RANSAC, in addition to the point-plane distance, the angle between the point
normal vector and the plane normal vector is considered in picking inliers to
prevent the creation of meaningless segments.

In this step, multiple planar patches that are coplanar yet spatially separated
may be grouped into a single segment as spatial connectivity of pixels is not
considered in RANSAC. Euclidean clustering is then used to split multi-part
patches. Therefore, in each iteration, locally optimized RANSAC followed by
Euclidean clustering is applied, and the segmented pixels are excluded from
the list of pixels. The procedure is repeated on the remainder of the pixels until
no segment can be found. Finally, the non-planar pixels, initially excluded,
are assigned back to the best segment using the segment growing procedure
explained in Section 4.2.1.

4.3.2 Results of evaluation and discussion
The two test sites introduced in Section 4.2.2, Gothenburg and Uppsala, were
used to evaluate the performance of the second proposed plane segmentation
method. A visualization of the plane segmentation results on some rooftops
is shown in Figure 18. As is seen in the figure, most planar segments are
successfully identified. The performance of the method was evaluated in terms
of completeness and quality (Equations 30 and 31) and was compared with
that of RANSAC. Table 8 summarizes the performance of the methods for both
test sites. It suggests that the proposed method has suitable performance and
outperforms RANSAC.

Figure 18. Some samples of the plane segmentation results.

Similar to the experiments in Section 4.2, the methods have better perfor-
mance in the Uppsala test site owing to the DSM accuracy and intricacy of
rooftops. Moreover, comparing Tables 7 and 8 shows that the second plane
segmentation method has slightly better performance than the first method.
However, the second method failed in some cases, one of which is seen in

56

Figure 19. In this example, the method cannot completely identify a roof face
because tree canopies have occluded parts of it.

Table 8. Evaluation results in the test sites.

Method Test site Completeness (%) Quality (%)

Proposed method
Gothenburg 89.75 80.53

Uppsala 100.00 99.52

RANSAC
Gothenburg 50.75 42.16

Uppsala 96.93 94.43

Figure 19. Example of the method failure.

57

58

5 Spatially detailed methods for automatic
identification of RPV-utilizable areas

This chapter summarizes parts of Papers III, IV, and V contributions (Aslani
and Seipel, 2022b,a,c). It accomplishes research objective III and addresses
research questions 7 and 8 (RQ7 and RQ8), introduced in Section 1.4.

5.1 Introduction
RPVs harvest sunrays and turn them into energy, and they have been recog-
nized as a potent technology for satisfying part of the energy demand of cities.
However, their economic feasibility is contingent on some factors that should
be evaluated before deployment. The first factor is the shadow cast by nearby
objects. Shadow decreases the amount of irradiation reaching rooftop surfaces
and can considerably impair the performance of RPVs. The second factor is the
slope and aspect of the underlying surface over which RPVs are mounted. They
have a significant impact on how solar panels are exposed to the sun. The third
factor is the size of the planar segment that RPVs are installed over. Installing
RPVs across small segments may require special structures, which increases
installation costs. These factors together render rooftops heterogeneous in
terms of suitability for placing RPVs as they often consist of multiple planar
segments with different slopes, aspects, and sizes. They also contain rooftop
superstructures (e.g., chimneys) that cast shadows on adjacent segments and
cause discontinuity in major planar segments. Therefore, only certain areas
of rooftops are cost-effective for installing RPVs. These areas become even
more limited when local installation regulations are considered. Determining
these areas, referred to as utilizable areas, is necessary for a reliable estimate
of RPVs energy production. Two new methods for identifying utilizable areas
were proposed. The methods scrutinize planar segments for their suitability in a
spatially detailed manner. Each method contains a new way of analyzing planar
segments to find utilizable areas.

5.2 Identification of areas based on morphological operations
This method identifies utilizable areas of each planar segment by applying three
constraints—technical, geometric, and solar. As an installation requirement,
the technical constraint removes service areas—margins between the edges of
RPVs and edges of segments—to ease accessibility. The geometric constraint
excludes parts of segments that cannot accommodate an RPV in terms of
dimensions. The solar constraint eliminates segments that are insufficiently
exposed to the sun due to occlusion or their orientation. Figure 20 illustrates the
effects of the constraints. The steps for applying these constraints are further
explained in the following sections.

59

(a) (b)

(c) (d)

Figure 20. Schematic presentation of the utilizable area extraction procedure. (a) Rooftop
planar segments are shown in red, green, and blue. (b) Rooftop areas obtained by
applying the technical constraint. It removes buffer zones around the edges of segments
dedicated to accessibility and safety. (c) Impact of the geometric constraint. Areas that
cannot accommodate an RPV are excluded. For example, a small area between the
dormer and the ridge. (d) Final utilizable areas for RPVs installation after eliminating the
segments with a low average amount of solar irradiation (e.g., mainly shadowed). All the
steps are fully automated.

5.2.1 3D-2D conversion
Applying these constraints requires further spatial analysis of planar segments.
While planar segments generally have three-dimensional geometry in space, they
can be considered two-dimensional as they consist of planar points. Analyzing
them in a 3D manner adds unnecessary complexities and makes the process
computationally demanding. To avoid these problems, 3D planar segments are
first converted into 2D. This is done using a coordinate system transformation
such that the new z-axis becomes parallel to the normal vector of the planar
segment. The transformation consists of rotations around the z and y axes, and
it preserves the original shape of 3D segments, such as inner angles, length, and
width. Figure 21b indicates a 2D planar segment transformed from 3D.

5.2.2 Technical constraint
Depending on the local installation regulations, there should be a margin be-
tween the segment and the RPVs as a service area. These areas are excluded
from utilizable areas by applying the technical constraint. Most studies applied
the technical constraint in a non-spatial manner, for example, by employing a

60

(a) (b) (c)

(d) (e) (f)

Figure 21. (a) Top view of a 3D planar segment, (b) Segment converted into 2D, (c)
Service areas highlighted in pink, (d) Geometrically unsuitable areas in pink, (e) Utilizable
areas of the segment, and (f) Top view of the utilizable areas.

constant coefficient. However, this study applied the technical constraint in a
spatial manner, i.e., in terms of regions derived from roof faces. The proposed
way of removing service areas is by utilizing a morphological erosion operation,
one of the fundamental operations in image processing. It is based on a struc-
turing element for probing the segment (Sundararajan, 2017), and it eliminates
areas that cannot contain the structuring element completely. The employed
structuring element is circular with a radius equal to the width of the requested
service area Wez. By applying the erosion operator, the segment is shrunk by
the radius of the structuring element (Figure 21c).

5.2.3 Geometric constraint
Some parts of the shrunken segments may not yet provide sufficient room for
RPVs, and thus, including them as utilizable areas may lead to overestimating
solar energy potential. In most studies, the geometric constraint is either ignored
or applied in a naı̈ve manner. A typical way in the literature is to remove
segments whose areas are below a specific threshold (Groppi et al., 2018, Hong
et al., 2017, Huang et al., 2015). However, this method lacks the flexibility
necessary for detailed spatial analysis to find potential subareas of segments.
For example, the roof face shown in Figure 22 is quite likely to satisfy any area
condition and thus be deemed completely utilizable. However, a portion of
it—the cross-hatched area—is too small to accommodate an RPV with a size of
1.7 m × 1.0 m, and that part must thus be considered non-utilizable.

A new algorithm based on morphological opening operations was proposed
to remove geometrically unsuitable parts. An opening operation identifies

61

4
 m

4 m 4 m

4
 m

 5 m

3
.2

 m

3
.2

 m

Figure 22. Sample segment. The highlighted part does not offer enough space for
installing an RPV with a size of 1.7 m × 1.0 m.

Algorithm 8 Pseudo-code of the proposed algorithm for applying the geometric
constraint.

Input: A shrunken segment RFT
A solar panel SP with a size of RPVsize
A set of rotation angles ∆ = {0◦,10◦,20◦, · · · ,170◦}

Output: A segment without geometrically unsuitable parts RFT G

1: RFT G← a zero matrix with a size of RFT
2: for each θ ∈ ∆ do
3: SPθ ← rotate SP with an angle of θ

4: Iθ ← OSPθ
[RFT] %OSPθ

is an opening operation with structuring element
SPθ

5: RFT G← union(RFT G, Iθ)
6: end for
7: RFc

T G← connected component labeling(RFT G)
8: for each RFr

T G ∈ RFc
T G do

9: if area(RFr
T G)> area(SP) then

10: Preserve RFr
T G

11: end if
12: end for

regions of the segment that may be covered by the structuring element when it
is completely enclosed inside the segment. The pseudo-code of the proposed
algorithm is presented in Algorithm 8. The algorithm inputs are a segment
RFT obtained from the previous step, a structuring element representing a solar
panel SP, and a set of angles ∆ for rotating SP. The algorithm iteratively applies
a number of opening operations with varying orientations of the structuring
element. Indeed, the employed solar panel SP is rotated around its center by
θ ∈∆, and it is used as the structuring element in each iteration. This is because
solar panels can be installed with different orientations in practice. By applying
the opening operation, the areas of the segment that can offer enough room for
a rotated solar panel SPθ are preserved. The output RFT G is the merging of all
suitable regions obtained over the iterations. Finally, segments with an area
smaller than that of the solar panel are excluded. Figures 21d and 21e illustrate

62

geometrically unsuitable regions and obtained utilizable areas.

5.2.4 Solar constraint
In this step, the corresponding 3D forms of the resulting segments from the pre-
vious steps are first determined (Figure 21f). Then the segments are evaluated
in terms of average solar irradiation level. Utilizable areas must be exposed to
an adequate amount of solar irradiation; otherwise, they might not be economi-
cally viable. Segments that receive low irradiation are eliminated by selecting
an appropriate threshold value SoIT . Indeed, segments whose average solar
irradiation is below SoIT are excluded from utilizable areas.

5.2.5 Results and discussion
The proposed method was applied to the two test sites introduced in Section
4.2.2, and the results are presented and discussed. The identification of utilizable
areas involves estimating solar irradiation maps over rooftops, and the solar
model of ArcGIS Desktop was used for this purpose. The solar model estimates
the global solar irradiation of an area at a given time by considering direct and
diffuse components. The direct component contains solar radiation that reaches
the earth’s surface directly from the sun without being scattered or absorbed
by the atmosphere. The diffuse component comprises sunrays dispersed by
molecules and particles in the atmosphere that yet still reach the earth’s surface.

To accurately model the direct and diffuse components of solar irradiation,
three different maps are computed: a viewshed map, a sun map, and a sky
map. A viewshed map represents the sky occlusion caused by surrounding
objects when looking at the sky from a particular point. It is used to incorporate
shadow effects necessary for more realistic estimates of solar irradiation. A sun
map represents discretized sun positions in the sky during a specific period. It
is computed depending on the time configuration, temporal granularity (hour
interval and day interval), and location of the area. The intersection of the
viewshed and sun maps, showing visible sun positions for a specific location,
is used to compute the direct component. A sky map represents a subdivided
view of the entire sky-dome discretized into a series of sectors along zenith and
azimuth. The diffuse component is computed based on the intersection of the
sky map and the viewshed map.

Atmospheric effects are also taken into account in computing the direct
and diffuse components. Transmittance and diffuse proportion are two input
parameters of the model describing the atmospheric effects. They have a
substantial impact on estimates of solar irradiation. Transmittance estimates the
average fraction of incoming solar radiation that passes through the atmosphere.
It typically ranges from 0.4 for cloudy sky conditions to 0.7 for very clear
sky conditions. Diffuse proportion estimates the fraction of global normal
radiation flux that reaches the surface after being scattered. Its typical values
are between 0.2 for very clear skies and 0.7 for dense clouds. These parameters

63

were calibrated using NASA surface meteorology and solar energy databases3.
The estimated global solar irradiation in a sample scene is shown in Figure 23.
As is evident, shadow effects are considered in the solar irradiation estimation.
Additionally, as expected, south-facing roof faces receive the highest solar
irradiation.

Figure 23. Annual global solar irradiation incident in a sample scene.

The utilizable areas were derived by applying the technical, geometric, and
solar constraints. The width of service areas Wez, solar irradiation threshold
SoIT , and size of an RPV were set to 0.3 (m), 1000 (kWh/m2/year), and 1.7
(m) × 1.0 (m), respectively. These values can vary depending on different
factors such as local regulations, technological-economic advancements of
RPVs, location, and anticipated energy needs. Figure 24 shows the resulting
utilizable areas in a sample scene. As is seen in the figure, the impacts of minor
superstructures, highlighted by white circles, are considered in identifying
utilizable areas. Additionally, the proposed method does not choose utilizable
areas from north-facing segments, and mostly south-facing rooftop areas are
recognized as utilizable. Some large south-facing planar segments might not
be considered utilizable—e.g., the rooftop in the bottom right corner in Figure
24—which is owing to shadow effects. It can be inferred that the method
explicitly considers the geometry, superstructures, and orientations of rooftops
along with shadow effects in identifying utilizable areas.

Table 9 lists the total area (in m2) and annual electricity yields (in kWh) for
rooftops and their utilizable parts in the test sites. The electricity yields are
estimated using Equation 32. In this equation, IV denotes the total amount of
global irradiation (in kWh/m2) that is incident on the segment in a given period,

3https://power.larc.nasa.gov/data-access-viewer/

64

https://power.larc.nasa.gov/data-access-viewer/

Figure 24. Top view of the identified utilizable rooftop areas of some buildings.

R denotes the spatial resolution of the DSM (in m), ψ denotes the tilt (slope)
angle of the segment, αe denotes the module efficiency, and αpr denotes the
performance ratio. Module efficiency shows the percentage of the received solar
energy that can be converted into electricity, and it depends on the employed
technology of the RPV (Green et al., 2021). The performance ratio describes
the relationship between the actual and theoretical energy output of an RPV,
and it is a function of environmental and engineering-related factors (e.g., dirt
and temperature) (Romero Rodrı́guez et al., 2017). The module efficiency and
performance ratio were set to 0.16 and 0.75, respectively.

E = IV ·R2 · 1
cosψ

·αe ·α pr (32)

Table 9. Comparing the rooftop regions with utilizable regions over the test sites.

Gothenburg Uppsala
test site test site

Area

Entire rooftop regions (m2) 64417 4181
Utilizable regions (m2) 17385 627

Ratio (%) 27 15

Annual Entire rooftop regions (kWh) 7085719 402895
Energy Utilizable regions (kWh) 2319862 80766
Yield Ratio (%) 33 20

According to Table 9, 27% and 15% of rooftops at the Gothenburg and
Uppsala test sites are utilizable, a considerable proportion when it comes to
urban scales. The energy yields of utilizable regions are one-third and one-fifth
of those of the entire rooftop regions in the test sites, which are significant
decreases. It reveals the prominent role of orientation, occlusions, and service
areas in rooftop solar energy potential estimates. In other words, it indicates
the amount of overestimated energy yield that may result from ignoring the
mentioned considerations. It has to be noted that the accuracy of the utilizable

65

area estimation is attributed to the accuracy of plane segmentation, which is—in
turn—a function of the accuracy of the employed data and plane segmentation
method. The more accurate the DSM and plane segmentation methods are, the
more accurate the estimation of utilizable areas will be.

5.3 Identification of areas considering optimal placement of
RPVs

The previous method does not consider the layout of RPVs, and thus, it may lead
to some inaccuracies in determining utilizable areas. To address this limitation,
a new method based on the placement of RPVs was proposed. It identifies
a viable layout of RPVs that maximizes energy production of rooftops while
considering the shape, solar irradiation, occlusion, and service areas of rooftop
segments. It uses metaheuristic optimization to find the optimal layouts with
the highest number of RPVs in highly irradiated areas.

5.3.1 Placement of RPVs
The method consists of two major steps: 1) initial processes and 2) RPVs place-
ment. The first step involves obtaining the required information for designing
a layout of RPVs. The boundaries of planar segments are first identified and
converted into 2D (Aslani and Seipel, 2022b). Next, service areas are excluded,
and solar irradiation distributions over rooftops are computed (Fu and Rich,
2000, Rich et al., 1994). The second step includes determining the optimal
layouts of RPVs and computing their energy yields. The optimal layouts are
defined as the ones that produce the highest amount of energy while avoiding
the placement of RPVs in areas with low irradiation. Determining the optimal
layouts requires parametric modeling of RPVs placement and defining a fitness
function. A layout of RPVs over a planar segment is defined using the following
six variables:

• O(Ox, Oy): initial point for placing RPVs.
• j: orientation of RPVs.
• d: distance between rows of RPVs.
• β : direction of RPVs rows.
• k: distance between adjacent RPVs in one row.

To produce a layout of RPVs over a segment, the bounding box of its polygon
derived from the previous step, RF, is first computed. Then, RPVs are placed
inside the bounding box based on the chosen values of O(Ox, Oy), β , j, k, and
d. Afterward, RPVs that are not entirely inside the polygon RF are eliminated.
Finally, the average solar irradiation incident on each RPV is estimated, and
the RPVs whose average solar irradiation values are below SoIT are considered
inefficient and removed.

A fitness function evaluates the quality of a produced layout. Different fitness
functions may be defined depending on the purpose of the RPVs deployment.
In this study, the fitness function is defined based on solar irradiation incident

66

on RPVs. Particularly, the sum of the average solar irradiation of the RPVs in a
layout is regarded as the fitness function. The layout with the highest fitness
function value should be chosen as optimal. A genetic algorithm (GA) is used to
solve this optimization problem. It is a metaheuristic search algorithm based on
Darwin’s theory of evolution (Holland, 1992). It iteratively evolves populations
of potential solutions using biologically inspired operators, such as mutation
and crossover, to converge to the optimal solution. For more details on GAs,
please refer to Chapter 2. It should be noted that there are numerous alternative
optimization techniques to GAs for this problem (Kennedy and Eberhart, 1995,
Mirjalili and Lewis, 2016, Mirjalili et al., 2014, Chu et al., 2006). However,
determining which optimization algorithm is best suited to the problem is not
within the scope of this study, and the GA is utilized only as a proof of concept.
After optimization with the GA, the corresponding 3D coordinates and energy
production of the obtained RPVs are computed.

5.3.2 Results and discussion
The method was applied to the test sites described in Section 4.2.2, and the
results are briefly presented and discussed. Similar to Section 5.2.5, the solar
model of ArcGIS Desktop was used to estimate solar irradiation over rooftops,
and the diffuse proportion and transmittance parameters were calibrated using
NASA surface meteorology and solar energy databases. The parameters Wez
and SoIT , were respectively set to 0.5 (m) and 1000 (kWh/m2/year), and the
size of an RPV was set to 1.7 (m) × 1.0 (m). The layout variables (O, j, β , d,
k) were determined to maximize the fitness function. The output of the layout
optimization in a sample scene is shown in Figure 25. The figure shows that roof
geometry, superstructures, and solar irradiation are considered in placing RPVs.
For instance, no RPVs are deployed over north-facing segments as expected.
Additionally, the lower part of the rooftop in the bottom right corner of the
figure is not covered by RPVs. This is owing to the shadow cast by the trees on
the south of the rooftop. Due to the objective of the optimization, which is to
put more RPVs in highly irradiated regions, it follows that RPVs are placed on
rooftops without any gaps between them (i.e., d = 0 and k = 0).

Table 10. Summary statistics of the rooftop regions and resulting RPVs in the test sites.

Gothenburg Uppsala
test site test site

Area

Entire rooftop regions (m2) 64417 4181
RPV-covered regions (m2) 11415 532

Ratio (%) 18 13

Annual Entire rooftop regions (kWh) 7085719 402895
Energy RPV-covered regions (kWh) 1527178 68734
Yield Ratio (%) 22 17

Table 10 compares the entire rooftop and RPV-covered regions in both
test sites regarding the area and annual energy yields. The electricity yields

67

are computed using Equation 32, in which the efficiency αe and performance
ratio αpr of RPVs were set to 0.16 and 0.75, respectively. Regarding the area,
RPVs cover about 18% and 13% of the rooftops in the test sites. Comparing
the energy yields of rooftops and their RPV-covered regions shows that the
proposed method plays a critical role in preventing the overestimation of solar
energy potential by 4–6 times. Comparing Tables 9 and 10 also reveals that
the first method is overestimating RPVs potential. This is because it computes
utilizable areas at the segment level, whereas the second method computes them
at the RPV level, allowing for a more thorough and realistic analysis of rooftop
areas.

Figure 25. Optimized placement of RPVs in a sample scene.

68

6 Conclusion and future work

This thesis addressed three issues in classification, segmentation, and spatial
analysis in the way of arriving at an accurate estimate of RPVs potential. The
first issue was the training of SVMs for classification tasks in large datasets.
Despite being one of the most powerful classifiers, SVMs have O(n3) time
complexity, making them unsuitable for large datasets. This is particularly
problematic in pixel-based rooftop extraction, where datasets produced from
training areas mostly contain large numbers of instances. One potential solution
is to select a small subset of training data reflective of the entire set. Most
existing methods for this purpose are either prohibitively time-consuming or
unsuccessful at balancing the classification accuracy and reduction rate. The
second issue was the extraction of planar segments of rooftops, as RPVs are
installed based on planar patches. Plane segmentation should be able to extract
all planar patches and have a low risk of under-segmenting roof superstructures.
This is because rooftop superstructures restrict the placement of RPVs to a
considerable extent, and under-segmentation of rooftop superstructures may
lead to overestimating RPVs potential. The third issue was finding utilizable
areas of each planar segment for RPVs. Accurate identification of utilizable
areas is indispensable for a realistic estimate of rooftop solar energy potential.
Utilizable areas should meet certain requirements, namely reasonable size for
accommodating RPVs, receiving sufficient solar irradiation, and complying
with local installation regulations. The task of identification of utilizable areas
is inherently complex due to rooftop occlusions, uneven distribution of solar
irradiation, and the mentioned requirements for placing RPVs. Therefore, new
spatial analyses that can thoroughly scrutinize planar segments by considering
the mentioned factors are necessary.

Some methods were proposed for (a) instance selection, (b) plane segmen-
tation, and (c) identification of RPV-utilizable areas. They can assist in the
extraction and modeling of rooftops as well as a realistic assessment of RPVs
potential. Two new instance selection methods, DRLSH and BPLSH, were
proposed on the basis of locality-sensitive hashing. They both identify indis-
pensable samples by analyzing the similarity of data points and their labels.
DRLSH aims to identify similar instances of each class, whereas BPLSH aims
to identify both similar instances and border instances. DRLSH reduces the
number of samples by eliminating similar data points from each class separately.
However, in BPLSH, samples from all classes are analyzed together, and only
similar samples far from the decision boundaries are eliminated. The time com-
plexity of DRLSH is less than that of BPLSH. However, BPLSH is more likely
to preserve the original decision boundaries of datasets as it aims to preserve
border instances rather than only eliminate similar instances. To verify their
performance, they were benchmarked against some state-of-the-art methods. In
one experimental study, they were incorporated into a procedure of pixel-based
rooftop extraction from the integration of DSMs and aerial images. The results
showed that they outperform the other methods, and thus, they are suitable for

69

integration into the rooftop extraction procedure.
Two new data-driven methods for plane segmentation in DSMs were pro-

posed, both of which have a suitable level of accuracy. The first method relies
mostly on clustering, whereas the second relies primarily on model fitting. In
both methods, planarity analysis is incorporated to enhance segmentation. In
the first method, initial planar patches are identified by clustering the normal
vectors of planar pixels obtained by planarity analysis. Unlike the existing
clustering-based methods—requiring non-trivial parameter tuning or even prior
knowledge of the number of clusters—the clustering step is adaptive, mak-
ing it straightforward to apply to any dataset. Additionally, it has optimized
computational efficiency, allowing for the handling of high-resolution DSMs.
To precisely segment the transition between two planar segments and prevent
over-segmentation, modified region growing is applied to the initial planar
patches. In the second plane segmentation method that is less sensitive to noise,
planar segments are identified by locally optimized RANSAC, followed by
modified region growing. It uses a new planarity analysis method to exclude
non-planar pixels from RANSAC to circumvent the creation of spurious planes.
Unlike PCA, the new planarity analysis method is less sensitive to slight local
changes and noise in estimating normal vectors and identifying non-planar
pixels. The two proposed methods were benchmarked against some commonly
used methods, and the results indicated the superiority of the proposed methods.

Two new spatially detailed methods for the identification of utilizable areas
were proposed. Both methods consider installation regulations (service areas),
solar irradiation, roof shape, and occlusions in computing the utilizable areas.
The first method is based on morphological operations and identifies utilizable
areas by excluding service areas, geometrically unsuitable areas, and roof faces
with low irradiation. However, the second method identifies utilizable areas by
directly placing RPVs on planar segments. It searches for a layout of RPVs
that best uses areas of planar segments by utilizing a metaheuristic optimization
algorithm. The results showed that the second method provides more flexibility
in scrutinizing planar segments and thus leads to more realistic outputs.

Outliers in datasets drastically decrease classification accuracy and lead to
poor prediction results. Outliers are data points whose predictive attributes
or classes are incorrect. The proposed methods for instance selection are
likely to preserve outliers. One potential direction for future work is to design
some specific mechanisms/heuristics in DRLSH and BPLSH so that they can
recognize outliers while eliminating indispensable samples. Indeed, some
outlier-filter stages can be added to make them robust to outliers. In this thesis,
the proposed instance selection methods were evaluated on SVMs. k-nearest
neighbors is another well-known classifier that—despite its simplicity—has high
time complexity. As DRLSH and BPLSH have suitable time complexities, they
can be potential instance selection methods for k-nearest neighbors. Therefore,
another suggestion for future study is to evaluate the performance of DRLSH
and BPLSH on k-nearest neighbors and determine how well they can balance
the classification accuracy and reduction rate.

70

Due to inaccuracy in the input data and plane segmentation methods, the
resulting planar patches inevitably have irregular boundaries, causing straight
lines to seem jagged. Additionally, this irregularity in boundaries may impair
further analysis. To improve the results, planar segments can be transferred
into structured polygons using a regularization method that considers the global
topology and structure of the rooftop. It can also help with greater transfer-
ability across multiple platforms in geoinformatics. In this study, the plane
segmentation methods are limited to only DSMs as input, and in the case of
having LiDAR point clouds, they should first be converted to DSMs. Although
this conversion decreases the amount of input data and simplifies neighborhood
definition, it may introduce smoothing effects at sharp objects. Therefore, it
would be beneficial to develop the plane segmentation methods so they can also
work with LiDAR point clouds.

The estimation of utilizable areas is a function of the spatial resolution of
the DSMs. If their resolution decreases, even large rooftop features suffer in-
creasingly from under-segmentation; hence, less importance is given to rooftop
features in identifying utilizable areas. In this thesis, only two spatial resolutions,
10 and 15 cm, were evaluated. Another suggestion for future work is to measure
the sensitivity of the utilizable area estimation to the DSM spatial resolution
and evaluate how much utilizable areas may vary as the spatial resolution of the
DSM gradually becomes coarser. Moreover, in this study, RPVs were placed
to maximize the energy production of a rooftop while avoiding low-irradiated
areas regardless of the energy demand of buildings. The mismatch between
the energy production of RPVs and the energy demand of a building leads to
unwanted power flow between the household and the grid. If the daily RPVs
generation and electricity consumption profiles are different, the building needs
to either export a portion of the generated energy back to the grid or import
energy from the grid. These situations contribute to financial loss for the owner
when the price of power imported is greater than that of export. Therefore, it is
important to appropriately balance energy production and energy demand. It
would be interesting to develop a method that searches for a layout with the
fewest possible RPVs that maximizes the self-consumption of the building. This
can result in a reduction in operational energy costs. Another limitation regard-
ing placing RPVs in the developed methods is that they can be placed over any
planar patches with suitable solar irradiation and geometry regardless of their
roofing material. For instance, RPVs may be placed over glass roofs or large
skylight windows, which is not common in practice. To address this limitation,
the material composition of each planar segment should also be recognized and
considered in the placement procedure. However, the identification of rooftop
materials using DSMs is almost impossible as they do not provide any spectral
information. One alternative is to use (multispectral)-aerial images and machine
learning for the classification of rooftop materials.

71

72

References

Abe, S. (2010). Support vector machines for pattern classification. Springer,
London.

Abe, S. and Inoue, T. (2001). Fast training of support vector machines by
extracting boundary data. In Dorffner, G., Bischof, H., and Hornik, K.,
editors, International Conference on Artificial Neural Networks, pages 308–
313, Berlin, Heidelberg. Springer.

Akinyelu, A. A. and Ezugwu, A. E. (2019). Nature inspired instance selection
techniques for Support Vector Machine speed optimization. IEEE Access,
7:154581–154599.

Alpaydin, E. (2020). Introduction to Machine Learning. MIT Press, Cambridge,
Massachusetts, 4 edition.

Araújo, A. M. and Oliveira, M. M. (2020). A robust statistics approach for
plane detection in unorganized point clouds. Pattern Recognit., 100:107115.

Arnaiz-González, Á., Dı́ez-Pastor, J.-F., Rodrı́guez, J. J., and Garcı́a-Osorio, C.
(2016). Instance selection of linear complexity for big data. Knowl-Based
Syst., 107:83–95.

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2007, pages 1027–1035, New Orleans, Louisiana.
Society for Industrial and Applied Mathematics.

Aslani, M. and Seipel, S. (2020). A fast instance selection method for support
vector machines in building extraction. Appl. Soft Comput., 97:106716.

Aslani, M. and Seipel, S. (2021). Efficient and decision boundary aware instance
selection for support vector machines. Inf. Sci., 577:579–598.

Aslani, M. and Seipel, S. (2022a). A spatially detailed approach to the as-
sessment of rooftop solar energy potential based on LiDAR data. In The
8th International Conference on Geographical Information Systems Theory,
Applications and Management, pages 56–63. SCITEPRESS.

Aslani, M. and Seipel, S. (2022b). Automatic identification of utilizable rooftop
areas in digital surface models for photovoltaics potential assessment. Appl.
Energy, 306, Part A:118033.

Aslani, M. and Seipel, S. (2022c). Rooftop segmentation and optimization of
photovoltaic panel layouts in digital surface models. Under Review.

Assouline, D., Mohajeri, N., and Scartezzini, J.-L. (2018). Large-scale rooftop
solar photovoltaic technical potential estimation using Random Forests. Appl.
Energy, 217:189–211.

73

Aydin, F. (2022). A new instance selection method for enlarging margins
between classes. J. Intell. Syst. Theory Appl., 5(2):119–126.

Baldini, G. and Hernandez-Ramos, J. L. (2021). An intrusion detection system
implemented with instance selection based on locality sensitive hashing for
data reduction. In 26th European Wireless Conference, pages 1–6, Verona,
Italy. IEEE.

Barros de Almeida, M., de Padua Braga, A., and Braga, J. P. (2000). SVM-KM:
speeding SVMs learning with a priori cluster selection and k-means. In
Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks, pages
162–167, Rio de Janeiro, Brazil.

Bauer, J., Karner, K., Schindler, K., Klaus, A., and Zach, C. (2005). Segmenta-
tion of building from dense 3D point-clouds. In Proceedings of the ISPRS,
pages 12–14, Enschede, Holland.

Benciolini, B., Ruggiero, V., Vitti, A., and Zanetti, M. (2018). Roof planes de-
tection via a second-order variational model. ISPRS J. Photogramm. Remote
Sens., 138:101–120.

Bentley, J. L. (1975). Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015).
Applications of 3D city models: State of the art review. ISPRS Int. J. Geoinf.,
4(4):2842–2889.

Birzhandi, P. and Youn, H. Y. (2019). CBCH (clustering-based convex hull)
for reducing training time of support vector machine. J. Supercomput.,
75(8):5261–5279.

Bódis, K., Kougias, I., Jäger-Waldau, A., Taylor, N., and Szabó, S. (2019).
A high-resolution geospatial assessment of the rooftop solar photovoltaic
potential in the European Union. Renew. Sust. Energ. Rev., 114:109309.

Boley, D. and Cao, D. (2004). Training support vector machine using adaptive
clustering. In Proceedings of the Fourth SIAM International Conference on
Data Mining, page 126–137, Florida, USA.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm
for optimal margin classifiers. In Proceedings of the Fifth Annual ACM
Workshop on Computational Learning Theory, pages 144–152, Pittsburgh,
Pennsylvania. ACM.

Cai, L., Shi, W., Miao, Z., and Hao, M. (2018). Accuracy assessment measures
for object extraction from remote sensing images. Remote Sens., 10(2):303.

74

Carbonera, J. L. and Abel, M. A. (2018). An efficient prototype selection
algorithm based on dense spatial partitions. In Rutkowski, L., Scherer, R.,
Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., and Zurada, J. M., editors,
Artificial Intelligence and Soft Computing, pages 288–300. Springer, Cham.

Castillo, E., Liang, J., and Zhao, H. (2013). Point cloud segmentation and
denoising via constrained nonlinear least squares normal estimates. In Breuß,
M., Bruckstein, A., and Maragos, P., editors, Innovations for Shape Analysis:
Models and Algorithms, pages 283–299. Springer, Heidelberg.

Cervantes, J., Garcı́a Lamont, F., López-Chau, A., Rodrı́guez Mazahua, L.,
and Sergio Ruı́z, J. (2015). Data selection based on decision tree for SVM
classification on large data sets. Appl. Soft Comput., 37:787–798.

Cervantes, J., Li, X., and Yu, W. (2006). Support vector machine classification
based on fuzzy clustering for large data sets. In Gelbukh, A. and Reyes-
Garcia, C. A., editors, MICAI 2006: Advances in Artificial Intelligence, pages
572–582, Berlin, Heidelberg. Springer.

Cervantes, J., Li, X., Yu, W., and Li, K. (2008). Support vector machine
classification for large data sets via minimum enclosing ball clustering. Neu-
rocomputing, 71(4):611–619.

Chang, F., Guo, C.-Y., Lin, X.-R., Liu, C.-C., and Lu, C.-J. (2010). Tree decom-
position for large-scale SVM problems. In 2010 International Conference
on Technologies and Applications of Artificial Intelligence, pages 233–240,
Hsinchu, Taiwan. IEEE.

Chen, D., Zhang, L., Mathiopoulos, P. T., and Huang, X. (2014). A methodol-
ogy for automated segmentation and reconstruction of urban 3-D buildings
from ALS point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
7(10):4199–4217.

Christmann, A. and Steinwart, I. (2008). Support Vector Machines. Springer,
New York, NY.

Chu, S.-C., Tsai, P.-W., and Pan, J.-S. (2006). Cat swarm optimization. In
Proceedings of the 9th Pacific Rim International Conference on Artificial
Intelligence, PRICAI’06, page 854–858, Guilin, China. Springer.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn.,
20(3):273–297.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S. (2004). Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings
of the Twentieth Annual Symposium on Computational Geometry, pages
253–262, New York, USA. ACM.

75

de Vries, T. N. C., Bronkhorst, J., Vermeer, M., Donker, J. C. B., Briels, S. A.,
Ziar, H., Zeman, M., and Isabella, O. (2020). A quick-scan method to assess
photovoltaic rooftop potential based on aerial imagery and LiDAR. Sol.
Energy, 209:96–107.

Deschaud, J.-E. and Goulette, F. (2010). A fast and accurate plane detection al-
gorithm for large noisy point clouds using filtered normals and voxel growing.
In 3DPVT, Paris, France.

Dixit, M., Chaurasia, K., and Kumar Mishra, V. (2021). Dilated-ResUnet:
A novel deep learning architecture for building extraction from medium
resolution multi-spectral satellite imagery. Expert Syst. Appl., 184:115530.

Dong, Z., Yang, B., Hu, P., and Scherer, S. (2018). An efficient global energy
optimization approach for robust 3D plane segmentation of point clouds.
ISPRS J. Photogramm. Remote Sens., 137:112–133.

Dougherty, G. (2013). Pattern Recognition and Classification an Introduction.
Springer, New York.

Ehrgott, M. (2005). Multicriteria Optimization. Springer, Berlin Heidelberg.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based
algorithm for discovering clusters in large spatial databases with noise. In
the Second International Conference on Knowledge Discovery in Databases
and Data Mining, pages 226–231, Portland. AAAI Press.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A
paradigm for model fitting with applications to image analysis and automated
cartography. Assoc. Comput. Machinery, 24(6):381–395.

Foody, G. M. and Mathur, A. (2006). The use of small training sets containing
mixed pixels for accurate hard image classification: Training on mixed
spectral responses for classification by a SVM. Remote Sens. Environ.,
103(2):179–189.

Fu, P. and Rich, P. M. (2000). The Solar Analyst 1.0 Manual. Technical report,
Helios Environmental Modeling Institute (HEMI), USA.

Gao, X., Wang, M., Yang, Y., and Li, G. (2018). Building extraction from RGB
VHR images using Shifted Shadow algorithm. IEEE Access, 6:22034–22045.

Garcia, S., Derrac, J., Cano, J., and Herrera, F. (2012). Prototype selection for
nearest neighbor classification: Taxonomy and empirical study. IEEE Trans.
Pattern Anal. Mach. Intell., 34(3):417–435.

Gassar, A. A. A. and Cha, S. H. (2021). Review of geographic information
systems-based rooftop solar photovoltaic potential estimation approaches at
urban scales. Appl. Energy, 291:116817.

76

Gawley, D. and McKenzie, P. (2022). Investigating the suitability of GIS and
remotely-sensed datasets for photovoltaic modelling on building rooftops.
Energy Build., 265:112083.

Gilani, S. A. N., Awrangjeb, M., and Lu, G. (2018). Segmentation of airborne
point cloud data for automatic building roof extraction. GISci. Remote Sens.,
55(1):63–89.

Gonzalez, R. C., Woods, R. E., and Eddins, S. L. (2020). Digital Image
Processing Using MATLAB. Pearson Prentice Hall, New Jersey, 3rd edition.

Green, M., Dunlop, E., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., and Hao,
X. (2021). Solar cell efficiency tables (Version 58). Prog. Photovolt. Res.
Appl., 29(7):657– 667.

Grilli, E., Menna, F., and Remondino, F. (2017). A review of point clouds
segmentation and classification algorithms. Int. Arch. Photogramm. Remote
Sens. Spatial Inf. Sci., XLII-2/W3:339–344.

Groppi, D., de Santoli, L., Cumo, F., and Astiaso Garcia, D. (2018). A GIS-
based model to assess buildings energy consumption and usable solar energy
potential in urban areas. Sustain. Cities Soc., 40:546–558.

Guo, L. and Boukir, S. (2015). Fast data selection for SVM training using
ensemble margin. Pattern Recognit. Lett., 51:112–119.

Guo, L., Boukir, S., and Chehata, N. (2010). Support vectors selection for
supervised learning using an ensemble approach. In 20th International
Conference on Pattern Recognition, pages 37–40, Istanbul, Turkey. IEEE.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical
learning. Data mining, inference, and prediction. Springer, New York.

Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms. John Wiley
and Sons, Inc, New Jersey, second edition.

Holland, J. H. (1992). Genetic Algorithms. Sci. Am., 267(1):66–73.

Hong, T., Lee, M., Koo, C., Jeong, K., and Kim, J. (2017). Development of
a method for estimating the rooftop solar photovoltaic (PV) potential by
analyzing the available rooftop area using Hillshade analysis. Appl. Energy,
194:320–332.

Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multiclass
support vector machines. IEEE Trans. Neural. Netw., 13(2):415–425.

Huang, X. and Zhang, L. (2013). An SVM ensemble approach combining spec-
tral, structural, and semantic features for the classification of high-resolution
remotely sensed imagery. IEEE Trans. Geosci. Remote. Sens., 51(1):257–272.

77

Huang, Y., Chen, Z., Wu, B., Chen, L., Mao, W., Zhao, F., Wu, J., Wu, J., and
Yu, B. (2015). Estimating roof solar energy potential in the downtown area
using a GPU-accelerated solar radiation model and airborne LiDAR data.
Remote Sens., 7(12):17212–17233.

Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC 98: Proceedings of the 30th
annual ACM symposium on theory of computing, pages 604–613, Texas,
USA. ACM.

Ishibuchi, H. and Nojima, Y. (2013). Repeated double cross-validation for
choosing a single solution in evolutionary multi-objective fuzzy classifier
design. Knowl-Based Syst., 54:22–31.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review.
ACM Comput. Surv., 31(3):264–323.

Jin, H., Stehman, S. V., and Mountrakis, G. (2014). Assessing the impact of
training sample selection on accuracy of an urban classification: A case study
in Denver, Colorado. Int. J. Remote Sens., 35(6):2067–2081.

Jochem, A., Höfle, B., Rutzinger, M., and Pfeifer, N. (2009). Automatic
roof plane detection and analysis in airborne LiDAR point clouds for solar
potential assessment. Sensors, 9(7):5241–5262.

Jochem, A., Höfle, B., Wichmann, V., Rutzinger, M., and Zipf, A. (2012).
Area-wide roof plane segmentation in airborne LiDAR point clouds. Comput.
Environ. Urban Syst., 36(1):54–64.

Joshi, S., Mittal, S., Holloway, P., Shukla, P. R., Ó Gallachóir, B., and Glynn, J.
(2021). High resolution global spatiotemporal assessment of rooftop solar
photovoltaics potential for renewable electricity generation. Nat. Commun.,
12(1):5738.

Jung, S., Jeoung, J., Kang, H., and Hong, T. (2021). Optimal planning of a
rooftop PV system using GIS-based reinforcement learning. Appl. Energy,
298:117239.

Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A review on genetic algo-
rithm: past, present, and future. Multimed. Tools. Appl., 80(5):8091–8126.

Kaufmann, L. (1999). Solving the Quadratic Programming problem arising in
support vector classification. In Schölkopf, B., Burges, C. J. C., and Smola,
A. J., editors, Advances in Kernel Methods: Support Vector Learning, pages
147–168. MIT Press, Cambridge.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceed-
ings of ICNN’95 - International Conference on Neural Networks, volume 4,
pages 1942–1948.

78

Klasing, K., Wollherr, D., and Buss, M. (2008). A clustering method for efficient
segmentation of 3D laser data. In 2008 IEEE International Conference on
Robotics and Automation, pages 4043–4048, Pasadena, California, USA.

Koggalage, R. and Halgamuge, S. (2004). Reducing the number of training
samples for fast support vector machine classification. Neural Inform. Process.
Lett. Rev., 2:57–65.

Kubat, M. (2017). An Introduction to Machine Learning. Springer, Cham, 2
edition.

Lebeda, K., Matas, J., and Chum, O. (2012). Fixing the locally optimized
RANSAC. In British Machine Vision Conference, Guildford, United King-
dom.

Leskovec, J., Rajaraman, A., and Ullman, J. (2014). Mining of Massive Datasets.
Cambridge University Press, Cambridge, England, third edition.

Li, G., Xuan, Q., Akram, M. W., Golizadeh Akhlaghi, Y., Liu, H., and Shittu,
S. (2020). Building integrated solar concentrating systems: A review. Appl.
Energy, 260:114288.

Li, L., Yang, F., Zhu, H., Li, D., Li, Y., and Tang, L. (2017). An improved
RANSAC for 3D point cloud plane segmentation based on normal distribution
transformation cells. Remote Sens., 9(5):433.

Liu, C., Wang, W., Wang, M., Lv, F., and Konan, M. (2017). An efficient
instance selection algorithm to reconstruct training set for support vector
machine. Knowl-Based Syst., 116:58–73.

Liu, Y.-G., Chen, Q., and Yu, R.-Z. (2003). Extract candidates of support
vector from training set. In Proceedings of the 2003 International Conference
on Machine Learning and Cybernetics, volume 5, pages 3199–3202, Xi’an,
China. IEEE.

López Chau, A., Li, X., and Yu, W. (2013). Convex and concave hulls for
classification with support vector machine. Neurocomputing, 122:198–209.

López-Fernández, L., Lagüela, S., Picón, I., and González-Aguilera, D. (2015).
Large scale automatic analysis and classification of roof surfaces for the
installation of solar panels using a multi-sensor aerial platform. Remote Sens.,
7(9):1226–11248.

Lukač, N., Špelič, D., Štumberger, G., and Žalik, B. (2020). Optimisation for
large-scale photovoltaic arrays’ placement based on Light Detection And
Ranging data. Appl. Energy, 263:114592.

MacQueen, J. B. (1967). Some methods for classification and analysis of
multivariate observations. In Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–297, California, USA.

79

Mainzer, K., Killinger, S., McKenna, R., and Fichtner, W. (2017). Assessment
of rooftop photovoltaic potentials at the urban level using publicly available
geodata and image recognition techniques. Sol. Energy, 155:561–573.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Informa-
tion Retrieval. Cambridge University Press, Cambridge, England.

Maulik, U. and Chakraborty, D. (2017). Remote sensing image classification: A
survey of support-vector-machine-based advanced techniques. IEEE Geosci.
Remote. Sens. Mag., 5(1):33–52.

Meila, M. (2006). The uniqueness of a good optimum for k-means. In Pro-
ceedings of the 23 rd International Conference on Machine Learning, pages
625–632, Pittsburgh, Pennsylvania.

Mirjalili, S. and Lewis, A. (2016). The whale optimization algorithm. Adv. Eng.
Softw., 95:51–67.

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer.
Advances in Engineering Software, 69:46–61.

Mitchell, M. (1996). An introduction to genetic algorithms. MIT Press, Cam-
bridge.

Mohajeri, N., Assouline, D., Guiboud, B., Bill, A., Gudmundsson, A., and
Scartezzini, J.-L. (2018). A city-scale roof shape classification using machine
learning for solar energy applications. Renew. Energy, 121:81–93.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT
Press, Cambridge, Massachusetts.

Nalepa, J. and Kawulok, M. (2018). Selecting training sets for support vector
machines: A review. Artif. Intell. Rev., 52(2):857–900.

Nelson, J. R. and Grubesic, T. H. (2020). The use of LiDAR versus unmanned
aerial systems (UAS) to assess rooftop solar energy potential. Sustain. Cities
Soc., 61:102353.

Nguyen, A. and Le, B. (2013). 3D point cloud segmentation: A survey. In 6th
IEEE Conference on Robotics, Automation and Mechatronics (RAM), pages
225–230, Manila, Philippines. IEEE.

Olvera-López, J. A., Carrasco-Ochoa, J. A., and Martı́nez-Trinidad, J. F. (2010a).
A new fast prototype selection method based on clustering. Pattern Anal.
Appl., 13(2):131–141.

Olvera-López, J. A., Carrasco-Ochoa, J. A., Martı́nez-Trinidad, J. F., and Kittler,
J. (2010b). A review of instance selection methods. Artif. Intell. Rev.,
34(2):133–143.

80

Pavlidis, N. G., Hofmeyr, D. P., and Tasoulis, S. K. (2016). Minimum density
hyperplanes. J. Mach. Learn. Res., 17(156):1–33.

Pavlov, D., Mao, J., and Dom, B. (2000). Scaling-up support vector machines
using boosting algorithm. In Proceedings 15th International Conference
on Pattern Recognition. ICPR-2000, volume 2, pages 219–222, Barcelona.
IEEE.

Platt, J. (1999). Fast training of support vector machines using sequential
minimal optimization. In Schölkopf, B., Burges, C. J. C., and Smola, A. J.,
editors, Advances in Kernel Methods: Support Vector Learning, pages 185–
208. MIT Press, Cambridge.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017). PointNet++: Deep hierarchical
feature learning on point sets in a metric space. In 31st Conference on Neural
Information Processing Systems (NIPS 2017), pages 5099–5108, California.

Rabbani, T., van den Heuvel, F. A., and Vosselmann, G. (2006). Segmentation
of point clouds using smoothness constraint. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci., 36:248–253.

Raguram, R., Chum, O., Pollefeys, M., Matas, J., and Frahm, J.-M. (2013).
USAC: A Universal Framework for Random Sample Consensus. IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):2022–2038.

Ren, H., Xu, C., Ma, Z., and Sun, Y. (2022). A novel 3D-geographic information
system and deep learning integrated approach for high-accuracy building
rooftop solar energy potential characterization of high-density cities. Appl.
Energy, 306:117985.

Rich, P. M., Dubayah, R. O., Hetrick, W. A., and Saving, S. C. (1994). Using
Viewshed models to calculate intercepted solar radiation: Applications in
ecology. Am. Soc. Photogramm. Remote Sens. Tech. Pap., pages 524–529.

Riley, S. J., Degloria, S. D., and Elliot, R. (1999). A terrain ruggedness index
that quantifies topographic heterogeneity. Int. J. Sci., 5:23–27.

Romero Rodrı́guez, L., Duminil, E., Sánchez Ramos, J., and Eicker, U. (2017).
Assessment of the photovoltaic potential at urban level based on 3D city mod-
els: A case study and new methodological approach. Sol. Energy, 146:264–
275.

Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Breitkopf, U., and Jung, J.
(2014). Results of the ISPRS benchmark on urban object detection and 3D
building reconstruction. ISPRS J. Photogramm. Remote Sens., 93:256–271.

Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Bénitez, S., and
Breitkopf, U. (2012). The ISPRS benchmark on urban object classification

81

and 3D building reconstruction. In ISPRS Annals of Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, pages 293–298, Melbourne,
Australia.

Sampath, A. and Shan, J. (2010). Segmentation and reconstruction of polyhedral
building roofs from aerial LiDAR point clouds. IEEE Trans. Geosci. Remote.
Sens., 48(3):1554–1567.

Sánchez-Aparicio, M., Martı́n-Jiménez, J., Del Pozo, S., González-González,
E., and Lagüela, S. (2021). Ener3DMap-SolarWeb roofs: A geospatial web-
based platform to compute photovoltaic potential. Renew. Sust. Energ. Rev.,
135:110203.

Schmidt, K., Behrens, T., and Scholten, T. (2008). Instance selection and
classification tree analysis for large spatial datasets in digital soil mapping.
Geoderma, 146(1):138–146.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient RANSAC for point-cloud
shape detection. Comput. Graph. Forum, 26:214–226.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016).
Taking the human Out of the loop: A review of Bayesian optimization. Proc.
IEEE, 104(1):148–175.

Shen, X.-J., Mu, L., Li, Z., Wu, H.-X., Gou, J.-P., and Chen, X. (2016). Large-
scale support vector machine classification with redundant data reduction.
Neurocomputing, 172:189–197.

Shin, H. and Cho, S. (2002). Pattern selection for support vector classifiers.
In Yin, H., Allinson, N., Freeman, R., Keane, J., and Hubbard, S., editors,
International Conference on Intelligent Data Engineering and Automated
Learning, pages 469–474, Berlin, Heidelberg. Springer.

Shin, H. and Cho, S. (2007). Neighborhood property-based pattern selection
for support vector machines. Neural Comput., 19(3):816–855.

Silverman, B. W. (1986). Density estimation for statistics and data analysis.
CRC press, London.

Sivanandam, S. and Deepa, S. (2008). Introduction to Genetic Algorithms.
Springer, Berlin, Heidelberg, 1st edition.

Sun, T., Shan, M., Rong, X., and Yang, X. (2022). Estimating the spatial
distribution of solar photovoltaic power generation potential on different
types of rural rooftops using a deep learning network applied to satellite
images. Appl. Energy, 315:119025.

Sundararajan, D. (2017). Digital Image Processing A Signal Processing and
Algorithmic Approach. Springer, Singapore.

82

Szabó, S., Enyedi, P., Horváth, M., Kovács, Z., Burai, P., Csoknyai, T., and
Szabó, G. (2016). Automated registration of potential locations for solar
energy production with Light Detection And Ranging (LiDAR) and small
format photogrammetry. J. Clean. Prod., 112:3820–3829.

Thebault, M., Clivillé, V., Berrah, L., and Desthieux, G. (2020). Multicriteria
roof sorting for the integration of photovoltaic systems in urban environments.
Sustain. Cities Soc., 60:102259.

Turker, M. and Koc-San, D. (2015). Building extraction from high-resolution
optical spaceborne images using the integration of support vector machine
(SVM) classification, Hough transformation and perceptual grouping. Int. J.
Appl. Earth Obs., 34:58–69.

Turlapaty, A., Gokaraju, B., Du, Q., Younan, N. H., and Aanstoos, J. V. (2012).
A hybrid approach for building extraction from spaceborne multi-angular
optical imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5(1):89–
100.

Udell, M. and Toole, O. (2019). Optimal design of efficient rooftop photovoltaic
arrays. INFORMS J. Appl. Anal., 49(4):281–294.

Vapnik, V. N. (1998). Statistical learning theory. John Wiley and Sons, New
York.

Vo, A.-V., Truong-Hong, L., Laefer, D. F., and Bertolotto, M. (2015). Octree-
based region growing for point cloud segmentation. ISPRS J. Photogramm.
Remote Sens., 104:88–100.

Walch, A., Castello, R., Mohajeri, N., and Scartezzini, J.-L. (2020). Big data
mining for the estimation of hourly rooftop photovoltaic potential and its
uncertainty. Appl. Energy, 262:114404.

Wang, D. and Shi, L. (2008). Selecting valuable training samples for SVMs via
data structure analysis. Neurocomputing, 71(13):2772–2781.

Wang, J., Neskovic, P., and Cooper, L. N. (2007). Selecting data for fast support
vector machines training. In Chen, K. and Wang, L., editors, Trends in Neural
Computation, pages 61–84. Springer, Berlin, Heidelberg.

Wang, R. and Kwong, S. (2010). Sample selection based on maximum entropy
for support vector machines. In 2010 International Conference on Machine
Learning and Cybernetics, volume 3, pages 1390–1395, Qingdao, China.
IEEE.

Wang, R., Peethambaran, J., and Chen, D. (2018). LiDAR point clouds to 3-D
urban models: A review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
11(2):606–627.

83

Wu, A. N. and Biljecki, F. (2021). Roofpedia: Automatic mapping of green and
solar roofs for an open roofscape registry and evaluation of urban sustainabil-
ity. Landsc. Urban Plan., 214:104167.

Xiao, J., Zhang, J., Adler, B., Zhang, H., and Zhang, J. (2013). Three-
dimensional point cloud plane segmentation in both structured and unstruc-
tured environments. Rob. Auton. Syst., 61(12):1641–1652.

Xie, Y., Tian, J., and Zhu, X. X. (2020). Linking points with labels in 3D: A
review of point cloud semantic segmentation. IEEE Geosci. Remote. Sens.
Mag., 8(4):38–59.

Xu, R. and Wunsch, D. (2005). Survey of clustering algorithms. IEEE Trans.
Neural. Netw., 16(3):645–678.

Xu, Y. and Stilla, U. (2021). Toward building and civil infrastructure reconstruc-
tion from point clouds: A review on data and key techniques. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens., 14:2857–2885.

Yildirim, D., Büyüksalih, G., and Şahin, A. D. (2021). Rooftop photovoltaic
potential in Istanbul: Calculations based on LiDAR data, measurements and
verifications. Appl. Energy, 304:117743.

Yu, H., Yang, J., and Han, J. (2003). Classifying large data sets using SVMs
with hierarchical clusters. In Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 306–315,
Washington. ACM.

Yu, J., Tang, Y. M., Chau, K. Y., Nazar, R., Ali, S., and Iqbal, W. (2022). Role
of solar-based renewable energy in mitigating CO2 emissions: Evidence from
quantile-on-quantile estimation. Renew. Energy, 182:216–226.

Zeng, Z.-Q., Xu, H.-R., Xie, Y.-Q., and Gao, J. (2008). A geometric approach
to train SVM on very large data sets. In 3rd International Conference on
Intelligent System and Knowledge Engineering, volume 1, pages 991–996,
Xiamen. IEEE.

Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., and Zhang, C.
(2003). A progressive morphological filter for removing nonground mea-
surements from airborne LiDAR data. IEEE Trans. Geosci. Remote. Sens.,
41(4):872–882.

Zhang, Q.-J. and Guo, L. (2007). Self-enhanced SVM extraction of building
objects from high resolution satellite images. In Second International Con-
ference on Innovative Computing, Informatio and Control (ICICIC 2007),
pages 13–16, Kumamoto, Japan. IEEE.

Zheng, Y. and Weng, Q. (2015). Model-driven reconstruction of 3-D buildings
using LiDAR data. IEEE Geosci. Remote Sens. Lett., 12(7):1541–1545.

84

Zhong, Q., Nelson, J. R., Tong, D., and Grubesic, T. H. (2022). A spatial
optimization approach to increase the accuracy of rooftop solar energy as-
sessments. Appl. Energy, 316:119128.

Zhong, Q. and Tong, D. (2020). Spatial layout optimization for solar photo-
voltaic (PV) panel installation. Renew. Energy, 150:1–11.

Zhong, T., Zhang, Z., Chen, M., Zhang, K., Zhou, Z., Zhu, R., Wang, Y., Lü,
G., and Yan, J. (2021). A city-scale estimation of rooftop solar photovoltaic
potential based on deep learning. Appl. Energy, 298:117132.

Zhu, Z., Wang, Z., Li, D., and Du, W. (2020). NearCount: Selecting critical
instances based on the cited counts of nearest neighbors. Knowl-Based Syst.,
190:105196.

85

86

Part II

Papers reprints

87

Papers
Associated papers have been removed in the electronic version
of this thesis.
For more details about the papers see:
http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-39741

	I Comprehensive summary
	Introduction
	Background
	Problem statement
	Selecting instances to train support vector machines
	Extraction of planar segments of rooftops
	Identification of utilizable areas for RPVs

	Related work
	Instance selection for SVMs
	Extraction of planar segments of rooftops
	Identification of utilizable areas for RPVs

	Research objectives and questions
	Research contributions
	Research methodology
	Dissertation outline
	Authorship contribution statement

	Theoretical background
	Support vector machines
	Hard-margin linear SVMs
	Soft-margin linear SVMs
	Soft-margin nonlinear SVMs

	Locality-sensitive hashing
	Clustering
	k-means and k-means++
	Euclidean clustering
	Minimum density divisive clustering

	Genetic algorithm
	Encoding
	Selection
	Crossover
	Mutation

	Instance selection methods for SVMs
	Introduction
	Instance selection method: DRLSH
	Algorithm
	Parameter analyses
	Rooftop extraction
	Dataset preparation
	Results of evaluation and discussion

	Instance selection method: BPLSH
	Algorithm
	Parameter analyses
	Rooftop extraction and data
	Results of evaluation and discussion

	Plane segmentation methods
	Introduction
	Plane segmentation method I
	Algorithm
	Test sites and data
	Results of evaluation and discussion

	Plane segmentation method II
	Algorithm
	Results of evaluation and discussion

	Spatially detailed methods for automatic identification of RPV-utilizable areas
	Introduction
	Identification of areas based on morphological operations
	3D-2D conversion
	Technical constraint
	Geometric constraint
	Solar constraint
	Results and discussion

	Identification of areas considering optimal placement of RPVs
	Placement of RPVs
	Results and discussion

	Conclusion and future work
	References

	II Papers reprints

