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ABSTRACT

Background: Modern code review is expected to facilitate knowl-
edge sharing: All relevant information, the collective expertise, and
meta-information around the code change and its context become
evident, transparent, and explicit in the corresponding code review
discussion. The discussion participants can leverage this informa-
tion in the following code reviews; the information diffuses through
the communication network that emerges from code review. Tradi-
tional time-aggregated graphs fall short in rendering information
diffusion as those models ignore the temporal order of the informa-
tion exchange: Information can only be passed on if it is available
in the first place.

Aim: This manuscript presents a novel model based on time-
varying hypergraphs for rendering information diffusion that over-
comes the inherent limitations of traditional, time-aggregated
graph-based models.

Method: In an in-silico experiment, we simulate an information
diffusion within the internal code review at Microsoft and show
the empirical impact of time on a key characteristic of information
diffusion: the number of reachable participants.

Results: Time-aggregation significantly overestimates the paths
of information diffusion available in communication networks and,
thus, is neither precise nor accurate for modelling and measuring
the spread of information within communication networks that
emerge from code review.

Conclusion: Our model overcomes the inherent limitations of
traditional, static or time-aggregated, graph-based communication
models and sheds the first light on information diffusion through
code review. We believe that our model can serve as a foundation for
understanding, measuring, managing, and improving knowledge
sharing in code review in particular and information diffusion in
software engineering in general.
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1 INTRODUCTION

Code review has transformed over the last decades from a waterfall-
like procedure primarily used for detecting bugs in formal, heavy-
weight code inspections in the 1980s to a knowledge-sharing plat-
form in an informal, tool-supported, lightweight process nowadays
[2, 4, 5]. Since modern software systems are often too large, too
complex, and evolving too fast for a single developer to oversee all
parts of the software and, therefore, to understand all implications
of a change, most software projects use code review to foster a
broad discussion on the change and its impact before it is merged
into the code base. Each code review becomes a communication
channel to share knowledge among the discussion participants: All
relevant information, collective expertise, and meta-information
about the change become evident, transparent, and explicit through
those discussions and are shared among the participants. Since the
participants implicitly cache this information, they can use, build
upon, and spread it in the upcoming code reviews they participate
in. Over time, information is spread through code review among
its participants, the so-called information diffusion.

Until today, software engineering research relies on time-
aggregated graph-based models for representing communication
networks of all kinds [15]. However, time-aggregated, graph-based
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communication models are not capable of rendering such an infor-
mation diffusion since information diffusion is neither necessarily
bilateral nor instant: In a discussion during a code review, multi-
ple people can receive information concurrently and information
can only be passed on if it is available to the participant before-
hand. Depending on the temporal availability of vertices and edges,
the information takes different routes through the communication
network—a type of network topology traditional, time-aggregated
graph-based communication models cannot render.

Motivated by these shortcomings, we introduce a novel model
for information diffusion in channel-based communication based on
time-varying hypergraphs to research how information originated
from a code review discussion spread among the communication
participants. We validate our time-respecting model in compari-
son with an equivalent but a time-aggregated graph-based model
in a computer simulation that empirically shows the impact and
importance of time-awareness for information diffusion analysis in
code review. For this comparison, we use a key characteristic for
information diffusion, the number of reachable participants, which
also reflects the number of paths in a communication network that
are valid and available for direct and indirect information exchange.

The main contributions of this manuscript are as follows:

e We introduce a novel communication model based on time-
varying hypergraphs for information diffusion within com-
munication networks.

o To this end, we provide a concise and gentle introduction
to the mathematical foundation of time-dependent hyper-
graphs and the impact of topological and temporal distance
on information diffusion modelling.

e We simulate the spread of information within the commu-
nication network emerging from code review at Microsoft
to validate our model compared to an equivalent but time-
aggregated model concerning the number of reachable par-
ticipants for each participant.

e We present first insights on the theoretical maximum spread
of information possible within the communication network
emerging from code review: the number of reachable partic-
ipants.

e We highlight possible probabilistic extensions to and future
applications of our model as a proxy for the capacity of code
review as a knowledge-sharing platform.

The manuscript is structured as follows: We begin with a gentle
mathematical introduction to time-varying hypergraphs in Sec-
tion 2. In Section 3, we provide an overview of state of the art on
graph-based communication models in software engineering and
related disciplines, as well as in-silico experiments and simulation in
software engineering. We formalize code review as channel-based
communication to the extent we deem necessary and define our
conceptual and computer model in Section 4. In Section 5, we show-
case and validate our model in a computer simulation rendering an
artificial information diffusion in an empirical communication net-
work that emerges from code review at Microsoft. After we present
the resulting comparison of the time-ignoring and time-respecting
reachable participants in an information diffusion simulation in
Section 6 and discuss the findings in Section 7, the manuscript
closes with a conclusion and future work in Section 8.
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2 A GENTLE INTRODUCTION TO
TIME-VARYING HYPERGRAPHS

In this work, we combine two lesser-known graph-theoretical con-
cepts: time-variance of graphs and hypergraphs. We follow the
definitions and notation by Casteigts et al. [7] for time-varying
graphs and by Ouvrard [21] for hypergraphs to a large extent.

A time-varying graph is a graph whose edges (and vertices) are
active or available only at specific points in time. A hypergraph is a
generalization of a graph in which an edge (a so-called hyperedge)
can connect any arbitrary number! of vertices.

Thus, a time-varying hypergraph is a hypergraph which hyper-
edges (and vertices) are time-dependent. Mathematically, a time-
varying hypergraph is a quintuple H = (V, &, p, &, ) where

e V is a set of vertices,

e & is a set of hyperedges connecting any number of vertices,

o p is the hyperedge presence function indicating whether a
hyperedge is active at a given time,

o {: ExXT — Tis the latency function indicating the duration
to cross a given hyperedge,

o : VX T — {0,1} is the vertex presence function indicating
whether a given vertex is available at a given time, and

e 7 € T is the lifetime of the system.

The temporal domain T is generally assumed to be N for discrete-
time systems or R for continuous-time systems.

Because the edges are time-dependent, the walk through a (hy-
per)graph is also time-dependent. Formally, a sequence of tuples

J = (e1,t1),(e2,t2), . . ., (e, t),

suchthates, es, ..., e isawalkin H,is a journey in H iff p(e;, t;) =
land tiy > t;+&(e;, t;) foralli < k.2 Additional constraints maybe
required in specific domains of application, such as the condition
Plti,ti+E(es,1;))(€i) = 1: the hyperedge remains present until the
hyperedge is crossed.

We define j(;’ the set of all possible journeys in a time-varying

graph H and (’; ) € j(/’f( the journeys between vertices u and v.
If (’; v) # 0, u can reach v, or in short notation u ~» v. In general,

journeys are not symmetric and transitive—regardless whether the
hypergraph is directed or undirected: u ~» v ¢ v ~» u. Given a
vertex u, the set {v € V: u ~» v} is called horizon of vertex u.3

A time-varying hypergraph H can be transformed in an equiva-
lent bipartite graph B = (V, &, E, ) where

e V is the set of vertices from the equivalent hypergraph,

o & is the set of hyperedges from the equivalent hypergraph,

e V and & are disjunct (V N & = 0) and both vertices of the
bipartite graph,

o E={(v,e) | u € V,e € E} are the vertices of the bipartite
graph that connect vertices V with hyperedges &, and

o | is the edge presence function for the vertices & reflecting
the edge presence function p of the time-varying hypergraph
such that y/(e) = p(e),e € E.

1A classical graph is a subclass of a hypergraph with hyperedges that always connect
exactly two (in case of self-loops not necessarily distinct) vertices.

2We deviate from Casteigts et al. [7] who require t;+1 > ¢; + &(e;, t;).

3The horizon of a vertex v in a time-varying graph is not equivalent to the connected
component that contains the vertex v (neither strongly nor weakly component of the
time-varying graph [20]): the horizon is neither a reflexive (i.e. horizon of vertex v
does not necessarily contain the vertex ».) nor a symmetric relation.
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Although an equivalent bipartite graph can represent a hyper-
graph, both concepts are semantically different. For an in-depth
mathematical discussion, we refer the reader to the work by Ou-
vrard [21].

Figure 1 provides an example of a time-varying hypergraph and
its transformation to an equivalent bipartite graph: The colors of
the hyperedges reflect the colors of the righthand vertices in the
bipartite graph. Furthermore, the example also shows the impact of
time on the horizon of vertices in such hypergraphs. Depending on
the presence of the hyperedges, there are different journeys from
the vertices v; to vs. Please mind that there is no time-respecting
path (journey) in the opposite direction from vg to v;.

3 BACKGROUND

This section discusses related work on modelling communication
in software engineering and provides context for our research ap-
proach, in-silico experiments and simulations.

3.1 Modelling communication in software
engineering research

To the best of our knowledge, our modelling approach for communi-
cation using time-dependent hypergraphs has not previously been
used in software engineering research and other disciplines. Time-
dependent hypergraphs are first applied in the research context of
epidemiology: Independent of us and in parallel to our work, An-
telmi et al. [1] first defined and used time-depending hypergraphs
to show the importance of time on disease diffusion. Neither the
domain of epidemiology—information does not spread like viruses—
nor the representation of hyperedges map to our research: In their
model, hyperedges refer to geo-locations that are constant over time
and vertices to persons meeting at those geo-locations over time.
Hyperedges in our model reflect the channels of the information
exchange and are time-dependent.

Software engineering research uses traditional graphs to model
different types of information exchange and the networks that
emerge from that communication. Herbold et al. [15] identified in
their systematic mapping study 182 studies researching various net-
works of developers modelled as graphs. We found that all studies
use time-aggregated graphs to model developer interactions. Those
limitations make time-aggregated graphs incapable of rendering
time-dependent phenomena without introducing a large error by
this simplification.

However, the use of time-respecting network models and the
research on information diffusion in software engineering is new
but not wholly unexplored.

Lamba et al. [17] used a multi-layered time-dependent graph
for investigating the tool diffusion of 12 quality assurance tools
within the npm ecosystem—without explicitly using this terminol-
ogy. Although there are several similarities to our work at first sight,
the used theoretical framework on the diffusion of innovations by
Rogers [23] does not apply in the general case of communication
as Rogers [23] states: Diffusion of innovations is “a special type
of communication, in that the messages are concerned with new
ideas. Communication is a process in which participants create
and share information to reach a mutual understanding”” [23] Since
we are modelling the exchange of information in general without
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any prior knowledge of its novelty value, the theory framework by
Rogers does not apply to our research. Therefore, we explicitly use
the term information diffusion in this study.

Nia et al. [19] investigated edge transitivity and the introduced
error through the aggregation over time. They showed for the mail-
ings lists of three open-source projects (Apache, Perl, and MySQL)
that the clustering coefficient and the 2-path counts are robust to
data aggregation across large intervals (over one year) even though
such aggregation may lead to transitive faults. However, the results
are only valid for time-aggregated systems. This implies that the
findings do not apply to our research on and the modelling of infor-
mation diffusion as the spread of information is a highly dynamic,
time-dependent process.

Gote et al. [13] analyzed the temporal co-editing networks in
software development teams using a rolling window approach [13].
In detail, the study uses time-stamped bipartite graphs to model
the relationship between developers and edited files. Since hyper-
graphs can be represented by bipartite graphs where hyperedges
and vertices are the two distinct sets of vertices, the modelling
approach is quite similar. However, the team converted this bi-
partite graph into a directed, acyclic graph (DAG) representing a
sequence of consecutive co-editing relations of developers editing
the given file to estimate knowledge flow. The nodes in this DAG
represent commits and edges co-editing relationship between the
authors of the commits. The connected components* of the DAG
represent proxies of knowledge flow, what we call information
diffusion. Although this modelling approach respects the temporal
order, the DAG cannot reflect the temporal distance and, thus, does
not allow insights into how much time has left during the diffusion
process. Only the topological distance (how many hops between
two vertices) is available. The temporal distance (how much time
has passed), however, reveals key characteristics of information
since information ages constantly and information not delivered
at the right time is outdated or simply invalid. The results always
refer to the observation window but no more fine-grained insights.
This shortcoming applies to all modelling approaches using any
type of directed graph representing the order.

A similar problem occurs with models based multigraphs for
representing the parallel connection of multiple nodes. Although
technically possible, multigraphs blur the relationship between an
edge and a communication channel (i.e., code review): a communi-
cation channel would no longer correspond to one edge but a set
of edges.

3.2 In-silico experiments and simulations in
software engineering research

In our study, we conduct an in-silico experiment. In contrast to
in-vivo, in-vitro, and in-virtuo experiments, an in-silico experiment
is performed solely via a computer simulation. Both subjects and
the real world are described as simulation models [16]. Any human
interaction is reduced to a minimum. Those simulation models are
like virtual laboratories where hypotheses about observed problems
can be tested, and corrective policies can be experimented with
before they are implemented in the real system [18].

4We assume the model uses the strongly connected components since the connected
components only exist in undirected graphs.
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(a) An example time-varying hypergraph, a generalization of a graph
which edges, the so-called hyperedges , (denoted by ug) can link any
arbitrary number of vertices (denoted by e): For example, hyperedge
e3 connects four vertices. The reachability (or information diffusion
in our case) of vertex v; depends highly on the temporal order of
the hyperedges: if e; < e; < e4 < e3, the resulting horizon contains
all vertices; if e; > e > e3 no information can be spread because no
time-respecting path (journey) is available.

Michael Dorner, Darja Smite, Daniel Mendez, Krzysztof Wnuk, and Jacek Czerwonka
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(b) Any hypergraph can be transformed into an equivalent bipartite
graph: The hyperedges and the vertices from the time-varying hy-
pergraph from Figure 1a become the two distinct sets of vertices of
a bipartite graph.

Figure 1: A simple example of a hypergraph and its bipartite-graph equivalent.

The use of the term simulation varies substantially, from disci-
pline and context [8]. In this work, we rely on the definition by
Banks et al. [3]: A simulation is the imitation of the operation of a
real-world process or system over time. The behavior of a system
as it evolves over time is studied by developing a simulation model,
a purposeful abstraction of a real-world system in the form of a set
of assumptions concerning the system’s operation.

Although simulation models have been applied in different re-
search fields of software engineering, e.g., process engineering, risk
management, and quality assurance [18], due to the need for a
large amount of knowledge, in-silico studies are scarce in software
engineering [16].

4 MODELLING INFORMATION DIFFUSION
WITH TIME-VARYING HYPERGRAPHS

Communication is a complex and manifold process that changes
over time. We need models as a purposeful and simplified abstrac-
tion of such complex phenomena, imitating those complex real-
world processes to enable measurability, gain insights, predict out-
comes, and understand the mechanics.

A simulation model has two components: a conceptual model and
a computer model [9]. A conceptual model is a (non-software) ab-
straction of the simulation model that is to be developed, describing

objectives, inputs, outputs, content, assumptions, and simplifica-
tions of the model [22]. On the other hand, the computer model
describes the conceptual model implemented in software.

In the following subsection, we define and discuss the conceptual
and computer model of information diffusion in code review.

4.1 Conceptual model

Communication, the purposeful, intentional, and active exchange
of information among humans, does not happen in the void. It re-
quires a channel to exchange information. A communication channel
is a conduit for exchanging information among communication
participants. Those channels are

(1) multiplexing—A channel connects all communication partic-
ipants sending and receiving information.
reciprocal—The sender of information also receives informa-
tion and the receiver also sends information. The information
exchange converges. This can be in the form of feedback,
queries, or acknowledgments. Pure broadcasting without
any form of feedback does not satisfy our definition of com-
munication.

(3) concurrent—Although a human can only feed into and con-
sume from one channel at a time, multiple concurrent chan-
nels are usually in use.

(4) time-dependent—Channels are not always available; the chan-
nels are closed after the information is transmitted.

@

~



Only Time Will Tell: Modelling Information Diffusion in Code Review with Time-Varying Hypergraphs

Channels group and structure the information for the communi-
cation participants over time and content. Over time, the set of all
communication channels forms a communication network among
the communication participants.

In the context of researching the information diffusion in this
study, a communication channel is a discussion in a merge (or pull)
request. A channel for a code review on a merge request begins
with the initial submission and ends with the merge in case of
an acceptance or a rejection. All participants of the review of the
merge request feed information into the channel and, thereby, are
connected through this channel and exchange information they
communicate. After the code review is completed and the discus-
sion has converged, the channel is closed and archived, and no
new information becomes explicit and could emerge. However, a
closed channel is usually not deleted but archived and is still avail-
able for passive information gathering. We do not intend to model
this passive absorption of information from archived channels by
retrospection with our model.

From the previous postulates on channel-based communication
in software engineering, we derive our computer model: Each com-
munication medium forms an undirected, time-varying hypergraph
in which hyperedges represent communication channels. Those
hyperedges are available over time and make the hypergraph time-
dependent. Additionally, we allow parallel hyperedges®—although
unlikely, multiple parallel communication channels can emerge
between the same participants at the same time but in different
contexts.

Such an undirected, time-varying hypergraph reflects all four
basic attributes of channel-based communication:

o multiplexing—since a single hyperedge connects multiple
vertices,
e concurrent—since (multi-)hypergraphs allow parallel hyper-
edges,
e reciprocal—since the hypergraph is undirected, information
is exchanged in both directions, and
o time-dependent—since the hypergraph is time-varying.
In detail, we define our model for information diffusion in an ob-
servation window 7~ to be an undirected time-varying hypergraph

H=(V,Ep. &)
where

e V is the set of all human participants in the communication
as vertices

o & is a multiset (parallel edges are permitted) of all commu-
nication channels as hyperedges,

o p is the hyperedge presence function indicating whether a
communication channel is active at a given time,

o £: EXT — T, called latency function, indicating the du-
ration to exchange an information among communication
participants within a communication channel (hyperedge),

o : VXT — {0,1}, called vertex presence function, indicating
whether a given vertex is available at a given time.

5This makes the hypergraph formally a multi-hypergraph [21]. However, we consider
the difference between a hypergraph and a multi-hypergraph as marginal since it is
grounded in set theory: Sets do not allow multiple instances of the elements. Therefore,
instead of a set of hyperedges, we use a multiset of hyperedges that allows multiple
instances of the hyperedge.
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Observation window

Figure 2: Not all communication channels started or ended
within the observed time window (indicated by blue): Cut
channels (indicated by ) are incomplete and lead to a
blur at the borders of our measurements.

Communication and the spread of information are usually on-
going, continuous processes. As for any continuous, real-world
process, we only can make assumptions about windowed observa-
tions of that phenomenon. The lifetime of our system is limited by
this observation window which borders induce blur in our inves-
tigations: The communication may have started before or ended
after our observed time window; information is lost. Thus, we must
define our model’s lifetime as the observation window. Figure 2
illustrates this problem of the observation window for an ongoing,
continuous system.

4.2 Computer model

We implement the hypergraph as an equivalent bipartite graph
using the widely used Python graph package networkx [14]: The
hypergraph vertices and hyperedges become two sets of vertices of
the bipartite graph. The vertices of those disjoint sets are connected
if a hypergraph edge was part of the hyperedge. For a more detailed
and graphical description of the equivalence of hypergraphs and
bipartite graphs, we refer the reader to Section 2.

To ensure that the computational model accurately represents
the underlying mathematical model and its solution, we applied
four quality assurance approaches in the model verification phase:

e Code walk-throughs—We independently conducted code
walk-throughs through the simulation code with three
Python and graph experts.

e High test-coverage—The simulation code has a test cover-

age of about 99%.

Code readability and documentation—We provide com-

prehensive documentation on the usage and design decisions

to enable broad use and further development. We followed
the standard Python programming style guidelines PEP8 for
readability.

Publicly available and open source—The model parame-

terization and simulation code [10] as well as all intermediate

and final results [11] are publicly available.
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5 EXPERIMENTAL DESIGN

In this section, we describe the simulation as an in-silico experiment
[12] that evaluates the impact of ignoring and respecting time in a
temporal graph for modelling information diffusion in code review.
The purpose of this simulation is two-fold: We provide a proof of
concept of our modelling approach and present a first validation
by comparison to another model [8]. Through this comparison, the
impact of time on communication networks becomes evident.

In this computer simulation, we measure the number of individu-
als receiving information from a code review directly and indirectly
in a best-case scenario.

In Figure 3, we present a high-level overview of our simulation.

In the following subsection, we describe our simulation assump-
tions (Section 5.1), the parametrization of our model using empirical
data from code review at Microsoft (Section 5.2), and the simulation
mathematically and algorithmically (Section 5.3).

5.1 Assumptions

For this study, we made the following assumptions for information
diffusion in code review:

o Channel-based—Information can only be exchanged along
the information channels.

o Perfect caching—All code review participants can remember
and cache all information in all code reviews they participate
in within the considered time frame.

o Perfect diffusion—All participants instantly pass on informa-
tion at any occasion in all available communication channels
in code review.

o Information diffusion only in code review—For this simulation,
we assume that information gained from discussions in code
review diffuses only through code review.

o Information availability—To have a common starting point
and make the results comparable, the information to be dif-
fused in the network is already available to the participant
that is the origin of the information diffusion process.

We discuss the impact of those assumptions in Section 7. The as-
sumption ¥ — 1, meaning all code review participants are available
over the considered time-frame 7~ of four weeks, is implicit and
does not impact the measurements: If a participant is either inactive
or removed temporarily or permanently from the communication
network has no impact on the number of reachable participants.

Our assumptions make the number of reachable participants
a best-case scenario and do not likely represent an empirical in-
formation diffusion process. However, the relative comparison is
adequate since all assumptions are equal for time-ignoring and
time-respecting information diffusion measurements.

5.2 Parametrization

To parametrize the model, we extracted all internal, human code
review interactions tracked by Microsoft’s internal code review
tool CodeFlow [6] run by Azure DevOps service. Although not
Microsoft’s only code review tool, it represents a large portion of
the company’s code review activity. All non-human code-review
participants and interactions are excluded. The dataset contains
all human code review interactions from 2020-02-03 to 2020-03-01,
inclusively, — corresponding to full four calendar weeks without
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significant discontinuities by public holidays such as Christmas.
The time frame is arbitrary, however.

The underlying hypergraph has 37, 103 vertices (developers) and
309, 740 hyperedges (communication channels) for both models.
We made all code and data publicly available in our replication
package.

5.3 Simulation

In our simulation, we use our parametrized communication model
to measure how many participants can be reached from each par-
ticipant using either time-respecting or time-ignoring paths in the
communication network.

Mathematically, the number of reachable participants is a set of
vertices that can be reached from u:

{v eV:u~» v}

If reachability is time-respecting, the measure is called horizon. If
time and the temporal order are ignored for the reachability, the
horizon becomes the connected component containing vertex u.
Algorithmically, both measurements on the number of reach-
able participants for all vertices are variations of the breadth-
first search. Algorithm 1 describes the time-ignoring and time-
respecting breadth-first search approach in pseudocode; our Python
implementation can be found in the replication package.

Algorithm 1: Breadth-first search for vertex s of a time-
varying hypergraph H.

Input :Time-varying Hypergraph H = (V,E,p, &, ¢)
Start nodes € V
Output: An set for all node v € V reachable of s

Q «— initialize empty queue

pushs — Q
mark s as reachable

while Q # 0 do

popQ — v
N — N(v) if time-ignoring
{ne N()CV|v~> n} iftime-respecting

foreachn e N > All available neighbors of s do
if n not marked as reachable then
pushn — Q
marks n as reachable

return all reachable nodes

The algorithm is integrated into our computer model and im-
plemented in Python. All code is publicly available [10]® under
MIT license. To ensure the correctness of the implementation, we
created an extensive test setup.

®For more information, see also https://github.com/michaeldorner/only- time-will-tell.


https://github.com/michaeldorner/only-time-will-tell

Only Time Will Tell:

Assumptions
(Section 5.1)

Modelling Information Diffusion in Code Review with Time-Varying Hypergraphs

ESEM ’22, September 19-23, 2022, Helsinki, Finland

Parametrization
(Section 5.2)

Simulation
(Section 5.3)

Results
(Section 6)

Construct communication
network as time-varying
hypergraph (see Section 4)

Simulating information
spread for all persons [

l Compute distribution ‘

ignoring time

l Compute distribution ‘

J L

Empirical context

respecting time \

— Figure 4

—> Communication network

Simulated context

—> Sets of reachable persons

Compute distribution of
N per-person difference

— Figure 5

Figure 3: An overview of the simulation.

6 RESULTS

All statistical locations of the reachable participants (namely me-
dian, mean, min, and max) are significantly smaller in the time-
respecting information diffusion than the time-ignoring informa-
tion diffusion: The mean time-ignoring reachable participants are
29, 660 persons, the median is 33, 172 persons. This unequal distri-
bution is caused by the symmetry characteristic of the reachability
in (undirected) graphs: All vertices have the same connected com-
ponent. The largest component has 33, 173 persons, which is 89.41%
of all persons due to the symmetry characteristic of the connected
component in (undirected) graphs. All other connected compo-
nents are significantly smaller: The second-largest component has
108 persons (0.29%). The number of time-respecting reachable par-
ticipants draws a more fine-grained picture: On average, 10, 907
persons (mean) and 11, 652 persons (median), respectively, can be
reached. At most, 26, 216 persons (70.66%) can be reached. Figure 4
contrasts both distributions.

The time-respecting and the time-ignoring per-person difference
in the reachable participants differ significantly. In average, the dif-
ference is 18, 752 persons (mean) or 16, 822 persons (median). The
largest per-person difference is 33, 171, which is also the maximum
value: while all persons are reachable when time is ignored, no per-
son is reachable when time is considered, i.e., no path in temporal
order (journey) is available. Figure 5 depicts the per-person dif-
ference between the time-ignoring and time-respecting reachable
participants.

Both perspectives on reachable participants confirm the remark-
able difference in respecting or ignoring time for measurements of
information diffusion: Time-ignorance overestimates the available
and temporal valid paths (journeys) in communication networks.
The temporal order has a significant impact on the horizon and,
thus, on the paths valid for information to diffuse.
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7 DISCUSSION

At this point, we would like to emphasize again that the measure-
ments do not describe an empirical information diffusion: Although
the network structure is constructed by real-world data and, there-
fore, empirical, the resulting information diffusion, the spread of
information, is simulated. However, although the spread of informa-
tion is artificial and the information has never empirically reached
the participants, we believe the maximum number of reachable par-
ticipants can be considered empirical, not neglecting the constraints
we put on our simulation in the forms of our assumptions.

All five assumptions described in Section 5 are applied to both
models. The constraints apply to both measurements to the same
extent. Therefore, comparing the results ignoring and respecting
time is sound and adequate.

Our assumptions are not easily transferrable to other empirical
investigations on information diffusion in code review or general.
Both simulation assumptions of perfect caching and perfect dif-
fusion are best-case assumptions leading to an upper bound. We
strongly believe that this upper bound of reachable participants
is not achievable and less meaningful in reality, particularly over
larger time frames: information may get outdated, irrelevant, or
even false over time. Also, human retentiveness, attention, and
memory are limited. Future research can investigate the average
number of reachable participants within code review and the im-
pact of the topological and temporal distance on the probability of
information diffusion.

Furthermore, information is not only diffused through code re-
view but also through other communication media like instant
messaging or virtual or in-person meetings. For a more holistic
view of information diffusion in software engineering projects—
not only through and within code review—, we need to capture
more communication networks (e.g., code review, instant messag-
ing, e-mail, classical meetings) stacked on each other to capture all
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Figure 4: Distribution of the time-respecting and time-ignoring reachable participants for a simulated information diffusion:
All statistical locations (mean, median, min, and max) are significantly smaller when respecting time.
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Figure 5: Distribution of the per-person difference of the time-ignoring and time-respecting reachable participants: All persons
have a significantly larger number of reachable persons if respecting time.

possible information diffusion journeys. Figure 6 gives an exam-
ple of stacked communication networks consisting of overlapping
hypergraphs.

The second advantage of our model to be capable of rendering
interconnections between more than two persons is not further
discussed yet. 33.98% of all code reviews at Microsoft involves more
than two persons and, thus, cannot be captured by classical graphs,
only by multigraphs having parallel edges. However, models with
multigraphs—although technically possible—blur the relationship
between an edge and a communication channel (i.e., code review):
a code review would no longer correspond to one (hyper)edge but a
set of edges. The graph becomes less expressive and more complex
to compute and simulate.
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8 CONCLUSION

We present a model based on time-varying hypergraphs for mod-
elling and analyzing information diffusion within code review. The
model overcomes the limitations of existing graph-based models
and enables research on time-respecting and multilateral informa-
tion diffusion.

Our simulation based on the code review at Microsoft to es-
timate the empirical impact of time-dependency on information
diffusion reveals that significantly fewer code review participants
are reachable and, therefore, significantly fewer paths to diffuse
information are valid if time is respected. Ignoring time in commu-
nication networks introduces a large error since the time-ignoring
model overestimates the available and valid paths within such com-
munication networks.
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Communication networks

Figure 6: For a more holistic view of information diffusion, different communication network layers are required.

We believe that the available information diffusion paths, as well
as the topological (measured in the number of time-respecting hops)
or temporal distance (measured in time) between participants re-
vealed by our model, provide a solid foundation for future research
on the capacity of code review as a knowledge-sharing platform as
suggested by prior qualitative studies [2, 4, 5].

Our model can be easily extended by probability, an integral part
of information diffusion: not every information is spread on every
occasion: random or probabilistic time-varying graphs with an edge
presence function p: E X 7 — [0, 1] or vertex presence function
¥: V xT — [0,1] allows to render probabilistic processes of in-
formation diffusion and estimate the stability of communication
networks. As a generalization of a traditional graph, hypergraphs
are a promising modelling tool for not only communication net-
works but also other higher-order systems since they are compatible
with traditional graph metrics and algorithms.

To enable researchers and practitioners to replicate, reproduce,
and extend our work and model, we provide an extensive replication
package containing all code [10] and data [11]7. We also explicitly
encourage researchers from outside software engineering to apply,
revise, and advance our model.
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