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A B S T R A C T

An efficiency-enhanced procedure to treat continuous-time, high-cycle fatigue (HCF) constraints in topology
optimization is presented. The HCF model predicts the evolution of fatigue damage at each point in the design
domain using a system of ordinary differential equations. We employ gradient-based optimization and the
fatigue sensitivities are determined using adjoint sensitivity analysis. As the predicted damage has history
dependence, adjoint variables are solved via a stepwise backward procedure. Therefore, the computational
cost increases in proportion to the number of time steps. To reduce this cost, we propose an extrapolation
technique which is valid for all forms of periodic, proportional loads and most non-proportional loads and
allows treatment of essentially an unlimited number of load cycles. Using this technique, several problems
in both 2D and 3D are solved numerically where the objective is to minimize structural mass subjected to a
fatigue constraint.
1. Introduction

In many industrial applications, fatigue due to both proportional
and non-proportional loads threaten the life of components. High-cycle
fatigue (HCF) is caused by small, predominantly elastic strains under
a high number of load cycles (≥ 103 cycles). Thus, when designing
mechanical components, we seek designs capable of withstanding such
a load history. Introducing fatigue criteria in topology optimization
(TO) formulations ensures that we get optimal designs protected from
fatigue failure.

Examples of use of a fatigue constraint in TO are found in Holmberg
et al. (2014) where it is implemented as a stress constraint, and in Jeong
et al. (2018) and Collet et al. (2017), where cycle-counting algorithms
are used. Another example is found in Oest and Lund (2017), where
extensive load histories are solved with low computational cost. How-
ever, these models are restricted to proportional load histories and use
rainflow counting algorithm. Additionally, Zhang et al. (2019) treats
fatigue-life for non-proportional loads by using a signed von Mises
stress at each point of the structure as a single stress measure. It
also uses classical techniques, including rainflow counting, mean stress
correction, and Palmgren–Miner’s rule, initially developed for unidirec-
tionally loaded structures. However, certain modes of stress reversal,
including rotary stress states with constant principal stresses, give a
constant signed von Mises stress, predicting zero fatigue damage. This
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limitation constitutes a loop-hole that could potentially be exploited by
the optimizer in case of non-proportional load.

In contrast to the above reviewed papers, we treat fatigue in
TO by use of a continuous-time HCF model, developed in Ottosen
et al. (2008). Such a HCF model was used in TO problems where
both isotropic (Suresh et al., 2020), and transversely isotropic mate-
rials (Suresh et al., 2021) have been treated. The model is capable
of handling arbitrary load histories, including non-proportional loads,
without using a rainflow counting algorithm. However, due to high
computational cost the method is presently only capable to TO prob-
lems involving a limited number of load cycles. To overcome this
limitation, in this paper, we present an acceleration technique enabling
treatment of essentially an unlimited number of load cycles provided
that they consist of sequence repetitions.

In HCF models, neither geometry nor the material properties are
affected by damage. Therefore, the stress evolution for a given load
history is calculated in a separate initial step of the analysis. Then the
so-obtained stresses are used for calculating the fatigue damage using a
continuous-time fatigue model (Ottosen et al., 2008). This model uses
ordinary differential equations that govern the time evolution of fatigue
damage at each point in the design domain. Damage development
only occurs when the stress state lies outside the evolving, so-called
endurance surface.
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Several modifications and extensions to the original continuous-
time HCF model have been proposed. In Ottosen et al. (2018), the
multiaxial fatigue criterion considers stress gradient effects, which
crucially enables automatic handling of stress concentrations in com-
plex geometries like holes and notches. Furthermore, in Holopainen
et al. (2016), a continuous-time HCF model for transversely isotropic
materials is formulated and in Brighenti et al. (2012), a more general
expression for the endurance surface is developed, that demonstrates a
fair agreement between modelled and experimentally-observed fatigue
life for a range of steel alloys subjected to non-proportional stress.
Additionally, the validity range and computational acceleration of the
continuous-time HCF model are investigated in Lindström et al. (2020),
and a modified version of the continuous-time HCF model is provided
in Lindströ (2020), that provides a better estimation of fatigue-damage
for non-proportional loads.

In this paper, we use our previous work (Suresh et al., 2020), which
is based on the original continuous-time fatigue model (Ottosen et al.,
2008). The fatigue constraint in the TO problems is imposed on the
maximum damage found in the design domain at the end of a given
load history. The maximum operator is then approximated by means
of an aggregation function, namely the p-norm (Duysinx and Sigmund,
1998; Yang and Chen, 1996; Kennedy and Hicken, 2015). Moreover,
we use a gradient-based method for solving the TO problems, where
the fatigue sensitivities are determined by the adjoint method. Since
the predicted fatigue-damage is governed by an evolution problem,
the fatigue sensitivities follow (Suresh et al., 2020) and the adjoint
variables are solved via a backward, step-wise procedure. As a result,
the computational time required to obtain the adjoint variables is
quite high. Hence, an efficient procedure that speeds up the process
is needed. In the present paper we show how this can be achieved
by using extrapolation. The validity of such an extrapolation is based
on the fact that it has been shown in Lindström et al. (2020) that
the fatigue reaches steady-state condition for all forms of periodic
proportional and most non-proportional loads.

2. Continuous-time fatigue model

In HCF, neither the geometry, nor the material properties are sig-
nificantly influenced by damage until failure. Therefore the stress
evolution 𝜎𝜎𝜎(𝑡), 𝑡 ∈ [0, 𝑇 ], with 𝑇 as the duration, is computed first
from constitutive response and then these stresses are used to estimate
the fatigue damage through the continuous-time HCF model suggested
in Ottosen et al. (2008).

2.1. Overview

Following Ottosen et al. (2008), a moving endurance surface
{𝜎𝜎𝜎|𝛽(𝜎𝜎𝜎,𝛼𝛼𝛼) = 0}, with 𝛼𝛼𝛼 as a back-stress tensor and 𝛽 being the endurance
unction, is employed to define the fatigue model. The development
f damage only occurs during loading, when the stress state also lies
utside the endurance surface, i.e., 𝛽 > 0 and �̇� > 0, where a superposed

dot indicates time derivative. The endurance function is defined as

𝛽(𝜎𝜎𝜎,𝛼𝛼𝛼) = 1
𝑆0

[

�̄� + 𝐴tr(𝜎𝜎𝜎) − 𝑆0
]

, (1)

where 𝑆0 > 0 and 𝐴 > 0 are material parameters and tr(⋅) is the trace
of the tensor. The effective stress �̄� is given as

�̄� =
√

3
2
(𝑠𝑠𝑠 − 𝛼𝛼𝛼) ∶ (𝑠𝑠𝑠 − 𝛼𝛼𝛼),

where 𝑠𝑠𝑠 = 𝜎𝜎𝜎 − 1
3 tr(𝜎𝜎𝜎)𝐼𝐼𝐼 is the deviatoric stress with 𝐼𝐼𝐼 as unit tensor and

: denotes Frobenius inner product.
The fatigue damage at a point is a scalar, real-valued function

𝐷 = 𝐷(𝑡) that monotonously increases from 𝐷 = 0 being no damage
o 𝐷 = 1 as critical failure. Following (Suresh et al., 2020, 2021), the
tate variables 𝛼𝛼𝛼 and 𝐷 are governed by a initial value problem:

̇ 𝑠 𝛼 ̇ ̇ 𝛼 0 0
2

= 𝐶(𝑠𝑠 − 𝛼𝛼)𝐻(𝛽)𝐻(𝛽)𝛽, 𝛼𝛼(00) = 00, (2) 𝜎
̇ = 𝐾exp(𝐿𝛽)𝐻(𝛽)𝐻(�̇�)�̇�, 𝐷(0) = 0, (3)

here 𝐶 > 0, 𝐾 > 0 and 𝐿 > 0 are material parameters, and 𝐻 is the
eaviside step function.

To obtain an explicit form for �̇�, we first take the time derivative of
1). Then with help of (2) and on rearranging we get

𝑆0 +𝐻(𝛽)𝐻(�̇�)𝐶�̄�
)

�̇� =
[

3
2
(𝑠𝑠𝑠 − 𝛼𝛼𝛼)

�̄�
+ 𝐴𝐼𝐼𝐼

]

∶ �̇�𝜎𝜎. (4)

Whenever the right-hand side is positive, the fact that 𝑆0 + 𝐻(𝛽)𝐻(�̇�)
𝐶�̄� > 0, (4) permits us to write �̇� as a function:

�̇�(𝜎𝜎𝜎, �̇�𝜎𝜎,𝛼𝛼𝛼) = 1
𝑆0 +𝐻(𝛽)𝐶�̄�

[

3
2
(𝑠𝑠𝑠 − 𝛼𝛼𝛼)

�̄�
+ 𝐴𝐼𝐼𝐼

]

∶ �̇�𝜎𝜎. (5)

Having the endurance function and its rate defined in (1) and (5), the
fatigue damage is predicted by integrating the ODEs (2) and (3) for a
given stress 𝜎𝜎𝜎 = 𝜎𝜎𝜎(𝑡).

2.2. Time discretization

The fatigue problem is solved numerically. The time domain [0, 𝑇 ]
is discretized into a finite number of time steps of equal length 𝛥𝑡,
i.e. 𝑡𝑖 = 𝑖𝛥𝑡, with 𝑖 = 0, 1,… , 𝑁 . The stress evaluations at different steps
are denoted 𝜎𝜎𝜎𝑖 = 𝜎𝜎𝜎(𝑖𝛥𝑡), and 𝑠𝑠𝑠𝑖 = 𝑠𝑠𝑠(𝜎𝜎𝜎𝑖) while 𝛼𝛼𝛼𝑖 = 𝛼𝛼𝛼(𝑖𝛥𝑡) and 𝐷𝑖 = 𝐷(𝑖𝛥𝑡).

The increment of the endurance function in (5) is approximated as

𝛥𝛽||
|𝑖
=𝛥𝑡�̇�

(

𝜎𝜎𝜎𝑖−1,
𝜎𝜎𝜎𝑖 − 𝜎𝜎𝜎𝑖−1

𝛥𝑡
,𝛼𝛼𝛼𝑖−1

)

= 1
𝑆0 +𝐻(𝛽||

|𝑖−1
)𝐶�̄�||

|𝑖−1

[

3
2
(𝑠𝑠𝑠𝑖−1 − 𝛼𝛼𝛼𝑖−1)

�̄�||
|𝑖−1

+ 𝐴𝐼𝐼𝐼
]

∶ 𝛥𝜎𝜎𝜎𝑖,
(6)

with the stress increment 𝛥𝜎𝜎𝜎||
|𝑖

= 𝜎𝜎𝜎𝑖 − 𝜎𝜎𝜎𝑖−1, and the effective stress
�̄�||
|𝑖
= �̄�(𝜎𝜎𝜎𝑖, 𝛼𝛼𝛼𝑖). The symbol ||

|𝑖
denotes function evaluation at time step 𝑖.

Expression (6) is only evaluated if the Frobenius inner product between
the terms in the square parenthesis and the stress increment is positive,
otherwise 𝛥𝛽||

|𝑖
= 0.

The ODEs (2) and (3) are approximated by a forward Euler scheme
as

𝛼𝑖 − 𝛼𝛼𝛼𝑖−1 = 𝐶(𝑠𝑠𝑠𝑖−1 − 𝛼𝛼𝛼𝑖−1)𝐻(𝛽||
|𝑖−1

)𝛥𝛽||
|𝑖
, (7)

𝑖 −𝐷𝑖−1 = 𝐾exp(𝐿𝛽||
|𝑖−1

)𝐻(𝛽||
|𝑖−1

)𝛥𝛽||
|𝑖
. (8)

. Acceleration technique

In the continuous-time HCF model, integrating the full stress history
cross a large number of cycles often leads to a high computational
ost. Furthermore, this cost increases even more when adjoint sensi-
ivity analysis involving a spatially coupled terminal value problem
s used. A key property of the HCF model is that when subjected to
eriodic, proportional and most non-proportional loads, there exists
steady-state condition such that the incremental damage per period

pproaches a constant value (Lindström et al., 2020). In such instances,
n extrapolation technique can be used to accelerate the whole fatigue
rocess.

.1. Periodic, proportional stress history

For a periodic load with period 𝜏, the integrated damage after time
is taken as 𝐷(𝑡). We take the incremental damage between periods as
𝐷(𝑡) = 𝐷(𝑡) −𝐷(𝑡− 𝜏). If a steady-state exists, then lim𝑡→∞[𝐷(𝑡) −𝐷(𝑡−
)] → 𝛥𝐷, where 𝛥𝐷 is a fixed increment.

To demonstrate such a situation, we consider a 1D example. The
atigue model is numerically integrated for the 7050-T7451 aluminum
lloy material. Using the fitted fatigue parameters, 𝑆0 = 113.3 MPa,
= 0.2611, 𝐶 = 0.504, 𝐾 = 5.11E − 6 and 𝐿 = 2.556, from Lindström

t al. (2020), we integrate a uniaxial cyclic stress history on the form

(𝑡) = 𝜎0 sin(2𝜋𝑡∕𝜏)+𝜎𝑀 , where 𝜎0 > 0 is a constant stress amplitude and
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Fig. 1. Cyclic fatigue strength: (a) Damage development when 𝜎𝑀 = 0; (b) Incremental damage per period when 𝜎𝑀 = 0; (c) Development of relative difference to steady-state
amage per period when 𝜎𝑀 = 0; (d) Damage development when 𝜎0 = 200 MPa; (e) Incremental damage per period when 𝜎0 = 200 MPa; and (f) Development of relative difference
o steady-state damage per period when 𝜎0 = 200 MPa.
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𝑀 is the mean stress for a duration 𝑇 = 50𝜏 and 𝛥𝑡 = 0.001𝜏. Since the
atigue model is rate independent, the period 𝜏 is an arbitrary constant.

When 𝜎𝑀 = 0, the effective stress amplitude is the same as 𝜎0
nd in Figs. 1(a–c), we provide the fatigue results for various stress
mplitudes. The damage development for different stress amplitudes
s similar to stair-case functions, see Fig. 1(a). The stair-case pattern
rises due to the presence of the step function 𝐻(⋅) in (7) and (8).
or the damage evolution, the corresponding damage increment per
eriod is shown in Fig. 1(b), where after a certain period, the incre-
ental damage achieves the steady-state condition. Furthermore, the
agnitudes of relative difference between the incremental damage of

ubsequent steps are shown in Fig. 1(c). Considering a tolerance of 1%,
he approximated steady-state incremental damage for a range stress
mplitudes diminishes within 9 periods.

Similarly, for different mean stress values when 𝜎0 = 200 MPa,
he fatigue results are shown in Figs. 1(d–f). The damage development
or the corresponding mean stresses is shown in Fig. 1(d), while the
ncremental damage per period is shown in Fig. 1(e). We notice that
he incremental damage achieves steady-state after a certain period for
ach of the mean stresses. It take 6 periods for 𝜎𝑀 = 0 MPa, 9 periods for
𝑀 = 200 MPa and 10 periods for 𝜎𝑀 = 300 MPa to reach steady-state

condition with tolerance of 1%. A key inference that is made here is
that, as the mean stress value increases, the incremental damage takes
a longer time to reach steady-state condition.

In the above example, we present the steady-state condition for
the 1D example. However, it has been previously shown that for all
periodic, proportional stress histories, the incremental damage per
period tends to a steady-state condition, (Lindström et al., 2020).

3.2. Biaxial, non-proportional loading

In the previous section, using the continuous-time HCF model, we
quantified the number of periods that it takes to achieve a steady-state
condition for periodic, proportional load history. Now using this model,
we do the same for non-proportional loads. As a demonstration, we take
a biaxial, non-proportional loading.

Biaxial, non-proportional testing is often conducted on thin-walled
3

cylinder specimens, subjected to elongation and torsion. Following
indström et al. (2020), we consider a combination of tension or
ompression and simple shear, fluctuating with zero mean stress, i.e.,

11 =
𝜎0

√

2 cos(𝛷2 )
sin

(

2𝜋 𝑡
𝜏

)

,

𝜎12 =
𝜎0

√

6 cos(𝛷2 )
sin

(

2𝜋 𝑡
𝜏
+𝛷

)

,
(9)

here 𝛷 is a phase angle and 𝜎22 = 𝜎33 = 𝜎13 = 𝜎23 = 0. When
= 0, then we have in-phase (IP) loading. Here the stress amplitude

s 𝜎0. The non-proportionality is introduced when 𝛷 > 0. This is called
ut-of-phase (OP) loading.

The fatigue damage for different phase angles are shown in Fig. 2.
he damage development for the corresponding phase angles is shown

n Fig. 2(a), while the incremental damage per period is shown in
ig. 2(b). We notice that the incremental damage achieves steady-state
or 𝛷 = 0◦ and 𝛷 = 60◦ but not for 𝛷 = 90◦ (because the stress
tate is moving tangentially to the endurance surface (Lindström et al.,
020)). This is consistent with Lindströ (2020), where steady-state and
redictive capability for a wide range of non-proportional loads are
emonstrated, with 𝜙 = 90◦ as the singular exception. Additionally,
he magnitudes of relative difference between the incremental damage
nd the approximated steady-state is shown in Fig. 2(c). Considering a
olerance of 1%, the approximated steady-state incremental damage for
= 0◦ and 𝛷 = 60◦ diminishes exponentially within 9 periods while

or 𝛷 = 90◦ steady-state condition is never achieved.

.3. Extrapolation

If steady-state occurs, the whole fatigue process can be significantly
ccelerated using extrapolation. Through extrapolation, we obtain the
ccumulated damage after 𝑡𝑁 ≫ 𝑡A > 𝑡B = 𝑡A − 𝜏 as

𝑁 ≈ �̃�𝑁 = 𝐷𝑁A
+

𝑡𝑁 − 𝑡A
𝜏

(𝐷𝑁A
−𝐷𝑁B

), (10)

where 𝑁𝐴 = 𝑡𝐴∕𝛥𝑡 and 𝑁𝐵 = 𝑡𝐵∕𝛥𝑡.
We use the steady-state condition to estimate 𝑡A, as shown in

Algorithm 1. The algorithm makes use of a procedure CTF(𝑁 ′) which
′
integrates the continuous-time HCF model for 𝑁 time steps, and
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Fig. 2. Biaxial stress history when 𝜎0 = 150 MPa: (a) Damage development; (b) Incremental damage per period; and (c) Development of relative difference to steady-state damage
per period.
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𝐾𝐾

𝐾𝐾

𝐾𝐾

𝜎𝜎
returns the sequence {𝐷𝑗}𝑁
′

𝑗=0 of the damage after each time step. A
truncation sequence is employed in the algorithm to check whether
the fatigue model has a steady-state condition for the time interval
[0, 𝑁 ′𝛥𝑡]. If the model does not exhibit a steady-state condition, then
we increase the time domain by assigning 𝑁 ′ ∶= 2𝑁 ′ to see if the model
converges to a steady-state condition.

Algorithm 1 is utilized in fatigue constrained TO problems. In the
FE model, using this algorithm, 𝑡A is estimated for the element of max-
imum damage within the structure. With these values, the damage at
all points is linearly extrapolated using (10). Furthermore, Algorithm 1
is utilized in the first iteration of the TO problem, and then 𝑡A is
fixed throughout the optimization procedure, and in the final iteration,
the estimated 𝑡A value is verified, i.e., the obtained value at the final
iteration should be less than or equal to 𝑡A.
Algorithm 1 Periodic, steady-state condition
1: procedure Calculate 𝑡A
2: Inputs: 𝑁 ′, 𝜏, 𝛥𝑡 and tol.
3: % Integer time steps per period
4: 𝑘 = 𝜏∕𝛥𝑡
5: % Set steady-state condition
6: 𝑆𝑆 = False
7: while not 𝑆𝑆 do
8: % Get damage development
9: {𝐷𝑗}𝑁

′

𝑗=0 = CTF(𝑁 ′)
0: % Get approximate 𝛥𝐷
1: 𝛥𝐷 = 𝐷𝑁 ′ −𝐷𝑁 ′−𝑘
2: % Get 𝑡A
3: 𝑗 = 0
4: while 𝑗 ≤ 𝑁 ′ − 2𝑘 and not 𝑆𝑆 do

15: 𝑗 = 𝑗 + 𝑘
6: 𝛥𝐷𝑗 = 𝐷𝑗 −𝐷𝑗−𝑘

17: 𝑆𝑆 = |

𝛥𝐷𝑗
𝛥𝐷 − 1| ≤ tol

8: 𝑡A = 𝑗𝛥𝑡
9: % Increase the duration
0: 𝑁 ′ = 2𝑁 ′

4. Topology optimization problem formulation

We discretize the design domain 𝛺 (Fig. 3) into 𝑛 finite elements
hrough the FE method. A standard density-based TO method is used,
here the objective function is to minimize the total structural mass,

.e, the sum of elemental masses 𝑚𝑒 scaled by the corresponding filter
ariable 𝜌𝑒, where 𝑒 = 1, 2,… , 𝑛 is the element index. Through a design
ariable filter (Bruns and Tortorelli, 2001), these filtered variables 𝜌𝜌𝜌 =
(𝑥𝑥𝑥) are connected to design variables 𝑥𝑥𝑥. The design variable filter is
sed to avoid mesh dependency and checkerboard phenomena in the
olution. The filtered variables 𝜌𝜌𝜌(𝑥𝑥𝑥) are called physical variables since
hey define the structural stiffness and the mass.
4

Fig. 3. Loading conditions with two load cases (LCs), where LC 1 contains a static
load 𝐹𝐹𝐹 and LC 2 has a dynamic load history �̃�𝐹𝐹 (𝑡).

The stiffness is penalized using the SIMP approach (Bendsoe and
igmund, 2004; Christensen and Klarbring, 2009) to promote so-called
lack-and-white designs, i.e.,

(𝜌𝜌𝜌(𝑥𝑥𝑥)) =
𝑛
∑

𝑒=1
(𝜌𝑒(𝑥𝑥𝑥))𝑞𝐾𝐾𝐾𝑒, (11)

where 𝐾𝐾𝐾𝑒 are elemental stiffness matrices and 𝑞 > 1 is a penalization
parameter.

Two load cases (LCs) are created to account for stiffness and fatigue,
respectively, see Fig. 3. In the first LC we take a static load 𝐹𝐹𝐹 to
compute the compliance (inverse of stiffness), while in the second LC
a dynamic load history �̃�𝐹𝐹 (𝑡) is used for calculating the fatigue-damage.

The equilibrium equation for the static load case reads

𝐾(𝜌𝜌𝜌(𝑥𝑥𝑥))𝑢𝑢𝑢 = 𝐹𝐹𝐹 ,

while for the fatigue LC, we assume quasi-static equilibrium, and
consider a time-continuum of static problems as

𝐾(𝜌𝜌𝜌(𝑥𝑥𝑥))�̃�𝑢𝑢(𝑡) = �̃�𝐹𝐹 (𝑡), ∀ 𝑡 ∈ [0, 𝑇 ].

In the above equilibrium equations, 𝑢𝑢𝑢 and �̃�𝑢𝑢(𝑡) are the displacement
vectors for the corresponding load cases.

At each time step 𝑡𝑖, we have

𝐾(𝜌𝜌𝜌(𝑥𝑥𝑥))�̃�𝑢𝑢𝑖 = �̃�𝐹𝐹 𝑖, (12)

where �̃�𝐹𝐹 𝑖 = �̃�𝐹𝐹 (𝑡𝑖), and the solution for a given design 𝑥𝑥𝑥 and time step 𝑖
is denoted by �̃�𝑢𝑢𝑖(𝑥𝑥𝑥).

For a given �̃�𝑢𝑢𝑖(𝑥𝑥𝑥), the stress vector at a stress evaluation point inside
an element 𝑒 is computed as

𝜎𝑖(𝑥𝑥𝑥) = 𝜎𝜎𝜎𝑖(𝑥𝑥𝑥, �̃�𝑢𝑢𝑖(𝑥𝑥𝑥)) =
(

𝜌𝑒(𝑥𝑥𝑥) − 𝜖
1 − 𝜖

)𝑟
𝐸𝐸𝐸𝐵𝐵𝐵�̃�𝑢𝑢𝑖(𝑥𝑥𝑥), (13)

where 𝐸𝐸𝐸 is the constitutive tensor, and 𝐵𝐵𝐵 is the strain–displacement
matrix. The parameter 𝑟 < 𝑞 is introduced to avoid the stress singularity
phenomenon (Bruggi, 2008; Holmberg et al., 2013), and 0 < 𝜖 ≪ 1 is
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the lower bound on the design variable. The above penalization factor
gives exactly zero stress in void when 𝜌𝑒 = 𝜖. Hence, no artificial
damage is developed in such regions.

As mentioned, we perform a mass minimization of the component,
where the total structural mass is minimized subject to fatigue con-
straints and a compliance constraint. The compliance is evaluated from
the static load case as 𝐹𝐹𝐹 T𝑢𝑢𝑢(𝑥𝑥𝑥). As for the fatigue load case, for a given
load history �̃�𝐹𝐹 , the fatigue damage evaluated at a time step 𝑖 in element
𝑒 is 𝐷𝑖,𝑒(𝑥𝑥𝑥). To ensure a minimum life for the body, we impose a damage
constraint at the final time 𝑇 = 𝑡𝑁 ,

max
𝑒∈{1,2,…,𝑛}

𝐷𝑁,𝑒(𝑥𝑥𝑥) ≤ �̄�, (14)

with 𝐷𝑁,𝑒(𝑥𝑥𝑥) the accumulated damage in element 𝑒, and �̄� the maxi-
mum allowable damage anywhere in the structure. For a very large 𝑡𝑁 ,
the practicality of evaluating the fatigue damage through continuous
time fatigue model is compromised due to high computational cost.
Therefore, the accumulated damage 𝐷𝑁,𝑒 ≈ �̃�𝑁,𝑒 in (14) is obtained via
the extrapolation formula (10), leading, as shown in the numerical ex-
amples, to huge savings of computational time. Since the max-function
in (14) is non-differentiable, we replace it with the p-norm (Kennedy
and Hicken, 2015),

𝐷𝑃𝑁 (𝑥𝑥𝑥) =

[ 𝑛
∑

𝑒=1
(�̃�𝑁,𝑒(𝑥𝑥𝑥))𝑃

]
1
𝑃

(15)

with 𝑃 > 1 and 𝐷𝑃𝑁 as the approximated maximum damage. It holds
that 𝐷𝑃𝑁 (𝑥𝑥𝑥) → max𝑒 𝐷𝑁,𝑒(𝑥𝑥𝑥) when 𝑃 → ∞, but too large values for 𝑃
can cause numerical difficulties.

Using (15), the mass minimization problem is now written as

(TO)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
𝑥𝑥𝑥

𝑛
∑

𝑒=1
𝑚𝑒𝜌𝑒(𝑥𝑥𝑥)

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐷𝑃𝑁 (𝑥𝑥𝑥) ≤ �̄�,
𝐹𝐹𝐹 T𝑢𝑢𝑢(𝑥𝑥𝑥) ≤ �̄�,
𝜖 ≤ 𝑥𝑒 ≤ 1, 𝑒 = 1,… , 𝑛d,
𝑥𝑒 = 𝜖, 𝑒 = 𝑛d + 1,… , 𝑛.

where 𝑛d is the total number of elements that are considered in the
design domain and �̄� is the maximum structural compliance. The
compliance constraint is included to avoid all-void solutions, see the
remark in Suresh et al. (2020).

In the above optimization problem, we have implemented the do-
main extension approach from Clausen and Andreassen (2017), where
the external boundaries are treated in the same way as the internal
boundaries. In this method, the optimization variables are prescribed
to the lower limit 𝜖 in the extended parts. In (TO), we assume the last
set of 𝑛− 𝑛d elements as the extended elements. The domain extension
approach is used to get a smoother profile at the boundary and to avoid
artificial structural reinforcement at the domain boundary.

5. Sensitivity analysis

We use adjoint sensitivity analysis for computational efficiency and,
since the damage variables 𝐷𝑖,𝑒(𝑥𝑥𝑥) has history dependence, the fatigue
sensitivities derivation follow (Suresh et al., 2020).

5.1. Adjoint sensitivity formulation

The dynamic fields of the state variables are collected into a time
sequence of vectors �̃�𝑢𝑢𝑖 and 𝑣𝑣𝑣𝑖. The state variable 𝑣𝑣𝑣𝑖 for each time step
collects the back stress 𝛼𝛼𝛼𝑖,𝑒 in Voigt notation and damage 𝐷𝑖,𝑒, i.e.

𝑣𝑖 = [𝑣𝑣𝑣𝑖,1, 𝑣𝑣𝑣𝑖,2,… , 𝑣𝑣𝑣𝑖,𝑛]T, 𝑖 = 1, 2,… , 𝑁A,

𝑣𝑖,𝑒 =
[

𝛼𝛼𝛼𝑖,𝑒
]

, 𝑒 = 1, 2,… , 𝑛.
5

𝐷𝑖,𝑒
For every 𝑖, the field variables �̃�𝑢𝑢𝑖 and 𝑣𝑣𝑣𝑖 satisfy

𝑅(𝑥𝑥𝑥)||
|𝑖
= 𝑅𝑅𝑅(𝑥𝑥𝑥, �̃�𝑢𝑢𝑖(𝑥𝑥𝑥)) = 𝐾𝐾𝐾(𝜌𝜌𝜌(𝑥𝑥𝑥))�̃�𝑢𝑢𝑖(𝑥𝑥𝑥) − �̃�𝐹𝐹 𝑖 = 000, (16)

𝐻(𝑥𝑥𝑥)||
|𝑖
=𝐻𝐻𝐻

(

𝑥𝑥𝑥, �̃�𝑢𝑢𝑖(𝑥𝑥𝑥), �̃�𝑢𝑢𝑖−1(𝑥𝑥𝑥), 𝑣𝑣𝑣𝑖(𝑥𝑥𝑥), 𝑣𝑣𝑣𝑖−1(𝑥𝑥𝑥)
)

= 000, (17)

where 𝑅𝑅𝑅||
|𝑖

and 𝐻𝐻𝐻|

|

|𝑖
are the residuals for the equilibrium equation and

evolution equations, respectively.

Recalling (7) and (8), we can write the residual in (17) as

𝐻(𝑥𝑥𝑥)||
|𝑖
=
[

𝐻𝐻𝐻(𝑥𝑥𝑥)||
|𝑖,1

,𝐻𝐻𝐻(𝑥𝑥𝑥)||
|𝑖,2

,… ,𝐻𝐻𝐻(𝑥𝑥𝑥)||
|𝑖,𝑛

]T
,

here 𝐻𝐻𝐻(𝑥𝑥𝑥)||
|𝑖,𝑒

is the residual restricted to element 𝑒 defined as

(𝑥𝑥𝑥)||
|𝑖,𝑒

=

⎡

⎢

⎢

⎣

𝛼𝛼𝛼𝑖−1,𝑒 + 𝐶(𝑠𝑠𝑠𝑖−1,𝑒 − 𝛼𝛼𝛼𝑖−1,𝑒)𝐻(𝛽||
|𝑖−1

)𝛥𝛽||
|𝑖,𝑒

− 𝛼𝛼𝛼𝑖,𝑒

𝐷𝑖−1,𝑒 +𝐾exp(𝐿𝛽||
|𝑖−1,𝑒

)𝐻(𝛽||
|𝑖−1

)𝛥𝛽||
|𝑖,𝑒

−𝐷𝑖,𝑒

⎤

⎥

⎥

⎦

.
(18)

e multiply by arbitrary vectors 𝜆𝜆𝜆𝑖 and 𝛾𝛾𝛾 𝑖 to (16) and (17) and obtain
he following augmented version of (15):

̂ 𝑃𝑁 (𝑥𝑥𝑥) =

[ 𝑛
∑

𝑒=1
(�̃�𝑁,𝑒(𝑥𝑥𝑥))𝑃

]
1
𝑃

−
𝑁A
∑

𝑖=1
𝜆𝜆𝜆T
𝑖 𝑅𝑅𝑅(𝑥𝑥𝑥)

|

|

|𝑖
−

𝑁A
∑

𝑖=1
𝛾𝛾𝛾T
𝑖 𝐻𝐻𝐻(𝑥𝑥𝑥)||

|𝑖
(19)

Taking the derivative of (19) with respect to 𝑥𝑗 , we get

𝑑�̂�𝑃𝑁 (𝑥𝑥𝑥)
𝑑𝑥𝑗

= 1
𝑃

[ 𝑛
∑

𝑒=1
(�̃�𝑁,𝑒(𝑥𝑥𝑥))𝑃

]
1
𝑃 −1 [ 𝑛

∑

𝑒=1
𝑃 �̃�𝑃−1

𝑁,𝑒
𝑑�̃�𝑁,𝑒(𝑥𝑥𝑥)

𝑑𝑥𝑗

]

−
𝑁A
∑

𝑖=1
𝜆𝜆𝜆T
𝑖

[

𝜕1𝑅𝑅𝑅
|

|

|𝑖
+ 𝜕2𝑅𝑅𝑅

|

|

|𝑖

𝑑�̃�𝑢𝑢𝑖
𝑑𝑥𝑗

]

−
𝑁A
∑

𝑖=1
𝛾𝛾𝛾T
𝑖

[

𝜕1𝐻𝐻𝐻
|

|

|𝑖
+ 𝜕2𝐻𝐻𝐻

|

|

|𝑖

𝑑�̃�𝑢𝑢𝑖
𝑑𝑥𝑗

+ 𝜕3𝐻𝐻𝐻
|

|

|𝑖

𝑑�̃�𝑢𝑢𝑖−1
𝑑𝑥𝑗

+𝜕4𝐻𝐻𝐻
|

|

|𝑖

𝑑𝑣𝑣𝑣𝑖
𝑑𝑥𝑗

+ 𝜕5𝐻𝐻𝐻
|

|

|𝑖

𝑑𝑣𝑣𝑣𝑖−1
𝑑𝑥𝑗

]

,

(20)

where 𝜕𝑎 denotes differentiation with respect to the 𝑎th argument and
the derivative 𝑑�̃�𝑁,𝑒(𝑥𝑥𝑥)∕𝑑𝑥𝑗 is calculated using (10), which is

𝑑�̃�𝑁,𝑒(𝑥𝑥𝑥)
𝑑𝑥𝑗

=
𝑑𝐷𝑁A ,𝑒(𝑥𝑥𝑥)

𝑑𝑥𝑗
+

𝑡𝑁 − 𝑡A
𝜏

[𝑑𝐷𝑁A ,𝑒(𝑥𝑥𝑥)
𝑑𝑥𝑗

−
𝑑𝐷𝑁B ,𝑒(𝑥𝑥𝑥)

𝑑𝑥𝑗

]

. (21)

Substituting (21) in (20), writing 𝐷𝑁A ,𝑒 = 𝑒𝑒𝑒T
𝑒𝑣𝑣𝑣𝑁A

and 𝐷𝑁B ,𝑒 = 𝑒𝑒𝑒T
𝑒𝑣𝑣𝑣𝑁B

,
with 𝑒𝑒𝑒𝑒 as a column vector that contains only zeros except for a one in
the position corresponding to 𝐷𝑁A ,𝑒 and 𝐷𝑁B ,𝑒, respectively and then
rearranging the terms in (20), we get:

𝑑�̂�𝑃𝑁 (𝑥𝑥𝑥)
𝑑𝑥𝑗

= −
𝑁A
∑

𝑖=1
𝜆𝜆𝜆T
𝑖 𝑅𝑅𝑅(𝑥𝑥𝑥)

|

|

|𝑖
−

𝑁A
∑

𝑖=1
𝛾𝛾𝛾T
𝑖 𝐻𝐻𝐻(𝑥𝑥𝑥)||

|𝑖

−
[

𝜆𝜆𝜆T
𝑁A

𝜕2𝑅𝑅𝑅
|

|

|𝑁A
+ 𝛾𝛾𝛾T

𝑁A
𝜕2𝐻𝐻𝐻

|

|

|𝑁A

] 𝑑�̃�𝑢𝑢𝑁A

𝑑𝑥𝑗
−
[

𝛾𝛾𝛾T
𝑁A

𝜕4𝐻𝐻𝐻
|

|

|𝑁A

−
(

1 +
𝑡𝑁 − 𝑡A

𝜏

)

(𝐷𝑃𝑁 )1−𝑃
( 𝑛
∑

𝑒=1
�̃�𝑃−1

𝑁,𝑒 𝑒𝑒𝑒
T
𝑒

)]

𝑑𝑣𝑣𝑣𝑁A

𝑑𝑥𝑗

−
(

𝑡𝑁 − 𝑡A
𝜏

)

(𝐷𝑃𝑁 )1−𝑃
( 𝑛
∑

𝑒=1
�̃�𝑃−1

𝑁,𝑒 𝑒𝑒𝑒
T
𝑒

)

𝑑𝑣𝑣𝑣𝑁𝐵

𝑑𝑥𝑗

−
𝑁A
∑

𝑖=2

[

𝜆𝜆𝜆T
𝑖−1𝜕2𝑅𝑅𝑅

|

|

|𝑖−1
+ 𝛾𝛾𝛾T

𝑖−1𝜕2𝐻𝐻𝐻
|

|

|𝑖−1
+ 𝛾𝛾𝛾T

𝑖 𝜕3𝐻𝐻𝐻
|

|

|𝑖

] 𝑑�̃�𝑢𝑢𝑖−1
𝑑𝑥𝑗

−
𝑁A
∑

[

𝛾𝛾𝛾T
𝑖−1𝜕4𝐻𝐻𝐻

|

|

|𝑖−1
+ 𝛾𝛾𝛾T

𝑖 𝜕5𝐻𝐻𝐻
|

|

|𝑖

] 𝑑𝑣𝑣𝑣𝑖−1 .

𝑖=2 𝑑𝑥𝑗
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The adjoint variables, 𝜆𝜆𝜆𝑖 and 𝛾𝛾𝛾 𝑖, are now required to satisfy following
iscrete terminal value problem:

⎡

⎢

⎢

⎣

𝐾𝐾𝐾(𝑥𝑥𝑥)
(

𝜕2𝐻𝐻𝐻
|

|

|𝑁A

)T

000 −𝐼𝐼𝐼

⎤

⎥

⎥

⎦

[

𝜆𝜆𝜆𝑁A
𝛾𝛾𝛾𝑁A

]

=

[

000
(

1 + 𝑡𝑁−𝑡A
𝜏

)

(𝐷𝑃𝑁 )1−𝑃
(

∑𝑛
𝑒=1 �̃�

𝑃−1
𝑁,𝑒 𝑒𝑒𝑒

T
𝑒

)

]

(22)

⎡

⎢

⎢

⎣

𝐾𝐾𝐾(𝑥𝑥𝑥)
(

𝜕2𝐻𝐻𝐻
|

|

|𝑖−1

)T

000 −𝐼𝐼𝐼

⎤

⎥

⎥

⎦

[

𝜆𝜆𝜆𝑖−1
𝛾𝛾𝛾 𝑖−1

]

=

−

⎡

⎢

⎢

⎢

⎣

(

𝜕3𝐻𝐻𝐻
|

|

|𝑖

)T

(

𝜕5𝐻𝐻𝐻
|

|

|𝑖

)T

⎤

⎥

⎥

⎥

⎦

𝛾𝛾𝛾 𝑖 −

[

000
(

𝑡𝑁−𝑡A
𝜏

)

(𝐷𝑃𝑁 )1−𝑃
(

∑𝑛
𝑒=1 �̃�

𝑃−1
𝑁,𝑒 𝑒𝑒𝑒

T
𝑒

)

𝛿𝑖𝑁𝐵

]

,

(23)

hich is solved backwards for 𝑖 = 𝑁A, 𝑁A − 1,… , 2. Here 𝛿𝑖𝑗 is the
Kronecker delta. The final sensitivity expression becomes

𝑑�̂�𝑃𝑁 (𝑥𝑥𝑥)
𝑑𝑥𝑗

= −
𝑁A
∑

𝑖=1
𝜆𝜆𝜆T
𝑖
𝜕𝑅𝑅𝑅(𝑥𝑥𝑥)
𝜕𝑥𝑗

|

|

|𝑖
−

𝑁A
∑

𝑖=1
𝛾𝛾𝛾T
𝑖
𝜕𝐻𝐻𝐻(𝑥𝑥𝑥)
𝜕𝑥𝑗

|

|

|𝑖
. (24)

The original sensitivity formulation shown in Suresh et al. (2020)
emerges as a special case when 𝑡A = 𝑡𝑁 , i.e., 𝑁A = 𝑁 . This happens
when the HCF model does not exhibit steady-state condition.

5.2. Solving the adjoint system

For additional computational efficiency, we exploit the structure of
the coefficient matrices in the adjoint Eqs. (22) and (23). Considering
(23) and 𝑡A = 𝑡𝑁 , we first solve 𝛾𝛾𝛾 𝑖−1 and then 𝜆𝜆𝜆𝑖−1 as follows:

− 𝛾𝛾𝛾 𝑖−1 = −(𝜕5𝐻𝐻𝐻
|

|

|𝑖−1
)T𝛾𝛾𝛾 𝑖, (25)

𝐾(𝑥𝑥𝑥)𝜆𝜆𝜆𝑖−1 = −(𝜕3𝐻𝐻𝐻
|

|

|𝑖−1
)T𝛾𝛾𝛾 𝑖 − (𝜕2𝐻𝐻𝐻

|

|

|𝑖−1
)T𝛾𝛾𝛾 𝑖−1. (26)

We note that when using a direct linear solver, 𝐾𝐾𝐾 ∈ R𝑚×𝑚 need only
be factorized once for each design. Since the (Cholesky) factorization is
needed anyway to solve the state problem, the cost for solving (26) is
mainly that of solving two triangular systems, i.e. around 2𝑛2 floating-
oint operations per time step (probably less than 𝑛2 due to sparsity).
owever, the cost of factorization is > 𝑛2 and will eventually dominate
nless one considers very long repetition sequences of the load.

As for (25) the cost for solving it is negligible. The computational
ost in the sensitivity analysis is thus dominated by the solving of (26).

While the savings of computational time is completely dominated
y the use of the extrapolation, the cost for the sensitivity analysis in
he thereby obtained TO problem is still not negligible. Therefore, the
ext section presents a way to speed up the sensitivity analysis further,
imilarly to elastoplasticity (Wang et al., 2017).

.3. Simplification of sensitivity analysis

To obtain 𝜆𝜆𝜆𝑖 and 𝛾𝛾𝛾 𝑖 at each time step, we require solutions to
A linear systems. Hence, the total computational cost is roughly
roportional to the number of time steps.

In the continuous-time HCF model, we can distinguish two types
f time steps: non-fatigue steps (no damage within the structure),
.e. when stress-state at all points in the design domain lies within the
ndurance surface (𝛽 < 0) or in unloading condition (�̇� < 0), and
atigue steps (damage development anywhere within the structure).
ased on these observations, we find that the non-fatigue time steps
an be identified and eliminated from the sensitivity analysis.

In the non-fatigue step, 𝑖 − 1, we have 𝐻(𝛽||
|𝑖−1

) = 0. The elemental
esidual 𝐻𝐻𝐻(𝑥𝑥𝑥)||

|𝑖,𝑒
in (18), then becomes

(𝑥𝑥𝑥)|| =
[

𝛼𝛼𝛼𝑖−1,𝑒 − 𝛼𝛼𝛼𝑖,𝑒
]

. (27)
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|𝑖,𝑒 𝐷𝑖−1,𝑒 −𝐷𝑖,𝑒.
sing (27), the partial derivatives in (25) and (26) are

2𝐻𝐻𝐻
|

|

|𝑖−1
= 000, 𝜕3𝐻𝐻𝐻

|

|

|𝑖−1
= 000, 𝜕5𝐻𝐻𝐻

|

|

|𝑖−1
= 𝐼𝐼𝐼. (28)

ubstituting (28) into (25) and (26), we get 𝛾𝛾𝛾 𝑖−1 = 𝛾𝛾𝛾 𝑖 and 𝜆𝜆𝜆𝑖−1 = 000.
With the obtained adjoint variables and derivative 𝜕1𝐻𝐻𝐻(𝑥) at time step
𝑖−1 in (24) becomes 𝜕1𝐻𝐻𝐻(𝑥)|𝑖−1 = 000 from (27), and the sensitivity value
btained for 𝑖 − 1 becomes zero. Thus, time step 𝑖 − 1 can be skipped
rom the sensitivity analysis without loss of accuracy.

. Numerical examples

The proposed method is implemented in the in-house FE pro-
ram TRINITAS, (Torstenfelt, 2012). The optimization problem (TO)
s solved by using the Method of Moving Asymptotes (MMA), Svanberg
1987), on a desktop computer with an Intel(R) Core(TM) i9-10980XE
PU @ 3.00 GHz with 18 cores. The increase and decrease factors for
he asymptotes have been reduced to 1.05 and 0.65, respectively.

Using 7050-T7451 aluminum alloy, several examples, particularly
2D L-shaped beam, discretized by bi-linear quadrilateral plane stress

Es having thickness 1 mm, and a 3D bracket, discretized by 6-noded
olid wedge elements and 8-noded solid brick elements, are tested.
or the concerned material, the Young modulus is 70 GPa, the density
s 2700 kg/m3, and the Poisson ratio is 0.33. We take the values of
he penalization parameters as 𝑞 = 3 and 𝑟 = 0.5. The initial design
ariables are taken as 𝑥𝑒 = 0.75 and the lower bound on the design
ariables is 𝜖 = 0.001. The problems are solved with the density filter
adii as 0.6 mm for 2D examples and 2.3 mm for the 3D example, and
he exponent of the p-norm 𝑃 = 8. The stresses 𝜎𝜎𝜎𝑖 obtained for the
atigue load case is calculated using (13).

The maximum structural compliance �̄� in (TO) is determined by
erforming a compliance minimization subjected to a mass constraint
ithout fatigue constraint. The optimization problem is solved for 30%
f the original structural mass and the compliance obtained is set as �̄�.
he maximum fatigue damage �̄� in (TO) is selected such that we try
o obtain an infinite life in the structure. At infinite-life, we expect that
he endurance surface is moved to a position where the whole stress
ycle is inside it. From Ottosen et al. (2008), Holopainen et al. (2016)
nd Lindström et al. (2020), it is found that the damage per period
or getting an infinite life is around 1E-7. Hence, for the presented
xamples, the maximum fatigue damage �̄� is selected close to that
alue.

.1. Computational time

We evaluate the computational time for the plate-with-hole geome-
ry, shown in Fig. 4. The dimensions of the model are 𝐿0 = 100 mm and
= 0.4𝐿0 and the geometry has a thickness of 10 mm. Using symmetry,

nly a quarter of the geometry is modelled using 6000 3D 8-node brick
lements. At the left and bottom faces, symmetry boundary conditions
re applied. A uniformly-distributed load 𝑄0 = 50 MPa is applied to the
ight face as a static load case, while a uniformly-distributed, periodic
oad �̃�(𝑡) = 𝑄0 sin(2𝜋𝑡∕𝜏) is used for the dynamic load case, where
= 20𝜏, 𝜏 = 1, 𝛥𝑡 = 0.01𝜏, and 𝑁 ′ = 𝑇 ∕𝛥𝑡.
The optimization problem (TO) is solved for 5 MMA iterations,

or which the computational time is evaluated. Breakdown of timings,
.e., fatigue analysis, sensitivity analysis and total (fatigue + sensitivity
nalyses) for the considered geometry is shown in Fig. 5.

Using the conventional approach, i.e. the stress history is fully
ntegrated to 𝑡𝑁 = 20𝜏 (red bar), from the figure, it is evident that the
ajor computational time is spent on sensitivity analysis, and therein

n the solution of the adjoint variables.
The dotted red bars show the projected computational time that it

akes to solve the TO problem when subjected to a long load history,
𝑁 = 1E5𝜏. Here, we can clearly see that it is practically impossible
o solve fatigue TO problems for structures subjected to long load
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Fig. 4. Plate-with-hole geometry.

Fig. 5. Computational time calculation.

histories by integrating the entire loading history. Hence, we employ
the extrapolation technique.

For the considered geometry, using Algorithm 1, the steady-state
condition exist after 𝑡A = 12𝜏. Therefore, we fully integrate the fatigue
model until 𝑡A with extrapolation to 𝑡𝑁 = 1E5𝜏 (blue bar). In this case
timings for fatigue and sensitivity analyses are improved considerably
by a factor of around 1E5. Through extrapolation, we are thus capable
of solving TO problems for structures subjected to long load histories.

6.2. L-shaped beam with a cyclic, proportional load history

For the first example, we consider an L-shaped beam, where the
dimensions used for this geometry are shown in Fig. 6, with 𝐿1 =
100 mm. The design domain is discretized by 57600 elements. The top
edge of the beam is clamped. Two load cases are created, where the
first load case is a static load 𝑄1 = 200 𝑁 for compliance evaluation,
while the second load case takes the periodic load history, �̃�1(𝑡) =
𝑄1 sin(2𝜋𝑡∕𝜏), with 𝑇 = 20𝜏, 𝜏 = 1, 𝛥𝑡 = 0.01𝜏, and 𝑁 ′ = 𝑇 ∕𝛥𝑡, for
fatigue estimation. The grey regions in Fig. 6 indicate elements domain
extension approach, and the black region under the load indicates
elements that are not included in optimization.

The optimization problem (TO) is solved for three cases. In the
first case, the fatigue model is fully integrated to a time 𝑡𝑁 = 20𝜏
with fatigue bound �̄� = 1E − 5, while in the second and third case,
we use Algorithm 1 to identify the steady-state condition and for the
7

Fig. 6. Geometry of the L-shaped beam domain.

considered example, the steady-state exists after 𝑡A = 13𝜏. Thus, the
fatigue model is integrated until 𝑡A with extrapolation to 𝑡𝑁 = 20𝜏 and
𝑡𝑁 = 20E5𝜏, respectively. The fatigue bound for the second case is taken
same as first case, i.e., �̄� = 1E−5. For the third case, we take the fatigue
bound as �̄� = 0.9 to make the target damage per period comparable to
the first two cases. The compliance bounds for all cases are taken as
�̄� = 0.21 Nmm.

Table 1 provides optimized results of the L-shaped beam for three
cases. In the first row, the profiles of the optimized model for the three
cases are provided, while in second row, we see the corresponding
fatigue-damage distribution within the structure. In the first column,
the optimized model of the L-shaped beam after 1000 MMA iterations
is shown when the stress history is fully integrated. The computational
time required to solve this case is around 6 h. We notice that in
the optimized model, there is a smooth radius at the re-entrant edge,
thereby reducing high stress concentrations and thus prolonging the life
of the structure.

In the second column, the optimized model of the L-shaped beam
is shown for the second case. Here the same problem as in first
case is solved with extrapolation. We notice that the profile obtained
with extrapolation is roughly similar to the optimized model with full
integration (first column). The computational time required to solve
this case is around 3 h after 1000 iterations. The third column gives the
optimization result when extrapolated to 𝑡𝑁 = 20E5𝜏. In this case, the
maximum fatigue-damage within the optimized structure is found to
less than critical failure, i.e., 𝐷 < 1. The computational time taken here
is exactly same as for the second case, i.e., around 3 h. Fatigue damage
is much more localized to the surface in the high-cycle case (third
column, Table 1). This is because transient effects become negligible.

6.3. L-shaped beam with repeats in loading spectrum, proportional load
history

We again use the L-shaped beam from Fig. 6. However, for the
fatigue load case, the loading spectrum shown in Fig. 7 is taken, with
load history as �̃�1(𝑡) = 𝑄1𝑆𝑓 (𝑡). Here 𝑆𝑓 (𝑡) is a pseudo-random function,
which is a linear interpolation between 20 normally randomized values
at 𝜏∕20 interspacing when 𝑡 ∈ [0, 𝜏]. This sequence is repeated, 𝑆𝑓 (𝑡 +
𝜏) = 𝑆𝑓 (𝑡), with period 𝜏 = 20 (Fig. 7), and we use 𝛥𝑡 = 0.0025𝜏, 𝑇 = 5𝜏
and 𝑁 ′ = 𝑇 ∕𝛥𝑡.

Similar to the first example, we solve the (TO) problem for three
cases. In the first case, the fatigue model is fully integrated to a time of
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Table 1
Optimized results of the L-shaped beam when subjected to a cyclic load history; (a) Fully integrated to a time period of 𝑡𝑁 = 20𝜏 without extrapolation; (b) Extrapolated to
𝑡𝑁 = 20𝜏; (c) Extrapolated to 𝑡𝑁 = 20E5𝜏.

Without extrapolation With extrapolation

Topology

Damage

Mass 0.047 kg 0.048 kg 0.048 kg
.

Table 2
Optimized results of the L-shaped beam when subjected to repeats in loading spectrum; (a) Fully integrated to 𝑡𝑁 = 5𝜏; (b) Extrapolated to 𝑡𝑁 = 5𝜏; (c) Extrapolated to 𝑡𝑁 = 5E5𝜏

Without extrapolation With extrapolation

Topology

Damage

Mass 0.051 kg 0.051 kg 0.052 kg
𝑡𝑁 = 5𝜏 with �̄� = 1E − 5, while in the second case, using extrapolation
(10), the fatigue damage is extrapolated to 𝑡𝑁 = 5𝜏 with the above
fatigue bound. For the considered example, steady-state exists after 𝑡A =
4𝜏, and thus the fatigue model is integrated until 𝑡A with extrapolation.
In the third case, the fatigue model is extrapolated to 𝑡 = 5E5𝜏 with
8

𝑁

fatigue bound as �̄� = 0.9. Like the previous example, the maximum
fatigue-damage within the structure before optimization is found to be
greater than 1, which is more than critical failure value (𝐷 = 1). Hence
we chose the above fatigue bound. The compliance bounds for all cases
are taken as �̄� = 0.21 Nmm.
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Fig. 7. Repeats in loading spectrum.

Table 2 provides optimized results of the L-shaped beam for three
cases. The profiles of the optimized model for the three cases are
provided in the first row, while the second row gives the corresponding
fatigue-damage distribution within the structure. In the first column,
the optimized model of the L-shaped beam is shown when the stress
history is fully integrated. The computational time required to solve
this case is around 8 h.

In the second column, the optimized model of the L-shaped beam
is shown for the second case. Here the same problem as in first case
is solved with extrapolation. We note that there is a slight difference
in topologies of the optimized model in the first and second cases. The
reason for the change in profiles is probably due to the non-convexity
of the problem (local optima). However, we obtain similar structural
mass. The computational time required to solve this case is around
5 h. For the third case, the optimization result is shown in the final
column when the fatigue model is extrapolated to 𝑡𝑁 = 5E5𝜏 and the
computational time taken here is same as the second case, i.e., around
5 h.
9

6.4. L-shaped beam with biaxial, non-proportional load history

We use the L-shaped beam from Fig. 6 with the loading condition
shown in Fig. 8. Three load cases are created, where the first and second
load cases consist of static loads 𝑄2𝑦 = 200 𝑁 and 𝑄2𝑥 = 300 𝑁 for
compliance evaluations, while the third load case takes a biaxial load
history, �̃�2𝑦(𝑡) = 𝑄2𝑦 sin(2𝜋𝑡∕𝜏), and �̃�2𝑥(𝑡) = 𝑄2𝑥 sin(2𝜋𝑡∕𝜏 − 𝛷) with
𝑇 = 20𝜏, 𝛷 = 45◦, 𝜏 = 1, 𝛥𝑡 = 0.025𝜏, and 𝑁 ′ = 𝑇 ∕𝛥𝑡, for fatigue
estimation.

Fig. 8. Biaxial loading condition.

We solve the optimization problem (TO) for three cases. In the first
case, we fully integrate the fatigue model to a time 𝑡𝑁 = 20𝜏 with
fatigue bound �̄� = 5E − 5, while in the second and third case, we use
Algorithm 1 to identify the steady-state condition. For the considered
example, the steady-state exists after 𝑡A = 11𝜏. Thus, the fatigue model
is integrated until 𝑡A with extrapolation to 𝑡𝑁 = 20𝜏 and 𝑡𝑁 = 4E5𝜏,
respectively. The fatigue bound for the second case is taken same as
Table 3
Optimized results of the L-shaped beam when subjected to biaxial, non-proportional loads; (a) Fully integrated to 𝑡𝑁 = 20𝜏; (b) Extrapolated to 𝑡𝑁 = 20𝜏; (c) Extrapolated to
𝑡𝑁 = 5E5𝜏.

Without extrapolation With extrapolation

Topology

Damage

Mass 0.068 kg 0.069 kg 0.079 kg
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Fig. 9. Geometry of the 3D bracket.
first case and for the third case, we take the fatigue bound as �̄� = 0.9.
For all cases, the compliance bound for each static load cases is taken
as �̄� = 0.25 Nmm.

Table 3 provides optimization results of the L-shaped beam with
biaxial loading for three cases. The profiles of the optimized model
for the three cases are provided in the first row, while the second
row gives the corresponding fatigue-damage distribution within the
structure. In the first column, the optimized model of the L-shaped
beam is shown when the stress history is fully integrated. The static
loads 𝑄2𝑦 and 𝑄2𝑥 induce a high bending moment in the region close
to the clamped edge. Therefore, on optimization, fatigue damage starts
to dominate at the vertical boundaries near the clamped edge due to
high bending stresses. As a result more material is distributed near the
clamped regions. The computational time required to solve this case
after 1000 MMA iterations is around 12 h.

The second column provides the optimized model of the L-shaped
beam for the second case, where the same problem as in first case is
solved with extrapolation. Due to the non-convexity of the problem,
there is a difference in topologies of the optimized model in the first
and second cases. However, we obtain similar structural mass. The
computational time required to solve this case is around 6 h. For the
third case, the optimization result is shown in the final column when
the fatigue model is extrapolated to 𝑡𝑁 = 4E5𝜏 and the computational
time taken here is same as the second case.

As mentioned in Section 3, it is possible to achieve steady-state for
most non-proportional loads. However, for the considered example, for
phase angles 𝛷 > 70◦, the fatigue model does not achieve steady-state
condition.

6.5. 3D bracket with periodic load history

For the final example, we take a 3D bracket shown in Fig. 9. The
dimensions of the geometry is shown in Fig. 9 with 𝐿2 = 100 mm. The
model is discretized by 73216 3D elements (5056 6-noded solid wedge
elements + 68160 8-noded solid brick elements) and at 4 bolt locations,
we have fixed boundary conditions. Like the previous example, two
load cases are created, where the first load case is a static load in
the form of surface load 𝑄3𝑦 = 𝑄3𝑧 = 3.5E7 N/mm2 for compliance
evaluation, while the second load case takes the periodic load history,
�̃�3𝑦(𝑡) = 𝑄3𝑦 sin(2𝜋𝑡∕𝜏) and �̃�3𝑧(𝑡) = 𝑄3𝑧 sin(2𝜋𝑡∕𝜏), with 𝑇 = 20𝜏, 𝜏 = 1,
𝛥𝑡 = 0.01𝜏 and 𝑁 ′ = 𝑇 ∕𝛥𝑡, for fatigue estimation. The red regions in
Fig. 9 indicate elements that utilize the domain extension approach, i.e,
𝑥𝑒 = 𝜀, while the regions under the load and around the bolts indicate
elements that are not included in optimization.
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The fatigue constrained problem (TO) is solved for two cases. In
the first case, the fatigue model is fully integrated to 𝑡𝑁 = 20𝜏 with
�̄� = 1E − 5, while in the second we use Algorithm 1 to identify the
steady-state condition that exists after 𝑡A = 14𝜏. Thus the fatigue model
is fully integrated until 𝑡A with extrapolation to 𝑡𝑁 = 20E5𝜏. The fatigue
bound is taken as �̄� = 0.9. The compliance bound for both cases is taken
as �̄� = 3.8 Nmm.

The optimized result of the 3D bracket for the first case after solving
(TO) problem is shown in Fig. 10(b). The computational time required
to solve this problem after 500 iterations is around 10 h. For com-
parison, Fig. 10(a) provides the optimization result for the mass mini-
mization problem without fatigue constraint. We notice that there is a
considerable change in the profile of the optimized model, Fig. 10(b),
to account for fatigue constraint when compared to Fig. 10(a).

In the second case, (TO) is solved with extrapolation. Here, we fully
integrate the fatigue model until 𝑡A with extrapolation to 𝑡𝑁 = 20E5𝜏.
The optimized model is shown in Fig. 10(c). The computational time
required to solve this problem after 500 iterations is around 5.5 h.

7. Conclusion

An acceleration technique was proposed to treat continuous-time
constrained TO fatigue problems, (Suresh et al., 2020). Through this
technique we can solve TO problems for unlimited load histories com-
prising sequence repetitions.

Fatigue sensitivities were derived by the adjoint method. However,
the computational effort is quite high (around 𝑁 × 𝑛2), and is mainly
due to the solution of the adjoint variables. Hence, a technique was pro-
posed, where we utilized extrapolation for the continuous-time model,
based on the fact that the HCF model exhibits a steady-state condition
for all forms periodic, proportional and most non-proportional loads.
Along with this technique, we further speed up the sensitivity analysis
by identifying and eliminating some time steps from the analysis.

Considering 7050-T7451 aluminum alloy, several numerical ex-
amples were given. An L-shaped beam subject to not only constant-
amplitude cycles but also a repeated load spectrum, proportional load
histories are presented. Additionally, we present the same L-shaped
beam subject to a biaxial, non-proportional load history. For these load
histories, through continuous-time approach, the HCF model attains a
steady-state condition and through extrapolation, we solved the (TO)
problem for a long load history. We notice there are small changes
in the optimized designs due to the extrapolation technique, but no
significant change in mass. Finally, we also presented a 3D bracket
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Fig. 10. Optimized model (iso-surface when 𝜌 = 0.5) of the 3D bracket: (a) Without fatigue constraint, where the obtained optimized mass is 0.078 kg; (b) With fatigue constraint
when fully integrated to 𝑡𝑁 = 20𝜏, and the obtained optimized mass is 0.103 kg; (c) With fatigue constraint when extrapolation is used (extrapolated to 𝑡𝑁 = 20E5𝜏), and the
obtained optimized mass is 0.125 kg.
with periodic load history, thus demonstrating the capability to handle
industrial-scale problems subjected to a long load history.

In this research we present acceleration techniques only for isotropic
materials. However it is also possible to treat transversely isotropic
materials (Suresh et al., 2021).
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