
1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HTTP Load Balancing 
Performance Evaluation of 
HAProxy, NGINX, Traefik and 
Envoy with the Round-Robin 
Algorithm 
 
  

Bachelor Degree Project in Science 
with a major in Informatics 
G2E, 30 ECTS 
Spring term 2022 
 
Alfred Johansson 
 
Supervisor: Johan Zaxmy 
Examiner: Thomas Fischer 



 

 i 

Abstract 

Operating a popular website is a challenging task. Users not only expect services to always be 

available, but also good performance in the form of fast response times. To achieve high 

availability and avoid performance problems which can be linked to user satisfaction and 

financial losses, the ability to balance web server traffic between servers is an important 

aspect. 

This study is aimed to evaluate performance aspects of popular open-source load balancing 

software working at the HTTP layer. The study includes the well-known load balancers 

HAProxy and NGINX but also Traefik and Envoy which have become popular more recently by 

offering native integration with container orchestrators. To find performance differences, an 

experiment was designed with two load scenarios using Apache JMeter to measure the 

throughput of requests and response times with a varying number of simulated users. 

The experiment was able to consistently show performance differences between the software 

in both scenarios. It was found that HAProxy overall had the best performance in both 

scenarios and could handle test cases with 1000 users where the other load balancers began 

generating a large proportion of failed connections significantly better. NGINX was the slowest 

when considering all test cases from both scenarios. Averaging results from both load 

scenarios excluding tests at the highest, 1000 users, concurrency level, Traefik performed 24% 

better, Envoy 27% better and HAProxy 36% better compared to NGINX. 



 

 ii 

Table of Contents 

1 Introduction ......................................................................................................... 1 

2 Background ......................................................................................................... 2 

2.1 Load Balancing Concept ..................................................................................... 2 

2.2 Load Balancing Methods and Algorithms ............................................................ 2 

2.3 Software Load Balancers .................................................................................... 4 

2.3.1 Previous Studies ...................................................................................... 5 

3 Problem Description ........................................................................................... 6 

3.1 Motivation ........................................................................................................... 6 

3.2 Research Question ............................................................................................. 6 

3.3 Limitations .......................................................................................................... 7 

3.4 Objectives ........................................................................................................... 7 

4 Methodology ........................................................................................................ 8 

4.1 Scoping............................................................................................................... 9 

4.2 Planning.............................................................................................................. 9 

4.2.1 Variables ................................................................................................. 9 

4.2.2 Instrumentation ...................................................................................... 10 

4.2.3 Experiment Design ................................................................................ 10 

4.2.4 Validity Threats ...................................................................................... 12 

5 Experiment Operation ....................................................................................... 15 

5.1 Preparation ....................................................................................................... 15 

5.1.1 Web Server Installation .......................................................................... 15 

5.1.2 Load Balancer Installation...................................................................... 15 

5.1.3 Client Installation ................................................................................... 16 

5.1.4 Verifying Installations ............................................................................. 16 

5.2 Execution .......................................................................................................... 16 

5.3 Data Validation ................................................................................................. 17 

5.3.1 Scenario 1 ............................................................................................. 17 

5.3.2 Scenario 2 ............................................................................................. 18 

6 Results ............................................................................................................... 19 

6.1 Scenario 1 ........................................................................................................ 20 

6.2 Scenario 2 ........................................................................................................ 22 

7 Conclusions ....................................................................................................... 24 

8 Discussion ......................................................................................................... 26 

9 Future work ........................................................................................................ 27 

Appendix A – Configuration files 



 

 iii 

Appendix B – Distribution statistics 

Appendix C – Paired-Samples T Tests 

Appendix D – Mean data points 

 



1 
 

1 Introduction 

The number of websites on the internet is constantly increasing and more is expected from the 

services they offer. To handle the large amount of traffic popular websites sees, they need a scalable 

and good performing solution to distribute traffic amongst several web servers. 

One existing solution to this is to use a Hyper Text Transfer Protocol (HTTP) load balancer that is able 

to inspect the traffic on the application layer and act as a reverse proxy to distribute the load 

between several backend web servers. Two traditionally popular open-source software products 

with these features are HAProxy and NGINX (Nemeth et al., 2017) and two emerging alternatives are 

Traefik and Envoy (Shah et al., 2019). The latter two are both designed with container orchestrated 

services in mind and natively offers features to automatically generate routes for container-based 

microservices. Containerization itself is an emerging and powerful technology offering scalability, 

high efficiency and fast deployment (Watada et al., 2019) and it is used increasingly by tech giants to 

build businesses (Shah et al., 2019). The high degree of integration with container-based services 

makes Traefik and Envoy an attractive choice with potential to simplify administration in container 

orchestrated environments. 

Setting the native integration with container orchestrators aside, performance is an important factor 

for the user experience and economic growth on the web (Arapakis et al., 2021). This study will 

perform an experiment to compare performance between HAProxy, NGINX, Traefik and Envoy when 

used as load balancing tools for HTTP traffic outside a container-based environment. The four load 

balancers will be given the same conditions in a virtual environment were latency, request 

throughput and error rates will be measured in load scenarios with a varying number of users to 

indicate performance. 

The report is divided in 9 chapters. Following the introduction, chapter 2 will provide background 

information on load balancing systems and go through some previous studies on the topic. In chapter 

3, motivations for the study as well as its aim, limitations and objectives will be stated. Chapter 4 

concerns methodology including planning and designing the experiment and considering validity 

threats. Chapter 5 goes through the preparation and execution of the experiment as well as 

addressing the validity of the collected data. In chapter 6, the results from the experiment are 

presented. In chapter 7 conclusions are drawn from the results to answer the research question. 

Chapter 8 will contain a discussion including limitations, ethical and societal aspects and will be 

followed by chapter 9 where future work is discussed. 



 

 2 

2 Background 

This chapter provides background to help understand the research question and background on the 

evaluated load balancing software packages. An overview of previous scientific work in the area is 

also presented in section 2.7. 

2.1 Load Balancing Concept 

Popular websites need to be able to serve a large number of simultaneous clients. Users also expect 

the site to always be available and that the server responds with low latency. In IT the term High 

availability (HA) describes systems that are continuously operational providing services which are 

available to users to a large extent (de la Cruz & Goyzueta, 2017). Nemeth et al. (2017) claims that it 

is impossible to use a single server to run a highly available website for two main reasons: First, there 

is always a risk of unexpected downtime combined with the problem that there will be no way to 

take the server down for planned maintenance while keeping the service up. Second, a single server 

does not scale very well and will be more vulnerable to attacks and load spikes leaving the risk of 

downtime due to overload. If one server is not enough, the solution will be to use multiple servers. 

However, this introduces a new problem: A tool is needed to distribute incoming traffic amongst the 

servers. Such tools exist and are called load balancers. The general idea of a load balancer is that it 

processes incoming requests and distributes the work to other concurrently running independent 

systems (Membrey et al., 2012). This way, the heavy load of serving websites can be shared among 

as many web servers as required. The load balancer acts as a frontend, doing the lighter work of 

distributing the traffic. To achieve HA in real world scenarios, it may be necessary to have multiple 

load balancers or implement several layers of load balancing but the principle stays the same. Similar 

principles can be applied when it comes to performance which can be improved by scaling up the of 

available resources beyond the capabilities of a single server. 

2.2 Load Balancing Methods and Algorithms 

One very simple form of load balancing for web server traffic is to make use of Domain Name System 

(DNS). When browsing the web, DNS is used to translate domain names to IP addresses which is 

needed in order to make the actual connection to a web server. Many DNS servers are in fact capable 

of load balancing. One example is BIND that offers this type of load balancing by using multiple 

records for the same domain name. The DNS server then alters the response so that the first IP will 

be rotated between requests (Internet Systems Consortium, 2022). DNS load balancing may be the 

simplest type since it is easy to implement and makes use of existing infrastructure but it does not 

offer features that are found in other types of load balancers. Membrey et al. (2012) lists three main 

issues with DNS load balancing: 

1. Stickiness: In many cases, especially with websites providing dynamic content, it is desirable 

that a client always is connected to the same server. HTTP which is the protocol used for web 

traffic is by itself stateless which is one reason why many websites use cookies. A cookie is a 

small file which can store identifiers and sessions between the client and server. Such, for 

example, session cookie will only be valid between the client and the server the session 

originated from. With DNS load balancing there is no mechanism to guarantee that the client 

always gets connected to the same server. 



 

 3 

2. Processing load: A DNS server is only involved during the initial part of a connection where the 

server IP is resolved. Once the client knows the IP, the DNS server has no natural way of getting 

any feedback from the traffic sent to and from the server. Thus, the best a DNS server can do 

is to rotate between the IP addresses in the response. There is no way to account for how 

demanding the client will be. In a worst-case scenario, the most demanding clients will be sent 

to the same server while clients generating very little activity will distributed between other 

servers. This will lead to an undesired imbalance where one server will be exposed to a higher 

load than the others. 

3. Fault tolerance: A key component for any HA system is monitoring. Again, a DNS server has no 

natural way to determine the state of the servers behind the DNS records. In case one of the 

servers goes offline, a part of the clients will still be directed to the offline server. Even if the 

DNS-record is removed. DNS-records have a Time to Live (TTL) parameter which, even if set to 

low values, will cause an unacceptable delay for a HA system. 

A more sophisticated solution than using DNS for load balancing is to use a Server Load Balancer 

(SLB). A SLB is positioned as a frontend between the client and the servers so that the backend 

servers only communicate with clients via the SLB. For web traffic, SLBs commonly works on either 

layer 4 or 7 of the OSI (Open Systems Interconnection) network model, both of which have 

advantages and disadvantages. With layer 4, the transport layer, less resources are required but the 

SLB will only be able to intercept low level connection details such as TCP-headers and port numbers 

to manage traffic (Sharma & Mathur, 2021). However, a layer 7 SLB can intercept the HTTP 

application layer and route traffic based on the actual content such as URLs, cookies, and HTTP 

headers (Nemeth et al., 2017). This can be useful since it for example allows for dividing static and 

dynamic content to different backends based on HTTP paths. In such cases, backends needing 

synchronization between each other have the ability to scale independently from backends with 

static content. Working as a reverse proxy, where the client only communicates directly with the SLB 

as seen in Figure 1, a HTTP SLB provides solutions the problems mentioned with DNS load balancing 

but it can also add additional features such as Transport Layer Security (TLS) termination. With TLS 

termination, the SLB will handle TLS in a Hypertext Transfer Protocol Secure (HTTPS) connection 

between itself and the client which in most cases eliminates the need of TLS for the web server. This 

means that the web servers do not need to spend resources on TLS and it also has makes it easier to 

manage certificates since they, in such case, only need to be installed on the SLB. 

 

Figure 1: Example http load balancing topology 

 

https://sv.wikipedia.org/wiki/Open_Systems_Interconnection


 

 4 

Many load balancers support several different algorithms to distribute traffic. These can be divided 

into static and dynamic algorithms (Deepa & Cheelu, 2017). In summary, static algorithms make 

decisions based upon compiled prior knowledge about the system. A dynamic algorithm, on the 

other hand, make use of current state information. Complex dynamic algorithms may take into 

account several policies and dynamically changing states of nodes. Nemeth et al. (2017) lists some of 

the overall most common algorithms which, in their simplest implementations, are static: 

• Round Robin (RR): This algorithm is both very simple and commonly used. It lets servers take 

turn of incoming traffic in a fixed rotation order. Variations of RR exists, with static-RR being 

the simplest by using a preconfigured static rotation order. Weighted RR is a variant where a 

weight is assigned to backed nodes, either statically or dynamically, so that backends with 

more resources can be assigned a larger part of the load. 

• Load equalization: Also known as leastconn. Here, the load balancer distributes the load to the 

backend node it currently has the least number of connections established with. 

• Partitioning: Partitioning is designed to always connect any given client to the same server. 

This can be achieved by distribute a client to a server based upon a hash value of the client’s 

IP address. 

There are also two approaches, hardware-based or software-based, when implementing a load 

balancing solution (Moharir et al., 2020). This study will focus on software-based solutions, mainly 

because they generally are not proprietary and usually offer more flexibility and scalability than 

hardware-based solutions (Moharir et al., 2020). 

2.3 Software Load Balancers 

In this section, background of software implementing HTTP load balancing will be presented. 

HAProxy is a popular software dedicated for load balancing. The open-source version is used by 

many organizations (Kondis et al., 2016). It is mostly written in C and was first released in 2001. 

HAProxy Technologies LCC released an enterprise version, HAProxy Enterprise Edition (HAPEE), in 

2013 and the company claims that HAProxy is “… the world’s fastest and most widely used open 

source software load balancer … “(HAProxy Technologies., 2022). The software supports load 

balancing both on layer 4 and layer 7 and uses text-based configuration files. 

NGINX is one of the market leaders of web server software. According to Netcraft (2022) it has 31% 

of the web server market. One of the many features of this open-source web server software is that 

it offers the feature of being a layer 4 or layer 7 load balancer. Together with HAProxy, it is one of the 

most common load balancers for Linux (Nemeth et al., 2017). 

Traefik is like HAProxy, a dedicated reverse proxy load balancer. The open-source project started in 

2015 with the goal to make deployment of microservices as easy as possible. Even though it does not 

have an as long-established reputation as HAProxy and NGINX, it has quickly become popular and 

currently has over 2 billion downloads from GitHub (Miller, 2020). Traefik is mostly written in Go and 

offers many desired features such as, layer 4 and layer 7 load balancing, TLS termination and 

stickiness. Traefik is configured via their so-called providers. Providers can be traditional text files but 

also integration with orchestrators for microservices including docker, Kubernetes and Amazon ECS. 

One reason for Traefik’s fast growing popularity is that once a provider for an orchestrator is 



 

 5 

installed, routes can be automatically and dynamically configured for each backend offering a service 

via the orchestrators Application Programming Interface (API). 

Envoy is, along with Traefik, an emerging and popular load balancing tool for containerization (Shah 

et al., 2019). The software is mostly written in C++ and was originally developed by Lyft until it 

became an open-source project under the Cloud Native Computing Foundation (CNCF) in 2017 

(Woods, 2017). Envoy offers similar features as Traefik including, layer 4 and 7 load balancing. Being 

maintained by the same foundation as Kubernetes it also offers high integration with container-

based platforms. 

2.3.1 Previous Studies 

Several previous studies have been done regarding web server load balancing performance. 

Ibrahim et al (2021) did a literature review on dynamic load balancing techniques summarizing 

findings from nineteen previous studies regarding performance of different load balancing 

algorithms in various load balancing environments. They found that the choice of algorithm can have 

a substantial impact on web server performance depending on load balancing method and test 

scenario. In addition, Prasetijo et al. (2016) and Mbarek & Mosorov (2018) each did experiments 

comparing the leastconn and round-robin algorithm implementations in HAProxy. These two studies 

drew slightly contradicting conclusions. The first one suggesting that round-robin is superior when it 

comes to resource utilization, network connections and network request. The latter study suggests 

that leastconn is in general superior over RR, showing less failed connections and performing better 

when it comes to connection rate, response time and throughput. 

Konidis et al. (2016) did an experiment implementing load balancing using Software Define Network 

(SDN) as a load balancing method and comparing it to HAProxy from a HA perspective. The study 

found that using SDN as a load balancing method has advantages when it comes to health-checking, 

throughput and failed connections. However, the proposed SDN solution was not able to offer many 

of the features that a reverse proxy-based solution could by working at the HTTP application layer. 

Zebari et al. (2020) did an experiment to analyze and evaluate how HAProxy compare against 

Microsoft’s Network Load Balancing (NLB) server role during TCP SYN flood Denial of Service (DoS) 

attacks. They found that NLB in general was less effected by the attacks but it should be noted that 

NLB only works at layer 4 and lacks many of the capabilities HAProxy can offer by working at OSI 

layer 7.  

Few studies were found comparing the performance of load balancing software working at the 

application layer. Pramono et al. (2018) did an experiment comparing the performance of HAProxy 

and NGINX. To do this, 4 different load scenarios were applied: A load and stress test where the 

throughput of requests were measured with 500 simulated users. A similar benchmark test where, 

again, request throughput was measured with 500 users using Apache Benchmark instead of Apache 

JMeter. A time test where response times were measured with 700 users. Their last load scenario 

was a click test where clicks from 500 simulated users with a 5 second delay between them for each 

user where applied and response times where measured. In their benchmark test, HAProxy 

performed 19% better when the default configuration with RR were used. In their click test scenario 

where they saw response times that were over 400% longer with NGINX when using RR. Less 

differences were found in their other two, time test and load and stress test, experiments. 



 

 6 

3 Problem Description 
This section describes motives for the research and provides the research question the study is 

aimed to answer. In order for the work to be completed on time, limitations and objectives are also 

clearly stated. 

3.1 Motivation 

The reliability and performance are of great importance when it comes to a web site’s economic 

success (Arapakis et al., 2021). Another study by Bai et al. (2017) relating to web search suggests that 

latency is an important factor when it comes to user experience and activity on the web. Barreda-

Ángeles et al. (2015) also found that higher latencies on search engines had negative unconscious 

physiological effects for its users. 

As stated in section 2.1, the web server traffic for popular websites needs to be distributed among 

several servers to achieve the required availability and performance, thus needing an effective load 

balancing mechanism. Envoy and Traefik are designed for hassle free integration with container 

solutions, making them an attractive choice for load balancing container based webservices over the 

more traditionally well-known alternatives HAProxy and NGINX. This integration is becoming 

increasingly important since container orchestrators are emerging technologies providing better 

performance and efficiency compared to traditional hypervisor-based platforms, simultaneously 

simplifying packaging and distribution of software (Singh & Singh, 2016). Shah et al. (2019) points out 

how major tech giants are building businesses based on container-engines and orchestrators as they 

simplify management and integration of virtual components. The study also mentions Envoy and 

Traefik as popular and emerging tools supporting containerization. 

Even though several studies comparing the performance of load balancing performance have been 

done, such as the ones by Pramono et al. (2018) and Zebari et al. (2020), none of them include the 

emerging load balancing software that Traefik and Envoy are (Shah et al., 2019). Pramono et al. 

(2018) found significant differences in performance when comparing HAProxy and NGINX. In their 

default configurations HAProxy could handle 19% more requests per second compared to NGINX in 

their benchmark test. Even greater differences were found when they measured response time in 

their click test with 500 users where the latency was 19ms for HAProxy and 102ms for NGINX. 

These differences in performance motivates further testing including emerging challenging software 

that Traefik and Envoy constitutes. This study could help system administrators with the choice of 

load balancing software by looking at differences with respect to performance. 

3.2 Research Question 

The aim of this study is to answer the following question: 

How does emerging and the most popular open-source HTTP load balancers compare in 

terms of performance under Linux using the Round-Robin algorithm and TLS-

termination? 

  



 

 7 

3.3 Limitations 

The study has been limited to not compare any other than the four load balancing software 

packages, HAProxy, NGINX, Traefik and Envoy in order to answer the research question. These have 

been chosen for two main reasons: Firstly, they are open-source, meaning they can be used with less 

limitations and without any associated licensing costs. Secondly, HAProxy and NGINX are well known 

and established being the most common load balancers for Linux (Nemeth et al., 2017) while Envoy 

and Traefik are two major emerging alternatives supporting integration with container based 

microservices (Shah et al., 2019). These four load balancers are also well documented and actively 

maintained. 

The chosen software packages support load balancing both on layer 4 and 7 of the OSI networking 

model. They also differ in terms of features and how easy they are to configure. This study is not 

aimed to compare any abilities for load balancing on layer 4 nor will it take all features or ease of use 

into account. One such feature that will not be tested is HTTP/2 even though it is offered by several 

load balancing software packages (Envoy, 2022; HAProxy.org, 2022). 

This study will not evaluate performance using any other algorithm than non-weighted Round-Robin. 

Round-Robin is commonly supported and the default algorithm in all load balancers being evaluated 

in this study. Studies by Ibrahim et al (2021), Prasetijo et al. (2016) and Mbarek & Mosorov (2018) 

already looked into how different load balancing algorithms compare. When it comes to other 

performance related settings, the software packages will be tested with the default or recommended 

parameters and may not consider possible performance tweaks. 

Since the focus is on the performance of the load balancers, any implementation evaluated in this 

study will use static content on backed web servers to optimize their performance. Even though 

more realistic implementations may include more complex content, such implementations will not 

be included in this study. 

When HTTP load balancers are used to expose websites on the internet or other public networks, 

their robustness from a security perspective is an important factor. However, this study will not be 

focused on security factors. 

3.4 Objectives 

Considering the motives and limitations the following objectives were formulated in order to answer 

the research question: 

• Select a method suitable for the study’s aim 

• Define performance measurements and consider validity threats 

• Collect data 

• Evaluate validity of data 

• Analyze the data to provide an answer to the research question 

  



 

 8 

4 Methodology 
This chapter is intended to further develop the first and second objective mentioned in 3.4.  

Considering the methods suggested by Berndtsson et al. (2008), the most suitable method is to 

perform an experiment. The other proposed methods, literature analysis, interview, case study, 

survey and implementation were found less suitable. A literature analysis would require more 

previous research directed at the research question. The aim of this study regards performance, 

which with a well-planned experimental approach can be quantified. An interview- or survey- based 

study would take a less quantitative approach and would rely on finding suitable people to interview 

or survey. The remaining methods, case study and implementation are also not suitable. A case study 

would require a case were the selected load balancers could be used and implementing new 

software is out of scope for this study. 

The experiment method is described by Wohlin et al. (2012) as a method providing high control over 

execution and measurements, it also allows for easy replication and is suitable for exploring 

relationships between cause and effect. In this study the relationships between specific software 

packages and performance are to be explored, making the method suitable. 

Wohlin et al. (2012) also describes a five-step method for conducting an experiment which this study 

follows. Those steps are: 

• Scoping 

• Planning 

• Operation 

• Analysis & Interpretation 

• Presentation & Package 

Scoping and planning are presented in the following sections 4.1 and 4.2. The operation and analysis 

& interpretation are handled in chapter 5 and 6. Presentation & Package are represented by this 

report itself. 

 

  



 

 9 

4.1 Scoping 

Wohlin et al. (2012) provides the template below for the scoping step. The purpose of this step is to 

define goals and aspects before the planning- and operation- steps in order to lay a foundation for 

the experiment. 

Analyze <Object(s) of study> 
for the purpose of <Purpose> 
with respect to their <Quality focus> 
from the point of view of the <Perspective> 
in the context of <Context>. 

Combining the template with the aim of the study yields a scope were the goal and the purpose of 

the study is to: 

Analyze the selected software products 
for the purpose of evaluate differences 
with respect to their performance 
from the point of view of system administrators 
in the context of high-load web server systems. 

 

4.2 Planning 

The purpose of the planning step is to prepare for how the experiment is conducted (Wohlin et al., 

2012). 

4.2.1 Variables 

Before the experiment can be designed, both independent and dependent variables should be 

defined (Wohlin et al., 2012). 

4.2.1.1 Independent Variables 

Independent variables are the ones which can be controlled and directly changed within the 

experiment itself and are the following: 

The load balancer software – HAProxy, NGINX, Traefik and Envoy are tested individually so that they 

later can be compared against each other. Thus, each of them is an independent variable. 

Load scenario – Pramono et al. (2018) applies 4 different load scenarios when evaluating load 

balancing performance which were considered in this study. Due to the limited resource and the 

similarity between their load and stress test and the benchmark test only one such test, where 

throughput of requests is measured, will be applied. Their time test scenario will also be excluded for 

similar reasons, it is similar to their click test and a few details regarding the software they used could 

not be found. To give a broader perspective on performance, each load scenario will also be tested at 

various user levels. The two load scenarios applied in this study are further described in section 4.2.3. 

  



 

 10 

4.2.1.2 Dependent Variables 

Dependent are variables affected by the independent variables and are in this case related to 
performance. A tool will be used to measure connection rates, response latency and error rates. To 
help mitigating validity threats, different variables will be measured in different load scenarios. 
 
In the first load scenario the dependent variables will be the connection rate i.e., the number of 
connections that can be established each second as well as well as the error rate represented by the 
proportion between successful and unsuccessful connections. 
 
In the second load scenario, response latency, represented by the time taken between a request and 
response after a connection has been established, will be a dependent variable together with the 
error rate. 

4.2.2 Instrumentation 

To provide means for performing and monitor an experiment Wohlin et al. (2012) describes three 

categories of instruments to consider, objects, guidelines and measurement tools. The objects in this 

instance are the web server environment and the load balancer configuration. Guidelines will be 

provided by JMeter test plans as well as scripts created to run the tests. JMeter will also be used as 

the measurement tool and was chosen since it is a tool that can provide accurate results and is used 

in many previous studies (Abbas et al., 2017). It is also a free and open-source tool with the required 

features for the experiment. 

4.2.3 Experiment Design 

A virtual environment was chosen to form a base for the experiment using VMware ESXi as 

hypervisor. Five Virtual Machines (VM) are used of which three are used as webserver backends, one 

as load balancing server and one client. A virtual environment was chosen over using several physical 

machines since higher control over resources and isolated networks capable of speeds well over 

1Gb/s can be provided. Considering validity threats and potential bottlenecks, a fast internal network 

and control over resources are important factors to consider when designing the experiment. With 

the intention to evaluate the performance of the load balancing software it is important that the 

performance of the backend webservers is as good as possible. One of the main features with a load 

balancing system is the ability to scale up the capacity of backend servers as required. Therefore, is 

desired that the load balancer, rather than the web servers, becomes the bottleneck during the 

experiment. Since in this case, a virtual environment with limited resources is shared for both the 

load balancer and the web servers, it may be necessary configure the web servers with overall more 

resources than the load balancing server to avoid a situation where the performance becomes 

saturated by the backend servers. To further reduce this risk, static content is used and is stored on 

internal memory, using a tmpfs file system, for better performance. The test cases in the experiment 

will also be conducted directly against one of the web servers for reference. Considerations were 

made to use a more realistic demo website based on a Content Management System (CMS) such as 

WordPress or Drupal but for such setup to not become a bottleneck, it would require more resources 

than available on a single ESXi host. 

The aim with the experiment is to evaluate performance which can vary depending on the use case 

and load scenario. To answer the research question, the load scenarios conducted by Pramono et al. 

(2018), described in section 2.3.1, have been considered and two load scenarios, described below, 

have been designed to evaluate performance from two different perspectives. Each load scenario is 



 

 11 

tested with many different user levels to give a broader image of how performance is affected by the 

number of users. Each individual test is also repeated 30 times to provide a basis for a statistical 

evaluation. To improve consistency between tests, ESXi’s snapshot feature is also used by letting 

JMeter issue a command to restore the state of the servers before any load scenario begins. 

One load scenario for evaluating load balancer performance, used by both Pramono et al. (2018) and 

Prasetijo et al. (2016) is to perform a benchmark to test how many requests per second a web server 

is able to handle. Prasetijo et al. (2016) uses the tool httperf to measure the connection rate at 

various request rates and Pramono et al. (2018) does similar tests by using Apache benchmark and 

Apache JMeter. Based on these previous experiments, the first load scenario tested in this 

experiment, Scenario1, is designed to test a high load situation where multiple users will open a 

website in a very short period of time. To be able to handle a high number of requests per second is 

an important performance factor, for example, if a link to the website is posted on another popular 

website, causing a high peak of simultaneously connecting clients. 

For testing Scenario1, JMeter is configured with a test plan where a single small static page is 

repeatedly requested by a HTTP GET command from the load balanced service. To test multiple 

concurrency levels, the experiment is repeated with varying values for thread count and loop. The 

thread count represents the number of users connecting to the server at once and will be tested with 

increased values until a certain proportion off failed connections occurs. To be able to produce 

enough load the loop count will be calculated so that 200 000 requests are performed in each test. 

This number was chosen as a compromise between how long the tests take to perform and what is 

needed to be able to collect enough and consistent data. The ramp-up period for the thread group 

was set to 10 seconds based on the experiment performed by Pramono et al. (2018), this number 

represents the time span between the first and last user. 

A second scenario, Scenario2, will be based on the click test performed by Pramono et al. (2018). This 

scenario is designed to measure the average latency when the same user performs multiple requests 

and will also be tested at multiple user levels. Studies by Bai et al. (2017) as well as Ángeles et al. 

(2015) shows that higher latencies have substantial negative impacts on the user experience. For this 

test to represent more realistic scenario, JMeter is configured with a test plan to load random images 

from a load balanced website. For this, a sample of an image data set is installed on the backend 

servers. These images are then requested in the test plan with a simple controller inside a random 

order controller, so that 5 images are requested 20 times with a delay in between for each thread. 

The delay between clicks was set to 5 seconds which is the same value Pramono et al. (2018) used. 

This way, each thread is designed to represent one user browsing a website each clicking on 20 

hyperlinks requesting 5 images per click for a total of 100 request per user. 

More details of the hardware and software used when applying the load scenarios are described in 

section 5.1. 

  



 

 12 

4.2.4 Validity Threats 

Accounting for possible validity threats is a fundamental step in any scientific experiment. A validity 
threat could disrupt the relationship between what is intended to be measured and what is actually 
measured (Berndtsson et al., 2008). It is important to consider these in the planning step so that the 
data collected during the experiment can be used to generalize the result and find a valid answer to 
the research question. Wohlin et al. (2012) divides possible validity threats into four categories and 
provides a checklist of threats which may or may not be relevant for all experiments.  
 
Validity threats from each category found relevant for this experiment will be addressed in section 
4.2.5.1 – 4.2.5.4  

4.2.4.1 Conclusion Validity 

Threats falling into this category are concerning issues with drawing the correct conclusions between 

the independent variables and the outcome of the experiment. 

Low statistical power is a threat concerning how powerful the data is when it comes to reveal true 

patterns. To address this threat, the experiment will be reset and repeated independently 30 times. 

Validity of the collected data is also further evaluated after the experiment in section 5.3 in order to 

verify if it has enough power to draw any conclusion. 

Fishing and the error rate deals with how the researcher could be biased and try to “fish” for an 

expected result or not properly adjusting the level of significance. The outcome of such threat could 

lead to conclusions which are not independent from the researchers influence. This is addressed by 

awareness and this planning section (4.2) itself, planning the test in advance will reduce the risk of 

this threat. 

Reliability of measures regards factors which may lead to an unacceptable deviation in data between 

repeated tests. For example, inaccurate instrumentation may lead to a higher deviation between 

repeated tests which will reduce the reliability and may result in erroneous conclusions. This is 

mitigated by repeating each test 30 times and consider deviations afterwards before drawing any 

conclusions. 

Random irrelevancies in experimental setting are threats coming from factors outside the 

experimental setting. In this experiment, it could be unplanned traffic on the network or background 

tasks ran by the operating system. This type of threats will be mitigated by using a hypervisor to 

conduct the experiment in a virtualized environment. VMware ESXi will be used in this case and can 

provide reliable and isolated networks between systems. It also has a snapshot feature which makes 

it possible to reset machines to a known state after changing internal variables. This is utilized by 

configuring JMeter with a setup thread group invoking commands over SSH to the ESXi host in order 

to reset states for the server machines before a test is executed. To ensure that no background tasks 

are triggered due to the real time clock, cron and systemd timers are disabled on all systems. Also, 

repeating each test will reduce the likelihood of this type of threat. 

  



 

 13 

4.2.4.2 Internal Validity 

This type of threats concerns casual relations where another factor than the ones investigated may 

also have an effect on the result. These are categorized by Wohlin et al. (2012) into Single group 

threats, multiple group threats and social threats. 

History is threat in the single group which applies to this experiment since there is a risk that the 

history from a previous test case affects the experimental results. During this experiment this threat 

could be related to hardware temperature. If the ambient temperature changes or if load from 

previous tests have a significant impact on the system temperature, it may impact the performance 

of aftercoming tests. This threat is mitigated by running each test multiple times and validate the 

distribution and deviation between equal tests. If found necessary, it could also be mitigated by 

running tests before the actual test script is ran to make sure the temperature has stabilized or by 

adding a pause between tests to let the hardware cool down. 

This threat could also include history factors related to the state of the VMs. For example, 

background processes could be launched at certain times by the operating system while the 

experiment is running or data can be cached at unexpected places. These types of threats also can 

affect the Reliability of measures and are mitigated by disabling systemd timers and the cron service 

as well as repeating the tests after resetting the VMs states from snapshots. 

4.2.4.3 Construct Validity 

If construct validity threats are not concerned, an experiment may leave to much room for 

interpretation relating to design factors or social factors. 

Inadequate preoperational explication of constructs. This threat exists if constructs are not properly 

defined. To avoid such unclarity, measurements and inspection methods need to be well described. 

Mono-method bias occurs when an observation is biased because only a single type of measurement 

is conducted. Even though JMeter will be the only test tool used, this threat is reduced by measuring 

different dependent variables in the different load scenarios.  

4.2.4.4 External Validity 

The value of the outcome of an experiment will be higher if the results can be generalized into 

industrial practice, which is why it is important to consider external validity threats. 

Interaction of setting and treatment is the main external threat applicable to this experiment. If, in 

this case, the software packages, would be tested in a setting far from a realistic implementation, the 

results would have less value. Considerations have been made to address this threat. For example, 

since HTTPS is used in a clear and growing majority of websites (Mozilla, 2022) TLS termination will 

be implemented in the experiment.  

Since this experiment is conducted in a lab environment with artificial load balancing scenarios, there 

is a remaining risk that the load scenarios applied does not show results perfectly aligning with a real 

implementation and with real users. This risk is mitigated by carefully considering the test plans and 

by testing more than one load scenario. 

  



 

 14 

While the usage of a hypervisor helps reducing threats concerning reliability of measures, random 

irrelevancies in experimental setting and history, it also adds an unknown factor to the interaction of 

setting and treatment. There is a risk that the hypervisor may have performance impacts on the 

server VMs that does not correspond to how they would have performed in production environment 

or a bare-metal installation. However, it could be argued that the evaluated load balancers are likely 

to be deployed in a virtual environment since one of their main features is to offer scalability which 

goes hand in hand with virtualization techniques. VMware ESXi is a widely used product proven to be 

a reliable solution for cloud and cluster infrastructure compared to other hypervisors (Bakhshayeshi 

et al., 2014). Considering these advantages and disadvantages ESXi is seen as a good compromise 

from a validity perspective. One way to further reduce this threat could be to repeat the experiment 

on other platforms but this would also require more resources. 

There is also risk, when limiting the experiment to configurations based on the default settings, that 

the configurations used in the experiment does not represent what would have been used in a 

production environment. There is a possibility that performance could be changed by tweaking 

settings. A similar threat is if there is an error in the configuration so that the software is not 

configured as intended. To minimize this threat, the documentations for configuring the load 

balancers are carefully studied before the experiment. The configurations are also tested and logs 

are checked to verify that the software packages are configured and is working as intended. One 

example of this is that a “catch all” server block was added to the NGINX configuration to ensure that 

the server’s name is matched as done by the other software packages, which does not seem to be 

the case when only one server block is used. 



 

 15 

5 Experiment Operation 

This chapter represents the operation step in the method by Wohlin et al. (2012) and is intended to 

further develop the data collection- and the data validation- objective mentioned in 3.4.  

5.1 Preparation 

The latest stable version of ESXi (7.0U3) was installed on the test system, an HP EliteDesk 800 G2 

with a 4-core Intel i5-6600 Central Processing Unit (CPU) and 32GB of internal memory. New port 

groups and virtual switches were configured to provide isolated test networks for the virtual 

machines. The deployed network topology is shown in Figure 2. 

Five VMs with the latest stable version of Debian 11 was deployed, three to serve as web server 

backends, one for the load balancing software packages and the last as a client to generate the load. 

Each server VM was configured with 4 CPUs and 4GB of internal memory. The client was also 

configured with 4 CPUs but with 8GB of internal memory. On all machines, cron and all systemd 

timers were stopped and disabled to ensure that no background tasks would be triggered during 

testing. The openssh-server package was enabled and configured with public key authentication on 

all servers to allow for remote commands. 

Figure 2: Topology over virtualized environment 

5.1.1 Web Server Installation 

Apache version 2.4.52 was installed from Debian’s repository on all web server VMs. Apache is 

together with NGINX one of the market leaders when it comes to web server software (Netcraft, 

2022) and was chosen over NGINX to avoid any bias since the NGINX load balancing feature is to be 

evaluated. A site was enabled with the webroot at a tmpfs drive were the static content, a 1.1kB 

index.html and 100 images from a flickr dataset, was installed on all servers. All web servers were 

configured identically except for a text entry in the index.html file indicating the server’s name. 

5.1.2 Load Balancer Installation 

On the load balancer VM, the latest stable release of the four load balancers was installed. HAProxy 

2.5.5 was downloaded from haproxy.org and Traefik release 2.6.3 was downloaded from their official 

GitHub repository. NGINX and Envoy both provide their own Debian repositories which were added 

to the system’s package manager. NGINX 1.20.2 and Envoy 1.18.2 was then installed from their 



 

 16 

respective repositories. A systemd unit was manually created for HAProxy, Traefik and Envoy so that 

systemctl could be used for starting and stopping all load balancing software packages. The intention 

of this is to pass a parameter to JMeter which then starts the corresponding software by invoking 

systemctl over SSH. All load balancers were configured with a self-signed certificate for TLS offloading 

and to match the hostname lb.test with the three backend webservers using Round Robin. The exact 

configurations for all load balancers are included in Appendix A. 

5.1.3 Client Installation 

On the client VM, JMeter 5.4.3 binaries were downloaded from Apache’s official website and 

installed together with the Java package openjdk-8-jre offered from Debians’s repository. The hosts 

file was modified with an entry to ensure that the domain lb.test is associated with the load 

balancing server. A desktop environment and Firefox was also installed to verify that all load 

balancers are working as intended, including verifying that all backends are used by checking for a 

changing server name in the html, checking that the domain name is exclusively matched and that 

the certificate is loaded. 

5.1.4 Verifying Installations 

After preparing the servers and the client, tests from both load scenarios were executed to ensure 

the setup works as intended. During these tests RAM and CPU resources were monitored on all 

machines with the help of top to make sure that the web servers are configured with enough 

resources to not be a bottleneck. Port utilization were checked with netstat to verify that no port 

exhaustion occurs. Logs from the load balancers were also checked to make sure no errors were 

logged due to misconfiguration. 

5.2 Execution 

Considering best practiced from the test tool’s developer (Apache Software Foundation, 2022), a 

bash script was created for each load scenario to run JMeter in CLI mode. For each individual load 

scenario and user level the script invokes the following commands inside a loop repeating them 30 

times: 

jmeter -n -t 1.jmx -l ha-$thre-$(printf "%02d" $n).jtl -Jthreads=$thre -Jloops=$loop -Jslb=haproxy 
jmeter -n -t 1.jmx -l ng-$thre-$(printf "%02d" $n).jtl -Jthreads=$thre -Jloops=$loop -Jslb=nginx 
jmeter -n -t 1.jmx -l tr-$thre-$(printf "%02d" $n).jtl -Jthreads=$thre -Jloops=$loop -Jslb=traefik 
jmeter -n -t 1.jmx -l en-$thre-$(printf "%02d" $n).jtl -Jthreads=$thre -Jloops=$loop -Jslb=envoy 
jmeter -n -t 1-ref.jmx -l re-$thre-$(printf "%02d" $n).jtl -Jthreads=$thre -Jloops=$loop 
 
 

Variables are used for thread- and loop- counts as well as setting which load balancer to be started 
after snapshots have been restored in the setup thread group. Apart from running each test against 
the four load balancers, they are also executed against a single web server. To achieve this, a copy of 
the test plan was modified to make connections directly to a web server. These test cases will be 
executed both with and without TLS enabled on the web server. For both scenarios, the initial thread 
count is set to 1 and increased by a factor of √10 until the point where the load balancers could not 
successfully handle a substantial part of the requests, resulting in a considerable proportion of 
errors. The factor of √10 was chosen since it would yield a manageable amount of user levels. 
 
During the first scenario, no errors were seen for any of the load balancers until the user count 
reached 316 and at the next step, 1000 users, errors were seen from all load balancers and the 
experiment were stopped. The second scenario was also stopped after reaching 1000 users, at this 
level a substantial number of unsuccessful connections was seen from three of the load balancers.  



 

 17 

5.3 Data Validation 

To counteract some of the validity threats mentioned in section 4.2.4 each test case is repeated 30 

times. In this section each test case is individually statistically examined to test for normal 

distribution and evaluate dispersion of the measured data.  

Since each same exact test case is repeated, a normal distribution between the samples could give an 

indication of the data’s quality. Outliers potentially caused by validity threats, for example, reliability 

of measures or random irrelevancies in experimental setting would disturb the normal distribution of 

the samples. With 30 samples from each test, Shapiro-Wilk Test were chosen in order to test for 

normal distribution and the calculated P-value is presented for each test case. This value represents 

the likelihood of picking the tested samples from a truly normally distributed dataset and samples 

are generally considered normally distributed if it is above 0.05 (Rees, 2001). 

The mean, median, standard deviation, range, and coefficient of variation for each test case are also 

considered to further indicate the dispersion of the samples. The Coefficient of Variation (CV) is the 

ratio between the standard deviation and the mean (Wohlin et al., 2012) and could be useful for 

comparison between test cases. 

Tables showing the full details of these distribution statistics for both scenarios and all test cases are 

presented in Appendix B. 

5.3.1 Scenario 1 

Seven different user levels were tested in the first scenario, each for all four load balancers as well as 

a reference test against a single web server, resulting in 35 different test cases. Data from the 30 

repeated tests for each such case were parsed to calculate how many successful connections per 

second could be established and how many connections that were successful or unsuccessful. A 

script was created to parse the data efficiently and to ensure this was done correctly, samples from 

each test case were double checked by using JMeter’s built in report generator to generate the same 

data.  

For the five first user levels, ranging from 1 to 100 users, responses with HTTP response code 200 

were received after each request consistently amongst all load balancers. In all these cases data 

between samples were found to be normally distributed based on Shapiro-Wilk tests. CV-values 

ranging between 0.37% and 1.79% which indicates a low standard deviation in relation to variances 

between the load balancers. 

At the higher user levels, 316 and 1000, not all requests were successful. For these levels data is 

presented both for the amount of successful request per second and the number of errors.  

With 316 users, the samples of successful requests for all load balancers were found to be normally 

distributed and having CV-values from 1.35% to 2.09%. Considering results from HAProxy and Envoy 

where a part of the responses was erroneous, the standard deviation was higher with CV-values of 

191.88% and 25.23% respectively. The relatively high deviation and abnormal distribution concerning 

HAProxy could be explained by the fact that only a total of 35 errors was seen in all of 6 000 000 

requests that the 30 repetitions include. In most of the samples, 22 of 30, all connections were 

successful. 



 

 18 

At 1000 users the results between iterations of the same tests were generally less consistent than 

the previous user levels. The highest deviation for the rate of successful connections were seen with 

Traefik. In that test case the measured rate varied from 937 to 1773 resulting in a 20.39% CV. At this 

level Traefik also generated the most failed connections and this factor propagates to the measured 

rate of successful connections which may explain a higher variance. 

5.3.2 Scenario 2 

Just like in the first scenario, a script was made to parse data from 35 test cases, each conducted 30 
times. This time the average latency for responses with a 200-response code is calculated and the 
output also contains the number of responses with any other response code. To ensure that the 
script works as intended samples from each test case was compared to data from JMeters report 
generator to ensure consistency, just as in the first scenario. 
 
In this scenario each user makes in total 100 requests, meaning that there are fewer samples of 
requests in test cases with fewer users. The standard deviation was also generally higher with 1 user 
compared to 3 or 10 users. A similar trend can be seen after around 100 users when the deviation 
generally is increasing with more users. This can be seen in Figure 3 where cases with 10 and 316 
users are shown with error bars representing a 95% confidence level for mean. Despite this the 
highest CV seen in the tests up to 316 users, where all connections were successful, was 8.90%. 
Shapiro-Wilks test also generates a P-value over 0.05 for all test in the range from 1 to 316 users 
which means that the samples between iterations are considered normally distributed. 
 

 
Figure 3: Boxplot showing latencies for 10 users (left) and 316 users (right) 

 
Just as in the first scenario consistency is generally lower when a part of the connections fails, which 
started to happen with 1000 users. HAProxy was the only load balancer that did not generate any 
errors at this level. Still, measured response times for HAProxy varied between 5.37ms – 24.01ms 
which resulted in the highest CV (61.15%) amongst all load balancers in test case. This range is still 
relatively small considering the latency range for the closest performing load balancer was 51.64ms – 
90.20ms.   



 

 19 

6 Results 
This chapter is a part of the Analysis & Interpretation step in the method by Wohlin et al. (2012). 

Here, data collected during the experiment are presented and will from a base for conclusions 

presented in chapter 7. 

Considering the distribution of the data, Paired-Samples T tests were found appropriate to evaluate if 

the differences measured between the load balances are of significance. This test is suitable when 

comparing samples resulting from repeated measurements and the 0.05 level is commonly used 

(Wohlin et al., 2012). This means if the P-value is less than 0.05, there is also less than 5% risk that 

the data is considered significant even if it is not. In Appendix C, results from such T tests where all 

load balancers are paired against each other, including all 30 samples for each test case, are 

presented in tables. 

For both scenarios each measuring point presented below is taken from the average value amongst 

30 repeated test cases. The deviations between these cases are discussed in section 5.3 and tables 

including standard deviation values are included in Appendix B. 

The Reference value presented in each diagram is results from when no load balancing is used. 

Instead, connections were made directly to the same single web server using HTTPS with the 

certificate installed on the web server instead of on the load balancer.  



 

 20 

6.1 Scenario 1 

In this scenario the time taken to get responses on 200 000 requests were measured using different 

thread counts to represent different numbers of users.  

Figure 4 shows how many successful responses were returned by each load balancing software and 

by the standalone web server for reference. Any non 200 HTTP response code is not counted in this 

figure, even though such connections contribute to the time factor when calculating request per 

second. 

Figure 4: Successful request per second – Scenario 1 

The differences between HAProxy, Traefik and Envoy relatively small at certain user levels. However, 

when paired against each other, considering all 30 samples for each test case, data from Paired-

Samples T tests, found in Appendix C, shows that the differences are of statistical significance in all 

cases for this scenario.  

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 3 10 32 100 316 1000

Su
cc

es
sf

u
ll 

re
q

u
es

t/
s

Users

Scenario 1

HAProxy NGINX Traefik Envoy Reference



 

 21 

Results in Figure 4 show a clear decline of performance between the two highest user levels, 316 and 
1000. This coincides to some extent with the proportion of unsuccessful requests. Only for the first 
five user levels, ranging from 1 to 100, all requests consistently got successful responses.  
When looking at responses with a non 200 HTTP response code, it was found that all such responses 

were reported by JMeter as having a “Non HTTP response code” indicating that no correctly 

formatted HTTP response was received. At 316 users failed connections were seen from HAProxy and 

Envoy, data from this user level is presented in Figure 5. In the final test case with 1000 users, failed 

connections were seen from all of the load balancers. These data are presented in Figure 6. 

 

 
Figure 5: Mean failed connections ratio – Scenario 1 – 316 users 

 

 
Figure 6: Mean failed connections ratio – Scenario 1 – 1000 users 

 

  

HAProxy NGINX Traefik Envoy Reference

Successful 200000 200000 200000 199606 200000

Failed 1,17 0 0 394,30 0

0

50000

100000

150000

200000

316 users

Failed Successful

HAProxy NGINX Traefik Envoy Reference

Successful 199998 199093 60785 137192 200000

Failed 1,80 907,07 139215,30 62807,73 0

0

50000

100000

150000

200000

1000 users

Failed Successful



 

 22 

6.2 Scenario 2 

In this scenario each user requested 5 images at a time. This is done in random order 20 times with a 

delay in between. During these 20 “clicks” the average response time is measured and data is 

presented at 7 different user levels ranging from 1 to 1000. 

Figure 7 shows the average response time for all requests at the first 6 user levels. At all these user 

levels all requests consistently got a response with a 200 HTTP response code. Thus, data from all 

requests are included. 

 

Figure 7: Mean response latency – Scenario 2 

Just like in the first scenario differences, especially between Traefik and Envoy, are relatively small at 
certain user levels. Paired T tests shows that the differences at the levels with 10 and 100 users are 
small enough to be of statistical significance.  

0

0,5

1

1,5

2

2,5

3

3,5

1 3 10 32 100 316

M
ea

n
 la

te
n

cy
 (

m
s)

Users

Scenario 2

HAProxy NGINX Traefik Envoy Reference



 

 23 

With 1000 simultaneous users, failed requests are seen from all load balancers except HAProxy. Just 

as in the first scenario, JMeter reported a “Non HTTP response code” for all responses that were not 

OK. Statistics showing the ratio between failed and successful responses are presented in Figure 8. 

Due to a substantial part of failed connections and response times several orders of a magnitude 

higher compared to the previous 316 user level, data for the last user level is presented in a separate 

Figure 9. 

  
Figure 8: Mean failed connections ratio – Scenario 2 – 1000 users 

 

 
Figure 9: Mean response latency for successful requests – Scenario 2 – 1000 users  

 

 

  

HAProxy NGINX Traefik Envoy Reference

Successful 100000 75832 86536 45975 99792

Failed 0 24168 13464 54025 208

0

25000

50000

75000

100000

Failed Successful

HAProxy NGINX Traefik Envoy Reference

lat. (ms) 9,78 70,02 262,87 647,85 610,78

0

100

200

300

400

500

600

700



 

 24 

7 Conclusions 
This study has identified a problem that there is a lack of guidance from previous research regarding 

how the emerging load balancers Traefik and Envoy perform in relation to the more well-known 

alternatives HAProxy and NGINX. This led to the research question this study aims to answer: 

“How does emerging and the most popular open-source HTTP load balancers compare in 

terms of performance under Linux using the Round-Robin algorithm and TLS-

termination” 

To answer this question an experiment was developed to test the performance with a varying 

number of users in two different scenarios. Taking the consistency between multiple iterations and 

results presented in chapter 6 in to account, both load scenarios of the experiment could reveal clear 

performance differences between the load balancers. Based on these results conclusions can be 

drawn to answer the research question.  

First of all, it can be concluded that the results of this study to a large extent coincides with results 

from by the experiment by Pramono et al. (2018) when HAProxy and NGINX is compared. In their 

benchmark where 500 users were simulated, they found that HAProxy could handle 19% more 

requests per second. In this study similar variables were measured in the first scenario with the 

number of users ranging from 1 – 1000. It was found that HAProxy performed 37% better with 316 

users and 34% better with 1000 users. Even higher differences seen at some of the other user levels, 

the highest being with 10 users where HAProxy performed 66% better. Results from Pramono et al. 

(2018) also showed that NGINX had over 400% longer response times at 101.89ms compared to 

HAProxy’s 19.45ms in their click test where 500 users were simulated. This study tested similar 

variables in the second scenario. Considering the user levels next to 500 that were tested in this 

experiment, response times for NGINX were measured to be 73% longer with 316 users and 616% 

longer with 1000 users. 

It can also be concluded that in both scenarios HAProxy generally performed the best having better 

performance than the other load balancers in most test cases. With the same reasoning, NGINX 

generally performed the worst in both scenarios having the lowest performance in most test cases. 

This leaves Traefik and Envoy’s with request throughput and latencies generally somewhere in 

between HAProxy and NGINX.  

As long as all connections could be handled successfully, Traefik and Envoy performed very similarly 

and for the most part not far from HAProxy. Still, Paired T tests show that there measured 

differences, with the exceptions of Traefik and Envoy at the levels with 10 and 100 users, are of 

statistical significance. During the first scenario, Envoy performed marginally better than Traefik and 

even outperformed HAProxy with 316 users. However, they both stood out in at the level with 1000 

users having significantly more errors and less throughput than both HAProxy and NGINX. A similar 

pattern was seen in the second scenario where no considerable differences could be seen between 

Traefik and Envoy until the level with 1000 users. This time Envoy produced more errors and also had 

a larger performance decline than Traefik. 

  



 

 25 

Assuming all test cases are equally important, the average performance difference from both 

scenarios can be calculated and this data is presented in Appendix D. The data shows that Traefik 

performed 13.2% better, Envoy 13.8% better and HAProxy 77.2% better compared to NGINX. 

However, in both load scenarios less consistency and a high proportion of unsuccessful were seen in 

the tests with 1000 users leading to differences orders of a magnitude higher than at the other user 

levels largely impacting the average. When calculating the same average performance differences 

excluding tests with 1000 users from both scenarios excluded, Traefik performed 24.1% better, 

Envoy 26.9% better and HAProxy 36.0% better than NGINX.  



 

 26 

8 Discussion 
Using an experimental method, this study has been able to compare performance factors of four 

load balancers. By conducting an experiment in a controlled lab environment, the load balancers 

could be tested and compared on equal terms. The virtual environment could provide high speed 

networking between VMs and contribute to the consistency of results between repeated tests by 

making it possible to manipulate machine states. The results also show that the reference 

measurements, were load was applied to a standalone web server, yielded the best performance in 

all cases except at the highest user levels in scenario 2. This shows that even though the load in that 

case was not distributed amongst two other servers, the backend servers, as intended, had enough 

capacity to not become a bottleneck in these cases. While factors of the hypervisor based virtual 

environment could minimalize validity threats regarding statistical power and reliability of measures, 

one shortcoming of this study is that there is an uncertainty of how the results can be generalized to 

other environments. 

Even though validity threats regarding Interaction of setting and treatment were considered, a few 

aspects of this threat remain. First, even though more than one load scenario was tested, it can 

always be argued that users simulated in a lab environment never truly can represent real users. 

Another aspect of this is the configuration of the load balancers where this study was limited to 

default parameters. Solving these limitations would be a complex task that would require more 

resources and further studying. 

Ethical aspects are important to consider in any experiment including human subjects (Wohlin et al., 

2012). In this study the subjects are software on a computer system. However, it could be argued 

that stakeholders, developers or other passive participants involved the various software indirectly 

could be affected by the outcome of the study. Still, it is believed to be unlikely that any part of these 

open-source projects would be negatively impacted from this study but the importance of clarity, 

truth and other research ethics factors are still emphasized. From a societal perspective, this study 

can facilitate the work for people involved with web server operations but also improve the quality 

of services that are offered on the internet and used by a wider audience. This can be linked to goal 

9.c in the United Nations (UN) goals for sustainable development aiming to “Significantly increase 

access to information and communications technology…” (United Nations, 2022a). A software 

product performing better provided the same resources could also be considered more resource 

efficient which is important for achieving another of the UN goals for sustainable development, goal 

12.a, which aims to “Support developing countries to strengthen their scientific and technological 

capacity to move towards more sustainable patterns of consumption and production” (United 

Nations, 2022b).  



 

 27 

9 Future work 
This study has been focused on the performance of four load balancer software products in a specific 

environment and with specific load cases taking several limitations into account. Given more 

resources, it would be interesting to look into other aspects of performance. It would for example 

especially interesting to further compare how performance is affected if the HTTP/2 standard is 

implemented since it is expected to improve performance. Future studies could also go into more 

depth of what is causing the performance differences and how results are affected when a platform 

other than ESXi is used. In this experiment, a single web site was load balanced by matching the 

domain name in the HTTP header using otherwise default configurations. There is an opportunity to 

expand this type of study with other inspection methods and different configuration parameters, one 

example of this is that in the experiments by Pramono et al. (2018) NGINX performed better after the 

Keep-Alive option was enabled. 

Some of the other limitations in this study could also be expanded upon in future work. It would be 

interesting to include more load balancing products, for example closed source products like 

Microsoft’s Application Request Routing or other emerging software. There are also factors, other 

than performance, to consider when choosing load balancing software which this study did not 

consider. For example, studying how the load balancers differ in terms of features or ease of use 

would provide even more guidance in the choice of load balancer.  



 

 28 

References 

Abbas, R., Sultan, Z., & Bhatti, S. (2017). Comparative analysis of automated load testing tools: 
Apache JMeter, Microsoft Visual Studio (TFS), LoadRunner, Siege. 2017 International 
Conference On Communication Technologies (Comtech). 
https://doi.org/10.1109/comtech.2017.8065747 

Apache Software Foundation. (2022). Apache JMeter - User's Manual: Best Practices. Retrieved 14 
April 2022, from https://jmeter.apache.org/usermanual/best-practices.html 

Arapakis, I., Park, S., & Pielot, M. (2021). Impact of Response Latency on User Behaviour in Mobile 
Web Search. Proceedings Of The 2021 Conference On Human Information Interaction And 
Retrieval. https://doi.org/10.1145/3406522.3446038 

Bai, X., Arapakis, I., Cambazoglu, B., & Freire, A. (2017). Understanding and Leveraging the Impact of 
Response Latency on User Behaviour in Web Search. ACM Transactions On Information 
Systems, 36(2), 1-42. https://doi.org/10.1145/3106372 

Bakhshayeshi, R., Akbari, M., & Javan, M. (2014). Performance analysis of virtualized environments 
using HPC Challenge benchmark suite and Analytic Hierarchy Process. 2014 Iranian Conference 
On Intelligent Systems (ICIS). https://doi.org/10.1109/iraniancis.2014.6802585 

Barreda-Ángeles, M., Arapakis, I., Bai, X., Cambazoglu, B., & Pereda-Baños, A. (2015). Unconscious 
Physiological Effects of Search Latency on Users and Their Click Behaviour. Proceedings Of The 
38Th International ACM SIGIR Conference On Research And Development In Information 
Retrieval. https://doi.org/10.1145/2766462.2767719 

Berndtsson, M., Hansson, J., Olsson, B., & Lundell, B. (2008). Thesis Projects (2nd ed.). London: 
Springer London. ISBN: 978-1-84800-008-7 

de la Cruz, J., & Goyzueta, I. (2017). Design of a high availability system with HAProxy and domain 
name service for web services. 2017 IEEE XXIV International Conference On Electronics, 
Electrical Engineering And Computing (INTERCON). 
https://doi.org/10.1109/intercon.2017.8079712 

Deepa, T., & Cheelu, D. (2017). A comparative study of static and dynamic load balancing algorithms 
in cloud computing. 2017 International Conference On Energy, Communication, Data Analytics 
And Soft Computing (ICECDS). https://doi.org/10.1109/icecds.2017.8390086 

Envoy. (2022). Envoy documentation. Retrieved 3 June 2022, from 
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/http/http_connection_m
anagement.html?highlight=http%202 

HAProxy Technologies. (2022) HAProxy Enterprise. Retrieved 11 March 2022, from 
https://www.haproxy.com/products/community-vs-enterprise-edition/ 

HAProxy.org. (2022). HAProxy docs – Starter guide (Release 2.5.7). Retrieved 3 June 2022, from 
https://docs.haproxy.org/2.5/intro.html 

Ibrahim, I., Ameen, S., Yasin, H., Omar, N., Kak, S., & Rashid, Z. et al. (2021). Web Server Performance 
Improvement Using Dynamic Load Balancing Techniques: A Review. Asian Journal Of Research 
In Computer Science, 47-62. https://doi.org/10.9734/ajrcos/2021/v10i130234 

Internet Systems Consortium. (2022). BIND 9 Administrator Reference 
Manual (Release 9.18.0). Retrieved 8 March 2022, from 
https://downloads.isc.org/isc/bind9/9.18.0/doc/arm/Bv9ARM.pdf 

Konidis, E., Kokkinos, P., & Varvarigos, E. (2016). Evaluating Traffic Redirection Mechanisms for High 
Availability Servers. 2016 IEEE Globecom Workshops (GC Wkshps). 
https://doi.org/10.1109/glocomw.2016.7848898 

https://doi.org/10.1109/glocomw.2016.7848898
https://downloads.isc.org/isc/bind9/9.18.0/doc/arm/Bv9ARM.pdf
https://doi.org/10.9734/ajrcos/2021/v10i130234
https://docs.haproxy.org/2.5/intro.html
https://www.haproxy.com/products/community-vs-enterprise-edition/
https://doi.org/10.1109/icecds.2017.8390086
https://doi.org/10.1109/intercon.2017.8079712
https://doi.org/10.1145/2766462.2767719
https://doi.org/10.1109/iraniancis.2014.6802585
https://doi.org/10.1145/3106372
https://doi.org/10.1145/3406522.3446038
https://doi.org/10.1109/comtech.2017.8065747


 

 29 

Mbarek, F., & Mosorov, V. (2018). Load balancing algorithms in heterogeneous web cluster. 2018 
International Interdisciplinary Phd Workshop (Iiphdw). 
https://doi.org/10.1109/iiphdw.2018.8388358 

Membrey, P., Hows, D., & Plugge, E. (2012). Practical Load Balancing. New York: Apress. 
https://doi.org/10.1007/978-1-4302-3681-8 

Miller, R. (2020, 23 September). Five years after creating Traefik application proxy, open-source 
project hits 2B downloads. Techcrunch. Retrieved 15 March 2022, from 
https://techcrunch.com/2020/09/23/five-years-after-creating-traefik-application-proxy-open-
source-project-hits-2b-downloads 

Moharir, M., Shobha, G., Oppiliappan, A., Krishna GVL, R., Pandit, S., Akash, R., & Saxena, M. (2020). 
A Study and Comparison of Various Types of Load Balancers. 2020 5Th IEEE International 
Conference On Recent Advances And Innovations In Engineering (ICRAIE). 
https://doi.org/10.1109/icraie51050.2020.9358333 

Mozilla. (2022). Firefox Telemetry - Let's Encrypt Stats. Letsencrypt.org. Retrieved 11 March 2022, 
from https://letsencrypt.org/stats/#percent-pageloads. 

Nemeth, E., Snyder, G., Hein, T., Whaley, B., & Mackin, D. (2017). UNIX and Linux system 
administration handbook (5th ed.). Boston: Addison-Wesley. 

Netcraft (2022, 28 February) February 2022 Web Server Survey. Retrieved 11 March 2022, from 
https://news.netcraft.com/archives/category/web-server-survey/ 

Pramono, L., Buwono, R., & Waskito, Y. (2018). Round-robin Algorithm in HAProxy and Nginx Load 
Balancing Performance Evaluation: a Review. 2018 International Seminar On Research Of 
Information Technology And Intelligent Systems (ISRITI). 
https://doi.org/10.1109/isriti.2018.8864455 

Prasetijo, A., Widianto, E., & Hidayatullah, E. (2016). Performance comparisons of web server load 
balancing algorithms on HAProxy and Heartbeat. 2016 3Rd International Conference On 
Information Technology, Computer, And Electrical Engineering (ICITACEE). 
https://doi.org/10.1109/icitacee.2016.7892478 

Rees, D. (2001). Essential statistics (4th ed.). New York: Chapman and Hall/CRC. 
https://doi.org/10.1201/9781315273174 

Shah, A., Piro, G., Grieco, L., & Boggia, G. (2019). A Qualitative Cross-Comparison of Emerging 
Technologies for Software-Defined Systems. 2019 Sixth International Conference On Software 
Defined Systems (SDS). https://doi.org/10.1109/sds.2019.8768566 

Sharma, R., & Mathur, A. (2021). Traefik API Gateway for microservices. Berkeley: Apress. 
https://doi.org/10.1007/978-1-4842-6376-1_6 

Singh, S., & Singh, N. (2016). Containers & Docker: Emerging roles & future of Cloud technology. 2016 
2Nd International Conference On Applied And Theoretical Computing And Communication 
Technology (Icatcct). https://doi.org/10.1109/icatcct.2016.7912109 

United Nations. (2022a). Sustainable Development Goal 9. Department of Economic and Social 
Affairs. https://sdgs.un.org/goals/goal9 

United Nations. (2022b). Sustainable Development Goal 12. Department of Economic and Social 
Affairs. https://sdgs.un.org/goals/goal12 

Watada, J., Roy, A., Kadikar, R., Pham, H., & Xu, B. (2019). Emerging Trends, Techniques and Open 
Issues of Containerization: A Review. IEEE Access, 7, 152443-152472. 
https://doi.org/10.1109/access.2019.2945930 

https://doi.org/10.1109/access.2019.2945930
https://sdgs.un.org/goals/goal12
https://sdgs.un.org/goals/goal9
https://doi.org/10.1109/icatcct.2016.7912109
https://doi.org/10.1007/978-1-4842-6376-1_6
https://doi.org/10.1109/sds.2019.8768566
https://doi.org/10.1201/9781315273174
https://doi.org/10.1109/icitacee.2016.7892478
https://doi.org/10.1109/isriti.2018.8864455
https://news.netcraft.com/archives/category/web-server-survey/
https://letsencrypt.org/stats/%23percent-pageloads
https://doi.org/10.1109/icraie51050.2020.9358333
https://techcrunch.com/2020/09/23/five-years-after-creating-traefik-application-proxy-open-source-project-hits-2b-downloads
https://techcrunch.com/2020/09/23/five-years-after-creating-traefik-application-proxy-open-source-project-hits-2b-downloads
https://doi.org/10.1007/978-1-4302-3681-8
https://doi.org/10.1109/iiphdw.2018.8388358


 

 30 

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation 
in Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-642-29044-2 

Woods, N. (2017, 13 September). CNCF hosts Envoy. CNCF Blog. Retrieved 15 March 2022, from 
https://www.cncf.io/blog/2017/09/13/cncf-hosts-envoy 

Zebari, R., Zeebaree, S., Sallow, A., Shukur, H., Ahmad, O., & Jacksi, K. (2020). Distributed Denial of 
Service Attack Mitigation using High Availability Proxy and Network Load Balancing. 2020 
International Conference On Advanced Science And Engineering (ICOASE). 
https://doi.org/10.1109/icoase51841.2020.9436545

https://doi.org/10.1109/icoase51841.2020.9436545
https://www.cncf.io/blog/2017/09/13/cncf-hosts-envoy
https://doi.org/10.1007/978-3-642-29044-2


A1 
 

Appendix A – Configuration files 

HAProxy 

defaults 

  timeout connect 5s 

  timeout server 50s 

  timeout client 50s 

 

frontend ex 

  mode http 

  bind :443 ssl crt /etc/haproxy/cert/ex.pem 

  acl test hdr(host) -i lb.test 

  use_backend webservers if test 

 

backend webservers 

  mode http 

  balance roundrobin 

  server s1 192.168.1.1:80 check 

  server s2 192.168.1.2:80 check 

  server s3 192.168.1.3:80 check 

haproxy.conf 
 

NGINX 

server  { 

        listen 443 default_server; 

        server_name _; 

        ssl_certificate /etc/nginx/cert/ex.crt; 

        ssl_certificate_key /etc/nginx/cert/ex.key; 

        location / { 

                return 403; 

                } 

        } 

 

server { 

        listen 443 ssl; 

        server_name lb.test; 

        ssl_certificate /etc/nginx/cert/ex.crt; 

        ssl_certificate_key /etc/nginx/cert/ex.key; 

        location / { 

                proxy_pass http://servers; 

                } 

        } 

 

upstream servers { 

        server 192.168.1.1:80; 

        server 192.168.1.2:80; 

        server 192.168.1.3:80; 

        } 

 

 

 



 

 A2 

Traefik 

entryPoints: 

  secure: 

    address: :443 

providers: 

  file: 

    filename: /etc/traefik/fileprovider.yml 

    watch: true 

traefik.yml 

 

tls: 

  stores: 

    default: 

      defaultCertificate: 

        certFile: /etc/traefik/cert/ex.crt 

        keyFile: /etc/traefik/cert/ex.key 

http: 

  routers: 

    to-webservers: 

      rule: "Host(`lb.test`)" 

      tls: true 

      service: webservers 

  services: 

    webservers: 

      loadBalancer: 

        servers: 

          - url: http://192.168.1.1:80 

          - url: http://192.168.1.2:80 

          - url: http://192.168.1.3:80 

fileprovider.yml 

 

  



 

 A3 

Envoy 

static_resources: 

  listeners: 

  - name: listener_0 

    address: 

      socket_address: { address: 0.0.0.0, port_value: 443 } 

    filter_chains: 

    - filters: 

      - name: envoy.filters.network.http_connection_manager 

        typed_config: 

          "@type": type.googleapis.com/envoy.extensions.filters.network. 

http_connection_manager.v3.HttpConnectionManager 

          stat_prefix: ex-http 

          route_config: 

            name: local_route 

            virtual_hosts: 

            - name: local_service 

              domains: ["lb.test"] 

              routes: 

              - match: { prefix: "/" } 

                route: { cluster: webservers } 

          http_filters: 

          - name: envoy.filters.http.router 

      transport_socket: 

        name: envoy.transport_sockets.tls 

        typed_config: 

          "@type": 

type.googleapis.com/envoy.extensions.transport_sockets.tls.v3. 

DownstreamTlsContext 

          common_tls_context: 

            tls_certificates: 

            - certificate_chain: {filename: "/etc/envoy/cert/ex.crt"} 

              private_key: {filename: "/etc/envoy/cert/ex.key"} 

  clusters: 

  - name: webservers 

    connect_timeout: 5s 

    type: STATIC 

    lb_policy: ROUND_ROBIN 

    load_assignment: 

      cluster_name: webservers 

      endpoints: 

      - lb_endpoints: 

        - endpoint: 

            address: 

              socket_address: 

                address: 192.168.1.1 

                port_value: 80 

        - endpoint: 

            address: 

              socket_address: 

                address: 192.168.1.2 

                port_value: 80 

        - endpoint: 

            address: 

              socket_address: 

                address: 192.168.1.3 

                port_value: 80 

 

envoy.yaml



B1 
 

Appendix B – Distribution statistics 

1  Scenario 1 

   

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.897 0.057 0.067 0.135 0.597 0.293 

Mean 1060.07 783.37 935.40 922.33 1796.97 1526.57 

Median 1061.00 784.50 937.00 922.50 1798.50 1527.00 

Std. Deviation 5.41 6.52 7.29 3.97 11.13 8.12 

Minimum 1049 769 919 915 1776 1510 

Maximum 1071 793 947 929 1821 1543 

CV (%) 0.51 0.83 0.78 0.43 0.62 0.53 

Table A1: Successful requests per second – 1 user 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.543 0.243 0.331 0.421 0.785 0.307 

Mean 1929.20 1351.67 1705.07 1761.57 3426.23 2910.90 

Median 1927.50 1351.00 1706.50 1764.00 3427.50 2912.00 

Std. Deviation 11.16 5.76 10.62 20.24 18.03 13.45 

Minimum 1906 1338 1687 1723 3382 2889 

Maximum 1952 1362 1730 1799 3458 2944 

CV (%) 0.58 0.43 0.62 1.15 0.53 0.46 

Table A2: Successful requests per second – 3 users 

  



 

 B2 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.122 0.239 0.089 0.098 0.929 0.472 

Mean 2717.47 1638.93 2210.83 2349.40 4690.27 3924.47 

Median 2720.00 1638.00 2213.00 2353.00 4688.50 3924 

Std. Deviation 14.64 6.07 17.53 17.29 27.19 29.45 

Minimum 2691 1625 2167 2307 4636 3869 

Maximum 2741 1653 2234 2377 4762 3979 

CV (%) 0.54 0.37 0.79 0.74 0.58 0.75 

Table A3: Successful requests per second – 10 users 
 
 
 

   

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.766 0.657 0.493 0.760 0.103 0.937 

Mean 3040.10 1964.47 2711.53 2775.60 5046.57 4237.17 

Median 3041.50 1965.00 2709.50 2775.50 5054.00 4240.00 

Std. Deviation 37.24 11.00 15.00 13.63 33.78 29.16 

Minimum 2963 1942 2682 2748 4960 4174 

Maximum 3111 1990 2737 2800 5100 4301 

CV (%) 1.22 0.56 0.55 0.49 0.67 0.69 

Table A4: Successful requests per second – 32 users 

   

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.188 0.504 0.864 0.301 0.265 0.228 

Mean 2907.63 2059.17 2755.63 2859.87 5019.27 4207.23 

Median 2910.50 2059.50 2754.00 2858.50 5031.00 4206.50 

Std. Deviation 52.10 20.05 30.43 35.09 51.57 38.44 

Minimum 2788 2010 2688 2787 4908 4140 

Maximum 3005 2100 2809 2919 5101 4292 

CV (%) 1.79 0.97 1.10 1.23 1.03 0.91 

Table A5: Successful requests per second – 100 users 

 



 

 B3 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.873 0.156 0.781 0.909 0.414 0.435 

Mean 2695.73 1971.40 2572.00 2722.00 4985.97 4012.40 

Median 2695.00 1976.00 2571.50 2721.00 4989.00 4005.00 

Std. Deviation 45.96 41.24 34.71 44.12 44.31 54.97 

Minimum 2585 1845 2510 2624 4914 3915 

Maximum 2786 2061 2645 2808 5069 4116 

CV (%) 1.70 2.09 1.35 1.62 0.89 1.37 

Table A6: Successful requests per second – 316 users 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.000 . . 0.167 0 0 

Mean 1.17 0.00 0.00 394.3 . . 

Median 0.00 0.00 0.00 371.5 0.00 0.00 

Std. Deviation 2.25 0.00 0.00 99.49 0.00 0.00 

Minimum 0 0 0 216 0 0 

Maximum 7 0 0 611 0 0 

CV (%) 191.88 . . 25.23 0 0 

Table A7: Unsuccessful requests – 316 users 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.003 0.051 0.006 0.556 0.502 0.995 

Mean 2491.07 1862.60 1284.87 1114.23 4818.20 3550.53 

Median 2503.50 1871.50 1227.50 1110.00 4820.00 3554 

Std. Deviation 93.81 70.47 261.95 79.61 25.95 85.22 

Minimum 2188 1686 937 969 4774 3359 

Maximum 2603 1992 1733 1328 4874 3728 

CV (%) 3.77 3.78 20.39 7.14 0.54 2.40 
Table A8: Successful requests per second – 1000 users 

  



 

 B4 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.000 0.249 0.002 0.596 . . 

Mean 1.80 907.07 139215.30 62807.73 0.00 0.00 

Median 0.00 909.50 148731.50 62318.00 0.00 0.00 

Std. Deviation 5.26 290.22 24629.73 5244.00 0.00 0.00 

Minimum 0 429 85704 53706 0 0 

Maximum 25 1402 164621 72677 0 0 

CV (%) 291.94 32.00 17.69 8.35 . . 

Table A9: Unsuccessful requests – 1000 users 

  



 

 B5 

2  Scenario 2 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.694 0.484 0.417 0.373 0.348 0.296 

Mean 1.68 1.74 1.77 1.72 0.48 1.04 

Median 1.68 1.74 1.77 1.72 0.49 1.05 

Std. Deviation 0.04 0.04 0.04 0.02 0.02 0.02 

Minimum 1.61 1.67 1.69 1.67 0.43 1.01 

Maximum 1.76 1.81 1.83 1.77 0.52 1.09 

CV (%) 2.22 2.25 2.02 1.42 4.35 1.64 
Table A10: Mean latency (ms) – 1 user 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.061 0.122 0.254 0.328 0.075 0.250 

Mean 1.68 1.85 1.74 1.72 0.61 1.08 

Median 1.68 1.86 1.75 1.72 0.61 1.09 

Std. Deviation 0.02 0.02 0.02 0.03 0.02 0.04 

Minimum 1.65 1.81 1.70 1.67 0.57 1.02 

Maximum 1.73 1.89 1.79 1.80 0.65 1.14 

CV (%) 1.41 1.08 1.40 1.93 2.62 3.24 

Table A11: Mean latency (ms) – 3 users 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.300 0.127 0.070 0.132 0.093 0.094 

Mean 1.69 1.98 1.79 1.78 0.67 1.15 

Median 1.69 1.98 1.79 1.78 0.67 1.15 

Std. Deviation 0.03 0.04 0.03 0.03 0.01 0.02 

Minimum 1.63 1.89 1.74 1.73 0.64 1.10 

Maximum 1.73 2.05 1.84 1.83 0.70 1.21 

CV (%) 1.48 2.01 1.74 1.44 2.36 1.88 

Table A12: Mean latency (ms) – 10 users 

  



 

 B6 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.190 0.079 0.087 0.112 0.178 0.181 

Mean 1.70 2.00 1.81 1.82 0.67 1.16 

Median 1.70 2.04 1.81 1.82 0.67 1.16 

Std. Deviation 0.02 0.02 0.01 0.02 0.01 0.03 

Minimum 1.67 2.00 1.78 1.79 0.64 1.11 

Maximum 1.73 2.06 1.84 1.85 0.70 1.24 

CV (%) 0.91 0.84 0.81 0.87 2.04 2.93 

Table A13: Mean latency (ms) – 32 users 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.057 0.421 0.194 0.103 0.064 0.649 

Mean 1.71 2.26 1.85 1.84 0.71 1.23 

Median 1.71 2.25 1.85 1.84 0.71 1.23 

Std. Deviation 0.02 0.03 0.03 0.03 0.01 0.03 

Minimum 1.67 2.20 1.80 1.79 0.69 1.18 

Maximum 1.74 2.32 1.89 1.89 0.74 1.29 

CV (%) 1.14 1.41 1.46 1.61 1.63 2.18 

Table A14: Mean latency (ms) – 100 users 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.772 0.262 0.556 0.054 0.396 0.200 

Mean 1.84 3.17 2.02 1.99 1.38 3.22 

Median 1.84 3.15 2.03 1.96 1.37 3.21 

Std. Deviation 0.04 0.16 0.03 0.05 0.12 0.08 

Minimum 1.76 2.90 1.95 1.91 1.17 3.08 

Maximum 1.93 3.51 2.08 2.09 1.60 3.43 

CV (%) 1.90 5.02 1.73 2.49 8.90 2.44 
Table A15: Mean latency (ms) – 316 users 

  



 

 B7 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) 0.000 0.762 0.320 0.438 0.635 0.175 

Mean 9.78 70.02 262.87 647.85 610.78 695.41 

Median 6.34 70.89 259.1 653.34 610.73 695.20 

Std. Deviation 5.98 9.99 40.01 34.15 1.13 5.34 

Minimum 5.37 51.64 192.89 590.35 608.31 684.86 

Maximum 24.01 90.20 336.73 712.58 613.25 708.99 

CV (%) 61.15 14.26 15.22 5.27 0.18 0.77 

Table A16: Mean latency (ms) – 1000 users 

 

 HAProxy NGINX Traefik Envoy 

Reference 

(HTTP) 

Reference 

(HTTPS) 

N Valid 30 30 30 30 30 30 

Missing 0 0 0 0 0 0 

P (Shapiro-Wilk) . 0.426 0.103 0.190 0.266 0.837 

Mean 0 24168.43 13464.00 54024.53 207.57 378.13 

Median 0 24176 13335 53773 212 377 

Std. Deviation 0 108.64 2362.25 2131.43 37.27 13.92 

Minimum 0 23999 9581 49667 103 347 

Maximum 0 24384 17382 60420 275 403 

CV (%) . 0.45 17.54 3.95 17.95 3.68 

Table A17: Unsuccessful requests – 1000 users 
 
 
 
 
 

 

 

 

 

 

 



C1 

Appendix C – Paired-Samples T Tests 

 

Pair/No. of users 1 3 10 32 100 316 1000 

HAProxy - NGINX 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

HAProxy - Traefik 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

HAProxy - Envoy 0.000 0.000 0.000 0.000 0.000 0.028 0.000 

NGINX - Traefik 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NGINX - Envoy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Traefik - Envoy 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

Table D1: Scenario 1, successful requests, 2-tailed significance values (P) 

 

Pair/No. of users 1 3 10 32 100 316 1000 

HAProxy - NGINX 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

HAProxy - Traefik 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

HAProxy - Envoy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NGINX - Traefik 0.003 0.000 0.000 0.000 0.000 0.000 0.000 

NGINX - Envoy 0.049 0.000 0.000 0.000 0.000 0.000 0.000 

Traefik - Envoy 0.000 0.002 0.148 0.047 0.563 0.007 0.000 

Table D2: Scenario 2, successful requests, 2-tailed significance values (P)



D1 

Appendix D – Mean data points 

 

 
1 3 10 32 100 316 1000 

NGINX 783 1352 1639 1964 2059 1971 1863 

HAProxy 1060 1929 2717 3040 2908 2696 2491 

Traefik 935 1705 2211 2712 2756 2572 1285 

Envoy 922 1762 2349 2776 2860 2722 1114 

Reference 1527 2911 3924 4237 4207 4012 3551 

Table C1: Scenario 1, Mean requests per second 1 – 1000 users 

 
 

1 3 10 32 100 316 1000 

NGINX 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

HAProxy 135.32 142.73 165.81 154.75 141.20 136.74 133.74 

Traefik 119.41 126.15 134.89 138.03 133.82 130.47 68.98 

Envoy 117.74 130.33 143.35 141.29 138.88 138.07 59.82 

Reference 194.87 215.36 239.45 215.69 204.32 203.53 190.62 

Table C2: Scenario 1, Mean requests per second in relation to NGINX 

 
 

1 3 10 32 100 316 1000 

NGINX 1.74 1.85 1.98 2.03 2.26 3.17 70.02 

HAProxy 1.68 1.68 1.69 1.70 1.71 1.84 9.78 

Traefik 1.77 1.74 1.79 1.81 1.85 2.02 262.87 

Envoy 1.72 1.72 1.78 1.82 1.84 1.99 647.85 

Reference 1.04 1.08 1.15 1.16 1.23 3.22 695.41 

Table C3: Scenario 2, Mean latencies 1 – 1000 users 

 
 

1 3 10 32 100 316 1000 

NGINX 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

HAProxy 103.39 109.97 117.39 119.69 131.95 172.61 715.73 

Traefik 100.95 107.37 111.23 111.82 122.63 159.32 10.81 

Envoy 100.95 107.37 111.23 111.82 122.63 159.32 10.81 

Reference 166.29 170.97 172.35 175.47 183.60 98.48 10.07 

Table C4: Scenario 2, Mean latencies in relation to NGINX 

 

 1 – 1000 users 1 – 316 users 

NGINX 100.00 100.00 

HAProxy 177.22 135.96 

Traefik 112.56 124.67 

Envoy 113.83 126.92 

Reference 174.36 186.70 

Table C5: Mean values in relation to NGINX both scenarios 


	1 Introduction
	2 Background
	2.1 Load Balancing Concept
	2.2 Load Balancing Methods and Algorithms
	2.3 Software Load Balancers
	2.3.1 Previous Studies


	3 Problem Description
	3.1 Motivation
	3.2 Research Question
	3.3 Limitations
	3.4 Objectives

	4 Methodology
	4.1 Scoping
	4.2 Planning
	4.2.1 Variables
	4.2.1.1  Independent Variables
	4.2.1.2  Dependent Variables

	4.2.2 Instrumentation
	4.2.3 Experiment Design
	4.2.4 Validity Threats
	4.2.4.1  Conclusion Validity
	4.2.4.2  Internal Validity
	4.2.4.3  Construct Validity
	4.2.4.4  External Validity



	5 Experiment Operation
	5.1 Preparation
	5.1.1 Web Server Installation
	5.1.2 Load Balancer Installation
	5.1.3 Client Installation
	5.1.4 Verifying Installations

	5.2 Execution
	5.3 Data Validation
	5.3.1 Scenario 1
	5.3.2 Scenario 2


	6 Results
	6.1 Scenario 1
	6.2 Scenario 2

	7 Conclusions
	8 Discussion
	9 Future work
	Appendix A – Configuration files
	HAProxy
	NGINX
	Traefik
	Envoy

	Appendix B – Distribution statistics
	1  Scenario 1
	2  Scenario 2

	Appendix C – Paired-Samples T Tests
	Appendix D – Mean data points

