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Abstract

Wheel loaders are heavy duty machines that are ubiquitous on construction sites and
in mines all over the world. Fully autonomous wheel loaders remains an open problem
but the industry is hoping that increasing their level of autonomy will help to reduce costs
and energy consumption while also increasing workplace safety. Operating a wheel loader
e�ciently requires dig plans that extend over multiple dig cycles and not just one at a
time. This calls for a model that can predict both the performance of a dig action and
the resulting shape of the pile. In this thesis project, we use simulations to develop a
data-driven arti�cial neural network model that can predict the outcome of a dig action.
The model is able to predict the wheel loader’s productivity with an average error of 7.3%,
and the altered shape of the pile with an average relative error of 4.5%. We also show
that automatic di�erentiation techniques can be used to accurately di�erentiate the model
with respect to input. This makes it possible to use gradient-based optimization methods
to �nd the dig action that maximises the performance of the wheel loader.

ii



Acknowledgements

I would like to extend my thanks to all members of the Digital physics group at UMIT
Research Lab for their support during the project, especially Koji Aoshima for being my
assistant supervisor in all but name.

iii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 4
2.1 Neural networks basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Arti�cial neurons and fully connected neural networks . . . . . . . . 4
2.1.2 The universal function approximation theorem . . . . . . . . . . . . 6
2.1.3 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 The Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Model formulation and assumptions . . . . . . . . . . . . . . . . . . 9
2.2.3 The loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Computational graphs & automatic di�erentiation . . . . . . . . . . . . . . 11

3 Method 14
3.1 Virtual environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 AGX Dynamics & AGX Terrain . . . . . . . . . . . . . . . . . . . . 14
3.1.2 A digital wheel loader . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Controlling the wheel loader . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Breakout conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Control algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Sampling data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Arti�cial piles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Sampling action parameters . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Handling non-determinism and control sensitivity . . . . . . . . . . . . . . . 22
3.5 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 The scalar regression model . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 The CNN regression model . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3 The pile state prediction model . . . . . . . . . . . . . . . . . . . . . 25

4 Results 30
4.1 Performance prediction models . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 The scalar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.2 Model derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iv



4.1.3 The CNNR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Pile state prediction model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Discussion 35
5.1 Performance prediction models . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Pile state predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Conclusion 37

v



Chapter 1

Introduction

1.1 Background

Operating a wheel loader is generally a very versatile task that can involve anything
from driving on public roads to moving gravel on a construction site. There are however
some subtasks which can be repetitive and it is tempting to automate them. There
already exists semi-autonomous systems for wheel loaders, e.g. for assisted digging, but
fully autonomous wheel loading remains an open problem. One subtask that is especially
tempting to automate is the so-calledshort loading cycle. It consists of picking up material
from a large pile and dumping it onto a truck positioned nearby. If this task could be
successfully automated it is easy to see how it could be generalized to many other tasks
as well. The short loading cycle itself is typically divided into separate stages. Their
de�nition can vary between authors but we chose the following partitioning:

1. Approach the pile.

2. Fill the bucket.

3. Retract from the pile.

4. Approach the dumper.

5. Empty the bucket.

6. Retract from the dumper.

The cycle is illustrated in Figure 1.1. It is repeated until the dumper is fully loaded or all
material has been removed. In this project we will focus mainly on stages 1 and 2.

Stage 1 is de�ned to not only include navigating from the turning point to the pile,
but also the act of choosing the next position where to dig. This makes it a non-trivial
problem even for experienced operators. When forming a dig plan, it is important to not
only optimize one dig action at a time, as this may lead to a poor pile state in the long
run. Instead, one should optimize a sequence of dig actions. Since each dig action alters
the state of the pile, this would require an ability to approximately predict the new shape
of a pile resulting from each dig action.

Stage 2, bucket �lling, is perhaps the stage of most interest and possibly also the
hardest to automate. The goal is to maximize the amount of material in the bucket
while minimizing the time and energy consumed. Experiments show that the bucket
�lling typically accounts for around 35-40% of the fuel consumption but only 25% of
the cycle time [2]. This has made it an important area of research for the industry
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Figure 1.1: Illustration of the short loading cycle as described in [1].

and a lot of e�ort has been put into �nding the most optimal bucket-�lling strategy.
Discrete element method (DEM) simulations suggest that a good strategy is to aim for
a bucket tip trajectory known as the \Slicing cheese" strategy, which is illustrated in
Figure 1.2. This result was shown for a planar, steep slope [3]. In general, the optimal
bucket trajectory is likely heavily dependent on the local shape of the pile. However,
even if one knows in advance which bucket trajectory is optimal, is it often ill-advised
to try to make the bucket follow a pre-de�ned path (trajectory control) [4]. Material
inhomogeneties alone can make the dynamics very unpredictable and can easily throw
a bucket o� its path. The Digital Physics group at UMIT Research Lab specializes in

Figure 1.2: The \Slicing cheese" bucket trajectory along with four trajectories created
by our autonomous loader.

how one can represent complex physical systems using virtual environments that stay
true to the laws of physics. One of their current projects is to use a digital twin and
simulations to develop an autonomous bucket controller for wheel loaders. The controller
they are developing belongs to a category known ascompliance controllers. By having
the wheel loader's boom and bucket actuators respond to the resistance forces met from
the pile, they have created a controller that can adapt to the surrounding dynamics in
a way that a trajectory controller cannot. Instead of feeding the controller a pre-de�ned
bucket trajectory, it is given a set of action variables a that control how and when the
wheel loader should react to the pile resistance. Much like the bucket trajectories, the
optimal choice of a is highly dependent on the material and the local shape of the pile. It
is possible to simulate the results of dig actiona applied to the pile state s in real time.
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However, even real time simulation is not fast enough to e�ciently �nd the optimal dig
plan for an autonomous wheel loader. This is where this thesis project comes in.

1.2 Aim

The aim of this master's thesis is to develop a data-driven modelf that, given the current
pile state s(i ) and a set of action variablesa, can accurately predict the simulated outcome
y of the dig action

y = f (a; s): (1.1)

The outcome in this context is de�ned to include both a set of performance metricsPj ,
and the new, altered pile states(i +1) . With such a model in place, one could use it to
approximately solve the optimization problem

max
a

NX

i =1

w > P (i )
�

a(i ) ; s(i )
�

; (1.2)

i.e. maximizing the wheel loader's performance over a sequence ofN dig actions. Here,w
is a vector of weights that can be used to balance the importance of di�erent performance
metrics Pj . The idea of optimizing sequences of dig actions rather than one by one is of
especial importance for wheel loaders, as seemingly good dig actions could lead to a poor
pile state that decreases the performance in the long run.

The model should be constructed to be fully di�erentiable with respect to the action
variables a, without having to resort to �nite di�erences. Finite di�erences can quickly
become impractical if the number of input and output variables grow large, and the quality
of the derivatives could be subject to discretization errors.

An accurate, fully di�erentiable prediction model would allow us to solve the optimiza-
tion problem (1.2) using gradient based methods. The model could then be used during
dig planning in the short loading cycle to �nd the, statistically speaking, best sequence of
actions given the current shape of the pile.

1.3 Delimitations

Solving the optimization problem in equation (1.2) is beyond the scope of this thesis
project. Our focus will rather be on developing one of many tools needed for solving it
in the future. We will also disregard the problem of navigating the wheel loader from the
turning point to the pile. Lastly, we will only consider simulated data and will not make
any attempts at verifying our models via �eld experiments.

1.4 Related work

Apart from the research group's previous work [5], [6], the main inspiration for this thesis
project has been the work by Saku et al. [7]. They used a convolutional autoencoder
paired with a Long short-term memory (LSTM) network as a time-stepper to predict
soil deformations caused by an excavator bucket. On the topic of di�erentiable neural
network models, the work by Montes et. al [8] provided a lot of insight regarding network
architectures, especially the impact of using activation functions which are di�erentiable
everywhere.
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Chapter 2

Theory

2.1 Neural networks basics

Arti�cial neural networks or simply neural networks are computation systems paired with
learning algorithms. They are loosely inspired by how neurons in animal brains process
information. When employed correctly they can be a very powerful tool and over the past
decade they have been used to advance the performance of machine learning in everything
from medical image analysis to natural language processing. The theory behind neural
networks is vast and in this section we will only cover some of the basic concepts of
neural networks, especially the ones that explain how we will be able to treat them as
di�erentiable functions later on. Unless otherwise stated, we have used the bookDeep
Learning [9] as reference for this section.

2.1.1 Arti�cial neurons and fully connected neural networks

The smallest building blocks in neural networks are knows asarti�cial neurons or units. An
arti�cial neuron is a function f : Rn ! R, typically consisting of an a�ne transformation
of the input x, composed with an activation function � ,

ŷ = f (x ; b;w) = � (w > x + b); w 2 Rn ; b 2 R: (2.1)

The structure of such a neuron is illustrated in Figure 2.1. We say that a neuron isactive
or �ring when it outputs a non-zero value.

Figure 2.1: Typical structure of an arti�cial neuron. Each input is multiplied by a
weight factor before being summed. An o�set/bias term is usually added as well before
the summed value is passed through an activation function.
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Neurons are typically grouped together in a hierarchical structure to form layers, see
Figure 2.2. The neurons in one layer receives data from the neurons in the preceding layer
and output data to the succeeding one. The computations carried out by a layer ofm
neurons can collectively be seen as a single function,f : Rn ! Rm ,

Figure 2.2: Typical structure of a fully connected neural network.

ŷ = f (x ; b;W ) = � (W > x + b) 2 Rm : (2.2)

Again, this is an a�ne transformation of the input composed with an activation function
� , which is now a vector-valued function. When using a network for model �tting, we
want to �nd the set of weights and biases W ; b that gets our predicted responseŝy as
close to the observed responsesy as possible. Using� to refer to the weights and biases
collectively, we can formulate this as an optimization problem

min
�

`(ŷ ; y )

where ` is the loss function, which we use to evaluate the model's goodness of �t. A low
value of ` corresponds to a good �t, so we want to minimize it. If we choose� in equation
(2.2) to be the identity function and the mean squared error (MSE)

`(ŷ ; y ) = jj ŷ � y jj2
2;

as our loss, then it reduces to a linear regression model. In that case we can �nd a closed
form solution for the optimal model parametersW ; b. For most other choices of activation
functions however, we do not have a closed form solution and instead we need to resort to
gradient based methods during model �tting. There, the main idea is to make an initial
guess� (0) of the model parameters and use it to make a predictionŷ . By taking the
gradient of the loss function with respect to the model parameters, we can make a new
update to the parameters � (1) as

� (i +1) = � (i ) � �
@`
@�

: (2.3)

Since the gradient always points in the direction of steepest ascent, a step in the opposite
direction should, under some assumptions, take us closer to a local minima.� controls the
length of such a step and in deep learning it is known as thelearning rate. To train the
network, we use equation (2.3) iteratively until the desired accuracy has been obtained or
we stop improving. Computing the derivative of one layer is simple enough. However, as
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we will see in the next subsection, the true potential of neural networks is reached when
one composes many layers with each other, forming a chain of dependencies

ŷ = � L � � L � 1 � : : : � � 0(x): (2.4)

As the depth L of the network increases, the dependencies get very complicated and
computing them by hand and/or programming them explicitly quickly becomes unfeasible.
For this reason, neural network implementations use automatic di�erentiation methods to
compute derivatives during training.

2.1.2 The universal function approximation theorem

The expressive capabilities of neural networks are given solid footing by theuniversal
approximation theorem. The theorem states that a neural network with a linear output
layer and at least one hidden layer with a \squashing" type activation function e.g. tanh,
can be used to approximate any function that is continuous on a closed and bounded
subset ofRn with arbitrarily small error, given that enough hidden units are used. The
result also applies to the function's �rst derivative [10]. Since the theorem was published in
1989, it has further been shown that any non-polynomial activation function would work
[11]. Note that this result only tells us that it is possible to approximate any continuous
function with a neural network, it does not tell us anything about how to achieve the
desired accuracy. The theorem proves that a single hidden layer is enough, but to achieve
the desired performance with a one-layer network one would usually need a huge number
of neurons. It has been shown that one can get away with a more lightweight network by
increasing the model depth instead [12].

2.1.3 Activation functions

The universal approximation theorem states that almost any activation function would
work. In practice some choices are more appropriate than others. Typically, one uses
the same activation for all hidden layers. In recent years the recti�ed linear unit, ReLU,
have been the go-to choice for hidden layers as it does not su�er from the same vanishing
gradient problems that sigmoid-shaped activation functions do. The success with ReLU
has given rise to a whole family of similarly-shaped activations, sometimes collectively
referred to as the ReLU family. We will now have a closer look at four members of the
ReLU family. Graphs of all four functions and their respective �rst derivatives are shown
in Figure 2.3.

ReLU & LeakyReLU

The ReLU function has been very popular in use over the past decade and has been used
as the hidden layer activation in many state-of-the-art architectures. It is de�ned as

ReLU = max (0 ; x);

and has �rst derivative

d
dx

ReLU(x) =

8
><

>:

0; x < 0

Unde�ned, x = 0

1; x > 0:

Many neural network implementations ignore the singularity at x = 0 and assigns the
derivative the value 0 or 1 at this point instead of raising a NaN error [13]. PyTorch
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(a) (b)

Figure 2.3: (a) Activation functions from the ReLU family and (b) their �rst derivatives.
The LeakyReLU shown uses� = 0 :1 and both the Softplus and the Swish uses� = 1.
Note that the derivatives of LeakyReLU and ReLU both have a jump discontinuity at
x = 0.

for example uses ReLU0(0) = 0. We will do the same hereafter and ask the reader to
excuse this slight abuse of the derivative notation. With the extension ReLU0(0) = 0, the
derivative of the ReLU is the well-known Heaviside step function

� (x) =

(
0; x � 0

1; x > 0:
(2.5)

ReLU has the advantage of being very cheap computationally while also allowing gradi-
ents to 
ow past it whenever the neuron is active. This property solves the vanishing
gradient problem in the case when the input is large. A very close relative to ReLU is the
LeakyReLU,

LeakyReLU = max ( x; �x )

for some value of� > 0. � is usually taken to be very small � 0:01. This gives the
LeakyReLU a very small slope whenx < 0, allowing gradients to 
ow in this interval as
well.

SoftPlus

The Softplus function is de�ned as

Softplus(x) =
1
�

ln(1 + e�x )

and was introduced to deep learning as a smooth version of ReLU.� > 0 is known as
the sharpnessparameter, as increasing it will bring the Softplus closer to the shape of a
ReLU. Unlike ReLU it is in�nitely di�erentiable everywhere and the derivative is given
by

d
dx

Softplus(x) =
1

1 + e� �x ; (2.6)

also known as the logistic sigmoid function� (�x ). At the time of its introduction, it
was hypothesized that its smoothness would be bene�cial during training, but empirical
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studies carried out since suggest otherwise, and it is generally advised against using it as
an activation in favor of ReLU. The softplus function is also much more computationally
expensive than ReLU.

Swish

Our �nal activation function is the swish function, introduced to deep learning in 2017
[14], de�ned as

Swish(x) = x� (�x ) =
x

1 + e� �x (2.7)

and has derivative
d

dx
Swish(x) = � (�x ) f 1 + �x [1 � � (�x )]g ;

where � again can be interpreted as a sharpness parameter and can either be a constant
or a trainable parameter. When � = 1 it is sometimes called the sigmoid weighted linear
unit or SiLU. It approaches ReLU in the limit � ! 1 . Just like Softplus it sacri�ces
computational e�ciency in favor of smoothness. It can produce a small negative output
and allows gradients to 
ow even if the neuron itself is close to being inactive. It has been
claimed to be a better choice than ReLU for deep architectures as it does not su�er as
much from the dying ReLU problem. Montes et al. used Swish to create a di�erentiable
neural network prediction model for the potential energy in ionic liquids [8].

2.2 Variational Autoencoders

Predicting the altered pile shape resulting from a dig action is more complicated than
simply subtracting height values from one part of the height�eld. The prediction is less
about highlighting a feature that is present in the initial pile and more about generating a
whole new pile shape. Because of this we will use the generative machine learning method
of Variational Autoencoders (VAEs). VAEs can be seen as a probabilistic extension of
traditional autoencoders and unlike their deterministic predecessors, they try to approxi-
mate distributions rather than functions. The theory behind them is very general and we
will only consider a very special case. For more details about VAEs, the original paper by
Kingma and Welling is a great source of insight [15]. For this theory section we have also
used [9], [16], [17] as reference.

2.2.1 The Kullback-Leibler divergence

As we will see later on when we de�ne our loss function, a central concept in the theory
behind VAEs is the Kullback-Leibler divergence. Let p(x); q(x) be two distributions of the
same continuous variablex. Then the Kullback-Leibler divergence of p(x) from q(x) is
given by

DKL (p(x)jjq(x)) = Ex � p(x ) [ln(p(x)) � ln(q(x))]

where Ex � p(x ) [f (x)] is used to denote the expectation value of functionf (x), given that
x � p(x). To avoid having to go into details, we can think of the divergence as a measure
in how di�erent q(x) is from p(x). A value of 0 means that the two distributions are
identical, and a large value means that they are very di�erent from each other. The
Kullback-Leibler divergence is always non-zero.

8
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2.2.2 Model formulation and assumptions

Suppose we have a collected a large datasetD = f x (i )gN
i =1 , where x (i ) are independent

and identically distributed samples of a random variablex � p(x). In our model, the local
pile shape variables will play the part of x . Now assume that the variablex is generated
via a two-step process involving an unobserved variablez:

1. A value of z 2 Rk is sampled from a prior distribution p� (z).

2. A value of x is then sampled from the conditional distribution p� (x jz).1

We also assume thatp� (z) and p� (x jz) belong to known families of distributions parame-
terized by neural networks, which in turn are parameterized by� . For all intents and pur-
poses, we can think ofz as a low-dimensional latent representation of the high-dimensional
observed variablex. Now consider the special case where

z � N (0; I )

� x (z) = Decoder� (z)

x � N (� x (z); � 2I )

i.e. we choosep� (z) to be a standard multivariate isotropic Gaussian distribution, and
p� (x jz) to be a multivariate Gaussian whose mean value� x (z) is computed by the decoder
neural network, as a deterministic function of z. If the distribution parameters � are
known, one could in principle also �nd the marginal distribution using the chain rule of
statistics,

p� (x) =
Z

Z
p� (x ; z)dz =

Z

Z
p� (x jz)p� (z)dz (2.8)

Additionally, if either of the marginal distribution p� (x) or the posterior distribution
p� (zjx) is known, we could compute the other via Bayes' rule

p� (zjx)p� (x) = p� (x jz)p� (z):

In our setting neither is known, and the integral in equation (2.8) is intractable. We will
now describe a method that allows us to

1. Make e�cient maximum likelihood estimates of parameters � . This would allow us
to e�ciently generate new samples of x simply by sampling a random vector from a
multivariate standard Gaussian and passing them through the decoder network.

2. Learn parameters � of an approximate posterior distribution q� (zjx) � p� (zjx),
which allows us to encode a sample ofx to �nd the approximate latent representation
z that is most likely to have generated it.

It might not come as a surprise to the reader that we will use yet another neural network to
represent the approximate posteriorq� (zjx). To be able to use gradient descent methods to
update the posterior parameters� , we need that network to be completely deterministic.
To represent a probability distribution using a deterministic neural network, we use the
following reparametrization trick:

z = � z + � z � � ; (2.9)

1As we will see in section 3.3.1 this two-step process happens to be exactly how we create our arti�cial
piles. We do not use normal distributions however.
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where

(� z; � z) = Encoder � (x);

� � N (0; I );

and � is used to denote an element-wise multiplication. If we let equation (2.9) sink in for
a while, we see thatz � q� (zjx) is a multivariate Gaussian distribution whose mean � z

and (diagonal) covariance matrix diag(� z)2 is determined by the encoder network. The
structure of the VAE setup is illustrated in Figure 2.4. Using our data samplesD, we want
to �nd the parameters �; � that maximize the log probability of our observed samples.

Figure 2.4: The overall structure of a Variational Autoencoder. During training, a
high-dimensional x is encoded into a low-dimensional representationz and then decoded
back into a high-dimensional � x . Note that, without the reparametrization step involving
� z; � z; � , the structure is identical to a regular autoencoder.

2.2.3 The loss function

Suppose we use a regular reconstruction loss when training our VAE. In that case we
could imagine that the encoder network would learn� z = 0 and just function as a regular
autoencoder from there on. Hence, variational autoencoders require a special kind of loss
function to work as intended. That special loss function is usually chosen to be the sum of
a reconstruction error and a regularisation error. We will use MSE as our reconstruction
loss. The regularization term is to the best of our knowledge always taken to be some
form of Kullback-Leibler loss. Let ` (i ) be the loss with respect to thei th sample. Then
the loss is given by

` (i ) = ` (i )
MSE + ` (i )

KL (2.10)

The MSE loss is the same as in an ordinary autoencoder:

` (i )
MSE = jjx (i ) � � x (z(i ) )jj2

2: (2.11)

The ` (i )
KL is taken to be the Kullback-Leibler divergence between the priorp� (z) and the

approximate posterior q� (zjx)

` (i )
KL = DKL (q� (zjx (i ) )jjp� (z)) : (2.12)

The loss will be large ifq� (zjx (i ) ) drift away too much from p� (z). Since both distributions
are multivariate normal distributions, there exists a closed form solution to equation (2.11)

10
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[18]:

DKL (q(zjx)jjp� (z)) =
1
2

kX

j =1

�
� 2

z;j + � 2
z;j + ln( � 2

z;j )
�

�
k
2

(2.13)

wherek is the dimension of the latent space. Here, we have suppressed the (i ) superscripts
on x; � z and � z to keep thing more tidy, but note that the mean value and the variance are
di�erent for di�erent samples x (i ) . The total loss of an entire batch is simply the average
of all ` (i ) . Sometimes one weights one of the two terms in equation (2.10) by a factor�
to emphasise the importance of a structured latent space or accurate reconstructions. In
words, the reconstruction loss will promote reconstructions to be as faithful to the input
as possible. The regularization term will promote a nicely structured latent space. By
optimizing them simultaneously we can make both our generative model and the encoder
better at the same time.

2.3 Computational graphs & automatic di�erentiation

Automatic di�erentiation (AD) is a family of methods that describe how to compute the
derivatives of numerical functions through accumulation of values during code execution.
They are methods that generate derivative evaluations rather than derivative expressions.
The backpropagation algorithms that are used during training of neural networks are
examples of automatic di�erentiation [19]. We will illustrate the main principles of AD
via an example. Consider the following function,

f (a; b; x) = ReLU( ax + b): (2.14)

We can visualize the evaluation of this function using a computational graph, see Figure
2.5. This is known as the forward graph. Givena; x and b, we can evaluate the function
f by traversing the graph from left to right. Now, suppose we are not only interested in

forward

x

a

b

� u

+ v ReLU w

Figure 2.5: Computational graph illustrating the evaluation of the function f in equation
(2.14). Computations are carried out from left to right. Circular and rectangular nodes
represent variables and operations respectively.

the function value for some triplet a; b; x, but also the derivative evaluated at the same
point. Herein lies one of the main strengths of computational graphs. By considering the
function to be the combined result of many smaller computations, we can apply the chain
rule of calculus to obtain the analytical derivatives at a low computational cost. Let

u(s; t) = st; v(s; t) = s + t; w(s) = ReLU( s): (2.15)

Using this notation we can expressf as the composite function

f (a; b; x) = w(v(u(a; x); b))
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forward

x

a
� u

Mult.
Derivative

@z
@x

@z
@a

backward

Figure 2.6: Illustration of the �rst step of the forward pass. When the product a � x
is computed, we append a \Mult. Derivative" node to the backward graph and make
references to variablesx and a.

and the derivative with respect to x will be

@f
@x

=
@w
@v

@v
@u

@u
@x

: (2.16)

In automatic di�erentiation methods one sequentially builds a second computational graph
in parallel with the function evaluation graph, which describes the partial derivative of each
contributing computation. We refer to this graph as the backward graph. Again, the pro-
cess is most easily explained using an illustration, see Figure 2.6. When the multiplication
is carried out we add a \MultDerivative" node to the backward graph and give the node
the variables x and a as input. We do not yet know what will precede the MultDerivative,
but whatever it is we know that @u

@x = a and @u
@a= x. For this to work automatically, we

must of course have an implemented node type that knows how to compute the derivative
of a product. Any AD implementation worth its salt will include derivative operations for
at least all elementary functions and matrix operations. To complete the graphs, we then
continue to move on down the forward graph, and each time we perform a computation
we add a node to the right end of the backward graph. In the end it will look something
like the graphs in Figure 2.7. The backward graph is not necessarily evaluated during
the forward pass, in fact, in most AD implementations the backward pass is only carried
out once the full backward graph is complete. Sincew = z we will always use @z

@w = 1
as our starting point. One can then traverse the backward graph and for each derivative
node, multiply the current derivative value with the local contribution. To compute the

12
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forward

x

a

b

� u

+ v ReLU w z

@z
@w

ReLU
Derivative

@z
@v

Add.
Derivative

@z
@u

@z
@b

Mult.
Derivative

@z
@x

@z
@a

backward

Figure 2.7: The complete forward and backward graphs after the forward pass is com-
plete.

derivative with respect to x, the computation would look something like this:

t1 =
@z
@w

= 1

t2 =
@z
@v

= t1
@w
@v

= � (v)

t3 =
@z
@u

= t2
@v
@u

= � (v)

@z
@x

= t3
@u
@x

= a� (v)

where we have used the Heaviside step function� in place of the ReLU derivative as
described in section 2.1.3. Now suppose we want the derivative with respect toa instead.
A bene�t with AD is that we do not need to traverse the graph all the way from the right
end. Instead, we can use the intermediate value oft3 and compute

@z
@a

= t3
@u
@a

= x� (v):

The example shown in Figures 2.5-2.7 was heavily inspired by an example in PyTorch's
documentation [20]. It shows a very simpli�ed case where all forward operations have
scalar outputs. If one instead considers vector-valued functions, the principle would still
be the same but instead of sequentially multiplying scalar derivatives one instead computes
Jacobian-vector products.
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Chapter 3

Method

3.1 Virtual environment

All experiments are carried out inside a virtual environment (VE) created with AGX
Dynamics [21]. VEs and simulations are in many ways a perfect match for deep learning,
as they allow us to easily generate large amounts of data at a relatively low cost. In a
VE we can also measure essentially any physical quantity that we are interested in. In
the following subsections we will describe our digital wheel loader model and how AGX
Dynamics can be used to simulate its interactions with the terrain.

3.1.1 AGX Dynamics & AGX Terrain

AGX Dynamics is a multipurpose physics engine that can model complex mechanical
systems and interactions between bodies on many di�erent scales. It is centered around
rigid multibody systems with joints and contacts at realtime and high accuracy.

AGX Terrain is a library within AGX Dynamics that supports real-time simulation
of deformable soil, including interactions between soil and earthmoving equipment such
as blades or buckets [22], [23]. Soil consist of small heterogeneous particles of minerals
surrounded by water and gas. In bulk, soils have a number of characteristic features
that make their dynamics very di�erent from other media. They can transition between
behaving like solids and 
uids depending on their water contents and what stresses they
are subjected to. This transition between solid and 
uid is well-described by the Mohr-
Coulomb criterion. It predicts that a solid continuum of soil will fail along any plane
where the tangent stresses� and the normal stresses� satisfy the following equality

� = � tan( � ) + c; (3.1)

where � and c are the material's angle of internal friction and cohesionrespectively. The
interpretation of the criterion is that as long as the shearing stresses are low, the soil will
not display any noticeable deformation. But if the shear stresses reach this critical value
the soil will fail and start to 
ow much like a 
uid. Gravel and sand, which are the type
of materials our work focuses on, are often considered cohesionless. For such materials,
the angle of internal friction corresponds well to theangle of repose. Anyone who has ever
built a sand castle is likely to have faced problems with the angle of repose, also known as
the critical angle of a soil. It describes the steepest possible slope relative to the ground
a given granular material can reach before collapsing. Theoretically it can range from 0�

to 90� but is typically between 30-45� [24].
AGX Terrain is a hybrid model where resting soil is modeled as a rigid solid, discretized

using a voxel representation. A voxel can be completely or partially �lled with soil material.
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