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Abstract: Background: Cardiac amyloidosis is an underdiagnosed condition and simple methods
for accurate diagnosis are warranted. We aimed to validate a novel, dual-modality approach to
identify transthyretin cardiac amyloidosis (ATTR-CA), employing echocardiographic relative wall
thickness (RWT), and ECG S-wave from aVR (SaVR), and compare its accuracy with conventional
echocardiographic approaches. Material and methods: We investigated 102 patients with ATTR-
CA and 65 patients with left ventricular hypertrophy (LVH), all with septal thickness > 14 mm.
We validated the accuracy of echocardiographic measures, including RWT, RWT/SaVR, posterior
wall thickness (PWT), LV mass index (LVMI), left atrial volume index (LAVI), global longitudinal
strain (GLS), and relative apical sparing (RELAPS) to identify ATTR-CA diagnosed using DPD-
scintigraphy or abdominal fat biopsy. Results: PWT, RWT, RELAPS, troponin, and RWT/SaVR
were significantly higher in ATTR-CA compared to LVH. RWT/SaVR > 0.7 was the most accurate
parameter to identify ATTR-CA (sensitivity 97%, specificity 90% and accuracy 91%). RELAPS was
found to have much less accuracy (sensitivity 74%, specificity 76% and accuracy 73%). Conclusion:
We can confirm the very strong diagnostic accuracy of RWT/SaVR to identify ATTR-CA in patients
with septal thickness > 14 mm. Given its high sensitivity and specificity, RWT/SaVR > 0.7 has the
potential to implement as a non-invasive, simple, and widely available diagnostic tool when screening
for ATTR-CA.

Keywords: cardiac amyloidosis; ECG; left ventricular hypertrophy; relative wall thickness;
transthyretin

1. Introduction

Transthyretin cardiac amyloidosis (ATTR-CA) is a disease caused by misfolded
transthyretin-protein (TTR). Misfolded TTR aggregates and accumulates in the heart mus-
cle. This causes myocardial cell death and increasing thickening of the heart, which
interferes with the myocardial function and can later cause heart failure (HF). ATTR is
either inherited (ATTRv) or acquired (ATTRwt) and both types may have similar cardiac
involvement [1]. HF due to cardiac amyloidosis (CA) is often clinically misinterpreted
as hypertrophy-related HF. Hypertrophy-related HF arise from various cardiovascular
conditions with increased intraventricular pressure and myocardial workload, i.e., aortic
stenosis and hypertension or factors intrinsic to cardiac myocytes in sarcomeric hyper-
trophic cardiomyopathy (HCM) [2]. The pathophysiological mechanisms in ATTR-CA are
fundamentally different when compared to classical hypertrophy-related heart failure, and
treatment strategies differ [3].
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Since ATTR-CA has a unique pathophysiological pattern, is it important to avoid
common and conventional HF pharmaceuticals. ß-blockers, ACEI/ARB, and diuretics are
commonly used to treat HF. ß-blockers inhibit the cardiovascular sympathetic activity and
thereby block the full inotropic and chronotropic potential of the heart. Amyloid hearts
require adequate heart rate in order to fulfill the peripheral blood need. ACEI/ARB are
usually poorly tolerated in ATTR-CA due to the risk of vasodilatation, causing symptomatic
hypotension with disease worsening. However, diuretic treatment is well tolerated and is
also an important treatment option in ATTR-CA patients [4,5].

In addition, several specific ATTR-CA treatment options are now available or are being
studied in late clinical phase trials. Available treatments either stabilize circulating TTR [6]
or decrease the hepatic TTR-production [7,8].

Differentiating ATTR-CA from LVH is complex since they share common phenotype
characteristics. The signature appearance of both conditions is abnormal myocardial thick-
ness. There are, however, some clues to differentiate between the conditions. Myocardial
hypertrophy is mostly pronounced in the interventricular septum. In comparison, TTR
accumulation is more generally distributed, with concentric increased wall thickness, but
with less influence in the apical section. This generates a certain heart dynamic that can
be illustrated with an echocardiographic presentation called apical sparing pattern [9].
Commonly, ATTR-CA also develops increased biventricular wall thickness, [10] decreased
long axis function and sometimes restrictive filling pressures [11]. However, this might
also be found in LVH patients.

Differentiation between LVH and ATTR-CA can also be completed with ECG-parameters,
especially in combination with echocardiography [12]. Hypertrophic hearts commonly
generate more pronounced electrical activity and thereby higher QRS amplitudes in ECG.
TTR amyloid infiltration does not have this characteristic but rather normal to lower voltage,
which, in combination with increased wall thickness, raises suspicion of CA.

Despite increasing awareness, ATTR-CA continues to be an underdiagnosed cause of
HF [13]. We and others have presented different methods to improve diagnosis strategy.
We have found high diagnostic accuracy for differentiating ATTR-CA from HF controls
by using a ratio of relative wall thickness from echocardiography and S amplitude in aVR
from ECG [14].

The aim of this study is to validate the accuracy of the RWT/SaVR formula in a large
cohort of ATTR-CA and LVH patients.

2. Materials and Methods in the Deviation and Validation Groups

This was a retrospective case control study, comparing ATTR-CA with a heterogenous
group of LVH patients. Diagnosis was set at the Umea University Hospital in Umea,
Sweden. This study also included a validation cohort comprising patients with ATTR-CA
from Karolinska University Hospital in Stockholm, Sweden.

2.1. ATTR-CA Population

In total, 102 patients with ATTR-CA and interventricular septum > 14 mm were
retrospectively identified from patients seen at Umea University Hospital. ATTR-CA
diagnosis was set either non-invasively according to the algorithm proposed by Gillmore
et al. using DPD scintigraphy [15] or by abdominal fat biopsy [16]. Patients with a DPD-
scintigraphy uptake Perugini grade 2 or 3 were further analyzed with TTR-gene sequencing
to differentiate between ATTRwt and ATTRv. A genetic workup (sequencing of the TTR
gene) was performed for all patients with a DPD scintigraphy uptake of Perugini grade 2 or
3, in order to differentiate between ATTRwt and ATTRv [17]. Overall, 48 of these patients
had previously been part of a recent publication [14].

The exclusion of light chain amyloidosis (AL-amyloidosis) was performed using
blood and urine samples, which were analyzed for serum free light chain (FLC) abnor-
malities (Freelite, Binding Site reagent, reference range 0.27–1.64) and the presence of
monoclonal bands. Patients with abnormalities in these analyses were evaluated, and
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their clinical history and disease progression were reviewed to assess the probability
of AL-amyloidosis.

2.2. LVH Population

A total of 65 patients were included in an LVH control group, all with septal
thickness > 14 mm. This group included 14 patients with severe aortic stenosis, 24 with
HCM, and 27 with mainly hypertensive heart failure. All had normal LV ejection fraction.
Cardiac amyloidosis had been ruled out in the hypertensive heart failure cohort by using
DPD scintigraphy and hematological blood workup. Aortic stenosis diagnosis was verified
with echocardiographic measurement of the aortic valve area (AVA). Preoperative data was
collected exclusively from patients with severe AS (AVA < 1 cm2). HCM diagnosis was
based on exclusion criteria and an interventricular septum hypertrophy (IVST > 14 mm)
not explained by increased afterload or infiltrative cardiac disease.

2.3. Validation Cohort Population

In total, 20 patients taken from a local data base at Karolinska University hospital
with verified ATTR-CA (ATTRwt = 17 and ATTRv = 3) validated the cut off values from
deviation study testing RWT and RWT/SaVR.

2.4. Data Collection

All clinical records were collected from a database at Umea University, within a
catchment area of the northern hospital region in Sweden. The following information
was collected from all patients included in this study: mortality, height, weight, NT-pro
BNP, Troponin T, ECG, and echocardiography. TTR-gene sequencing results were collected
from the ATTRv group. DPD-scintigraphy Perugini gradings were collected from the
ATTRwt group.

2.5. Electrocardiography

A standard 12-lead ECG examination (50 mm/s, 0.1 mV/mm) was recorded for
all patients at the time, for diagnosis. In this study we used the S-wave amplitude in
aVR (SaVR), more suited for international standards, in contrast to our previous study
utilizing the inverted equivalent, R-wave amplitude in -aVR [14]. ECG amplitudes were
excluded from analysis if a deviation from the normal electrical conduction occurred due
to ventricular pacing or left bundle branch block. All ECG amplitudes were measured
manually and presented in mV.

2.6. Echocardiography

Echocardiographic examination was performed using a Vivid E9 system (GE Medical
Systems) equipped with an adult 1.5–4.3 MHz phased array transducer. All echoes were
performed and analyzed by one investigator (co-author PL). Standard views were used
from the parasternal long axis, short axis, and the apical four-chamber views. Cham-
ber quantification and flow velocities were obtained using pulsed and continuous-wave
Doppler techniques, as proposed by recent guidelines [18,19].

Relative wall thickness (RWT) was calculated according to the American society of
echocardiography (ASE) recommendations (2 × posterior wall thickness (PWT)/Left
ventricular diastolic diameter (LVDd)). LV mass was calculated through the Devereux
formula (0.8(1.04([LVDd + PWT + IVSd]3 [LVDd]3)) + 0.6). LV wall thickness was
measured as septal thickness + posterior wall thickness. Pulsed wave Doppler anal-
ysis was also undertaken, to assess the transmitral early diastolic E velocity and E
deceleration time [20].

All Doppler recordings were obtained at a sweep speed of 50–100 mm/s with a
superimposed ECG (lead II). Off-line analyses were completed using commercially available
software (General Electric, EchoPac version BT 13, 113.0 Waukesha, WI, USA), and the
means of three consecutive cardiac cycles were calculated.
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2.7. Assessment of LV Deformation Function, LV GLS

Anatomical landmarks were used, and care was taken with echocardiographic image
acquisition to ensure adequate LV tracking, and to avoid foreshortening of the LV cavity
when measuring the global strain of the LV. Longitudinal myocardial deformation was
assessed by two-dimensional echocardiography using speckle tracking and was analyzed
offline. From the apical four-chamber, two-chamber, and apical parasternal long-axis views,
the endocardial border of the septal, apical, and lateral wall of the LV were undertaken
manually in order to analyze global LV strain measurements. Strain recordings from
three cardiac cycles were averaged to assess the global longitudinal strain (GLS). GLS was
measured at end systole with the reference point set at the onset of two consecutive QRS-
complexes of the superimposed ECG. We also calculated relative apical sparing (RELAPS)
as the average apical strain/(average basal strain + average mid strain). Strain analyses
were measured using a dedicated workstation (General Electric, EchoPac version BT 13,
113.0, Waukesha, WI, USA).

2.8. DPD-Scintigraphy

All patients were investigated with an Infinia Hawkeye hybrid single-photon-emission
computed-tomography gamma camera (SPECT-CT; General Electric Medical Systems) with
a low-energy, high-resolution collimator. An intravenous injection of ~750 MBq DPD
was performed 3 h prior to the acquisition of a whole-body planar image, followed by a
non-contrast, low-dose CT scan and a SPECT acquisition, which provided 60 projections,
iteratively reconstructed into a 128 × 128 matrix (OSEM, 3 iterations, 10 subsets) with scatter
and CT-based attenuation correction. Reconstruction of SPECT images was performed
on the Xeleris workstation (GE Healthcare, Chicago, IL, USA). DPD scores were reported
by two experienced clinicians using the Perugini grading system [21], with grade 0 being
negative and grades 1–3 increasingly positive.

2.9. Statistics

Statistical analyses were performed using SPSS®, version 26 (IBM). Data were pre-
sented as either mean and standard deviation or median and interquartile range for
continuous variables. Normal distribution was tested using Shapiro–Wilk analysis.
Percentages were used to describe categorical variables. Categorical variables were com-
pared using Chi-square tests, and continuous variables were compared using Student’s
T-test or Mann–Whitney non-parametric test. ROC analysis was performed to determine
the area under the curve, as well as to find optimal sensitivity, specificity, negative and
positive predictive values, and accuracy. A p-value of less than 0.05 was considered as of
statistical significance.

2.10. Ethics

All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of Umea (DNR: 2016-435-31M, 2018-137-
32M, 2018-418-32M).

3. Results

Demographic and echocardiographic data from both ATTR-CA and LVH is presented
in Table 1.
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Table 1. Data shown presented as mean ± SD or median (IQR) (Median(IQR) in Italic style).
HR = heart rate, IVSDD = interventricular septal diameter diastole, LVDD = left ventricular diastolic
diameter, LVEF = left ventricular ejection fraction, PWT = posterior wall thickness, RWT = relative
wall thickness, RELAPS, relative apical sparing, GLS = global longitudinal strain, LAVI = left atrial
volume index, LVMI = left ventricular mass index, E = early diastole, and DT = deceleration time.

ATTR-CA LVH

N Mean/Median
SD/IQR N Mean/Median

SD/IQR p-Value

Age (years) 102 76 ± 8.3 65 68 ± 12.7 0.001

HR (bpm) 101 71 ± 12.2 64 66 ± 13.1 0.039

Height (cm) 99 175 ± 7.7 63 174 ± 10.9 0.005

Weight (kg) 101 76 ± 14.6 63 84 ± 17.9 0.049

Systolic blood
pressure, mmHg 98 130 ± 18 64 142 ± 20 <0.001

Diastolic blood
pressure, mmHg 96 77 ± 10 64 83 ± 11 <0.001

Log NT-proBNP, ng/L 93 3.1 (1.0) 48 3.0 (2.5) 0.18

Troponin-T, ng/L 77 30 (33) 36 21 (26) 0.02

IVSDD (mm) 102 18.7 ± 3.3 65 17.6 ± 3.1 0.294

LVDD (mm) 102 43.9 ± 5.5 65 48.3 ± 6.5 0.121

LVEF 102 54 ± 11 65 57 ± 12 0.436

PWT (mm) 102 13.5 (2.7) 65 10.2 (1.6) 0.003

PWT/SaVR 81 47 ± 39 55 12 ± 6 <0.001

RWT (mm) 102 0.61 (0.22) 65 0.43 (0.11) 0.000

RWT/SaVR 81 2.29 ± 1.87 54 0.62 ± 1.23 <0.001

RELAPS 92 2.0 (1.2) 57 0.8 (0.5) <0.001

GLS,% 91 −14.1 ± 5.0 58 −13.5 ± 4.0 0.388

LAVI, ml/m2 99 39 (17) 51 39 (20) 0.225

LVMI, g/m2 99 189 ± 50 63 170 ± 50 0.187

LVEF/LV mass 99 0.30 ± 0.10 63 0.35 ± 0.12 0.004

E velocity, cm/s 97 62 ± 36 63 63 ± 40 0.899

E DT, ms 90 184 ± 77 61 200 ± 85 0.241

3.1. Patient Characteristics

ATTR-CA patients were older than LVH patients (mean = 76 years for ATTR-CA and
mean = 68 years for LVH. (p = 0.001)). HR and height were higher in ATTR, whereas weight
was higher in LVH. Troponin-T (p = 0.02) differed between groups, whereas NT-proBNP did
not. Systolic and diastolic blood pressure were higher in LVH patients (p < 0.001) (Table 1).

Significantly increased posterior wall thickness (PWT) (p = 0.003), and relative wall
thickness (RWT) (p < 0.001) were observed in the ATTR-CA group. LVEF/LV mass was
significantly lower in ATTR-CA (Table 1).

Furthermore, RWT/SaVR and PWT/SaVR were both significantly increased in the
ATTR-CA group compared to the control group (p < 0.001).

3.2. ROC-Analysis

Four echocardiographic and ECG-derived parameters with a statistically significant
difference between groups were further investigated with ROC (receiver operating char-
acteristics) curves. RWT/SaVR generated the highest AUC among the studied selection
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(AUC 0.95, p < 0.001 followed by RWT (AUC 0.849, p < 0.001). In comparison, PWT/SaVR
had AUC of 0.95, (p < 0.001). Remaining parameters produced the following AUC: RELAPS
(AUC 0.79, p < 0.001) and PWT (AUC 0.84, p < 0.001).

RWT/SaVR > 0.7 presented the highest combined sensitivity (97%) and specificity
(90%) to identify ATTR-CA (p < 0.001), and PWT/SavR (p < 0.001) had a sensitivity of 94%
and specificity of 82%. RWT > 0.5 had the highest combined sensitivity and specificity,
which was 84% and 82% (p < 0.001). RELAPS > 1.2 showed the highest combined sensitivity
and specificity of 74% and 76% (p < 0.001). PWT > 11.5 had sensitivity and specificity of
82% and 78%, respectively (Table 2 and Figure 1).

Table 2. RWT = relative wall thickness, RELAPS = relative apical sparing, and PWT = posterior
wall thickness.

AUC Cut-Off
Value

Sensitivity
[%]

Specificity
[%] PPV NPV Accuracy p-Value

RWT/SaVR 0.95 0.7 97 90 90 92 91 0.000

RWT 0.85 0.5 84 82 94 72 83 0.000

RELAPS 0.79 1.2 74 76 82 63 73 0.000

PWT, mm 0.84 11.5 82 78 88 75 82 0.000

Figure 1. Legend to figure: ROC curve analyzing area under the curve testing RWT/SaVR, RWT,
PWT and RELAPS.

3.3. External Validation of RWT/SaVR

For external validation of the use of RWT/SaVR, the accuracy was investigated ran-
domly in 20 patients diagnosed with ATTR-CA from Karolinska University Hospital with
septum > 14 mm. RWT measurement from echocardiography was collected retrospectively
from the clinical records at the time of diagnosis. SaVR was measured from the ECG taken
at the time of diagnosis. Pacemaker rhythm and LBBB were excluded. All patients had
a positive DPD-scintigraphy and AL amyloidosis had been excluded using biomarkers
and/or biopsy. Overall, 85% of the patients had RWT > 0.5 and 100% had RWT/SaVR > 0.7.

4. Discussion

The results from this validation study highlight the strong diagnostic accuracy of
simple, readily and widely available ECG- and echocardiography-based variables in the
work up of suspected ATTR-CA. The main finding of this study is the very strong diagnostic
accuracy of using RWT as a marker for concentric increased wall thickness and even
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stronger accuracy using the combination of ratio RWT/SaVR. This confirms results using
RWT from earlier studies of patients and controls [14,22].

Relative wall thickness calculated from the equation PWTx2/LVDd, is in itself a
useful measurement in ATTR-CA work up as it combines two characteristics of the disease:
concentric hypertrophy and reduced LV cavity. LVH-related heart enlargement is mainly
centered in the interventricular septum with less involvement of the posterior wall. In
comparison, ATTR-CA causes a general and concentric thickening of the heart, including
increased RWT. This general build-up of cardiac transthyretin in ATTR-CA also affects the
LVEDD in a negative manner, generating smaller diameters, compared to LVH. As part of
the concentric increase in wall thickness, amyloid infiltration also involves the atriums [23]
and right ventricle [10], as well as the valves [24].

We found a cut-off value using RWT > 0.5 accurately predicting ATTR-CA. This
corresponds well to the report from Boldrini, et al., suggesting > 0.6 as a strong predictor
for ATTR-CA [22]. It is unclear how RWT was calculated in the study from Boldrini et al.,
but Another definition of RWT is IVS + PWT/LVDd, with cut-off > 0.6 suggested to be a
red flag for ATTR-CA [4].

In addition, we have, in a recent study, also found RWT being predictive for ATTR-CA
years before final diagnosis [9].

SaVR represents the ventricular excitation registered from a −150◦ angle of the heart
(lead aVR). Most conditions causing increased cardiac wall thickness are characterized by
myocardial hypertrophy and thus show electronically active myocardium causing higher
QRS-amplitudes. Myocardial amyloid buildup in the heart, however, has the opposite
effect, lowering QRS-amplitudes. The mechanism behind this is most probably amyloid
infiltration, which suppresses the electrical signal.

The sensitivity and specificity of RWT/SaVR in our study (97% and 90%) are sur-
prisingly high. They are actually comparable to DPD-scintigraphy (98% and 92%) and
higher when compared to both MRI (84% and 87%) and PET (78% and 95%) presented in a
recent meta-analysis study [25]. However, the meta-analysis compared the modalities to
the reference method, endomyocardial biopsy, and included mixes of both ATTR and AL
amyloidosis and, furthermore, did not (as we did) exclude patients with a less pronounced
increase in LV wall thickness. Nevertheless, the high accuracy of the RWT/SaVR ratio
borders on diagnostic, and confirms that it is a very powerful screening tool for ATTR-CA.

Despite the increasing availability of cardiac MRI, PET, and technetium bone tracer
scintigraphy in some parts of the world, these investigations remain costly and not readily
accessible for a vast number of patients. The availability of ECG and echocardiography
makes the RWT/SaVR ratio a highly useful tool for selecting patients for further work up,
and possibly for epidemiological studies where advanced imaging is not possible.

Limitations: There are limitations in this study. We used a cut-off value of >14 mm
investigating ATTR-CA whereas others recommended a cut of >12 mm. However, we
consider >14 mm to be a more appropriate cut-off due to the numbers to investigate with
DPD scintigraphy for final diagnosis. Patients with aortic stenosis and patients with HCM
had not undergone work up to rule out CA (DPD scintigraphy). However, mean age in
each group (62 and 65 years) reduces the suspicion of ATTRwt.

Being a retrospective study, the analyses were not blinded and therefore at risk of bias.
Furthermore, the study does not include patients with very mild disease nor patients with
AL amyloidosis, so further evaluations including a more heterogenous CA population, and
preferably more centers, are warranted.

5. Conclusions

We confirm the very strong diagnostic accuracy of using RWT/SaVR to identify
ATTR-CA in patients with moderate or advanced disease. RWT/SaVR > 0.7 demonstrated
the highest combined sensitivity and specificity, with which to identify ATTR-CA, when
compared with conventional echocardiographic variables. The proposed method is simple
to measure and widely used in cardiology centers.
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RWT relative wall thickness
SaVR S amplitude from aVR
RELAPS relative apical sparing
ATTR-CA Transthyretin cardiac amyloidosis
LVH left ventricular hypertrophy
DPD 99Tc-3,3-diphosphono-1,2-propanodicarboxylic acid
ATTRv transthyretin variant type (hereditary)
ATTRwt transthyretin wild type
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