Initiation of Innate Immune Responses in the Freshwater Crayfish

Pacifastacus leniusculus

BY

SO YOUNG LEE
Dissertation for the Degree of Doctor of Philosophy in Physiological Mycology presented at Uppsala University in 2001

Abstract

Prophenoloxidase (proPO) is a key enzyme for generation of melanin and is activated by the proPO activating enzyme (ppA) to its active form, PO. The active ppA was purified and cloned from crayfish hemocytes and it is a typical serine proteinase containing a clip, a proline-rich, and a glycine-rich domain. A recombinant protein containing the clip-domain, with homology to horseshoe crab big defensin and mammalian β-defensin, had antibacterial activity in vitro against gram-positive bacteria.

The proPO activating system (proPO system) is triggered by lipopolysaccharides (LPS) or β-1,3-glucans. An LPS and β-1,3-glucan binding protein (LGBP) was characterized from crayfish hemocytes. The results of an LGBP antibody inhibition assay suggest that LGBP is directly involved in the proPO system.

The primary structure of a crayfish masquerade-like (mas) protein has homology to serine proteinases except for a substitution within the catalytic triad, which renders it without proteinase activity. The crayfish mas-like protein has also binding activity to various gram-negative bacteria and yeast. When the mas-like protein binds to microorganisms, it is processed by a proteolytic enzyme. The mas-like protein exhibited cell adhesion and opsonic activities suggesting that it plays a role in defense against parasites.

So Young Lee, Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Sweden

© So Young Lee 2001

ISSN 1104-232X
ISBN 91-554-4973-5

Printed in Sweden by Uppsala University, Tryck &Medier, Uppsala 2001
PREFACE
This thesis is based on three original papers and one manuscript.
The papers will be referred to by their Roman numerals.

Reprints were made with permission from the publishers.
CONTENT
ABSTRACT ... 2
PREFACE ... 4
CONTENTS ... 5
ABBREVIATIONS ... 6
INTRODUCTION
Evolution of immune system ... 7
Immune responses in invertebrates 8
Prophenoloxidase activating system (proPO system) 11
The non-self recognition system 14
RESULTS AND DISCUSSION
The prophenoloxidase activating enzyme with a defensin-like
domain has antibacterial activity in vitro (paper I) 20
A lipopolysaccharide- and β-1,3-glucan binding protein involved
in the proPO system (paper II) 21
Properties of the mas-like protein (paper III and IV) 22
CONCLUSIONS .. 26
ACKNOWLEDGEMENTS .. 29
REFERENCES .. 30
ABBREVIATIONS

βG : β-1,3-glucan
βGBP : β-1,3-glucan binding protein
CCF-1 : coelomic cytolytic factor-1
D-GalNAc : N-acetyl-D-galactosamine
D-GlcNAc : N-acetyl-D-glucosamine
G(-) : Gram-negative bacteria
G(+) : Gram-positive bacteria
GNBP : Gram-negative bacteria-binding protein
HLS : hemocyte lysate supernatant
LGBP : lipopolysaccharide- and β-1,3-glucan binding protein
LPS : lipopolysaccharide
Mas : masquerade
MDM : molluscan defense molecule
PCR : polymerase chain reaction
PG : peptidoglycan
PGBP : peptidoglycan recognition protein
PO : phenoloxidase
ppA : prophenoloxidase activating enzyme
proPO : prophenoloxidase
proPO system : prophenoloxidase activating system
PRP : pattern recognition protein
UTR : untranslated region
INTRODUCTION

Evolution of immune system

Immune systems have developed to protect multicellular organisms from foreign "non-self" substances. During evolution, two general immune systems have developed to detect foreign substances namely innate (natural) immunity and adaptive (acquired) immunity.

The innate immune system is phylogenetically a more ancient defense mechanism and can be found in all multicellular organisms. This system is the first-line of host defense that helps to limit infection in the early stage of infection and relies on germ line encoded receptors that recognize conserved molecular patterns found in microorganisms (Fearon and Locksley, 1996; Fearon, 1997; Medzhitov and Janeway, 1997).

The adaptive immune system evolved about 400 million years ago and is found only in vertebrates (Thompson, 1995). The immune response of vertebrates have developed more sophisticated and complicated mechanisms including an immunological memory with generation of a large repertoire of antigen-recognition receptors and innate immune systems such as phagocytosis, natural killer cells and complement system for both recognizing and eliminating foreign invaders (Hoffmann, 1995; Hoffmann et al., 1996; Carroll, 1998). While adaptive immunity occurs only in vertebrates, invertebrates have adapted a rapid and efficient innate system to recognize and destroy non-self material, including pathogens. Although they cannot produce antibodies and hence have no immune memory, innate immune mechanisms are enough to protect and preserve themselves from intruding microorganisms. In addition to their rigid and wax-covered cuticle serving as a mechanical barrier they can also rapidly produce effective innate immune responses during infection. Since the discovery of inducible antimicrobial peptides from the moth Hyalophora cecropia by Boman and associates in 1980 (Hultmark et al., 1980; Steiner et al., 1981), great efforts have been made to investigate the function and mechanism of the innate immune system not only in invertebrates but also in all multicellular organisms ranging from humans to plants. It is
now clear that the innate immune system is very important for self or non-self recognition in vertebrates and plays an important role in adaptive immune systems (Medzhitov and Janeway, 1998a; b).

In this thesis, defense mechanisms of the freshwater crayfish *Pacifastacus leniusculus* have been studied with molecular and biochemical approaches to understand the innate immune system of invertebrates.

Immune responses in invertebrates

Various cells in invertebrates respond to microorganisms by enclosing these infectious agents within aggregates and then destroying them. The innate immune system of invertebrates can respond to the presence of pathogens with cellular and humoral responses. The former includes phagocytosis, nodule formation, and encapsulation and these reactions are mediated by blood cells known as hemocytes.

In general, phagocytosis occurs against invading small microorganisms by a single hemocyte, whereas multicellular encapsulation or nodule formation are more complex processes that occur when invading pathogens or parasites are too large or too numerous to be ingested by a single phagocytic cell (Lanz-Mendoza *et al*., 1996; Gillespie *et al*., 1997; Johansson, 1999; Gillespie *et al*., 2000).

Nodules represent aggregates of hemocytes entrapped in a sticky extracellular material and these aggregates are often melanized by the activity of the enzyme phenoloxidase. Encapsulation is similar to nodule formation, but occurs as a defense reaction against larger invaders such as fungi, nematodes, parasitoid eggs, or larvae (Gunnarsson and Lackie, 1985; Hoffmann *et al*., 1996; Koizumi *et al*., 1997; 1999; Gillespie *et al*., 1997).

The cellular immune response is an important reaction for recognition of non-self material in an early stage of infection. Recently, several proteins involved in encapsulation and phagocytosis have been reported from a crayfish, *Pacifastacus leniusculus* (Kobayashi *et al*., 1990; Thörnqvist *et al*., 1994), a caterpillar, *Cotesia rubecula* (Asgari *et al*., 1998), and a beetle, *Tenebrio molitor* (Cho *et al*., 1999a; b).
The activation of the humoral immune system is contributed by several reactions such as proteolytic cascades leading to blood clotting, melanin formation, opsonization, and a transient synthesis of potent antibacterial peptides (Hoffmann et al., 1999).

The clotting system is an important reaction in both vertebrates and in invertebrates to prevent blood loss through wounds. The clotting system of a chelicerate, the horseshoe crab *Tachypleus tridentatus*, has been characterized in great detail (Iwanaga et al., 1998). The coagulation system of the horseshoe crab is composed of five protein components which make up a clotting cascade system (Iwanaga, 1993), the serine proteinase zymogen factors C, B, G, the proclotting enzyme and the clottable protein coagulogen. The factors C and G act as highly sensitive recognition proteins for LPS and β-1,3-glucan, respectively. Invading pathogens trigger these proteins, resulting in the sequential activation of clotting factors and subsequent clot formation. The extreme sensitivity of the clotting cascade for LPS is used in the so-called Limulus test, a widely employed assay method for the detection of bacterial endotoxins or LPS (Levin and Bang, 1964; Tanaka and Iwanaga, 1993). In crustaceans, the clotting protein was first cloned, isolated and characterized in crayfish (Hall et al., 1999). Clotting in crayfish occurs through the polymerization of a clotting protein found in plasma and is catalysed by a calcium ion dependent transglutaminase released from hemocytes upon wounding (Hall et al., 1999). Several clottable proteins have been partially characterized from penaid shrimps (Yeh et al., 1998; 1999), lobster (Fuller et al., 1971a; b), crayfish (Kopácek et al., 1993), freshwater giant prawn (Yeh et al., 1998), and sand crayfish (Komatsu and Ando, 1998). They have similar amino acid compositions and N-terminal sequences, but no homology to horseshoe crab coagulogens. The primary structure of crayfish clotting protein indicates that it belongs to the vitellogenin superfamily of protein (Hall et al., 1999). This shows that two functionally similar processes in two related species of invertebrates are completely different and emphasize the large variation in related
Antimicrobial peptides have become recognized as important components of the non-specific host defense or innate immune system in a variety of organisms ranging from vertebrates and invertebrates to plant species (Boman, 1995; Boman, 1998; Hetru et al., 1998; Hoffmann et al., 1999). The primary structures of these positively charged antimicrobial peptides are highly diverse, yet their secondary structures share a common feature of amphipathicity (Ganz and Lehrer, 1994; Hancock and Lehrer, 1998). Although they exhibit great structural diversity, the peptides are often grouped into three families by certain common structural patterns: (i) linear peptides forming \(\alpha \)-helices and deprived of cysteine residues (cecropin and magainin family), (ii) cyclic peptides containing cysteine residues (defensin family), and (iii) peptides with an overrepresentation of proline and/or glycine residues.

Peptides in the \(\alpha \)-helix family generally have a random coil structure in aqueous solution and can penetrate bacterial membranes and disrupt the membrane structure by ion channel formation (Christensen et al., 1988; Shai, 1998; Steiner et al., 1988). This group of peptides has a broad spectrum of antibacterial activity ranging from gram-positive and gram-negative bacteria to fungi and protozoa. The defensin family peptides can be divided into two subgroups according to their structure, mammalian defensins having a triple-stranded \(\beta \)-sheet structure (Hill et al., 1991) and insect defensins forming two stranded \(\beta \)-sheets with a flanking \(\alpha \)-helix (Cornet et al., 1995). Although all defensins contain three disulfide bonds, the mammalian and insect defensins show different patterns. The antimicrobial activity spectrum of mammalian defensins includes gram-positive, gram-negative bacteria, mycobacteria, many fungi and some enveloped viruses, whereas insect defensins are active primarily against gram-positive bacteria and with little activity against gram-negative bacteria or eucaryotic cells. They affect the bacterial membrane structure by making pores (Hoffman and Hertu, 1992; White et al., 1995). A third class of antimicrobial peptides have a high
percentage of proline or glycine residues. The proline-rich peptides are present in insects, crustaceans, and mammals and show activity against only a few species of gram-negative bacteria and are bacteriostatic rather than bacteriolytic. However, until now no glycine-rich molecules have been reported in mammals. Some of this group antibacterial peptides such as apidaecin, gloverins, and attacins have an immediate effect on protein synthesis, but little is known about the 3D structure of these peptides (Axén et al., 1997; Shai, 1998; Bulet, 1999).

Several antimicrobial peptides have been characterized from insects and chelicerates, but a few peptides have been demonstrated in crustaceans from the shore crab *Carcinus maenas* (Relf et al., 1999) and the shrimp *Penaeus vanamei* (Destoumieux et al., 1997; 1999). Recently, two antibacterial peptides with low molecular masses named astacidin 1 and 2 were purified and characterized from crayfish *Pacifastacus leniusculus* hemolymph, (Lee and Söderhäll, unpublished). Astacidin 1 with 16 amino acid residues has no homology to other hitherto described antimicrobial peptides whereas, astacidin 2 with 14 amino acid residues has high similarity to the proline rich-peptide, metalnikowin 1 purified from the hemipteran insect, *Palomena prasina* (Chernysh et al., 1996).

Many antimicrobial peptides show a broad activity against microorganisms and have a remarkable specific activity to prokaryotic cells and with low toxicity to eucaryotic cells. These phenomena and the mode of action demonstrate that antimicrobial peptides may be developed as therapeutic agents for use as pharmaceuticals or in agricultural applications (Zasloff, 1992).

Prophenoloxidase activating system (proPO system)

The proPO system consists of several proteins involved in the immune defense in invertebrates leading to melanin production, cell adhesion, encapsulation, and phagocytosis (Gillespie et al., 1997; Söderhäll and Cerenius, 1998; Sritunyalucksana and Söderhäll, 2000). It is an efficient immune system for non-self recognition and is initiated by recognition of lipopolysaccharides or peptidoglycans from bacteria and β-1,3-glucans from fungi. This system contains a proteinase cascade
composed of pattern-recognition proteins (PRPs), several proteinases, their zymogens, and prophenoloxidase (proPO) (Figure 1) (Söderhäll and Cerenius, 1998).

Phylogenetically, proPO belongs to one of four well-supported subfamilies within: (i) the arylphorin subfamily (a storage protein in insects without copper binding function), (ii) the hemocyanins of branchiopod crustaceans (copper binding proteins involved in oxygen transport), (iii) the hemocyanins of chelicerates, (iv) and the prophenoloxidase of insects and crustaceans (copper binding proteins involved in immune responses). However, hemocyanins are found in chelicerates and crustaceans but not insects. In a recent study, chelicerates hemocyanins seem to be linked to proPO since upon a proteolytic cleavage in the spider, *Eurypelma californicum* (Decker and Rimke, 1998; Decker and Tuczek, 2000) and horseshoe crab, *Tachypleus tridentatus* (Nagi and Kawabata, 2000) hemocyanins show PO activity. A phylogenetic analysis shows that the proPO subfamily has much higher evolutionary relationship with the chelicerate hemocyanins than the branchiopod hemocyanins (Hughes, 1999; Burmester, 2001).

The active form of proPO, phenoloxidase (PO; monophenol, dihydroxyphenylalanine: oxidoreductase; EC 1.14.18.1), also known as tyrosinase, catalyzes two successive reactions: hydroxylation of a monophenol to o-diphenol (monophenoloxidase activity) and the oxidation of the o-diphenol to o-quinone (diphenoloxidase activity) (Söderhäll and Cerenius, 1998; Decker and Tuczek, 2000). Production of o-quinones by PO is an initial step in the biochemical cascade of melanin biosynthesis. It is also important in cuticular sclerotization, wound healing, and encapsulation of foreign materials (Lai-Fook, 1966; Sugumaran, 1991; Söderhäll and Cerenius, 1998). Arthropod POs exist as an inactive zymogen under normal physiological conditions and then they can be activated by proteolytic cleavage except for a recently discovered proPO from the insect, wasp *Pimpla hypochondriaca*, which was active without any proteolytic cleavage (Parkison et al., 2001).

Since the first primary structure of proPO was determined in crayfish (Aspán et al., 1995), great numbers of proPO sequences were
reported from various invertebrates. In crayfish, proPO is synthesized and
localized in granules of the blood cells, and released into plasma by an
exocytosis triggered by the β-1,3-glucan binding protein. Crayfish
hemocyanin is synthesized in the hepatopancreas (Aspán et al., 1995;
Söderhäll and Cerenius, 1998). In insects some proPOs exist in the
plasma (Sugumaran and Kanost, 1993) and several isoforms encoded by
different genes have been found (Ashida and Brey, 1997; Müller et al.,
1999), but the physiological significance of the presence of the different
proPO polypeptides remains to be studied. Recently, two isoforms of
cuticle proPOs of the silkworm, Bombyx mori have been characterized
and one of them is shown to be transported from the hemolymph proPO
to the cuticle. The transported cuticle proPO has different molecular mass
from the hemolymph proPO because of the modification of one up to six
methionine residue(s) (Asano and Ashida, 2000a; b).

PRPs are the triggering molecules of the proPO system, since they
bind microbial components and then they induce activation of proteinases
in the proPO system. Finally proPO is proteolytically converted to
phenoloxidase by an endogenous trypsin-like serine proteinase, the so-
called prophenoloxidase activating enzyme (ppA). So far, four ppAs and
one cofactor have been characterized and cloned from four different
animals; a beetle, Holotrichia diomphalia (Lee et al., 1998a; b), a
silkworm, Bombyx mori (Satoh et al., 1999), a tobacco hornworm,
Manduca sexta (Jiang et al., 1998), and a crayfish, Pacifastacus
leniusculus (Paper I). Their primary structure demonstrates that they all
exist as zymogens of typical serine proteinases and are similar to
Drosophila serine proteinases involved in the organization of the
developing embryo (Chasan and Anderson, 1989; Jin and Anderson,
1990; Jiang and Kanost, 2000). They also contain one or two clip-
domains, which have homologous amino acid sequences to the horseshoe
crab big defensin (Saito et al., 1995a) and mammalian β-defensin (Tang
and Selsted, 1993). In crayfish the recombinant clip-domain of ppA has
antibacterial activity in vitro against gram-positive bacteria suggesting a
dual function of crayfish ppA and maybe also for other ppAs (paper I).
Interestingly, a new type of prophenoloxidase activating factor has been
purified and cloned from the coleopteran, *Holotrichia diomphalia* (Kwon et al., 2000). This protein has no proteinase activity but is an essential factor for the activation of the proPO system in this insect. The primary structure of this protein is similar to serine proteinase homologues lacking the complete catalytic triad necessary for serine proteinase activity, such as a crayfish (paper III and IV) and a *Drosophila* masquerade-like protein (Murugasu-Qei et al., 1995), horseshoe crab factor D (Kawabata et al., 1996), and mosquito infection-responsive serine protease-like protein (ispl5) (Dimopoulos et al., 1997).

With the activation of the proPO system, other proteins will also gain their biological activity and can participate in cellular defense. One such molecule is a cell adhesion protein, peroxinectin, which has been purified, characterized and cloned from the crayfish, *Pacifastacus leniusculus* (Johansson and Söderhäll, 1988; 1989; 1993; 1995).

The proPO system has to be controlled and regulated to avoid the deleterious effects of active components of the system, and in particular PO, which can produce highly toxic intermediates. Several proteinase inhibitors for preventing over-activation of ppA (Hergenhahn et al., 1987; Aspán et al., 1990a) and a phenoloxidase inhibitor (POI), which can directly inhibit the activity of phenoloxidase (Daquing et al., 1995; 1999; Sugumaran and Nellaiappan, 2000) have been reported from several arthropod species.

The non-self recognition system

The innate immune system is activated by pathogens or environmental antigens and is mediated by interaction between receptors or pattern recognition molecules and pathogens. The recognition molecules for foreign material have been named as pattern-recognition proteins (PRPs) by Janeway (Medzhitov and Janeway, 1997; Carroll and Janeway, 1999) because the host primitive effector cells would recognize molecular patterns rather than particular structures of the invading microorganisms. Examples of pathogen-associated molecules, which are not found in other multicellular organisms, are LPS or peptidoglycans of bacterial cell walls, β-1,3-glucan of fungal cell walls, and double stranded
RNA of viruses. Most current research has emphasized the possible role of non-self recognition molecules in the vertebrate and the invertebrate immune system (Vasta et al., 1994; Arason, 1996; Matsushita, 1996; Vasta et al., 1999; Wilson et al., 1999; Marques and Barracco, 2000).

Recognition of carbohydrates may have evolved because these common constituents of microbial cell walls have structures that are distinct from those of carbohydrates of eucaryotic cell surfaces. Therefore, LPS or/and β-1,3-glucan binding proteins (LBP, βGBP, or LGBP), peptidoglycan recognition protein (PGRP), lectins, and hemolin have been found in a variety of invertebrates and different biological functions have been proposed for these molecules after binding to their targets (Table 1).

Lectins/agglutinin are glycoproteins usually without catalytic activity that have the ability to bind to specific carbohydrates and exist in almost all living organisms (Marques and Barracco, 2000). They can bind cells and an agglutination reaction occurs. Interaction between lectins and carbohydrates is involved in various biological activities, for instance the cellular and tissue transport of carbohydrates (Goldstein et al., 1980; Ravindranath and Copper, 1984), glycoproteins (Vasta, 1992), cell adhesion (Kasai and Hirabayashi, 1996; Ni and Tizard, 1996; Vasta et al., 1999), opsonization (Jomori and Natori, 1992; Cerenius et al., 1994), and nodule formation (Koizumi et al., 1999). Especially, C-type lectins, calcium dependent lectins are reported to be involved in immune recognition in invertebrates (Weis et al., 1998; Vasta et al., 1999). Constitutively expressed lectins that have an LPS-binding property have been characterized from the silkworm, Bombyx mori (Koizumi et al., 1997; 1999) and the American cockroach, Periplaneta americana (Jomori and Natori, 1991; 1992; Kawasaki et al., 1996; Natori et al., 1999). The biological function of these LPS binding proteins was shown to be a bacterial clearance activity and an opsonic effect, respectively. Two kinds of inducible lectins (immulectins) were characterized and cloned in the tobacco hornworm, Manduca sexta, and were both found to stimulate the proPO system (Yu et al., 1999; Yu and Kanost, 2000). A large number of carbohydrates binding proteins in invertebrates have
characters that make them lectins. Moreover, some LGBPs and βGBPs have a similar primary structure to bacterial glucanases, but they do not exhibit any glucanase activity and instead enhance or mediate activation of the proPO system (paper II; Cerenius et al., 1994; Ochiai and Ashida, 2000; Ma and Kanost, 2000; Beschin et al., 1998). Crayfish βGBP is present in plasma and interacts with β-1,3-glucan to enhance the activation of the proPO system and also to act as an opsonin to increase the rate of phagocytosis (Duvic and Söderhäll, 1990; 1992; 1993; Cerenius et al., 1994; Thörnqvist et al., 1994). In addition, a crayfish LBGP has been isolated, cloned, and characterized from hemocytes and it has binding activity to both LPS and β-1,3-glucans but not to peptidoglycans. The primary structure and cloning results showed that LGBP has significant homology with several gram-negative bacteria binding proteins and bacterial glucanases. The function of LGBP is to bind to LPS or β-1,3-glucans and then activate the proPO system in crayfish (paper II).

The crayfish masquerade-like protein (mas-like protein) is a pattern recognition protein from hemocytes, since it can bind to LPS, β-1,3-glucans, gram-negative bacteria, and yeast. The mas-like protein also has an opsonizing and cell adhesion activity. Its amino acid sequence showed homology to serine proteinases except for a substitution within the catalytic triad, which will render it without enzyme activity (paper III and IV).

Hemolin belongs to the immunoglobulin (Ig) superfamily containing Ig-like domains and binds to the lipid A part of LPS and gram-negative bacteria. It is the major inducible immune protein identified in the hemolymph, up-regulated about 18 fold upon immune challenge of Hyalophora cecropia pupae (Lanz-Mendoza et al., 1996; Lanz-Mendoza and Faye, 1999) and 30-40 fold in Manduca sexta larvae (Zhoa and Kanost, 1996). The role of hemolin in vivo has not been fully clarified. However a number of data suggest a dual function in non-self recognition and signal transduction during the immune response and it also seems to have a role in neurogenesis (Lanz-Mendoza and Faye, 1999). Hemolin was shown to have similarity with transmembrane cell adhesion
molecules (Sun et al., 1990; Bettencourt et al., 1997). So far, hemolin has been reported from three lepidopteran species (Lanz-Mendoza et al., 1996; Zhoa and Kanost, 1996) and a mollusc (Hoek et al., 1996).

These data demonstrate that pattern recognition proteins are involved in various innate immune responses and this study will provide a background for understanding how invertebrates control their immune system against invading foreign pathogens.
Figure 1. Schematic representation of innate immune systems in crayfish. A: \(\beta \text{GBP} \) is activated by \(\beta \)-1,3-glucan and then induces the degranulation of hemocytes. Several proteins are released. B: The proPO and clotting system in crayfish.
<table>
<thead>
<tr>
<th>Proteins</th>
<th>Properties / References</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPS-binding proteins</td>
<td></td>
</tr>
<tr>
<td>cockroach Periplaneta americana LBP</td>
<td>Opsonin (Jomori and Natori, 1991; 1992; Kawasaki et al., 1996)</td>
</tr>
<tr>
<td>fall webworm Hyphantria cunea GNB</td>
<td>Binding to LPS (Shin et al., 1998; Shin et al., 2000)</td>
</tr>
<tr>
<td>horseshoe crab T. tridentatus Factor C</td>
<td>Initiation of the coagulation system (Muta et al., 1991; 1993a; Nakamura et al., 1986; 1988)</td>
</tr>
<tr>
<td>horseshoe crab LPS-binding protein</td>
<td>Negative regulator of coagulation (Roth and Tobias, 1993)</td>
</tr>
<tr>
<td>mosquito Anopheles gambiae GNB</td>
<td>LPS binding activity (Dimopoulos et al., 1997)</td>
</tr>
<tr>
<td>silkworm bombyx mori BmLBP</td>
<td>Hemoctye nodule formation; bacterial clearance (Koizumi et al., 1997; 1999)</td>
</tr>
<tr>
<td>silkworm bombyx mori GNBP</td>
<td>Binding to G(-) bacteria (Lee et al., 1996)</td>
</tr>
<tr>
<td>Ig-like proteins</td>
<td></td>
</tr>
<tr>
<td>moth Hyalophora cecropia Hemolin</td>
<td>IgG-like protein; Binding to LPD and G(-) bacteria; prevents hemocyte aggregation; enhances phagocytosis (Lanz-Mendoza et al., 1996)</td>
</tr>
<tr>
<td>snail Lymnaea stagnails MDM</td>
<td>IgG-like protein (Hoek et al., 1996)</td>
</tr>
<tr>
<td>tobacco hornworm M. sexta Hemolin</td>
<td>IgG-like protein; prevents hemocyte aggregation; enhances phagocytosis (Zhao and Kanost, 1996)</td>
</tr>
<tr>
<td>β-1,3-glucan binding proteins</td>
<td></td>
</tr>
<tr>
<td>black tiger shrimp P. monodon GGBP</td>
<td>Binding to βG (Sritunyalucksana et al., unpublished)</td>
</tr>
<tr>
<td>brown shrimp P. californiensis GGBP</td>
<td>Involvement in proPO system (Vargas-Albores et al., 1996)</td>
</tr>
<tr>
<td>cockroach Blaberus craniifer GGBP</td>
<td>Involvement in proPO system (Söderhäll et al., 1988)</td>
</tr>
<tr>
<td>crayfish P. leniusculus βGBP</td>
<td>Involvement in proPO system; plasma high-density lipoprotein; opsonin; degranulation factor (Duvic and Söderhäll, 1990; 1993; Barracco et al., 1991; Cerienius et al., 1994; Thörnqvist et al., 1994; Hall et al., 1995)</td>
</tr>
<tr>
<td>horseshoe crab T. tridentatus Factor G</td>
<td>Initiation of the coagulation system (Seki et al., 1994; Muta et al., 1995; 1996)</td>
</tr>
<tr>
<td>silkworm Bombyx mori βGRP</td>
<td>Involvement in proPO system (Ochiai and Ashida, 2000)</td>
</tr>
<tr>
<td>tobacco hornworm M. sexta βGBP</td>
<td>Involvement in proPO system, agglutulin (Ma and Kanost, 2000)</td>
</tr>
<tr>
<td>LPS & β-1,3-glucan binding proteins</td>
<td></td>
</tr>
<tr>
<td>crayfish P. leniusculus LGBP</td>
<td>Involvement in proPO system (paper II)</td>
</tr>
<tr>
<td>crayfish P. leniusculus mas-like protein</td>
<td>Opsonin; cell adhesion (paper III and IV)</td>
</tr>
<tr>
<td>earthworm Eisenia foetida CCF-1</td>
<td>Involvement in proPO system; cytolytic factor; opsonin; TNF-α function (Beschin et al., 1998; 1999)</td>
</tr>
<tr>
<td>Peptidoglycan binding proteins (T3-lysozyme-like protein)</td>
<td></td>
</tr>
<tr>
<td>fruit fly Drosophila melanogaster GNB</td>
<td>Binding to PG</td>
</tr>
<tr>
<td>fruit fly D. melanogaster PGRP-SA</td>
<td>Involvement in proPO system (Werner et al., 2000)</td>
</tr>
<tr>
<td>PGRP-SC1B</td>
<td>Binding to PG</td>
</tr>
<tr>
<td>moth Trichoplusia ni PGRP</td>
<td>Binding to PG and G(+) bacteria (Kang et al., 1998)</td>
</tr>
<tr>
<td>silkworm Bombyx mori PGRP</td>
<td>Involvement in proPO system (Yoshida et al., 1996; Ochiai and Ashida, 1999)</td>
</tr>
<tr>
<td>Lectins</td>
<td></td>
</tr>
<tr>
<td>Cockroach Blaberus craniifer BDL 1</td>
<td>Binding to mannose</td>
</tr>
<tr>
<td>BDL 2</td>
<td>Opsonin; binding to D-GlcNAc/D-GalNAc</td>
</tr>
<tr>
<td>BDL 3</td>
<td>Opsonin; binding to D-GalNAc</td>
</tr>
<tr>
<td>GSL</td>
<td>Binding to β-1,3-glucan (Wilson et al., 1999)</td>
</tr>
<tr>
<td>fruit fly Drosophila melanogaster Lectin</td>
<td>Binding to galactose (Hag et al., 1996)</td>
</tr>
<tr>
<td>flesh fly S. peregrina Granulocytin</td>
<td>Agglutulin; binding to mucin (Fujita et al., 1998)</td>
</tr>
<tr>
<td>horseshoe crab T. tridentatus Lectin-L6</td>
<td>Enhancing the antibacterial activity of big defensin; binding to N- Acetyl group (Iwanaga et al., 1998; Gokudan et al., 1999)</td>
</tr>
<tr>
<td>Tachylectin-5</td>
<td>Agglutulin; antibacterial activity against G(-) (Saito et al., 1995b)</td>
</tr>
<tr>
<td>tobacco hornworm M. sexta immulectin 1</td>
<td>Agglutulin; Involvement in proPO system (Yu et al., 1999)</td>
</tr>
<tr>
<td>immulectin 2</td>
<td>Agglutulin; Involvement in proPO system (Yu et al., 2000)</td>
</tr>
</tbody>
</table>

Table 1. Pattern recognition molecules of invertebrates.
RESULTS AND DISCUSSION

The prophenoloxidase activating enzyme with a defensin-like domain has antibacterial activity in vitro (paper I)

The major component of the proPO system is PO. In vitro studies have shown that PO exists as an inactive precursor, proPO, which is activated in a stepwise process involving serine proteinases triggered by microbial cell wall components, such as LPS, \(\beta \)-1,3-glucan or peptidoglycan.

The crayfish prophenoloxidase activating enzyme (ppA) was purified and partially characterized from hemocytes. The purified ppA has a molecular mass of about 36 kDa and is able to convert proPO to an active PO without any additional factors (Aspán et al., 1990b). This protein was cloned from a blood cell cDNA library and its corresponding cDNA of 1,736 base pairs encodes a zymogenic protein (proppA) of 468 amino acids. A transcript of 1.8 kilobase was detected in mRNA preparations from crayfish hemocytes by Northern blot analysis.

The proppA has a putative signal sequence of 23 amino acids and the mature protein consists of 445 amino acids with a calculated molecular mass of 48,107 Da and an estimated pI of 9.04. The cleavage site for the activation of proppA was identified by amino acid sequencing as an internal peptide bond between Arg236 and Ile237, which separates a 23 kDa cationic N-terminal half (pI=11.9) and a 25 kDa anionic C-terminal half, serine proteinase domain (pI=4.6). The C-terminal half of the proppA is composed of a typical serine proteinase domain, with a sequence similar to other invertebrate and vertebrate serine proteinases. The N-terminal half contains a basic glycine-rich domain, a basic proline-rich domain and a clip-domain, in which the disulfide-bonding pattern is likely to be identical to those of the horseshoe crab big defensin and mammalian \(\beta \)-defensins.

Two kinds of antibodies were raised against synthetic peptides derived from a region of C- (anti-C antibody) and the N-terminal halves (anti-N antibody). Antibodies made against both the C- and the N-
terminal halves recognize two proppAs with molecular masses of 58 kDa and 56 kDa under reducing conditions, 46 kDa and 44 kDa under non-reducing conditions, which are probably isoforms of proppA. However, under non-reducing conditions only the anti-C antibody recognized the two proppAs and it could efficiently inhibit the laminarin (β-1,3-glucan)-triggered activation of prophenoloxidase in vitro, which suggests that a conformational change take place upon reduction that allows the anti-N to react with the N-terminal half of proppA. The purified ppA has a molecular mass of 36 kDa, which is probably a result of that the C- and N-terminal halves are still linked by a disulfide bridge after proteolytic cleavage.

The clip domain structure of the crayfish proppA is similar to the corresponding domain in three insect proppAs (paper I; Jiang et al., 1998; Satoh et al., 1999), as well as in the horseshoe crab proclotting enzyme (Muta et al., 1993b). Moreover, the disulfide bonding pattern in the clip-domain shows similarity to those of horseshoe crab big defensin (Saito et al., 1995a) and the β-defensin-12 of the bovine neutrophils (Tang and Selsted, 1993). To ascertain the role of this domain, the recombinant clip-domain in crayfish proppA was overexpressed in E. coli and the resulting peptide exhibited anti-bacterial activity against gram-positive bacterial strains such as Micrococcus luteus Ml11 and Bacillus megaterium Bm11 with 50 % growth inhibitory concentrations of 1.43 µM and 17.9 µM, respectively. These results suggest that the proppAs may have a dual function; one is to activate proPO and another one to generate antibacterial peptides.

A lipopolysaccharide- and β-1,3-glucan binding protein involved in the proPO system (paper II)

A lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) was isolated and characterized from blood cells (hemocytes) of the freshwater crayfish Pacifastacus leniusculus. The LGBP was purified by chromatography on Blue-Sepharose and Phenyl-Sepharose, followed by Sephacryl S-200. The homogeneous LGBP has a molecular mass of 36
kDa and 40 kDa on 10 % SDS-PAGE under reducing and non-reducing conditions, respectively. The calculated mass of LGBP is 39,492 Da, which corresponds to the native size of LGBP and the estimated pI of the mature LGBP is 5.80.

The LGBP was cloned from a crayfish hemocyte cDNA library. The result shows that LGBP has a signal peptide of 15 amino acid residues and the mature LGBP has 346 amino acid. The 3′-UTR contains more than 17 tandem repeats of 32 nucleotides. Northern bot analysis shows that mRNA of LGBP is constitutively expressed as a single band of 5.3 kilobases in hemocytes. Two probes, one spanning the coding region and another the 3′-untranslated region with 17 repeated sequences, gave the same band, which indicates that the repeated sequences are not an artifact.

By using fluorescein isothiocyanate-labeled LPS, we could detect that the LPS binding activity of immobilized LGBP increased gradually in a dose-dependent manner. In solution, LGBP was also shown to bind to LPS as well as to β-1,3-glucans such as laminarin and curdlan, but not to peptidoglycan.

To evaluate the involvement of LGBP in the proPO system, a polyclonal antibody against LGBP was made and used for the inhibition of phenoloxidase (PO) activity triggered by the β-1,3-glucan, laminarin. The PO activity was completely blocked by the anti-LGBP antibody. The inhibited PO activity could be recovered by the addition of laminarin-preincubated LGBP, but not by laminarin itself or laminarin-preincubated BSA. These results suggest that the 36kDa LGBP plays a role in the activation of the proPO system in crayfish as a PRP.

The primary structure of LGBP shows significant homology with several putative gram-negative bacteria binding proteins and β-1,3-glucanases (see Table 1).

Properties of the mas-like protein (paper III and IV)

Previous studies have suggested that serine proteinases are involved in invertebrate innate immune response. Several clones
encoding putative serine proteinases were isolated from a crayfish hemocyte cDNA library. One of these clones is a crayfish masquerade-like protein. This protein has a similar primary structure to *Drosophila melanogaster* masquerade (mas) (Murugasu-Qui *et al*., 1995), a serine proteinase homologue expressed during embryogenesis and larval and pupal development.

Typical structure of serine proteinases, such as the catalytic triad, a substrate binding pocket, the position of six conserved cysteine residues and putative activation site of the proenzyme, are present in the mas-like protein except that a serine residue is replaced by glycine in the catalytic triad resulting in a protein without proteinase activity.

The crayfish mas-like protein consists of a modified serine proteinase domain, seven disulfide-knotted motifs, and a repeated glycine-rich region present in the N-terminal half. Several serine proteinase homologues have already been identified in vertebrates and invertebrates. Although the proteins have no enzyme activity, they have been suggested to have different biological functions such as; a cell adhesion activity, antimicrobial activity, LPS binding activity, to function as a growth factor, and a component of proPO system (paper III; IV; Murugasu-Qui *et al*., 1995; Olson *et al*., 1990; Barthalay *et al*., 1990; Almeida *et al*., 1996; Kawabata *et al*., 1996; Nakamura *et al*., 1989; Kwon *et al*., 2000; Dimopoulos *et al*., 1997).

The mas-like protein could also be purified by its *E.coli* binding property. The mas-like protein recognized formaldehyde treated gram-negative bacteria, *i.e.* *E. coli*, *P. vulgaris*, and *S. flexneri* as well as yeast, *Saccharomyces cerevisiae*, whereas it does not bind to formaldehyde fixed gram-positive bacteria.

The intact mas-like protein is present in crayfish hemocytes as a heterodimer composed of two subunits with molecular masses of 134 kDa and 129 kDa. Under reducing conditions the molecular masses of the intact proteins are not changed. The 134 kDa and 129 kDa proteins are isomers encoded by one cDNA, and these masses are higher than predicted from the open reading frame, *i.e.* 98.8 kDa, and it is therefore possible that the difference in molecular masses is a result of
glycosylation. After binding to bacteria or yeast cell walls, the mas-like protein is processed by a proteolytic enzyme, which cleaves at a specific site, LDL/YR.

The 134 kDa of the processed protein yields four subunits of 65 kDa, 47 kDa, 33 kDa, and 29 kDa and the 129 kDa protein results in four subunits of 63 kDa, 47 kDa, 33 kDa, and 29 kDa in 10% SDS-PAGE under reducing conditions. Obviously, the 65 kDa and 63 kDa subunits are not completely processed into the 47 kDa and 29 kDa subunits, since these two molecules always exist in a fairly high concentration. Moreover, the 65 kDa and 63 kDa subunits showed identical N-terminal amino acid sequences, but have slightly different molecular masses on SDS-PAGE. We propose that glycosylation or cleavage of the C-terminal part might give rise to this difference in masses. The 47 kDa and 33 kDa subunits also have different masses from the calculated masses 31.6 kDa and 29.8 kDa, respectively, since they have glycosylation sites and high amount of cysteines. The intact form of the mas-like protein contains seven putative disulfide-knotted motifs and two of these disulfide motifs are involved in inter-disulfide bonding.

A 27 kDa subunit of the mas-like protein can be purified using a high concentration of calcium ion buffer and an affinity column with the anti-mas-like protein antibody. It could be detected by immunoblot analysis using an affinity-purified antibody against a synthetic peptide in the C-terminal domain of 27 kDa (paper III). The 33 kDa subunit was also detected using the same antibody when this protein was purified by its *E. coli* binding property using crayfish phosphate-buffered saline without calcium ions. The 29 kDa subunit (a part of 65 kDa and 63 kDa subunit) as well as other subunits were not detected by this anti-mas-like protein antibody, since the antibody was made to a synthetic peptide, corresponding to a portion of the 27 kDa subunit (paper III and IV). Interestingly, the N-terminal amino acid sequences of 27 kDa and 33 kDa subunit exhibit identical sequences showing that the 27 kD and 33 kDa subunits are the same protein. Therefore, high concentration of calcium ions seems to cause a conformational change of the protein or alternatively the protein may be cleaved differently at the C-terminus.
The 27 kDa mas-like protein exhibited cell adhesion activity \textit{in vitro}, indicating that the C-terminal domain of the crayfish mas-like protein mediates cell adhesion, whereas the two intact proteins, 134 kDa and 129 kDa, have binding activity to LPS, glucans, gram-negative bacteria, and yeast. The processed form of the mas-like protein was unable to bind any microorganism. The processing of the mas-like protein is similar to that of human hepatocyte growth factor (Nakamura \textit{et al.}, 1989) (HGF), which also has a serine proteinase-like domain. This protein is processed to a mature form by cleavage with an unknown trypsin-like enzyme (Nakamura \textit{et al.}, 1989).

\textit{E. coli} coated with the mas-like protein were more rapidly cleared in crayfish than only \textit{E. coli} suggesting this protein is an opsonin. Therefore, the cell adhesion and opsonic activities of the mas-like protein, which will greatly accelerate the rate of phagocytosis suggest that it plays a role as an innate immune protein.
CONCLUSIONS

The aim of this work is to understand innate immune responses in crayfish. Therefore, several related proteins were purified and characterized both using molecular and biological methods and their functions investigated.

Invertebrates do not contain antigen-specific lymphocytes and do not produce immunoglobulin molecules. However, they contain a number of soluble molecules that bind to and lyse microorganisms. Typical such molecules are lectin-like proteins, which bind to carbohydrates present on microbial cell walls and hence initiate several immune responses as well as agglutinate the invading microorganisms. Invertebrates also produce numerous antimicrobial peptides.

Prophenoloxidase activating system (proPO system) is an innate immune system of invertebrates and is activated by microbial cell wall components such as LPS, peptidoglycan, or β-1,3-glucan recognized PRP. Prophenoloxidase (proPO) is an essential enzyme for producing melanin and is activated by the prophenoloxidase activating enzyme (ppA).

The ppA was purified and cloned from crayfish hemocyte and has been shown to have serine proteinase activity. Arthropod ppAs have a clip-like domain as a common structure and this clip-domain might have antimicrobial activity, because their structure shows high homology to horseshoe crab big defensin and human β-defensin. The clip-like domain within crayfish proppA is the first, which has been expressed and shown to exhibit antibacterial activity in vitro against gram-negative bacteria. Although low concentration of antibacterial fragments is generated from a proppA in vivo, it may be of importance at localized places where the proPO system is activated by invading microorganisms, for example in melanized nodules. This suggests that arthropod proppAs have a dual function, that is, the activation of proPO and antibacterial activity. However, further investigations need to be done to understand the dual function of proppA in vivo and the interaction between the other domains in the N-terminal half, the proline- and glycine-rich domain.
For activation of the proPO system, LPS, β-1,3-glucan, and peptidoglycan binding/recognition proteins recognize common structures of carbohydrates in microorganisms. Several carbohydrate recognition proteins were reported to be involved in the activation of proPO system. Crayfish LGBP was also demonstrated to have a binding activity to LPS and β-1,3-glucan, and hence to play a role as initiator of proPO system. However, the relationship between LGBP and proppA is yet unknown in arthropods. It has to be investigated in more detail whether LGBP can directly activate proppA or if LGBP interacts with another proteinase to activate proppA in the proPO system. Thus an important future study would be to isolate and characterize the remaining proteinases involved in the proPO system.

The crayfish mas-like protein is also characterized as a PRP. The processing of crayfish mas-like protein is interesting and the processed form of mas-like protein was purified by its Escherichia coli-binding activity in crayfish hemocyte. The mas-like protein exists in an intact form, but while the mas-like protein binds to microorganisms, it is processed by an unknown proteolytic enzyme. It would be interesting to see which proteinase is involved in the processing of the mas-like protein and the role of its other subunits after cleavage.

After processing, the mas-like protein was separated into 5 subunits (65 kDa, 63 kDa, 47 kDa, 33 kDa, and 29 kDa) on SDS-PAGE. Interestingly, 33 kDa subunit changed its molecular mass to 27 kDa under a high calcium concentration. This suggests that a calcium ion might effect protein conformational change and the processing of the mas-like protein. It would be interesting to investigate the effect of calcium concentration on the mas-like protein processing. The 27 kDa protein has cell adhesion activity, whereas the intact mas-like protein has binding activity to various gram-negative bacteria, LPS, yeast, and β-1,3-glucan.

An interesting future study would also be to reveal whether any proteinase of the proPO system is involved in the cleavage of Spätzle resulting in induction of the antifungal peptide, drosomycin in Drosophila. It seems logic that there is some connection between the
proPO system and induction of antibacterial synthesis, since the proPO system is so sensitive to activation by microbial polysaccharide. In crayfish for example this proPO system can be activated by picogram of LPS or β-1,3-glucans making this system extremely sensitive to microbial polysaccharides.
ACKNOWLEDGEMENTS

I would like to thank everybody who has directly or indirectly contributed to this thesis.

Professor Kenneth Söderhäll, my supervisor, for comprehensive teaching and advising me, for giving me the chance to try and sometimes make mistake, and for his patience with my English grammar.

Professor Bok Leul Lee for introducing me into biochemistry field and professor Jae Sue Choi and Young Hee Shin for constant encouragement.

Dr. Lage Cerenius, Dr. Martin Hall and Dr. Mats Johansson for fruitful discussions.

All the former and present members of our department: Anbar, Andreas, Cris, David, Eakaphun, Felix, Gunnar (and Mahsa), Hans, Heikki, Irene, Kallaya (and Somsak), Karin, Maria, Marina, Mårten, Patricia, Per-Ove, Pia, Pikul, Ragnar, Ruigong, Susan, Tove and for their help, advice, and great experience in Sweden.

My Korean friends for great helping me to survive (?) in Sweden and many of my Korean friends in Korea.

Last but not least, I deeply thank my parents, my grand mother, and my sisters for endless love and patience and always trusting in me.

All of my experiences in Sweden will help me in the future. I never will forget your help. Thank you very much all of you!

This work has been supported by Swedish Natural Science Research Council, the Swedish Council for Forestry and Agricultural Research and Eliassons Fundation.

Uppsala April 2001
So Young, Lee
REFERENCES

Muta, T., Seki, N., Takaki, Y., Hashimoto, R., Oda, T., Iwanaga, A.,
factor G: a new heterodimeric serine protease zymogen sensitive to (1
Muta, T., Tokunaga, F., Nakamura, T., Morita, T. and Iwanaga, S.
(1993a) Limulus clotting factor C: lipopolysaccharide-sensitive serine
phenol oxidase activation in arthropod host defense. J. Biol. Chem.,
275, 29264-29267.
Nakamura, T., Morita, T. and Iwanaga, S. (1986) Lipopolysaccharide-
sensitive serine-protease zymogen (factor C) found in Limulus
hemocytes. Isolation and characterization. Eur. J. Biochem., 154,
511-521.
Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M.,
and expression of human hepatocyte growth factor. Nature, 342, 440-
443.
Interaction between lipopolysaccharide and intracellular serine
protease zymogen, factor C, from horseshoe crab (Tachypleus
Sarcophaga defense molecules in immunity and metamorphosis. Dev.
peptidoglycan. Cloning the cDNA and the gene of the silkworm,
1,3-Glucan. The binding domain and the cDNA cloning of β-1,3-
Chem., 275, 4995-5002.
Olson, P. F., Fessler, L. I., Nelson, R. E., Sterne, R. E., Campbell, A. G.
membrane-related glycoprotein with sequence similarity to serine
esterases. EMBO J., 9, 1219-1227.
of arthropod phenoloxidase is abundant in venom of the parasitoid
wasp Pimpla hypochondriaca. Insect Biochem. Molec. Biol., 31, 57-
63.

