
Citation: Ahmed, S.; Bhatti, M.T.;

Khan, M.G.; Lövström, B.; Shahid, M.

Development and Optimization of

Deep Learning Models for Weapon

Detection in Surveillance Videos.

Appl. Sci. 2022, 12, 5772. https://

doi.org/10.3390/app12125772

Academic Editor:

Arcangelo Castiglione

Received: 3 May 2022

Accepted: 3 June 2022

Published: 7 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Development and Optimization of Deep Learning Models for
Weapon Detection in Surveillance Videos
Soban Ahmed 1, Muhammad Tahir Bhatti 1 , Muhammad Gufran Khan 1,* , Benny Lövström 2

and Muhammad Shahid 1

1 Department of Electrical Engineering, National University of Computer and Emerging Sciences,
Islamabad 44000, Pakistan; f190851@nu.edu.pk (S.A.); f179113@nu.edu.pk (M.T.B.);
muhammad.shahid@ieee.org (M.S.)

2 Department of Mathematics and Natural Sciences, Blekinge Institute of Technology,
371 41 Karlskrona, Sweden; benny.lovstrom@bth.se

* Correspondence: m.gufran@nu.edu.pk

Featured Application: This work has applied computer vision and deep learning technology to
develop a real-time weapon detector system and tested it on different computing devices for
large-scale deployment.

Abstract: Weapon detection in CCTV camera surveillance videos is a challenging task and its impor-
tance is increasing because of the availability and easy access of weapons in the market. This becomes
a big problem when weapons go into the wrong hands and are often misused. Advances in computer
vision and object detection are enabling us to detect weapons in live videos without human inter-
vention and, in turn, intelligent decisions can be made to protect people from dangerous situations.
In this article, we have developed and presented an improved real-time weapon detection system
that shows a higher mean average precision (mAP) score and better inference time performance
compared to the previously proposed approaches in the literature. Using a custom weapons dataset,
we implemented a state-of-the-art Scaled-YOLOv4 model that resulted in a 92.1 mAP score and
frames per second (FPS) of 85.7 on a high-performance GPU (RTX 2080TI). Furthermore, to achieve
the benefits of lower latency, higher throughput, and improved privacy, we optimized our model
for implementation on a popular edge-computing device (Jetson Nano GPU) with the TensorRT
network optimizer. We have also performed a comparative analysis of the previous weapon detector
with our presented model using different CPU and GPU machines that fulfill the purpose of this
work, making the selection of model and computing device easier for the users for deployment in a
real-time scenario. The analysis shows that our presented models result in improved mAP scores on
high-performance GPUs (such as RTX 2080TI), as well as on low-cost edge computing GPUs (such as
Jetson Nano) for weapon detection in live CCTV camera surveillance videos.

Keywords: weapon detection; object detection; deep learning; optimization; computer vision

1. Introduction

Crime is a deed that is based on an offensive act, but to overcome such offensive acts it
has always been necessary to utilize different means to minimize them in short time. Some
of these crimes result in danger to both the environment and human life. Every country
in the world seeks peace because it enables societies to flourish, and economies to grow
and achieve new heights of success over time. Contrary to this, an unpeaceful environment
full of illegal activities brings the downfall of societies, communities, and countries. For
example, wars have the biggest impact on a society in which the whole country suffers from
huge pain and loss. Peaceful people are forced to fight, which ends with the loss of life,
property, and identity. Some people are forced to relocate and travel to other countries as

Appl. Sci. 2022, 12, 5772. https://doi.org/10.3390/app12125772 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12125772
https://doi.org/10.3390/app12125772
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9699-6716
https://orcid.org/0000-0002-2199-1013
https://orcid.org/0000-0003-3824-0942
https://doi.org/10.3390/app12125772
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12125772?type=check_update&version=1

Appl. Sci. 2022, 12, 5772 2 of 21

refugees. Therefore, countries with good defense systems can protect their sovereignty and
help others to live peaceful lives. Similarly, on a lower scale, people who are not educated
or are mistreated by society try to take the law into their own hands and commit crimes
such as robberies. In robberies, robbers use weapons to terrorize other humans to meet
their end needs, which normally ends with a loss of life or money. In most of these events,
handheld weapons like pistols are the commonly used firearms that are easy to carry and
get away with. Likewise, weapons are used by terrorists against common citizens, which
results in a massacre.

In the past few years, the incidents involving firearms have increased in public areas.
A couple of years back were the attacks on mosques in New Zealand on 15 March 2019; at
1:40 pm, the attacker attacked the Christchurch AL-Noor Mosque during a Friday prayer,
killing almost 44 innocent and unarmed worshippers, and with a break of just 15 min at
1:55 pm, another attack happened that killed seven more civilians [1]. In the USA and then
in Europe, incidents of active shooters have occurred, such as in Columbine High School
(USA, 37 victims), Andreas Broeivik’s assault on Uotya Island (Norway, 179 victims), or the
killing of 23 people in the Charlie Hebdo newspaper attack. UNODC statistics says that
among 0.1 million people in a country, the crimes involving guns are very high, i.e., 1.6 in
Belgium, 4.7 in the USA, and 21.5 in Mexico [2].

The reason and motivation behind this work is to detect various weapons in real time,
thus reducing the aforementioned incidents. These incidents can be controlled using an
early alarm system by alerting the operators and concerned authorities so that action can
be taken immediately.

For decades, law enforcement agencies have installed CCTV cameras for surveillance
that have helped them in noticing illegal activities in streets, airports, etc., and utilize the
video as a piece of evidence in a court of law. People install CCTV cameras in their shops or
markets for protection from thieves and robbers [3,4]. One common issue that arises with
CCTV cameras is that they are not intelligent, which means a person should be available
round the clock for monitoring live videos to take timely action against illegal activity. This
turns out to be a tiresome job when a person must monitor multiple video screens for a
longer duration of time [5].

Artificial intelligence (AI) and computer vision have enabled us to utilize video feeds
in a way that we can detect and classify the objects of our interest in it. Therefore, it has been
widely adopted and used in many applications such as autonomous vehicles, security feeds,
etc. Many algorithms and architectural works have been done for the aforementioned tasks.
In 2020, Murthy, Chinthakindi Balaram et al. [6] provided a detailed and comprehensive
discussion and analysis of state-of-the-art techniques and algorithms used in the field of
computer vision using deep learning technology, especially for the GPU-based embedded
system. They covered many state-of-the-art algorithms that were trained and tested on
COCO, PASCAL VOC datasets. The algorithms included RCNN, SPPNet, FasterRCNN,
MaskRCNN, FPN, YOLO, SSD, RetinaNet, Squeeze Det, and CornerNet; these algorithms
were compared and analyzed based on accuracy, speed, and performance for important
applications including pedestrian detection, crowd detection, medical imaging, and face
detection. Moreover, we also previously implemented a real-time weapon detector model
based on YOLOv4 trained with a custom dataset. The model has a decent accuracy but
lacks performance [7]. Therefore, we continued our research to further improve the model
in terms of mAP and performance for both cloud and edge computing devices. In addition,
the existing solutions are not highly accurate, lack real-time performance, and often utilize
cloud computing in which resources are abundant. Cloud implementations have issues
like performance bottlenecks caused by network bandwidth, latency and privacy breaches,
etc. Hence, there is a need to improve the existing solutions by utilizing the state-of-the-art
object detection algorithm deployed on edge computing devices to rectify the mentioned
shortcomings of cloud computing. The notable limitations of the previous works are the
usage of an older deep learning model that has lesser accuracy compared to the state-of-
the-art models, very few and outdated preprocessing steps for dataset preparation, and no

Appl. Sci. 2022, 12, 5772 3 of 21

performance analysis on any embedded device. Furthermore, to the best of our knowledge,
there is no previous work done to deploy and compare the performance of the weapon
detection model on edge computing devices in real time.

The main contributions of this research work are as follows:

1. Improved the accuracy and performance of the existing weapon detection model by
utilizing state-of-the-art algorithm and preprocessing techniques;

2. Improved number of frames per second FPS for real-time deployment;
3. Compared and analyzed the performance of the different deep learning models on

different computing devices;
4. Utilized the TensorRT for network optimization that resulted in improved latency,

throughput, power efficiency, and lower memory consumption.

The rest of the paper is organized as follows. Section 2 contains the related work and
the literature review of different approaches that were being used to achieve the desired
outcomes. Section 3 elaborates on the methodology of the research problem and what steps
should be taken to successfully carry out this research. Section 4 contains the results of the
research and a discussion on it that provides the reader with deep insight into the research
findings. Finally, Section 5 concludes the paper and provides possible future directions in
this area.

2. Related Work

The solution to overcome the problem of weapons in public places is to develop
an automatic weapon detection system that works in real time with high accuracy and
performance to quickly generate an alarm. Such detectors have many applications in
security for the safety of human life that will enable the authorities to quickly act before a
major incident can happen. Therefore, the weapon detector applications can be a valuable
addition to society for developing a city to become much safer. The idea for real-time
weapon detection using computer vision first came out in 2007 when scientists proposed a
real-time firearm detector by utilizing a CCTV camera feed [8]. A year later, an idea was
implemented in 2008 in which the scientists developed a pistol detector for RGB images, but
the detector failed to detect multiple pistols in a single image [9]. Initially, researchers used
machine learning-based algorithms, but with the development of deep learning algorithms,
researchers shifted toward it.

Histogram of oriented gradients (HOG) and speeded-up robust features (SURF) as
a feature extractor were utilized. For detecting the firearms in an image, SIFT- and SVM-
based algorithms were used, but these algorithms were not highly accurate and had poor
speed for real-time scenarios, taking more than 14 s per image for detection. Moreover,
these algorithms do not learn features of their own; they use the handcrafted rules for
feature extraction. The authors also pointed out that automatic feature representation
provides better results than the manual approach [10,11]. Another publication, using HOG
and neural networks, utilizes the possibility to only look for weapons in the vicinity of
humans to save processing time [12].

With the advent of deep learning-based algorithms, researchers shifted toward it and
utilized the algorithms that learn features automatically from an image, improving the
performance and reducing a lot of manual work to save time. Researchers used CNN-based
techniques to learn the features automatically and a ReLu-based activation function to
introduce the nonlinearity that resulted in higher accuracy than machine learning-based
algorithms but, still, performance in real time remained an issue because these algorithms
are based on a sliding window approach that results in slow speed [13]. With the Faster
RCNN algorithm and IMFDB database, researchers developed a weapon detection model
that has 93.1% accuracy, but this database is not good for real-time cases and they did
not consider the precision and recall in their design; therefore, it was prone to higher
false alarms [14]. Region proposal methods in the algorithms helped in reducing the
inference speed in Faster RCNN, which achieved 140 ms with 7 FPS on a powerful GPU [15].
Another researcher developed a weapon detection system by training the Faster RCNN

Appl. Sci. 2022, 12, 5772 4 of 21

using a feature pyramid network with Resnet50, but the performance of this was slow [16].
The researchers of [17] trained a weapon detection model on YOLOv3 and compared its
performance with the YOLOv2 model. They used a customized dataset for their model but
the dataset and model are not great because many state-of-the-art models are available that
can perform much better in terms of mAP and real-time speed.

The authors of [18] utilized a combination YOLOv3 model and human pose to perform
handgun detection. They highlighted that only detecting weapons is not enough because
if a model has lower average precision (AP) it will be generating too many false alarms;
therefore, to mitigate this problem they added human pose to improve the detection results,
which showed them an improvement of 17.5% in AP. Likewise, in reference [19], the
authors used the same YOLOv3 model to train a rifle detection classifier for their custom
dataset of rifles that gave adequate AP; however, both systems are not good for real-time
implementation and embedded devices as the base model have too many parameters that
become overwhelming for a device with limited resources. The work presented in [20]
utilized three different CNN-based models for weapon detection, namely Faster R-CNN,
Retina Net, and YOLOv3; along with it they added pose estimation to further enhance
the model. The authors compared these models in terms of different performance metrics
such as precision, recall, and F1 score, in which YOLOv3 showed good results but the
rate of false positives was high. This approach lacks real-time capabilities and has poor
performance issues on embedded devices. Furthermore, a model that was trained on only
1220 images does not cover all the real-time scenarios, such as, for example, images in
different backgrounds and orientations for the generalized solution.

The study of [21] shows the use of the transfer learning approach on AlexNet, VGG16,
and VGG19 models to train gun and knife detection from images. The results show good
accuracy, but accuracy is not a good metric to stand out the results in object detection models
where mean average precision is preferred. Likewise, the model lacks the capabilities to
be deployed in a real-time environment. In reference [22], the authors trained a model
on a public dataset that used the open pose methodology for pose estimation that aids in
weapon detection and improves the weapon detectors’ detection capability. The authors
of [23] identified that there is a lack of datasets in weapon detection problems; therefore,
they proposed a way to generate synthetic datasets using a graphics engine. They have
added an anomaly detector as well to ensure a reduction in the false-positive rate; however,
the created dataset does not help much in the reduction in false positives but the anomaly
detector helps in reducing it. In reference [24], the authors developed a weapon detector
based on two models and compared them. They utilized a multi-contrast convolutional
neural networks (MC-CNN) model and faster region-based convolutional neural networks
(Faster R-CNN) model for concealed weapon detection. They have found that MC-CNN
has a more complex architecture than the Faster R-CNN model; therefore, it performs much
better than it. However, they developed a small, customized dataset for it that does not
cover the real-time scenarios; moreover, the model is heavier for real-time scenarios and
therefore not recommended for utilization in the real world. In work [25], the authors
proposed a novel method for improving hand-held firearms detection. They have extracted
the human hand and combined it with the human pose by using the open pose method to
train the classifier that detects whether the person is holding a weapon or not. If both pose
and hand suggest that the person is holding a weapon, the model classifies it as a weapon
detected. Their work is only a recommendation that can assist in a better weapon detection
model; therefore, it is not good for any real-time system and is prone to false positives. In
reference [26], the authors utilized the YOLOv4 algorithm for weapon detection trained on
the Google and Kaggle datasets. They used the internet of things (IoT) approach to collect
video and fed it to their model. The method they have used is good but the dataset is not
great because it does not cater to all real-time scenarios with different image qualities and
backgrounds that affect the mAP of the model. The study of [27] shows the comparison
of two different weapon detection models, YOLOv3 and YOLOv4, trained on images
collected from Google. They have shown that YOLOv4 outperforms the YOLOv3 model

Appl. Sci. 2022, 12, 5772 5 of 21

in terms of processing time and sensitivity of detection because the YOLOv4 algorithm is
a superior model to YOLOv3. The researcher of [28] used Alex-net in combination with
some other techniques such as spatial pyramid pooling (spp) to train a weapon detection
model. However, this approach is quite old and poor since many state-of-the-art algorithms
outperform Alex-net now; therefore, it is not suitable for real-time systems. The work
presented in [29] used YOLOv4 as the main weapon detection model on their custom
dataset, providing them with adequate results; however, the dataset is not good for real-
time scenarios. Moreover, they are getting 35 FPS on 2080 TI GPU, which is quite low
compared to recent models such as in Scaled-YOLOv4.

In 2021, Jesus Salido et al. [30] proposed the detection of a handgun in deep learning
surveillance images by training three convolutional neural network-based models (Reti-
naNet, FasterRCNN, and YOLOv3) and have done multiple experiments and claimed to
have reduced the number of false positives, thus gaining best recall and average precision
of 97.23 and 96.36%, respectively, using RetinaNet fine-tuned with unfrozen ResNet 50
as a backbone and, later adding the pose estimation training samples in the dataset, they
have achieved 96.23% and 93.36% of precision and F1 score, respectively. The problem
with this work was the use of high-definition images for training and also the 1220 data
images might not cover the real-time case of having a lot of diverse incoming data [20].
Volkan Kaya et al. [30] proposed a weapon detection and classification technique by in-
troducing a new model based on the VGGNet architecture trained on a dataset having
seven different classes that include assault rifles, bazookas, grenades, hunting rifles, knives,
pistols, and revolvers. They compared their model results to VGG-16, ResNet-101, and
ResNet-50, examining the best classification results. Their proposed model achieved the
highest accuracy of 98.4% among all, beating ResNet-50, VGG-16, and ResNet-101 with
accuracies of 93.7, 89.75, and 83.33%, respectively. The problem with the work was the use
of dataset images that are mostly animated or from a movie scene, hence making the model
generalize less when implemented in real time [30]. In [31], the authors have proposed an
object detection technique for abnormal situations such as guns and knives. They have
introduced a new lightweight multiclass-subclass detection CNN (MSDCNN) model to
extract and detect abnormal features in a real-time scenario. They have made a custom
dataset and introduced a new evaluation method named detection time per interval (DTpI).
Their proposed MSD-CNN has achieved the highest precision of 97.5% on imageNet and
IMFDB datasets [31].

Recently, researchers utilized the YOLOv4 object detection algorithm in [7] to design
a real-time weapon detection system that managed to achieve the 91.73% mAP and F1
score of 91%. They have trained many algorithms and provided a very good overview of
different algorithms in terms of speed and accuracy on a powerful GPU, but they have not
utilized the optimization techniques to improve performance for any embedded devices.
The authors suggested in their future work that there is a lot of improvement required in
terms of reducing the false positives and negatives [7].

Existing solutions can be improved by utilizing the latest model known as Scaled-
YOLOv4, which has shown higher performance than its predecessors; better data augmen-
tation techniques in the preprocessing step, such as mosaic augmentation, improve the
accuracy of the model when the objects to detect are small. Likewise, adding TensorRT for
network optimization for improved latency, throughput, power efficiency, and memory
consumption can further enhance the model for an embedded device such as Jetson Nano.
This approach will improve the accuracy of the existing solution by reducing the false
positives and false negatives. It will enhance the performance of the existing solution for
embedded devices by reducing the latency, increasing throughput, and privacy of an edge
computing device. Edge computing will rectify the privacy and security issues as data will
be stored locally and model deployment will be private. Moreover, minimal latency and
power consumption on the edge computing device will further improve it. The bandwidth
bottleneck issue will be resolved by deploying models on edge devices.

Appl. Sci. 2022, 12, 5772 6 of 21

The Scaled-YOLOv4 algorithm with its higher accuracy enables the design of a highly
accurate real-time weapon detector that will be deployable on an embedded device to
achieve lower latency, higher throughput, better privacy, and security for humans. The
comparison between the existing solution of YOLOv4 and Scaled-YOLOv4 in terms of
accuracy and performance on an edge computing device will provide a thorough overview
of different metrics along with a deeper insight into how current algorithms perform on an
edge computing device.

3. Methodology

To mitigate the issues identified in our previous weapon detector [4], this work solves
those problems by having an increased number of frames per second for real-time scenarios
and a reduced number of false positives. The methodology provided herein making this
work successful is divided into multiple steps listed as follows:

1. Dataset selection;
2. Preprocessing operations;
3. Model selection;
4. Model training and tuning;
5. Model optimization using TensorRT network.

3.1. Dataset Selection

In machine learning and computer vision applications, datasets play a significant role
because without good datasets the algorithms will not be able to perform well because it
is the only way a model learns to see the world with an eye. Therefore, the collection of
a good quality dataset is an important task. The dataset used for the training and testing
is the same as the previous weapon detector model consisting of a total of 8327 labeled
images split into training and test datasets, as given in Table 1.

Table 1. Dataset Distribution.

Category Data Distribution

Total Dataset 8327
Training Data 7328

Test Data 999
Split Size 12%

The dataset is collected by keeping in view the constraints of real-time detection
scenarios where different kinds of colors, backgrounds, occlusion, flipped, and rotated
objects might appear. This dataset is generalized because images captured have all kinds
of background, resolutions, and occlusion that will help the model to generalize well and
perform better in an unseen and unknown environment.

The dataset is categorized into two main categories; the first is the pistol and the
second is the non-pistol category. The mAP of a model can be improved by reducing the
number of false negatives and false positives. Therefore, along with the weapon class, we
also included the other objects with which our model could confuse the pistol class. For the
weapon category, the dataset includes revolvers, pistols, shotguns, and rifles, as shown in
Figure 1 below.

Likewise, in the non-pistol class, we included items such as bicycles, cars, purses,
selfie sticks, smartphones, etc. to help the model understand other similar things so that it
can generalize well. Some samples of the dataset from non-pistol category are shown in
Figure 2 below.

Appl. Sci. 2022, 12, 5772 7 of 21
Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 22

Figure 1. Data samples for pistol category.

Likewise, in the non-pistol class, we included items such as bicycles, cars, purses,
selfie sticks, smartphones, etc. to help the model understand other similar things so that
it can generalize well. Some samples of the dataset from non-pistol category are shown in
Figure 2 below.

Figure 2. Data samples for non-pistol category.

3.2. Preprocessing Operations
Raw datasets are not recommended to be directly used for training because either

they contain less observable information or they contain unnecessary information that can
bring a poor impact on our model. Instead of getting good results, we can be stuck with
poor results, and therefore datasets should be preprocessed by using common
preprocessing steps to enhance the quality of the raw dataset. For this purpose, our dataset
is preprocessed to improve the quality of the dataset so the model can learn better details
and generalize well for the unseen environment. We took different steps during
preprocessing such as image resizing, mean normalization, bounding boxes allocation,
labeling, image scaling, data augmentation and filtration such as Clahe, equalization, and
RGB-to-grayscale conversion, as shown in Figures 3–5.

Figure 1. Data samples for pistol category.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 22

Figure 1. Data samples for pistol category.

Likewise, in the non-pistol class, we included items such as bicycles, cars, purses,
selfie sticks, smartphones, etc. to help the model understand other similar things so that
it can generalize well. Some samples of the dataset from non-pistol category are shown in
Figure 2 below.

Figure 2. Data samples for non-pistol category.

3.2. Preprocessing Operations
Raw datasets are not recommended to be directly used for training because either

they contain less observable information or they contain unnecessary information that can
bring a poor impact on our model. Instead of getting good results, we can be stuck with
poor results, and therefore datasets should be preprocessed by using common
preprocessing steps to enhance the quality of the raw dataset. For this purpose, our dataset
is preprocessed to improve the quality of the dataset so the model can learn better details
and generalize well for the unseen environment. We took different steps during
preprocessing such as image resizing, mean normalization, bounding boxes allocation,
labeling, image scaling, data augmentation and filtration such as Clahe, equalization, and
RGB-to-grayscale conversion, as shown in Figures 3–5.

Figure 2. Data samples for non-pistol category.

3.2. Preprocessing Operations

Raw datasets are not recommended to be directly used for training because either they
contain less observable information or they contain unnecessary information that can bring
a poor impact on our model. Instead of getting good results, we can be stuck with poor
results, and therefore datasets should be preprocessed by using common preprocessing
steps to enhance the quality of the raw dataset. For this purpose, our dataset is preprocessed
to improve the quality of the dataset so the model can learn better details and generalize well
for the unseen environment. We took different steps during preprocessing such as image
resizing, mean normalization, bounding boxes allocation, labeling, image scaling, data
augmentation and filtration such as Clahe, equalization, and RGB-to-grayscale conversion,
as shown in Figures 3–5.Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 22

Figure 3. Image filtration using OpenCV filters; top left to bottom right (a–d): (a) actual image, (b)
equalized filter result, (c) gray scale filter result, and (d) CLAHE filter result.

Figure 4. Image scaling and augmentation.

Figure 5. Image annotation and labelling.

Figure 3. Image filtration using OpenCV filters; top left to bottom right (a–d): (a) actual image,
(b) equalized filter result, (c) gray scale filter result, and (d) CLAHE filter result.

Appl. Sci. 2022, 12, 5772 8 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 22

Figure 3. Image filtration using OpenCV filters; top left to bottom right (a–d): (a) actual image, (b)
equalized filter result, (c) gray scale filter result, and (d) CLAHE filter result.

Figure 4. Image scaling and augmentation.

Figure 5. Image annotation and labelling.

Figure 4. Image scaling and augmentation.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 22

Figure 3. Image filtration using OpenCV filters; top left to bottom right (a–d): (a) actual image, (b)
equalized filter result, (c) gray scale filter result, and (d) CLAHE filter result.

Figure 4. Image scaling and augmentation.

Figure 5. Image annotation and labelling.

Figure 5. Image annotation and labelling.

3.3. Model Selection

After a thorough literature review, we chose state-of-the-art Scaled-YOLOv4 as an
object detection model that has proven to be much better than YOLOv4 in terms of FPS and
mAP. It should be noted that the model performance varies for different datasets; some
perform well on small images while others perform well on large images. Scaled-YOLOv4
can be tuned to achieve the best result. The model used the cross stage partial (CSP)
approach to improve the speed and accuracy. The network is scalable in terms of depth,
width, resolution, and structure. The YOLOv4 was designed for object detection on general
GPU, which is why it lacks speed and accuracy. The redesigning of YOLOv4 with the CSP
approach enhances its speed and accuracy. The backbone of YOLOv4 is Darknet, which is
replaced with CSPDarknet53 that has lower computations. The number of computations
can be estimated by using the following equation:

whb2
(

9
4
+

3
4
+

5k
2

)
(1)

where w is the width, h is the height of the image, b is the base layer channels, and k is the
number of layers. The neck of YOLOv4 consists of a path aggregation network (PAN) that
is further CSP-ized to reduce the computation by 40%.

3.4. Model Training and Tuning

The models are normally trained multiple times with different parameter configura-
tions to find the best suitable results. Similarly, we have trained our model with different
parameters and further fine-tuned it to find the best mAP and FPS. We recognized the
problem in the previous weapon detection model, utilized the right dataset, performed the

Appl. Sci. 2022, 12, 5772 9 of 21

data preprocessing, applied the state-of-the-art Scaled-YOLOv4 algorithm, and finally fine-
tuned the algorithm parameters to get the best weapon detector model. The methodology
adopted for training and optimizing the model is elaborated in Figure 6 below.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 22

Figure 6. Training and optimization flowchart [7].

3.5. Model Optimization Using TensorRT Network
Nvidia developed the TensorRT, which is a machine learning/deep learning

framework to run inference on Nvidia GPUs with the best optimization for the chosen
hardware. It optimizes the inference and runtime that delivers low latency and higher
throughput for deep learning models. TensorRT provides INT8 and FP16 optimizations
by quantizing models while preserving accuracy for production deployment level deep
learning model inference. It ensures the optimized use of GPU memory and bandwidth
by layer and tensor fusion. It searches for the best data layers and algorithm for the
selected GPU and tries to utilize less memory or efficiently reuse the same memory for
tensors. The optimization workflow using TensorRT is depicted in Figure 7.

Figure 7. Model optimization workflow using TensorRT.

4. Results and Discussion
4.1. Experimentation

The objective was to train and fine-tune the model to improve the mAP and FPS of
the weapon detector by following the training and optimization workflows as shown in

Figure 6. Training and optimization flowchart [7].

3.5. Model Optimization Using TensorRT Network

Nvidia developed the TensorRT, which is a machine learning/deep learning frame-
work to run inference on Nvidia GPUs with the best optimization for the chosen hardware.
It optimizes the inference and runtime that delivers low latency and higher throughput
for deep learning models. TensorRT provides INT8 and FP16 optimizations by quantizing
models while preserving accuracy for production deployment level deep learning model
inference. It ensures the optimized use of GPU memory and bandwidth by layer and tensor
fusion. It searches for the best data layers and algorithm for the selected GPU and tries to
utilize less memory or efficiently reuse the same memory for tensors. The optimization
workflow using TensorRT is depicted in Figure 7.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 22

Figure 6. Training and optimization flowchart [7].

3.5. Model Optimization Using TensorRT Network
Nvidia developed the TensorRT, which is a machine learning/deep learning

framework to run inference on Nvidia GPUs with the best optimization for the chosen
hardware. It optimizes the inference and runtime that delivers low latency and higher
throughput for deep learning models. TensorRT provides INT8 and FP16 optimizations
by quantizing models while preserving accuracy for production deployment level deep
learning model inference. It ensures the optimized use of GPU memory and bandwidth
by layer and tensor fusion. It searches for the best data layers and algorithm for the
selected GPU and tries to utilize less memory or efficiently reuse the same memory for
tensors. The optimization workflow using TensorRT is depicted in Figure 7.

Figure 7. Model optimization workflow using TensorRT.

4. Results and Discussion
4.1. Experimentation

The objective was to train and fine-tune the model to improve the mAP and FPS of
the weapon detector by following the training and optimization workflows as shown in

Figure 7. Model optimization workflow using TensorRT.

Appl. Sci. 2022, 12, 5772 10 of 21

4. Results and Discussion
4.1. Experimentation

The objective was to train and fine-tune the model to improve the mAP and FPS of
the weapon detector by following the training and optimization workflows as shown in
Figures 6 and 7. We have trained several models to evaluate and find the best possible
model for inference purposes. The training of the models was performed on different
computing devices, first on high-performance machines like RTX 2060, RTX 2080TI, and
Tesla T4, and then they were trained and tested on edge computing devices like Jetson
Nano and Raspberry pi. The hyperparameters are set at the default setting for all the
models to have an unbiased result and are listed in Table 2 below.

Table 2. Scaled-YOLOv4 Default Hyperparameters Settings for Models Training.

Sr. No. Hyper Parameter Value

1 Learning rate 0.001
2 Decay 0.0005
3 Momentum 0.949
4 Activation Function Mish
5 Batch Size 64
6 Max Batches/Iterations 6000

Different parameters play important roles in Scaled-YOLOv4 such as image resolution,
subdivision, intersection over union (IOU), intersection over union normalization, new
coordinates, object smoothness, scaling x y, and loss functions. The first step of model
training is to provide the dataset to the model and quickly finish the model training to
observe and understand the trend, whether the model is improving the mAP and reducing
the loss or not.

We followed the aforementioned process and first trained the model with different
settings mentioned in the previous table for RTX 2060-based Scaled-YOLOv4 optimization
process. Default hyperparameter settings along with subdivision and image resolution of
64 and 512 × 512, respectively, gave us 85.5% mAP and an average loss of 14.42.

After the first training and testing results, we conceived the idea to set the right
number of iterations, which came out to be 4800 and 5400 according to our two classes. For
the next training, we changed the subdivision to 32 and kept the resolution size the same
as in the previous training along with the default hyperparameter setting and found that
the mAP changed to 91.2 and the average loss of the model also dropped down to 16.2.

Since the last training session gave good mAP, we kept the subdivision to 32 and
changed different parameter settings that could help in further improving the mAP and
reducing the loss. Some of the parameters recommended by the authors are:

• Object smoothness = 0,
• Scale x y = 1.05,
• Remove IOU loss,
• Remove IOU normalization.

We observed that the mAP reduced to 90.4 while the average loss improved and
dropped to near 4. There is a positive change, however, as mAP plays the main role and
therefore we moved toward different parameter settings. Now we reset all the settings and
only change the resolution of the input image 608 × 608 with subdivision 32 and retrain the
model. We observed that changing only the resolution improved the mAP to 91.2; however,
there is no effect on average loss, which is still high at around 14.

In the next step, we increased the number of iterations to 10,000 with the subdivision
and resolution the same as the previous of 32 and 606 × 608 to check if increasing the
iteration can help the model in learning new features; however, mAP reduced to 91.2 but
loss slightly reduced so it did not show any major impact on the results.

Appl. Sci. 2022, 12, 5772 11 of 21

To observe the effect of changing the resolution, we changed the input resolution
to 640 × 640 with a subdivision of 64 and retrained the model; however, it negatively
impacted the model, reducing mAP to 83.3. It helped us understand that image resolution
can be increased to a certain limit; after that it can impact poorly on the model mAP and
average loss. All the results described above and graphs for the best performing models on
RTX 2060 machine are listed and shown in Table 3 and Figure 8.

Table 3. Model 1: Scaled-YOLOv4 Optimization Configuration, and Parameter Tuning using GPU
RTX 2060.

Subdivision Parameters
Tuned Resolution mAP Improvement

64 No 512 × 512 85.5 No

32 No 512 × 512 91.2 No

32

Object
smoothness = 0
Scale x y = 1.05
Removed IOU
loss and IOU
normalization

512 × 512 90.4 No but average
loss reduced

32 No 608 × 608 91.2 No

32 Max batches =
10,000 608 × 608 90.9 No

64 No 640 × 640 83.3 No

It can be observed from the above that the model performed best on RTX 2060 when
having a subdivision of 32 and an image resolution of 608 × 608.

We further moved toward changing the image resolution, subdivision, and other
parameters and found that RTX 2060 GPU was not able to load the model if we changed the
network to do more complex work; therefore, we switched to RTX 2080TI GPU to further
change the settings to get better results. We changed some hyperparameters as follows:

• IOU loss removed,
• IOU normalization 0.05 to 0.07.

In the first run, it gave us adequate results with mAP increasing to 90.4 and loss
reducing to 4.57. We further tuned the parameters to get better results with mAP becoming
90.9 and loss hitting the lowest of 1.24 utilizing the following settings, i.e.,

• IOU loss removed,
• IOU normalize change from 0.05 to 0.07,
• Removed new coordinates,
• Changed logistic to linear loss function in YOLO layers.

All the results described above and graphs for the best performing models on RTX
2080TI machine are listed and shown in Table 4 and Figures 9 and 10.

Appl. Sci. 2022, 12, 5772 12 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 22

average loss. All the results described above and graphs for the best performing models
on RTX 2060 machine are listed and shown in Table 3 and Figure 8.

Table 3. Model 1: Scaled-YOLOv4 Optimization Configuration, and Parameter Tuning using GPU
RTX 2060.

Subdivision Parameters Tuned Resolution mAP Improvement
64 No 512 × 512 85.5 No
32 No 512 × 512 91.2 No

32

Object smoothness = 0
Scale x y = 1.05
Removed IOU loss and IOU
normalization

512 × 512 90.4
No but average
loss reduced

32 No 608 × 608 91.2 No
32 Max batches = 10,000 608 × 608 90.9 No
64 No 640 × 640 83.3 No

(a) (b)

Figure 8. RTX 2060 trained the best performing models: mAP vs. avg. loss. (a) Model with
subdivision of 32 and image resolution of 512 × 512 with default hyperparameters settings showing
mAP of 91.2 and avg. loss of 16.2. (b) Model with subdivision of 32 and image resolution of 608 ×
608 with default hyperparameters settings showing mAP of 91.2 with reduced avg. loss of 11.2

It can be observed from the above that the model performed best on RTX 2060 when
having a subdivision of 32 and an image resolution of 608 × 608.

6000 6000

Figure 8. RTX 2060 trained the best performing models: mAP vs. avg. loss. (a) Model with
subdivision of 32 and image resolution of 512 × 512 with default hyperparameters settings showing
mAP of 91.2 and avg. loss of 16.2. (b) Model with subdivision of 32 and image resolution of 608 × 608
with default hyperparameters settings showing mAP of 91.2 with reduced avg. loss of 11.2.

Table 4. Model 2: Scaled-YOLOv4 Optimization Configuration, and Parameter Tuning using GPU
RTX 2080TI.

Subdivision Parameters Tuned Resolution mAP Improvement

32 IOU loss removed
IOU normalization changed from 0.05 to 0.07 512 × 512 90.4 No

32

IOU loss removed
IOU normalization removed
New coordinate removed
Logistic to linear loss function change

512 × 512 90.9 Average loss
reduced

Appl. Sci. 2022, 12, 5772 13 of 21Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22

Figure 9. RTX 2080TI trained the best performing models: mAP vs. avg. loss: Model with IoU loss
removed and IoU normalization change from 0.05 to 0.07 with default hyperparameters settings at
an image resolution of 512 × 512 giving reduced mAP of 90.1 and better avg loss of 4.57.

6000

Figure 9. RTX 2080TI trained the best performing models: mAP vs. avg. loss: Model with IoU loss
removed and IoU normalization change from 0.05 to 0.07 with default hyperparameters settings at an
image resolution of 512 × 512 giving reduced mAP of 90.1 and better avg loss of 4.57.

Finally, after many different parameters tweaking, we changed the following hyper-
parameters to get the highest mAP of 92.1, beating the previous model mAP. Some of the
settings are as follow:

• Object smoothness = 0,
• Scale x y = 1.05,
• Subdivision = 8 with image resolution 512 × 512.

To go to an even lower subdivision made us move to a high-end GPU because RTX
2060 and RTX 2080TI GPUs were not capable of running the complex calculation. We ran
the final training on Tesla T4, which gave us the expected results with parameter setting
and model inference outcome as listed and shown in Table 5 and Figure 11.

Appl. Sci. 2022, 12, 5772 14 of 21Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 22

Figure 10. RTX 2080TI trained the best performing models: mAP vs. avg. loss: Model with IoU loss
and new coordinates removed and IoU normalization change from 0.05 to 0.07 along with a change
of loss function to linear from logistic with default hyperparameters settings at an image resolution
of 512 × 512 giving mAP of 90.1 and lowest loss of 1.24.

Finally, after many different parameters tweaking, we changed the following
hyperparameters to get the highest mAP of 92.1, beating the previous model mAP. Some
of the settings are as follow:
• Object smoothness = 0,
• Scale x y = 1.05,
• Subdivision = 8 with image resolution 512 × 512.

To go to an even lower subdivision made us move to a high-end GPU because RTX
2060 and RTX 2080TI GPUs were not capable of running the complex calculation. We ran
the final training on Tesla T4, which gave us the expected results with parameter setting
and model inference outcome as listed and shown in Table 5 and Figure 11.

Table 5. Model 3: Scaled-YOLOv4 Optimization Configuration, and Parameter Tuning using GPU
Tesla T4.

Subdivision Parameters Tuned Resolution mAP Improvement

8
Object smoothness = 0
Scale x y = 1.05 512 × 512 92.1 Yes

 6000

Figure 10. RTX 2080TI trained the best performing models: mAP vs. avg. loss: Model with IoU loss
and new coordinates removed and IoU normalization change from 0.05 to 0.07 along with a change
of loss function to linear from logistic with default hyperparameters settings at an image resolution
of 512 × 512 giving mAP of 90.1 and lowest loss of 1.24.

Table 5. Model 3: Scaled-YOLOv4 Optimization Configuration, and Parameter Tuning using GPU
Tesla T4.

Subdivision Parameters Tuned Resolution mAP Improvement

8 Object smoothness = 0
Scale x y = 1.05 512 × 512 92.1 Yes

Appl. Sci. 2022, 12, 5772 15 of 21Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 22

Figure 11. Tesla T4-trained best model graph of mAP vs. avg. loss: model trained with a subdivision
of 8, image resolution of 512 × 512, number of iterations 6000, object smoothness as 0 and Scale x y
as 1.05.

It has been noted from the results that subdivision plays an important role in
improving the mAP of a model. However, if subdivision is a lower number, then more
GPU memory will be used; therefore, a powerful GPU should be selected to support it.

4.2. Comparison of Mean Average Precision
The mAP of the weapon detector trained on Scaled-YOLOv4 is compared with its

predecessor YOLOv4 as reported in Table 6.

Table 6. Comparison of mAP on best-performed Scaled-YOLOv4 vs. YOLOv4 [7].

Algorithm mAP
Scaled-YOLOv4 (@0.5 IOU) 92.1

YOLOv4 (@0.5 IOU) 91.8

It can be noted from the results that the mAP is improved but it is closer to its
predecessor [4]. In terms of precision, the previous model achieved 93% while ours
reduced it to 90. However, in terms of recall, previous model achieved only 88% while our
model gave 91%. Finally, the F1 score of our model is 91% while the previous model has
91. The result’s comparison of the best performing Scaled-YOLOv4 vs. its predecessor
YOLOv4 in terms is shown in Figure 12.

6000

Figure 11. Tesla T4-trained best model graph of mAP vs. avg. loss: model trained with a subdivision
of 8, image resolution of 512 × 512, number of iterations 6000, object smoothness as 0 and Scale x y
as 1.05.

It has been noted from the results that subdivision plays an important role in improving
the mAP of a model. However, if subdivision is a lower number, then more GPU memory
will be used; therefore, a powerful GPU should be selected to support it.

4.2. Comparison of Mean Average Precision

The mAP of the weapon detector trained on Scaled-YOLOv4 is compared with its
predecessor YOLOv4 as reported in Table 6.

Table 6. Comparison of mAP on best-performed Scaled-YOLOv4 vs. YOLOv4 [7].

Algorithm mAP

Scaled-YOLOv4 (@0.5 IOU) 92.1
YOLOv4 (@0.5 IOU) 91.8

It can be noted from the results that the mAP is improved but it is closer to its
predecessor [4]. In terms of precision, the previous model achieved 93% while ours reduced
it to 90. However, in terms of recall, previous model achieved only 88% while our model
gave 91%. Finally, the F1 score of our model is 91% while the previous model has 91. The
result’s comparison of the best performing Scaled-YOLOv4 vs. its predecessor YOLOv4 in
terms is shown in Figure 12.

Appl. Sci. 2022, 12, 5772 16 of 21
Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 22

Figure 12. Comparison of Scaled-YOLOv4 vs. YOLOv4.

The confusion matrix of the weapon detection shows that the true positive rate is
considerably higher than the false positives rates as shown in Figure 13.

Figure 13. Confusion matrix of Scaled-YOLOv4 weapon detector.

4.3. TensorRT Network Optimization
To deploy the deep learning model on the edge computing device, especially on

Jetson Nano, we utilized the TensorRT framework that enabled us to perform the network
optimization. This optimization enables edge devices to perform high-speed inference by
utilizing fewer resources efficiently. For this purpose, we applied FP16 optimization on
our weapon detection model because Jetson Nano only supports FP16, and this was
getting reasonable FPS on Jetson Nano.

4.4. FPS Evaluation on Different Machines
We evaluated the FPS of our weapon detection model on various machines. We got

the highest FPS of 85.7 on RTX 2080TI, 59.3 FPS on RTX 2060, 0.69 FPS on Raspberry Pi 4,
4.26 FPS on Jetson Nano, and 22.5 FPS on Intel CoreI5 10th Generation. It can be noted
that the powerful machines gave very high FPS while on resource-constrained edge
devices FPS is quite low. However, if we compare Jetson Nano with Raspberry Pi 4 it can
be noted that the Jetson Nano TensorRT network optimization keeps it ahead of the game.
The graph showing FPS comparison of Scaled-YOLO v4 on different machines can be seen
in Figure 14.

Figure 12. Comparison of Scaled-YOLOv4 vs. YOLOv4.

The confusion matrix of the weapon detection shows that the true positive rate is
considerably higher than the false positives rates as shown in Figure 13.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 22

Figure 12. Comparison of Scaled-YOLOv4 vs. YOLOv4.

The confusion matrix of the weapon detection shows that the true positive rate is
considerably higher than the false positives rates as shown in Figure 13.

Figure 13. Confusion matrix of Scaled-YOLOv4 weapon detector.

4.3. TensorRT Network Optimization
To deploy the deep learning model on the edge computing device, especially on

Jetson Nano, we utilized the TensorRT framework that enabled us to perform the network
optimization. This optimization enables edge devices to perform high-speed inference by
utilizing fewer resources efficiently. For this purpose, we applied FP16 optimization on
our weapon detection model because Jetson Nano only supports FP16, and this was
getting reasonable FPS on Jetson Nano.

4.4. FPS Evaluation on Different Machines
We evaluated the FPS of our weapon detection model on various machines. We got

the highest FPS of 85.7 on RTX 2080TI, 59.3 FPS on RTX 2060, 0.69 FPS on Raspberry Pi 4,
4.26 FPS on Jetson Nano, and 22.5 FPS on Intel CoreI5 10th Generation. It can be noted
that the powerful machines gave very high FPS while on resource-constrained edge
devices FPS is quite low. However, if we compare Jetson Nano with Raspberry Pi 4 it can
be noted that the Jetson Nano TensorRT network optimization keeps it ahead of the game.
The graph showing FPS comparison of Scaled-YOLO v4 on different machines can be seen
in Figure 14.

Figure 13. Confusion matrix of Scaled-YOLOv4 weapon detector.

4.3. TensorRT Network Optimization

To deploy the deep learning model on the edge computing device, especially on
Jetson Nano, we utilized the TensorRT framework that enabled us to perform the network
optimization. This optimization enables edge devices to perform high-speed inference by
utilizing fewer resources efficiently. For this purpose, we applied FP16 optimization on our
weapon detection model because Jetson Nano only supports FP16, and this was getting
reasonable FPS on Jetson Nano.

4.4. FPS Evaluation on Different Machines

We evaluated the FPS of our weapon detection model on various machines. We got
the highest FPS of 85.7 on RTX 2080TI, 59.3 FPS on RTX 2060, 0.69 FPS on Raspberry Pi 4,
4.26 FPS on Jetson Nano, and 22.5 FPS on Intel CoreI5 10th Generation. It can be noted that
the powerful machines gave very high FPS while on resource-constrained edge devices
FPS is quite low. However, if we compare Jetson Nano with Raspberry Pi 4 it can be noted
that the Jetson Nano TensorRT network optimization keeps it ahead of the game. The
graph showing FPS comparison of Scaled-YOLO v4 on different machines can be seen in
Figure 14.

Appl. Sci. 2022, 12, 5772 17 of 21Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22

Figure 14. Comparison of FPS on different computing devices.

4.5. Comparison of Scaled-YOLOv4 and YOLOv4 FPS
The previous researchers were only focused on generating results on RTX 2080TI, so

if we compare our results with theirs, it can be noted that the Scaled-YOLOv4-based
model is ahead of it with 7 FPS. We reproduced the results and measured the FPS of the
older YOLOv4 weapon detection model, which gave us 78.9 on an offline video.

4.6. Real-Time Weapon Detection and FPS Evaluation of Scaled-YOLOv4 on Jetson Nano
The weapon detection model’s FPS is evaluated on Jetson Nano in real time by

interfacing Raspberry Pi camera module version 2. Models are converted into ONNX
format to use further on Jetson Nano. A different set of images was shown to the camera
to detect the respected class of weapon and the frame per second, which can be seen in
Figure 15.

(a) (b)

Figure 15. Real-time results on Jetson Nano using PI Camera Scaled-YOLOv4. (a) Image with a
person holding a weapon and pointing toward the aim with background data. (b) Image with a
weapon on a surface with no background data at different orientations and angles.

We can see that the FPS is closer to the one measured in the videos and the model
was able to detect many images of weapons in real time. It can be also observed from the
real-time video that converting the model into the TensorRT format for weapon detection
has reduced the mAP. Jetson Nano is observed to be confusing non-weaponry objects with
the actual weapon class. After reproducing the work of previous researchers, we
performed the TensorRT network optimization on the YOLOv4 model and deployed it on
Jetson Nano. It can be noted the YOLOv4 gave 3.59 average FPS, which is lower than the
Scaled-YOLOv4-based model.

Figure 14. Comparison of FPS on different computing devices.

4.5. Comparison of Scaled-YOLOv4 and YOLOv4 FPS

The previous researchers were only focused on generating results on RTX 2080TI, so if
we compare our results with theirs, it can be noted that the Scaled-YOLOv4-based model
is ahead of it with 7 FPS. We reproduced the results and measured the FPS of the older
YOLOv4 weapon detection model, which gave us 78.9 on an offline video.

4.6. Real-Time Weapon Detection and FPS Evaluation of Scaled-YOLOv4 on Jetson Nano

The weapon detection model’s FPS is evaluated on Jetson Nano in real time by inter-
facing Raspberry Pi camera module version 2. Models are converted into ONNX format to
use further on Jetson Nano. A different set of images was shown to the camera to detect
the respected class of weapon and the frame per second, which can be seen in Figure 15.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 22

Figure 14. Comparison of FPS on different computing devices.

4.5. Comparison of Scaled-YOLOv4 and YOLOv4 FPS
The previous researchers were only focused on generating results on RTX 2080TI, so

if we compare our results with theirs, it can be noted that the Scaled-YOLOv4-based
model is ahead of it with 7 FPS. We reproduced the results and measured the FPS of the
older YOLOv4 weapon detection model, which gave us 78.9 on an offline video.

4.6. Real-Time Weapon Detection and FPS Evaluation of Scaled-YOLOv4 on Jetson Nano
The weapon detection model’s FPS is evaluated on Jetson Nano in real time by

interfacing Raspberry Pi camera module version 2. Models are converted into ONNX
format to use further on Jetson Nano. A different set of images was shown to the camera
to detect the respected class of weapon and the frame per second, which can be seen in
Figure 15.

(a) (b)

Figure 15. Real-time results on Jetson Nano using PI Camera Scaled-YOLOv4. (a) Image with a
person holding a weapon and pointing toward the aim with background data. (b) Image with a
weapon on a surface with no background data at different orientations and angles.

We can see that the FPS is closer to the one measured in the videos and the model
was able to detect many images of weapons in real time. It can be also observed from the
real-time video that converting the model into the TensorRT format for weapon detection
has reduced the mAP. Jetson Nano is observed to be confusing non-weaponry objects with
the actual weapon class. After reproducing the work of previous researchers, we
performed the TensorRT network optimization on the YOLOv4 model and deployed it on
Jetson Nano. It can be noted the YOLOv4 gave 3.59 average FPS, which is lower than the
Scaled-YOLOv4-based model.

Figure 15. Real-time results on Jetson Nano using PI Camera Scaled-YOLOv4. (a) Image with a
person holding a weapon and pointing toward the aim with background data. (b) Image with a
weapon on a surface with no background data at different orientations and angles.

We can see that the FPS is closer to the one measured in the videos and the model
was able to detect many images of weapons in real time. It can be also observed from the
real-time video that converting the model into the TensorRT format for weapon detection
has reduced the mAP. Jetson Nano is observed to be confusing non-weaponry objects
with the actual weapon class. After reproducing the work of previous researchers, we
performed the TensorRT network optimization on the YOLOv4 model and deployed it on
Jetson Nano. It can be noted the YOLOv4 gave 3.59 average FPS, which is lower than the
Scaled-YOLOv4-based model.

Appl. Sci. 2022, 12, 5772 18 of 21

4.7. Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI on Images

Weapon images of different categories having different angles, resolutions, and back-
grounds were tested. Some of the results with a weapon as pistol class label with no
background and with the background are shown in Figures 16 and 17.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 22

4.7. Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI on Images
Weapon images of different categories having different angles, resolutions, and

backgrounds were tested. Some of the results with a weapon as pistol class label with no
background and with the background are shown in Figures 16 and 17.

(a) (b)

Figure 16. Detection Results of Scaled-YOLOv4 with no background. (a) Image with a rifle as
weapon hanging horizontally on wall. (b) Image with multiple pistols hanging diagonally on the
wall.

(a) (b)

(c) (d)

Figure 17. Detection results of Scaled-YOLOv4 with background. (a) Image with pistol as a weapon
held vertically down. (b) Image with multiple pistols as a weapon aimed horizontally showing left
side angle. (c) Image with a pistol as a weapon aimed horizontally showing right side angle. (d)
Image with a pistol as a weapon held diagonally showing front and side angles.

4.8. Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI in Real-Time CCTV
The ultimate goal of the work was to make it work successfully in real-time CCTV

streams and we have successfully achieved that by testing it. The face of the security
person holding the weapon is made blurred for privacy purposes. The results obtained
after testing it in real time with pistol as label on the targeted object can be seen in Figure
18 below.

Figure 16. Detection Results of Scaled-YOLOv4 with no background. (a) Image with a rifle as weapon
hanging horizontally on wall. (b) Image with multiple pistols hanging diagonally on the wall.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 22

4.7. Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI on Images
Weapon images of different categories having different angles, resolutions, and

backgrounds were tested. Some of the results with a weapon as pistol class label with no
background and with the background are shown in Figures 16 and 17.

(a) (b)

Figure 16. Detection Results of Scaled-YOLOv4 with no background. (a) Image with a rifle as
weapon hanging horizontally on wall. (b) Image with multiple pistols hanging diagonally on the
wall.

(a) (b)

(c) (d)

Figure 17. Detection results of Scaled-YOLOv4 with background. (a) Image with pistol as a weapon
held vertically down. (b) Image with multiple pistols as a weapon aimed horizontally showing left
side angle. (c) Image with a pistol as a weapon aimed horizontally showing right side angle. (d)
Image with a pistol as a weapon held diagonally showing front and side angles.

4.8. Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI in Real-Time CCTV
The ultimate goal of the work was to make it work successfully in real-time CCTV

streams and we have successfully achieved that by testing it. The face of the security
person holding the weapon is made blurred for privacy purposes. The results obtained
after testing it in real time with pistol as label on the targeted object can be seen in Figure
18 below.

Figure 17. Detection results of Scaled-YOLOv4 with background. (a) Image with pistol as a weapon
held vertically down. (b) Image with multiple pistols as a weapon aimed horizontally showing
left side angle. (c) Image with a pistol as a weapon aimed horizontally showing right side angle.
(d) Image with a pistol as a weapon held diagonally showing front and side angles.

4.8. Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI in Real-Time CCTV

The ultimate goal of the work was to make it work successfully in real-time CCTV
streams and we have successfully achieved that by testing it. The face of the security person
holding the weapon is made blurred for privacy purposes. The results obtained after testing
it in real time with pistol as label on the targeted object can be seen in Figure 18 below.

Appl. Sci. 2022, 12, 5772 19 of 21
Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 22

(a) (b)

Figure 18. Detection results of Scaled-YOLOv4 in real-time CCTV stream. (a) Image with a rifle as
weapon held diagonally. (b) Image with a rifle as a weapon held upside down slightly tilted.

4.9. Misdetections
Even though it provides excellent detection results on the weapon in various

categories including pistols, revolvers, and rifles, the system had very few false positives
that can be improved in the future. An example of a false positive is depicted in Figure 19,
which shows a smartphone detected as a pistol with a very low confidence of 25% that
can be overcome by model improvement, as well as by setting the threshold.

Figure 19. Misdetection results of Scaled-YOLOv4 in real-time CCTV stream.

5. Conclusions
Automatic weapon detection systems need to be installed in public places to prevent

criminal activities before they occur. It is a challenging task to develop an accurate and
efficient system with minimum false alarms. We have used a deep learning-based
approach to CCTV videos to develop a highly accurate weapon detection model to achieve
inference in real time. We implemented the Scaled-YOLOv4 algorithm to achieve high
accuracy, as well as improved FPS compared to existing methods. Moreover, we
investigated the model deployment on embedded edge computing devices to achieve
lower latency, higher throughput, and improved privacy. The comparison is performed

Figure 18. Detection results of Scaled-YOLOv4 in real-time CCTV stream. (a) Image with a rifle as
weapon held diagonally. (b) Image with a rifle as a weapon held upside down slightly tilted.

4.9. Misdetections

Even though it provides excellent detection results on the weapon in various categories
including pistols, revolvers, and rifles, the system had very few false positives that can
be improved in the future. An example of a false positive is depicted in Figure 19, which
shows a smartphone detected as a pistol with a very low confidence of 25% that can be
overcome by model improvement, as well as by setting the threshold.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 22

(a) (b)

Figure 18. Detection results of Scaled-YOLOv4 in real-time CCTV stream. (a) Image with a rifle as
weapon held diagonally. (b) Image with a rifle as a weapon held upside down slightly tilted.

4.9. Misdetections
Even though it provides excellent detection results on the weapon in various

categories including pistols, revolvers, and rifles, the system had very few false positives
that can be improved in the future. An example of a false positive is depicted in Figure 19,
which shows a smartphone detected as a pistol with a very low confidence of 25% that
can be overcome by model improvement, as well as by setting the threshold.

Figure 19. Misdetection results of Scaled-YOLOv4 in real-time CCTV stream.

5. Conclusions
Automatic weapon detection systems need to be installed in public places to prevent

criminal activities before they occur. It is a challenging task to develop an accurate and
efficient system with minimum false alarms. We have used a deep learning-based
approach to CCTV videos to develop a highly accurate weapon detection model to achieve
inference in real time. We implemented the Scaled-YOLOv4 algorithm to achieve high
accuracy, as well as improved FPS compared to existing methods. Moreover, we
investigated the model deployment on embedded edge computing devices to achieve
lower latency, higher throughput, and improved privacy. The comparison is performed

Figure 19. Misdetection results of Scaled-YOLOv4 in real-time CCTV stream.

5. Conclusions

Automatic weapon detection systems need to be installed in public places to prevent
criminal activities before they occur. It is a challenging task to develop an accurate and
efficient system with minimum false alarms. We have used a deep learning-based approach
to CCTV videos to develop a highly accurate weapon detection model to achieve inference
in real time. We implemented the Scaled-YOLOv4 algorithm to achieve high accuracy,
as well as improved FPS compared to existing methods. Moreover, we investigated the
model deployment on embedded edge computing devices to achieve lower latency, higher
throughput, and improved privacy. The comparison is performed between our Scaled-
YOLOv4-based weapon detector and the previously developed weapon detectors, in terms

Appl. Sci. 2022, 12, 5772 20 of 21

of accuracy and inference time on different machines. The results indicate that our weapon
detection model is superior to the existing approaches in all aspects and generalizes well in
detecting all weapon categories. We have also presented the results by changing different
hyperparameters of the model and observed their effect on the overall performance of
the model. In addition, we provided insights on TensorRT network optimization that
has enabled deployment on the popular edge computing device, i.e., Jetson Nano. The
network optimization resulted in only a slight reduction in the mAP score (causing the
occurrence of higher false positives) and 4.26 FPS, which is a reasonable score for resource-
constrained Jetson Nano device. Finally, it is concluded that the presented models give
very good performance in terms of accuracy and inference time if implemented on a high-
performance GPU (such as RTX 2080TI). On the other hand, acceptable performance can be
achieved if the optimized model is implemented on the edge using low-cost Jetson Nano
for weapon detection in live CCTV surveillance videos. Nevertheless, further improvement
and optimization are required for better accuracy and higher FPS. In the future, we suggest
that researchers should use pose estimation techniques in conjunction with object detection
to further enhance the mAP score of the weapon detection surveillance system.

Author Contributions: Conceptualization, S.A. and M.G.K.; methodology, S.A. and M.T.B.; software,
S.A.; validation, S.A., M.T.B. and M.G.K.; resources, M.G.K. and B.L.; data curation, M.T.B.; writing—
original draft preparation, S.A. and M.T.B.; writing—review and editing, M.G.K., B.L. and M.S.;
visualization, S.A.; supervision, M.G.K. and M.S.; project administration, M.G.K.; funding acquisition,
M.G.K. and B.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset for real-time detection was collected and constructed in differ-
ent phases and data were collected from the internet, extracted from YouTube CCTV videos, through
GitHub repositories, data by the University of Granada research group, and internet movie rearm
database imfdb.org. This data will be available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Christchurch Mosque Shootings. Available online: https://en.wikipedia.org/wiki/Christchurch_mosque_shootings (accessed

on 10 July 2019).
2. Global Study on Homicide. Available online: https://www.unodc.org/unodc/en/data-and-analysis/global-study-on-homicide.

html (accessed on 10 July 2019).
3. Deisman, W. A Report on Camera Surveillance in Canada: Part One. Surveillance Camera Awareness Network (SCAN). 2009.

Available online: https://qspace.library.queensu.ca/handle/1974/1906 (accessed on 10 March 2022).
4. Ratcliffe, J. Video Surveillance of Public Places. US Department of Justice, Office of Community Oriented Policing Services:

Washington, DC, USA, 2006. Available online: https://www.ojp.gov/ncjrs/virtual-library/abstracts/video-surveillance-public-
places (accessed on 13 March 2022).

5. Cohen, N.; Gattuso, J.; MacLennan-Brown, K. CCTV Operational Requirements Manual 2009. Home Office Scientific Development
Branch: St. Albans, UK, 2009. Available online: http://designforsecurity.org/downloads/CCTV_Requirements.pdf (accessed on
14 March 2022).

6. Murthy, C.B.; Hashmi, M.F.; Bokde, N.D.; Geem, Z.W. Investigations of Object Detection in Images/Videos Using Various Deep
Learning Techniques and Embedded Platforms—A Comprehensive Review. Appl. Sci. 2020, 10, 3280. [CrossRef]

7. Bhatti, M.T.; Khan, M.G.; Aslam, M.; Fiaz, M.J. Weapon Detection in Real-Time CCTV Videos Using Deep Learning. IEEE Access
2021, 9, 34366–34382. [CrossRef]

8. Darker, I.; Gale, A.; Ward, L.; Blechko, A. Can CCTV reliably detect gun crime? In Proceedings of the International Carnahan
Conference on Security Technology, Ottawa, ON, Canada, 8–11 October 2007; pp. 264–271.

9. Darker, I.T.; Gale, A.G.; Blechko, A. CCTV as an automated sensor for firearms detection: Human-derived performance as a
precursor to automatic recognition. Unmanned/Unattended Sens. Sens. Netw. V 2008, 7112, 71120V.

10. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR, San Diego, CA, USA, 20–25 June 2005; Volume I, pp. 886–893.

https://en.wikipedia.org/wiki/Christchurch_mosque_shootings
https://www.unodc.org/unodc/en/data-and-analysis/global-study-on-homicide.html
https://www.unodc.org/unodc/en/data-and-analysis/global-study-on-homicide.html
https://qspace.library.queensu.ca/handle/1974/1906
https://www.ojp.gov/ncjrs/virtual-library/abstracts/video-surveillance-public-places
https://www.ojp.gov/ncjrs/virtual-library/abstracts/video-surveillance-public-places
http://designforsecurity.org/downloads/CCTV_Requirements.pdf
http://doi.org/10.3390/app10093280
http://doi.org/10.1109/ACCESS.2021.3059170

Appl. Sci. 2022, 12, 5772 21 of 21

11. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

12. Vajhala, R.; Maddineni, R.; Yeruva, P.R. Weapon Detection in Surveillance Camera Images. Dissertation, 2016. Available online:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-13565 (accessed on 17 March 2022).

13. Nakib, M.; Khan, R.T.; Hasan, M.S.; Uddin, J. Crime Scene Prediction by Detecting Threatening Objects Using Convolutional
Neural Network. In Proceedings of the International Conference on Computer, Communication, Chemical, Material and
Electronic Engineering, IC4ME2 2018, Rajshahi, Bangladesh, 8–9 February 2018.

14. Verma, G.K.; Dhillon, A. A Handheld Gun Detection using Faster R-CNN Deep Learning. In Proceedings of the 7th International
Conference on Computer and Communication Technology, Allahabad, India, 24–26 November 2017; pp. 84–88.

15. Olmos, R.; Tabik, S.; Herrera, F. Automatic handgun detection alarm in videos using deep learning. Neurocomputing 2017,
275, 66–72. [CrossRef]

16. González, J.L.S.; Zaccaro, C.; Álvarez-García, J.A.; Morillo, L.M.S.; Caparrini, F.S. Real-time gun detection in CCTV: An open
problem. Neural Netw. Off. J. Int. Neural Netw. Soc. 2020, 132, 297–308.

17. Narejo, S.; Pandey, B.; Vargas, D.E.; Rodriguez, C.; Anjum, M.R. Weapon Detection Using YOLO V3 for Smart Surveillance
System. Math. Probl. Eng. 2021, 2021, 9975700. [CrossRef]

18. Velasco-Mata, A.; Ruiz-Santaquiteria, J.; Vallez, N.; Deniz, O. Using human pose information for handgun detection. Neural
Comput. Appl. 2021, 33, 17273–17286. [CrossRef]

19. Ma, Y.; Chen, H.; Huo, J. Assault Rifle Detection and Identification Based on Convolutional Neural Network YOLOv3. In
Proceedings of the 2021 3rd World Symposium on Artificial Intelligence, WSAI 2021, Guangzhou, China, 18–20 June 2021; pp. 1–4.

20. Salido, J.; Lomas, V.; Ruiz-Santaquiteria, J.; Deniz, O. Automatic Handgun Detection with Deep Learning in Video Surveillance
Images. Appl. Sci. 2021, 11, 6085. [CrossRef]

21. Ağdaş, M.T.; Türkoğlu, M.; Gülseçen, S. Deep Neural Networks Based on Transfer Learning Approaches to Classification of Gun
and Knife Images. Sak. Univ. J. Comput. Inf. Sci. 2021, 4, 131–141. [CrossRef]

22. Narayanan, M.; Jaju, S.; Nair, A.; Mhatre, A.; Mahalingam, A.; Khade, A. Real-Time Video Surveillance System for Detecting
Malicious Actions and Weapons in Public Spaces. Lect. Notes Data Eng. Commun. Technol. 2021, 58, 153–166.

23. Martín, C.; José, J. Weapon Detection with Deep Learning and Computer Graphics. 2021. Available online: http://hdl.handle.
net/10578/27818 (accessed on 18 March 2022).

24. Reddy, R.; Vallabh, K.G.; Sharan, S. Multiclass weapon detection using multi contrast convolutional neural networks and faster
region-based convolutional neural networks. In Proceedings of the 2021 2nd International Conference for Emerging Technology,
INCET 2021, Belagavi, India, 21–23 May 2021.

25. Ruiz-Santaquiteria, J.; Velasco-Mata, A.; Vallez, N.; Bueno, G.; Alvarez-Garcia, J.A.; Deniz, O. Handgun Detection Using Combined
Human Pose and Weapon Appearance. IEEE Access 2021, 9, 123815–123826. [CrossRef]

26. Singh, A.; Anand, T.; Sharma, S.; Singh, P. IoT Based Weapons Detection System for Surveillance and Security Using YOLOV4. In
Proceedings of the 6th International Conference on Communication and Electronics Systems, ICCES 2021, Coimbatre, India, 8–10
July 2021; pp. 488–493.

27. Hashmi TS, S.; Haq, N.U.; Fraz, M.M.; Shahzad, M. Application of Deep Learning for Weapons Detection in Surveillance Videos.
In Proceedings of the 2021 International Conference on Digital Futures and Transformative Technologies, ICoDT2 2021, Islamabad,
Pakistan, 20–21 May 2021.

28. Madhushree, B.; Sowmya, K.N.; Chennamma, H.R. Automatic weapon detection in video using deep learning. In Data Engineering
and Intelligent Computing; Springer: Singapore, 2021; pp. 503–510.

29. Dahlan, I.A.; Ariateja, D.; Arghanie, M.A.; Versantariqh, M.A.; David, M.; Fatmawati, U.D. Sistem Deteksi Senjata Otomatis
Menggunakan Deep Learning Berbasis CCTV Cerdas. J. Sist. Cerdas 2021, 4, 126–141.

30. Kaya, V.; Tuncer, S.; Baran, A. Detection and Classification of Different Weapon Types Using Deep Learning. Appl. Sci. 2021,
11, 7535. [CrossRef]

31. Ingle, P.Y.; Kim, Y.-G. Real-Time Abnormal Object Detection for Video Surveillance in Smart Cities. Sensors 2022, 22, 3862.
[CrossRef]

http://urn.kb.se/resolve?urn=urn:nbn:se:bth-13565
http://doi.org/10.1016/j.neucom.2017.05.012
http://doi.org/10.1155/2021/9975700
http://doi.org/10.1007/s00521-021-06317-8
http://doi.org/10.3390/app11136085
http://doi.org/10.35377/saucis.04.01.891308
http://hdl.handle.net/10578/27818
http://hdl.handle.net/10578/27818
http://doi.org/10.1109/ACCESS.2021.3110335
http://doi.org/10.3390/app11167535
http://doi.org/10.3390/s22103862

	Introduction
	Related Work
	Methodology
	Dataset Selection
	Preprocessing Operations
	Model Selection
	Model Training and Tuning
	Model Optimization Using TensorRT Network

	Results and Discussion
	Experimentation
	Comparison of Mean Average Precision
	TensorRT Network Optimization
	FPS Evaluation on Different Machines
	Comparison of Scaled-YOLOv4 and YOLOv4 FPS
	Real-Time Weapon Detection and FPS Evaluation of Scaled-YOLOv4 on Jetson Nano
	Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI on Images
	Weapon Detection of TeslaT4 Trained Scaled-YOLOv4 on RTX 2080TI in Real-Time CCTV
	Misdetections

	Conclusions
	References

