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We present a deep-learning-based algorithm to jointly solve a reconstruction 
problem and a wavefront set extraction problem in tomographic imaging. The 
algorithm is based on a recently developed digital wavefront set extractor as well 
as the well-known microlocal canonical relation for the Radon transform. We use 
the wavefront set information about x-ray data to improve the reconstruction by 
requiring that the underlying neural networks simultaneously extract the correct 
ground truth wavefront set and ground truth image. As a necessary theoretical 
step, we identify the digital microlocal canonical relations for deep convolutional 
residual neural networks. We find strong numerical evidence for the effectiveness of 
this approach.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Tomographic imaging aims at uncovering the interior 2D/3D structure of an object from a sinogram, 
which is data obtained by repeatedly exposing the object to a particle or wave from different directions. 
This is a key example of an inverse problem where one computationally attempts recover an unknown signal 
from data given as indirect observations. A reconstruction method refers to an algorithm performing the 
recovery.
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Inverse problems, like those that arise in tomographic imaging, are often ill-posed which means that 
there can be multiple solutions consistent with the data or solution procedures that maximise consistency 
against measured data are sensitive to variations in data. Such high sensitivity is referred to as instability, 
and it appears when the forward operator, which models how a signal gives rise to corresponding noise-
free data, is not continuously invertible. Stability properties are further degraded for sparse-view data, 
which is when data is under-sampled, and for limited-angle data, which refers to unevenly sampled data. 
Regularisation refers to mathematical theory and methods for stabilising the solution procedure of an ill-
posed inverse problem. Many regularisers enforce stability by requiring consistency against a prior model. 
This prior should ideally encode known properties of the unknown signal one seeks to recover, and choosing 
an appropriate prior is an essential part of regularisation.

Most reconstruction methods in tomography assume that measurements are collected from views that 
are evenly distributed around the object. Limited-angle tomography refers to a case when this is not ful-
filled. Such problems arise naturally in many applications, like digital breast tomosynthesis [60,6], dental 
tomography [43,44], electron tomography [68,63], transmission x-ray microscopy [42], nondestructive test-
ing [66,71], geophysical prospecting [84], etc. This missing data significantly amplifies the instability in 
the corresponding reconstruction problem [21,58]. Hence, traditional reconstruction methods, like filtered 
back-projection (FBP) [10,78,36], that implicitly assume missing data is zero do not perform well in such 
situations. Overall, it has been very challenging to develop regularisation methods that handle this insta-
bility, as these methods somehow need to fill in the missing data without imposing too strong assumptions 
on the signal; see the brief survey in Subsection 1.3. As a consequence, it has been challenging to develop 
practically useful reconstruction methods for limited-angle tomography that provide sufficient improvement 
over traditional reconstruction methods. In this context, we consider a reconstruction method practically 
useful if it is computationally feasible and does not require a user to set multiple hyperparameters.

1.1. Main contributions

In this paper, we develop theory and algorithms for reconstruction in severely ill-posed inverse problems 
that arise in tomographic imaging with limited data. In particular, we develop a data-driven reconstruction 
method for limited-angle tomography that is microlocally consistent, which means ‘filling in’ missing data 
in a way that is consistent with how singularities in data are related to those in the signal.

Our approach relies on deep neural networks (DNNs) that integrate a handcrafted forward operator and 
a theoretical characterisation of how singularities in data are related to those in the signal. In this context, 
we model singularities through the concept of the wavefront set, that will be introduced in detail in Section 3
below. For the Radon transform, which is the forward operator underlying the tomography problem, it is 
known exactly how an application of it affects the wavefront set of underlying data. Indeed, the wavefront 
set of an image and its Radon transform are linked through so-called canonical relations. To use this a 
priori information on the wavefront set in the reconstruction problem, we set up the following method: Our 
algorithm consists of two workflows that act in parallel. First, a reconstruction line that maps the data to 
the (unknown) signal. This is a specific deep neural network using the Learned Primal-Dual architecture, 
[2]. Second, a micro-local line that identifies the wavefront set of the signal by using the following three 
steps: (a) A neural network that extracts the wavefront set of the data. This neural network has been 
established earlier in [4] under the name DeNSE and is based on the interaction of the shearlet transform 
with the wavefront set of a function. (b) An analytical computation relating the wavefront set in the data 
domain to the image domain in a way that mirrors the action of the Learned Primal-Dual architecture 
of the reconstruction line. The two lines are coupled via this step. (c) A neural network with the U-Net 
architecture [72] that inpaints the wavefront set in the image domain that was inferred from the incomplete 
data.
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The neural networks in the microlocal line and the reconstruction line are now trained in parallel on an 
artificial training set consisting of 2D phantoms (signals) with corresponding noisy and incomplete sinogram 
data. The phantoms are made up of random shapes that are demarcated by piecewise smooth curves given 
by splines of degree at most four. Several examples from the data set are shown in Fig. 2.

The combined procedure, which we will be calling the joint reconstruction algorithm, now attempts to 
satisfy two objectives on that data set: (a) The reconstruction returned from the reconstruction line should 
agree as closely as possible with the ground truth. (b) The wavefront set returned by the microlocal line 
should resemble the ground truth wavefront set of the data accurately.

We refer to Section 5 for the complete description of the joint reconstruction algorithm and in particular 
Fig. 4 for an illustration of the underlying DNN architecture.

Note that, due to the simplicity of the training data set, we can analytically compute the true wavefront 
set for those signals, which in turn is needed for the aforementioned joint training of the DNNs for wavefront 
set inpainting and reconstruction. In contrast, our test data consists of images of brains and associated noisy 
incomplete sinograms. Therefore, the training data is substantially different from the test data. As such, the 
empirical numerical study also shows the generalisation properties of our approach.

We wish to emphasise that this approach applies in principle to any inverse problem where the forward 
operator is a Fourier integral operator, as is the case for most inverse problems arising in imaging applica-
tions. However, for simplicity, we chose to work out the theoretical results with associated algorithms and 
numerical examples only for the specific case of planar limited-angle tomography.

A central part of the proposed algorithm consists of the theoretical analysis of how the Learned Primal-
Dual architecture affects the extracted wavefront set. At this point, the reader may justifiably wonder if it 
would not instead be possible to estimate the wavefront set of the output of this architecture directly via 
the wavefront set extractor DeNSE. This is theoretically possible but turned out to be practically infeasible. 
While the wavefront sets of the data set can be precomputed, this cannot be done for the outputs of the 
Learned Primal-Dual network as the Learned Primal-Dual network varies during the training. This means 
that during training a full application of DeNSE would have to be performed in every training step. On 
a modern machine, an application of DeNSE to a single image in the data set takes approximately 20
seconds, which shows that this approach would slow down the training process dramatically compared to 
our method where the propagation of the wavefront set through the reconstruction architecture is established 
analytically.

As a small appetiser, we conclude this overview of the main contributions by illustrating the superior 
performance of our approach. Fig. 1 compares reconstruction performed by a DNN, here the learned primal-
dual network, against our joint approach that combines this Learned Primal-Dual network with a DNN for 
inpainting the wavefront set. In this figure, the tomographic data is given in the form of highly noisy samples 
of the Radon transform with 40◦ missing angular wedge. Reconstructions shown in the top row are from two 
supervised deep learning approaches: namely, Learned Primal-Dual (middle) and our joint approach (right). 
The latter is essentially the Learned Primal-Dual network combined with a learned wavefront set inpainting 
that complements missing data in a microlocally consistent manner. One can see that the qualities of both 
image reconstruction and wavefront set inpainting increase when they are trained jointly.

Both the Learned Primal-Dual network and the joint DNN for reconstruction and wavefront set inpainting 
were trained against the same training data with the same total number of training steps. The joint approach 
clearly shows the benefit of complementing missing data as it is able to recover essential features that are 
lost using the Learned Primal-Dual network. Moreover, the joint approach also seems to recover reasonably 
well singularities (edges) in parts of the image that are not in the visible wavefront set. This is remarkable 
as these singularities leave, according to microlocal theory, no measurable footprint in data. Furthermore, 
applying wavefront set inpainting to data separately as a pre-processing step prior to reconstruction yields 
a significantly worse estimator for the wavefront set.
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Fig. 1. Limited-angle parallel beam tomography with a realistic brain phantom.

This shows the benefit of performing these steps simultaneously as in the joint approach. Figs. 8 and 7
present a more extensive comparison that also includes sparse-view tomography and other model based and 
data-driven methods.

1.2. Outline of the paper

Sections 1, 3 and 2 – along with Appendix A – primarily serve as background material, whereas the 
main scientific contribution is contained in Sections 4 and 5. Finally, Section 6 provides numerical examples 
that showcase the performance of the suggested approach and compares it to other methods for image 
reconstruction in limited-angle tomography. We present a more detailed outline below:

Section 1 provides background motivation from applications along with an overview of the main scien-
tific contributions (Subsection 1.1) and a survey of current state-of-the-art for limited-angle tomography 
(Subsection 1.3). This is followed by Section 2, that mathematically formalises an inverse problem, both 
as an operator equation as in (2.1) as well as a statistical inference problem as in (2.2). This section also 
introduces the notions of ill-posedness and regularisation (Subsection 2.1). Emphasis is next on the Learned 
Primal-Dual network introduced in Subsection 2.2. This is a DNN with an architecture that incorporates 
the forward operator which is to be inverted.

Background on the mathematics of tomographic imaging is provided in Section 3. There, we define 
the Radon transform arising in planar tomography (Definition 3.1) and recall some of its properties 
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Fig. 2. Examples of the piecewise smooth data set comprised of functions which are piecewise polynomial and where the interfaces 
are given by splines of degree at most four. In the second row, we depict the associated analytically found wavefront sets. The 
third and fourth rows show, respectively, the corresponding sinograms and their wavefront set, both in the limited-angle setting 
with 40◦ wedge.

(Subsection 3.1). Focus here is on extending the Radon transform and its corresponding back-projection 
(Definition 3.5) to tempered distributions. This uses basic notions from distribution theory provided in 
Appendix A (some of the material in this appendix is also used later in Section 4). Subsection 3.1 also 
introduces the restricted Radon transform arising in limited-angle tomography along with its corresponding 
restricted back-projection defined in (3.5). Finally, Subsection 3.3 formally defines the wavefront set (Def-
inition 3.6) and then states the canonical relation for the Radon transform given in (3.7). In (3.8) we also 
provide a characterisation from microlocal analysis of the visible (and invisible) parts of the wavefront set 
for the Radon transform.

The main scientific contributions are contained in Sections 4 and 5. More precisely, Section 4 provides 
a theoretical analysis of the propagation of the wavefront set through the distinct layers in a continuum 
version of the Learned Primal-Dual architecture with the Radon transform as forward operator. Section 5
then presents, in the digital setting, how the digital wavefront set is propagated through the layers of the 
Learned Primal-Dual architecture. This propagated wavefront set, along with the characterisation of the 
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visible wavefront set, is used for setting up the DNN for wavefront set inpainting, which recovers the invisible 
part of the wavefront set of a signal from the visible part. This DNN for wavefront set inpainting is then 
combined with the Learned Primal-Dual network for reconstruction, and both DNNs are trained jointly 
following the task-adapted reconstruction paradigm outlined in [1], see Section 5.6 for further details.

Finally, Section 6 provides numerical evidence and benchmarks related to image reconstruction in limited-
angle tomography.

1.3. Related work

The severe ill-posedness associated with limited data in inverse problems has attracted much interest 
within the research community. This survey will mainly focus on the development of theory and methods 
for inversion of the Radon transform from limited-angle data, which is an archetype of a severely ill-posed 
inverse problem.

1.3.1. Analytic approaches
Lambda tomography is one of the first examples of specifically designing a reconstruction method for 

limited data. It is an analytic approach that was initially developed for ‘inverting’ the Radon transform 
from region of interest data [85,28,27,46]. The idea is to replace the standard filter in filtered back-projection 
[10,78,36] (that has infinite support) with a filter that takes a second derivative in the detector variable. This 
numerical derivative filter has small support, just near the line being evaluated, hence the reconstruction 
method is local and thus it applies to region of interest data. Lambda tomography was later applied to 
limited-angle data [47], where it recovers the visible wavefront set [65,68,31,67]. The recovery is only mildly 
ill-posed [68,50], which is in stark contrast to the severe ill-posedness that is associated with attempts at 
reconstructing a function from limited-angle Radon data.

Lambda tomography is computationally efficient and offers an improvement over the traditional filtered 
back-projection method. Its robustness and usefulness was successfully demonstrated when Lambda tomog-
raphy was applied for solving the limited-angle problem with highly noisy data in electron tomography [69]. 
The analytic nature of the method also means the method is feasible for time-critical and/or large-scale 
problems. The drawbacks of Lambda tomography are similar to those of filtered back-projection, namely 
that its filter needs to be specifically designed for the acquisition geometry and that the prior implicitly 
contained for regularising the problem has limited power.

1.3.2. Variational models for reconstruction
Much effort has been spent on adapting variational models of the form in (2.3) to limited-angle to-

mography. Methods cited here aim to design regularisers that are specifically adapted for limited-angle 
tomography, e.g., by accounting for the anisotropic resolution due to limited-angle data.

Many variational models for limited-angle tomography build on modifying the total variation (TV) 
regulariser, like various anisotropic versions that were introduced in [25,8], see also [15, Section 2.4]. These 
can account for the scanning configuration bearing in mind the missing angular region in limited-angle data, 
which was also done in [19,95]. This idea was further elaborated in [91], where an iteratively re-weighted 
anisotropic TV regularisation method was introduced to approximate the sparsity of �0 quasi-norm. A further 
development came in [93] which set-up an alternating (directional) edge-preserving diffusion based on the 
one-dimensional �0 quasi-norm and a (directional) smoothing model based on a one-dimensional Dirichlet 
energy. The aforementioned directions are dictated by the missing angular region, and the regularisation 
strategy takes into consideration the fact that the �0 norm is better at preserving edges, while the �1 norm 
is better at suppressing noise. A further refinement to better balance the need for edge-preservation against 
noise-suppression was presented in [24]. Based on the theory of visible and invisible wavefront sets developed 
in [65], the authors of [24] propose a reconstruction method that encodes the visible singularities as priors 
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to recover the invisible ones. The model utilises generalised p-shrinkage operators introduced in [17] as 
regularisers to perform edge-preserving smoothing while using visible edges as anchors to recover piecewise 
constant or piecewise smooth reconstructions, while noises and artefacts are suppressed or removed. Another 
similar approach minimises an L1/L2 term on the gradient with additional box constraint that is reasonable 
for imaging applications [89].

Other attempts at sparsity-promoting variational models for limited-angle tomography rely on dictio-
nary learning [80] or use a regulariser that promotes sparse solutions with respect to wavelets [90,94] or 
curvelets/shearlets [30,71]. One can further constrain a sparse solution against a given prior image as shown 
in [18,90,94,34].

Variational models tend to preserve edges better and reduce streak artefacts that are common in limited-
angle tomography. However, the improvements are most notable for the recovery of simplistic images, 
like piecewise constant or piecewise smooth images. Furthermore, this improvement is only realised when 
(multiple) hyper-parameters are properly tuned. Finally, variational models are computationally demanding 
regarding run time and memory footprint, which in turn limits their usefulness in time-critical and/or large-
scale imaging studies. In summary, the above cited variational models offer surprisingly little, if any, benefit 
in many cases where images have more complex features that are essential for their interpretation.

1.3.3. Deep-learning-based methods for reconstruction
There are several attempts at performing tomographic reconstruction by deep neural networks that are 

extensively surveyed in [5]. Most can be viewed as using techniques from deep learning to approximate 
different estimators for the statistical formulation of the reconstruction problem in (2.2).

A popular approach for using deep learning in tomographic image reconstruction is to use a trained DNN 
as a post-processing step for improving an initial imperfect reconstruction. Such an approach was used for 
limited-angle tomography in [42], which trains a U-Net against synthetic ellipsoid data and multi-category 
data to reduce artefacts from images obtained by filtered back-projection.

A more domain-adapted approach that outperforms post-processing is to consider DNN architectures for 
reconstruction that are obtained from unrolling a suitable iterative scheme. One example is the Learned 
Primal-Dual network in [2] outlined in Subsection 2.2 that incorporates a handcrafted forward operator and 
the adjoint of its derivative along with the acquisition geometry. This DNN was recently further adapted to 
limited-angle tomography in breast tomosynthesis [81] by incorporating additional prior information about 
the geometry in the form of the thickness measurement of the breast under compression.

A different deep-learning-based approach for limited-angle tomography is presented in [13]. Here, one 
learns the invisible part of the image using the visible part of its shearlet coefficients. This amounts to 
learning an anisotropic regulariser in a variational model.

1.3.4. Sinogram inpainting
An entirely different approach to limited-angle tomography is to fill in the missing angular data by some 

extrapolation scheme (sinogram inpainting or sinogram-recovery). This pre-processing step needs to be done 
in a stable manner and [22,23] uses a regularised iterative scheme for this purpose. Another approach uses 
projection onto convex sets to ensure the extrapolated sinogram is indeed valid by making sure it lies in the 
range of the Radon transform (Helgason-Ludwig consistency condition) [51].

As to be expected, there have also been attempts at using deep learning for sinogram inpainting. Here, 
much work has been inspired by the success that generative adversarial networks (GANs) have had in restor-
ing missing parts of an image (image inpainting). In particular, [62] develops a deep-learning-based image 
inpainting where one jointly trains the DNN that inpaints the edges and the image, using the philosophy 
‘lines first, colour next’. The DNN for wavefront set inpainting (Subsection 5.6) that we use in this paper is 
strongly inspired by [62]. In our case, the missing parts are in the sinogram domain. Consequently, we need 
to use the reconstruction method to map the singularities to the image domain.
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Most approaches for deep-learning-based sinogram inpainting are based on setting up and training a GAN 
to generate the missing sinogram data in order to suppress the streak artefacts from the truncated sinogram 
in limited-angle data. An example of such an approach is [56] that uses a U-Net generator and patch-design 
discriminator in the GAN to make the network suitable for standard medical tomography images. The GAN 
is trained against paired limited-angle and full sinogram data using a joint projection domain and image 
domain loss function where the weighted image domain loss can be added by back-projection. In this regime, 
we also refer to [92,64] for similar approach based on GANs.

1.3.5. Joint sinogram inpainting and reconstruction
The final series of methods jointly perform the two tasks of sinogram inpainting and reconstruction. 

A variational model for doing this is presented in [83] where the resulting non-convex and non-smooth 
minimisation is solved using an alternating (block) descent approach.

A deep-learning-based approach is developed in [96]. This approach combines a sinogram inpainting 
network and an image processing network. A key step is to use layers that correspond to Radon transform 
and its inverse inserted into existing convolutional network architectures. These allow one to go between 
sinogram and image domains and one can use the image processing network to reduce the artefacts caused 
by inconsistencies in the inpainted sinogram generated by the sinogram inpainting network. The three parts 
form an end-to-end network from sinogram domain to image domain, with benefits of taking both image 
error and sinogram error into account in the sync process in supervised training, i.e., with limited-angle/full-
view sinogram pairs. To tackle this training data bottleneck, we develop an unsupervised train method with 
only limited-angle projection on our proposed network. Inspired by the observation that the reconstruction 
and projection can form a closed loop, we can derive a calculated projection from the reconstructed image, 
and the disparity between the calculated projection and real projection provides feedback signals to train 
the proposed network unsupervised.

Finally, we also mention [97] that develops an approach with a transformer-based DNN architecture 
instead of convolutional DNNs. Streak artefacts in limited-angle tomography are non-local. Hence removing 
these with convolutional DNNs is challenging. One approach to encode such long-range dependencies is to use 
unrolling based DNN architectures, like the Learned Primal-Dual network, that couple many convolutional 
neural networks with the forward operator and the derivative of its adjoint. Another approach is to consider 
transformer-based architectures that are better suited than convolutional DNNs due to their non-local 
nature. As shown in [97], such transformer-based DNNs have excellent performance for reconstruction in 
limited angle tomography. A downside of transformer DNNs is that they are very demanding to train and 
require massive amounts of training data, so this approach will scale poorly. Some of the issues related to 
memory footprint could perhaps be addressed by using more domain adapted transformer architectures, 
like Fourier Image Transformer [14]. Furthermore, there are still no guarantees that [97] extrapolates the 
missing data in a microlocally consistent manner.

2. Inverse problems, ill-posedness and regularisation

To mathematically formalise the notion of an abstract inverse problem, we introduce the separable Banach 
spaces X (reconstruction space) and Y (data space) whose elements represent possible signals and data, 
respectively. In many applications, the reconstruction and data spaces are also Hilbert spaces. Next, the 
mapping A : X → Y (forward operator) represents a model for how a signal generates noise free data.

The classical functional analytic/frequentist formalisation views an inverse problem as an operator equa-
tion. More precisely, an inverse problem is the task of recovering an unknown signal ftrue ∈ X from data 
g ∈ Y that is a single sample of the Y -valued random variable g defined as

g : =A(ftrue) + e where e is a Y -valued random variable representing observation noise. (2.1)
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The statistical formulation further generalises the above by first assuming one can equip X and Y with 
Borel σ-algebrae. One furthermore assumes that the signal and corresponding data are generated by some 
(X×Y )-valued random variable (f, g) [79]. The inverse problem is now to recover a suitable estimator of the 
conditional random variable (f | g = g) from data g ∈ Y that is a single sample of the Y -valued conditional 
random variable (g | f = ftrue), where ftrue ∈ X is the true unknown signal and

g = A(f) + e where e is a Y -valued random variable representing observation noise. (2.2)

2.1. Ill-posedness and regularisation

A reconstruction method is formally a mapping R : Y → X that approximates the inverse of the forward 
operator. An inverse problem is said to be (intrinsically) unstable, i.e., ill-posed, whenever the forward 
operator A is not continuously invertible with respect to the topologies of X and Y . As already indicated, 
such inverse problems cannot be reliably solved by merely enforcing consistency against data. Regularisation 
theory addresses this by balancing the need for data consistency against consistency with respect to a prior 
model. Defining an appropriate prior model and how to balance this against data consistency are key topics 
in regularisation theory.

Most regularisation methods are based on the functional analytic/frequentist formalisation in (2.1) of 
an inverse problem. Variational models offer a powerful framework for regularisation. The reconstruction 
method R̂ : Y → X is here defined as solving a variational problem:

R̂(g) ∈ arg min
f∈X

{
L
(
A(f), g

)
+ Sθ(f)

}
for given data g ∈ Y . (2.3)

In the above, L : Y × Y → R is the data discrepancy functional that quantifies the data consistency. It is 
usually taken as a suitable affine transformation of the data log-likelihood [9]. For an ill-posed problem, 
merely minimising f �→ L

(
A(f), g

)
, which translates to seeking the solution that is maximally consistent 

with data, is an unstable procedure. The regularisation functional Sθ : X → R stabilises the reconstruction 
by penalising those candidate solutions that are not consistent with respect to some prior model. The latter 
is typically given in terms of a-priori information about the (unknown) ground truth signal ftrue ∈ X such 
as sparsity or some type of regularity, see [75,15,7] for an extensive survey of various options. The parameter 
θ (regularisation parameter) governs the balance between data consistency and having a solution consistent 
against the prior. It is low-dimensional, in many cases a scalar, and its choice depends on the magnitude of 
the noise in data.

The statistical formalisation of the inverse problem in (2.2) contains many of the variational models. More 
precisely, if the regularisation functional is proportional to the negative log of a density on X, then one 
can often interpret (2.3) as computing a maximum a posteriori estimator. An advantage with the statistical 
formalisation is that it opens up for other reconstruction methods (estimators) such as the posterior mean 
estimator that is known to be stable in most cases [55]. This estimator is given as E[f | g = g], a formulation 
that requires access to the (posterior) distribution of (f | g = g). Using Bayes’ theorem, one can in principle 
express this posterior distribution in terms of the data likelihood (g | f = f), which is given by the physics 
of data acquisition, and the true (prior) distribution of f, which among others generates the true unknown 
signal ftrue ∈ X. An alternative formulation is to phrase the posterior mean as a Bayes estimator with 
respect to the squared L2-risk. Stated more precisely, given a parametrised family {Rθ}θ∈Θ of admissible 
estimators Rθ : Y → X, we consider the reconstruction operator

Rθ̂ : Y → X where θ̂ ∈ arg minE(f,g)

[∥∥Rθ(f) − g
∥∥2

2

]
. (2.4)
θ∈Θ
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The above approximates the posterior mean, i.e., Rθ̂(g) = E[f | g = g] whenever {Rθ}θ∈Θ has sufficient 
expressive power. Note also that the expectation in (2.4) is w.r.t. the joint law for (f, g) in X × Y . Many 
supervised learning approaches for reconstruction are based on replacing the expectation in (2.4) with 
its empirical counterpart given by supervised training data, see [5, Section 5] for an extensive survey. In 
particular, it is common to use a deep neural network (DNN) with an appropriate architecture to parametrise 
the family of estimators {Rθ}θ∈Θ. One can use unrolling to define such an architecture as outlined in 
Subsection 2.2.

Finally, besides unrolling, there exist also DNN architectures that are specifically tailored for approximat-
ing Fourier integral operators. Examples are [26,29] which develop a DNN architecture based on operator 
splitting techniques derived from multiscale numerical analysis. Another example is [49], which builds an 
interpretable DNN inspired by Fourier integral operators that approximate the wave physics. Its main focus 
is on using a loss based on optimal transport to learning the geometry of wave propagation captured by 
Fourier integral operators, which is implicit in the training data.

2.2. The Learned Primal-Dual network

A particular challenge that arises in deep-learning-based approaches for solving inverse problems in 
imaging is to handle the large-scale nature of the problem as both images and data typically result in 
high dimensional arrays once digitised. Many of these applications also lack a sufficient amount of training 
data, hence using a generic DNN architecture will result in a learned reconstruction operator that does not 
perform well in the given application. For such applications, it is preferable to use a DNN architecture that 
is domain-adapted.

If the trained DNN Rθ̂ : Y → X should correspond to a (learned) reconstruction operator for an inverse 
problem of the form in (2.2), then a natural domain adaptation is to account for the requirement that 
Rθ̂ ≈ A−1 where A : X → Y (forward operator) is handcrafted (not learned). Such domain adaptation 
can be achieved by choosing a DNN architecture that is given by unrolling a suitable iterative scheme, 
see [5, Section 4]. The highly successful Learned Primal-Dual network introduced in [2] provides state-of-
the-art results for tomographic imaging. A similar unrolling technique is used in [12] to construct a novel 
convolutional DNN architecture, called ΨDONet, for learning pseudodifferential operators. This is applied 
to reconstruction in limited-angle tomography.

It is based on unrolling the non-linear primal-dual hybrid gradient method [16]. Stated in a general 
setting, the Learned Primal-Dual network is a DNN with an architecture specifically adapted for solving an 
inverse problem of the form in (2.2). The Learned Primal-Dual network is here a reconstruction operator 
Rθ : Y → X with θ = (θd0 , θ

p
0 , . . . , θ

d
N , θpN ) that is defined as Rθ(g) : = fN where fN is given by the following 

finite recursive scheme initialised by (f0, h0) ∈ X × Y :

⎧⎪⎨⎪⎩
hi : = Λdual

θd
i

(hi−1,A(fi−1), g),

fi : = Λprimal
θp
i

(
fi−1, [∂A(fi−1)]∗(hi)

)
,

for i = 1, . . . , N . (2.5)

A typical initialisation (f0, h0) ∈ X×Y is f0 = 0 and h0 = g. Next, A : X → Y is the (handcrafted) forward 
operator in (2.2) and ∂A : X → L(X, Y ) is its Fréchet derivative with ∗ denoting the dual. Finally, the 
operators

Λdual
θd
i

: Y × Y × Y → Y and Λprimal
θp
i

: X ×X → X (2.6)

are neural networks with suitable architectures.
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Fig. 3. (i) The architecture for the two-dimensional convolutional ResNet in Definition 2.1. (ii) The full Learned Primal-Dual 
architecture, every yellow and black block corresponds to a two-dimensional convolutional ResNet. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

The Learned Primal-Dual network introduced in [2] for tomographic image reconstruction operates 
directly on arrays, which here play the role of functions evaluated on Cartesian grids. As outlined in Subsec-
tion 3.2, discretised images in tomography are represented by arrays in Rn1×n2 , whereas arrays in Rm1×m2

are sinograms, which are discretisations of a real-valued function on Ξ ⊂ R × (0, π). The Learned Primal-
Dual network is then a mapping Rθ : Rm1×m2 → Rn1×n2 given as in (2.5), where the operators in (2.6)
are convolutional residual neural networks (ResNets) [38]. The precise architecture used in [2] for these 
ResNets is given next, see also Fig. 3 for an illustration of these ResNets alongside the particular architec-
ture for the corresponding Learned Primal-Dual network. We will in Subsection 4.2 extend these ResNets, 
and consequently the Learned Primal-Dual network, to operators that act on functions.

Definition 2.1 (Discrete two-dimensional convolutional ResNet). Assume arrays in Rn1×n2 represent real-
valued functions on R2 that are discretised at n1 × n2 grid points. Let Wθj ,bj : (Rn1×n2)kj−1 → (Rn1×n2)kj

for j = 1, . . . , 4 denote the following (discretised) convolutional affine operator:

Wθj ,bj (f)(i1, i2, τ) : = bτj (i1, i2) +
kj−1∑
l=1

(θl,τ
j ∗ f)(i1, i2) for τ ∈ {1, . . . , kj} and f ∈ (Rn1×n2)kj−1 . (2.7)

In the above, kj ∈ N for j = 0, . . . , 4 is the numbers of channels in the j:th layer with k4 = 1, i.e., the final 
layer is always a single channel. Next,

θj : =(θl,τ
j )kj−1,kj ∈ (R3×3)kj−1×kj−1 for j = 1, . . . , 4
l=1,τ=1
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are the channel-wise 3 × 3 convolutional filters with bj ∈ (Rn1×n2)kj as corresponding channel-wise bias 
terms. The residual convolutional network (ResNet) operator is a mapping ResNet : (Rn1×n2)n0 → Rn1×n2

defined as

ResNet(f1, . . . ,fn0
) : =f1 + F(f1, . . . ,fn0

) for f1, . . . ,fn0
∈ Rn1×n2 ,

where F : (Rn1×n2)n0 → Rn1×n2 is the operator

F(f1, . . . ,fn0
) : =

(
Wθ4,b4 ◦ReLU ◦Wθ3,b3 ◦ReLU ◦Wθ2,b2 ◦ReLU ◦Wθ1,b1

)
(f1, . . . ,fn0

).

In the above, ReLU(x) : = max{x, 0} is applied component-wise.

3. Tomographic imaging and the Radon transform

Planar tomographic imaging aims to recover a 2D image (signal) of the interior of an object from corre-
sponding tomographic data. Thus, elements in X are real-valued functions on a fixed domain Ω ⊂ R2 that 
represent possible 2D images, and X itself is some suitable function space, e.g., X ⊂ L2(R2).

Next, many tomographic imaging modalities rely on probing the object with x-rays. In the planar setting, 
these rays are all contained in a cross sectional hyperplane through the object. After adopting a simplified 
physics model for the interaction between x-rays and the object, measured data (after appropriate pre-
processing) can be viewed as noisy digitised samples of the Radon transform of the aforementioned signal.

Definition 3.1 (Radon transform). The (planar) Radon transform of f : R2 → R is defined as

A(f)(s, θ) : =
∞∫

−∞

f
(
sω(θ) + tω(θ)⊥

)
dt, for (s, θ) ∈ R× (0, π). (3.1)

In the above, ω(θ) : =(cos θ, sin θ) is the unitary vector with orientation described by the angle θ with respect 
to the x1-axis and ω(θ)⊥ : =(− sin θ, cos θ).

Remark 3.2. There do exist integrable functions f for which there is a direction ω(θ) ∈ S1 and a point 
s ∈ R such that A(f)(s, θ) does not exist. Nonetheless, it is possible to show that A(f)(s, θ) exists almost 
everywhere when f is an integrable function [61, Proposition 2.38].

Note that (s, θ) represents the line t �→ sω(θ) + tω(θ)⊥ that is orthogonal to ω(θ) ∈ S1 with (signed) 
distance s ∈ R to the origin, so A(f) is a function on lines in R2. Since data in tomographic imaging can 
be seen as noisy samples of A(f), the data space Y is an appropriate space of real-valued functions on lines 
in R2 representing non-digitised data. The angle θ ∈ (0, π) governs the direction of the x-ray that probes 
the object. It typically varies during the tomographic data acquisition and limited-angle tomography is the 
case when θ is restricted to some interval I ⊂ (0, π).

Definition 3.3 (Tomographic reconstruction). Tomographic (image) reconstruction is the inverse problem of 
recovering a ground truth image ftrue ∈ L2(R2) from noisy measurements g ∈ L2(Ξ) for some open set 
Ξ ⊂ R × [0, π]. Here, g is a single sample of the L2(Ξ)-valued random variable g in (2.1) (or (2.2) for the 
statistical formulation) with A denoting the Radon transform (Definition 3.1).
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3.1. Basic properties of the Radon transform

From a functional analytic viewpoint, the Radon transform is a linear operator that maps functions on R2

to functions on the open set R ×(0, π) (representing lines in R2). Continuity of the Radon transform depends 
on the domain of the functions chosen. As an example, the Radon transform is a bounded map on L1(R2), 
implying that it is a continuous linear operator on L1(R2) [61, Corollary 3.25], it is however unbounded 
on L2(R2). The Radon transform is also invertible but its inverse is not continuous on L1(R × (0, π)

)
[40], 

yielding that the tomographic image reconstruction problem in Definition 3.3 is an ill-posed inverse problem.
We will consider the Radon transform on Schwartz functions S(R2), i.e., rapidly decreasing and smooth 

functions with the typical locally convex topology. It is well-known that the Fourier transform maps S(R2)
onto itself. An analogous result holds for the Radon transform, namely that A : S(R2) → S

(
R × (0, π)

)
is 

a linear one-to-one mapping [39, Theorem 2.4].

Remark 3.4. S(Ω) for some open set Ω ⊂ R2 is defined as the set of functions on Ω such that their extension 
by 0 to all of R2 is a Schwartz function. In particular, this defines the space of Schwartz functions on any 
open set Ξ ⊂ R × (0, π).

Next, we introduce the back-projection as the dual to the Radon transform in a sense analogous to the 
way the adjoint of a linear transformation on Euclidean space is dual to the original transformation.

Definition 3.5 (Back-projection). The back-projection of g : R × (0, π) → R is the function A∗(g) : R2 → R

defined as

A∗(g)(x) : =
π∫

0

g(x · ω(θ), θ) dθ for x ∈ R2. (3.2)

The back-projection maps a function g on lines in R2 to a function on points in x ∈ R2 by simply 
averaging g over all lines that pass through x. A simple calculation shows that the back-projection is the 
dual to the Radon transform [61, Theorem 2.75]:〈

A(f), g
〉

=
〈
f,A∗(g)

〉
. (3.3)

The inner product on the right-hand side refers to the natural inner product on L2(R2), whereas the inner 
product on the left-hand side is the natural inner product on L2(R × (0, π)

)
. This product is well defined 

in tempered distributions since S(R2) ⊂ L2(R2) (respectively S(R × (0, π)
)
⊂ L2(R × (0, π)

)
), [76].

The duality in (3.3) can be used to extend the Radon transform to various classes of distributions, like 
compactly supported distributions [39] and tempered distributions [32,59].

In particular, one can define the Radon transform on a tempered distribution f ∈ S ′(R2) as

A(f)(φ) : = f
(
A∗(φ)

)
for all φ ∈ S

(
R× (0, π)

)
.

The extension of A∗ to S
(
R × (0, π)

)
is defined analogously and (following [61, Section 2.9.3.2 and 4.3.1]) 

one can in addition show that,

A : S ′(R2) → S ′(R× (0, π)
)

is a topological isomorphism,

A∗ : S ′(R× (0, π)
)
→ S ′(R2) is surjective.

(3.4)

In limited-angle tomography, data is given on lines contained in some open subset Ξ ⊂ R × [0, π). The 
partial Radon transform is then defined as
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AΞ : =PS′(Ξ) ◦ A,

where PS′(Ξ) is the restriction of S ′(R2) to S ′(Ξ). Note that the restriction of a tempered distribution S ′(R2)
to S(Ξ), where Ξ ⊂ R2 is open, is well defined and it corresponds to a tempered distribution in S ′(Ξ). The 
corresponding (restricted) back-projection is simply defined as in (3.2) but by setting g to 0 on lines not 
contained in Ξ. In particular, if Ξ : =R × I ⊂ R × (0, π) for some open interval I ⊂ (0, π), then

A∗
Ξ(g)(x) =

∫
I

g(x · ω(θ), θ) dθ for x ∈ R2. (3.5)

3.2. Discretisation

An image (signal) f : Ω → R defined on a domain Ω ⊂ R2 is in tomographic imaging typically digitised 
as f = (fi,j)n1,n2

i,j=1 where fi,j : = f(xi,j) for xi,j ∈ Ω. Similarly, a sinogram g ∈ Y is digitised by an array 
g ∈ Rm1×m2 by evaluating g on m1×m2 grid points in Ξ ⊂ R × (0, π) that are given by the data acquisition 
protocol used in the actual scanner. In the sequel, we will use boldface notation for the discrete signals. 
The m1 grid points in R would simply correspond to detector elements in the scanner, whereas the m2 grid 
points in (0, π) correspond to directions used in the actual scanning.

The (discretised) Radon transform and back-projection are then mappings

A : Rn1×n2 → Rm1×m2 and A∗ : Rm1×m2 → Rn1×n2 . (3.6)

We wish to remark that there exist sophisticated numerical schemes for evaluating these mappings in an 
accurate, yet computationally feasible manner, see, e.g., [48,57,87,45,86].

It is now possible to formulate the tomographic reconstruction problem entirely in the discrete setting. 
This is essentially a digitised version of the tomographic reconstruction problem in Definition 3.3, i.e., to 
recover the digital image f true ∈ Rn1×n2 from noisy measurements g ∈ Rm1×m2 where

g = A(f true) + e for some (unknown) observation error e ∈ Rm1×m2 .

One could then proceed to develop regularised reconstruction methods for the above finite dimensional 
inverse problem. This ‘discretise first then reconstruct’ approach was common in the 1970’s with the advent 
of iterative schemes with early stopping, like algebraic reconstruction techniques (ART) [35], simultaneous 
ART (SART) [3] or simultaneous iterative reconstruction technique (SIRT) [33]. The success of FBP and 
subsequent variational models did however point to the advantage of developing reconstruction methods for 
the continuum formulation, which then are discretised. This is also the approach we take in our work, since 
the microlocal analysis that we will rely on is naturally formulated in the continuum setting.

3.3. Microlocal analysis in tomography

A central part of microlocal analysis is the study of how singularities are transformed by specific operators. 
This is not possible given only the singular support that describes the location of the singularities. Instead, 
an appropriate notion of singularity needs to include information about directions in the Fourier domain 
that causes the singularity. This leads to the wavefront set that we define below.

Definition 3.6 (Wavefront set). Let u ∈ S ′(Rn) and N ∈ N. A point (x, ξ) ∈ Rn × Sn−1 is an N -regular 
directed point of u if there exist an open neighbourhood Ux of x, a conical neighbourhood Vξ of ξ, and a 
smooth cut-off function ψ ∈ S(Rn) with suppψ ⊂ Ux and ψ(x) = 1 such that the following holds for some 
CN > 0:
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∣∣ψ̂u(η)
∣∣ ≤ CN

(
1 + |η|

)−N for all η ∈ Rn with η/|η| ∈ Vξ.

The N -wavefront set WFN (u) is the complement of the set of all N -regular directed points. Finally, the 
wavefront set WF(u) of u is defined as

WF(u) : =
⋃

N∈N
WFN (u).

From the above, we see that the wavefront set WF(u) is the set of all position-orientation pairs in Ω ×S1

along which u is non-smooth.

Remark 3.7. The general setting in [41, Section 8.1], where functions/distributions are defined on manifolds, 
views the wavefront set as a conical subset of the cotangent bundle. This is equivalent to Definition 3.6 when 
the manifold is an open domain in R2.

3.3.1. The canonical relation for the Radon transform and its back-projection
For many operators arising in applications, it is possible to describe how they transform the wavefront 

set. This description is called (microlocal) canonical relation. It plays an important role in inverse problems, 
since it allows one to relate singularities in data to those in the unknown signal.

The canonical relation for the Radon transform in Definition 3.1 at tempered distribution f ∈ S ′(R2) is 
a precise relationship between WF(A(f)) and WF(f). If P denotes taking the power set, then this can be 
expressed as a map

K : P
((

R× (0, π)
)
× S1

)
→ P(R2 × S1), where K

(
WF

(
A(f)

))
= WF(f) for f ∈ S ′(R2). (3.7)

In limited-angle tomography we only have access to the Radon transform on an open subset Ξ ⊂ R × (0, π). 
The canonical relation then holds for the so-called visible wavefront set of a function/distribution f that is 
given by

WFvis(f) : = WF(f) ∩K(Ξ). (3.8)

Following [50], we next provide a more precise characterisation of the canonical relation in terms of a 
mapping between wavefront sets in image and sinogram, respectively.

Theorem 3.8. The canonical relation for the Radon transform A : S ′(R2) → S ′(R × (0, π)
)

at f ∈ S ′(R2)
can be represented by the mapping

CanA(f) : R2 × S1 →
(
R× (0, π)

)
×S1

defined as

CanA(f)
(
x;ω(θ)

)
: =
((

x · ω⊥(θ), θ + π/2
)
;ω
(
arctan

(
−x · ω(θ)

)))
for

(
x;ω(θ)

)
∈ WF(f), (3.9)

with ω(θ) : =(cos θ, sin θ) and ω(θ)⊥ : =(− sin θ, cos θ). This means,(
x;ω(θ)

)
∈ WF(f) ⇐⇒ CanA(f)

(
x;ω(θ)

)
∈ WF

(
A(f)

)
.

Proof. Following [50, Definition 7] a Fourier integral operator, P : S ′(R2) → S(R × (0, π), has the form

Pf(y) =
∫

2

∫
2

eiφ(y,x,ξ)p(y, x, ξ)dxdξ for y ∈ S(R× (0, π)), (3.10)

ξ∈R x∈R
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where p, φ ∈ C∞(R2 × R × (0, π) × R2) are the amplitude and the phase functions, respectively (see [50, 
Definition 4 and Definition 6]). Using [50, Definition 7] and duality gives the following expression for the 
canonical relation of P : S ′(R2) → S ′(R × (0, π)

)
, given by

WF
(
A(f)

)
⊂ Cφ ◦ WF(f) for f ∈ S ′(R2), (3.11)

where

Cφ : =
{(

(y; ∂yφ(y, x, ξ)),
(
x,−∂xφ(y, x, ξ)

))
: (y, x, ξ) ∈ Σφ

}
with

Σφ : =
{(

(s, θ), x, ξ
)
∈
(
R× [0, 2π)

)
×R2 ×R \ {0} : ∂ξφ

(
(s, θ), x, ξ

)
= 0

}
.

We now aim to write the Radon transform A in the form (3.10). By the Fourier slice theorem [50, Theorem 2], 
the Radon transform A : S ′(R2) → S ′(R × (0, π)

)
can be written in the integral form as

A(f)(s, θ) = 1
2π

∫
ξ∈R

∫
x∈R2

ei(s−(x·ω(θ)))ξf(x)dxdξ for s ∈ R and θ ∈ (0, π), (3.12)

where ω(θ) : =(cos θ, sin θ). Hence, the Radon transform is a Fourier integral operator with phase function 
φ((s, θ), x, ξ) : =

(
s −

(
x · ω(θ)

))
ξ and amplitude p(y, x, ξ) : = 1/(2π). Thus the canonical relation of A :

S ′(R2) → S ′(R × (0, π)) is given by (3.11).
We then derive the exact form of Cφ by computing the derivatives of φ, which are

∂xφ
(
(s, θ), x, ξ

)
= −ξω(θ),

∂(s,θ)φ
(
(s, θ), x, ξ

)
= ξ

(
1,−x · ω⊥(θ)

)
,

∂ξφ
(
(s, θ), x, ξ

)
=
(
s− x · ω(θ), 0

)
.

(3.13)

Notice that ∂xφ and ∂(s,θ)φ are not zero for ξ 
= 0, which means that the phase function is non-degenerate. 
This confirms that A is a Fourier integral operator.

Next, A is of order m = −1/2 with an amplitude function p((s, θ), x, ξ) = 1/(2π) that is homogeneous of 
degree zero, implying that A is elliptic. Using the derivatives (3.13), Σφ is given by

Σφ =
{(

(s, θ), x, ξ
)
∈
(
R× [0, 2π)

)
×R2 ×R \ {0} : s− x · ω(θ) = 0

}
.

Therefore, the canonical relation can be represented by the coordinate mapping

(
(s, θ), x, ξ

)
�→
(((

x · ω(θ), θ
)
; ∂(s,θ)φ

)
, (x,−∂xθ)

)
=
(((

x · ω(θ), θ
)
; ξ
(
1,−x · ω(θ)⊥

))
,
(
x, ξω(θ)

))
.

(3.14)

Now, let 
(
x; ω(θ)

)
∈ WF(f) be an oriented singular point of f . By (3.14) we obtain that

(
x;ω(θ)

)
∈ WF(f) →

((
x · ω(θ)⊥, θ + π/2

)
;ω
(
arctan

(
−x · ω(θ)

)))
∈ WF

(
A(f)

)
.

Finally, [68, Theorem 6.3] gives
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(
x;ω(θ)

)
∈ WF(f) ⇐⇒

((
x · ω(θ)⊥, θ + π/2

)
;ω
(
arctan

(
−x · ω(θ)

)))
∈ WF

(
A(f)

)
. (3.15)

This concludes the proof. �
We next focus on the propagation of singularities performed by the adjoint Fréchet derivative, of the 

Radon transform, which is the back-projections operator A∗ in Definition 3.5. Using [50, Theorem 13] we 
know that A∗ is also a Fourier integral operator and

A∗ A(f)(x) =
∫
R2

eix·ξ
2
‖ξ‖ f̂(ξ)dξ = 1

π

∫
R2

∫
R2

ei(x−y)·ξ 1
‖ξ‖f(y)dydξ, for f ∈ S(R2) and x ∈ R2. (3.16)

In the next proposition, we use (3.16) to introduce the corresponding mapping associated with the canonical 
relation for A∗ in a similar fashion to Theorem 3.8.

Proposition 3.9. The canonical relation for the back-projection operator A∗ : S ′(R × (0, π)
)
→ S ′(R2) in 

(3.2) at g ∈ S ′(R × (0, π)
)

can be represented by the mapping

CanA∗(g) : WF(g) → WF
(
A∗(g)

)
,

which is defined at 
(
(s, θ); ω(ϑ)

)
∈ WF(g) as

CanA∗(g)
(
(s, θ);ω(ϑ)

)
: =
(
(s cos θ − tanϑ sin θ, s sin θ + tanϑ cos θ); θ − π/2

)
, (3.17)

where ω(θ) : =(cos θ, sin θ). This means,(
(s, θ);ω(ϑ)

)
∈ WF(g) ⇐⇒ CanA∗(g)

(
(s, θ);ω(ϑ)

)
∈ WF

(
A(f)

)
.

Proof. Note first that (3.16) implies that the operator A∗ A : S(R2) → S(R2) is an elliptic pseudodiffer-
ential operator with amplitude function p(y, x, ξ) : = 1/‖ξ‖. By duality we can extend this to a mapping 
A∗ A : S ′(R2) → S ′(R2). In addition, the pseudolocal property of pseudodifferential operators (see Theo-
rem 4.6) implies that A∗ A will preserve the wavefront set of functions in S(R2), i.e., WF(A∗ A(f)) = WF(f). 
This allows us to represent the canonical relation for the inverse mapping in terms of the canonical relation 
mapping for A. Finally, by inverting the mapping implicit in (3.15), for g ∈ S ′(R × (0, π)

)
we obtain that(

(s, θ);ω(ϑ)
)
∈ WF(g) ⇐⇒

(
(s cos θ− tanϑ sin θ, s sin θ+tanϑ cos θ); θ−π/2

)
∈ WF

(
A∗(g)

)
. � (3.18)

3.4. Computational microlocal analysis

Our aim is to develop a computational counterpart to microlocal analysis that is based on defining a 
notion of a ‘digital wavefront set’ and also to provide computational means for extracting such an object 
from an array that represents a discretised function. This turns out to be theoretically and computationally 
challenging. The definition of a digital wavefront set we will exploit in our work is based on ‘discretising’ 
Definition 3.6. More precisely, the digital wavefront set of an array is defined as follows.

Definition 3.10 (Digital wavefront set). Let the array u ∈ RN represent u : Ω → R at sample points Ω =
{x1, . . . , xN} ⊂ U in some fixed domain U ⊂ Rn, i.e., u = (u1, . . . , uN ), where uj : =u(xj) for xj ∈ Ω. 
Next, let Σ = {ω1, . . . , ωM} ⊂ Sn−1 denote a fixed set of M points and {Uj,k}j=1,...,N,k=1,...,M is a set of 
neighbourhoods in Ω × Sn−1 where (xj , ωk) ∈ Uj,k and U × Sn−1 ⊂

⋃
j,k Uj,k. Then, the digital wavefront 

set of the array u is defined as DWF(u) ⊂ Ω × Σ where
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(xj , ωk) ∈ DWF(u) if Uj,k intersects WF(u) ⊂ U × Sn−1 non-trivially. (3.19)

The visible digital wavefront set is defined in a similar manner.

Remark 3.11. Note that digital wavefront set of Definition 3.10, depends on the choice of the spatial sam-
pling points Ω, as well as the sampled directions Σ and their associated neighbourhoods Uj,k. In the two 
dimensional applications that we consider below, Ω will contain points on a Cartesian grid in the unit cube, 
i.e., Ω = δ × Z2 ∩ [0, 1]2 for an appropriate value of δ > 0, Σ will correspond to 180 equidistant points on 
the 1-sphere. Moreover, the neighbourhoods will be the natural choice Uj,k = Uj × Ok, where the Uj are 
cubes of sidelength δ centred at xj and Ok are connected disjoint subsets of S1 of equal diameter centred
at ωk. The reason for the generality in the definition above is that for higher dimensional versions of digital 
wavefront sets, such a natural choice may not exist.

The definition also applies to arrays f ∈ Rn1×n2 and g ∈ Rm1×m2 representing images and sinograms in 
tomographic imaging (Subsection 3.2). Note finally that Definition 3.10 suggests a natural way to represent 
a digital wavefront set as a multi-channel ‘image’. Simply assign M binary channels to each sample point 
in xj ∈ Ω and set the k:th channel at that point to 1 if (xj , ωk) ∈ DWF(u), otherwise set the value of that 
channel to 0.

Having defined a notion of a digital wavefront set of an array that represents a discretised function, a 
natural task that follows is to computationally extract such an object. This is however not possible to do in 
a mathematically consistent way as there is no correspondence between the digitisation of a function and its 
digital wavefront set [4, Theorem 3.3]. The approach taken in [4] is therefore to view the task of extracting 
the digital wavefront as a statistical estimation problem. More precisely, extracting the digital wavefront 
set is phrased as computing the probability distribution of possible digital wavefront sets. A single digital 
wavefront set can then be computed by choosing at each point of the digitised function the wavefront 
set orientation with the highest probability. Much of [4] is devoted to developing a deep-learning-based 
approach for this task. A key part is the development of DeNSE, which is a DNN with an architecture 
specifically suited for computing probability distributions of digital wavefront sets of functions represented 
by their discrete shearlet transforms. DeNSE was in [4] successfully applied to extract digital wavefront sets 
of functions discretised by shearlets in both image and sinogram space in tomographic imaging.

4. Microlocal analysis of the Learned Primal-Dual network

This section aims to derive the canonical relation for the non-linear operator given by the Learned 
Primal-Dual network defined in (2.5) with A as the Radon transform (Definition 3.1). The relation allows 
to describe how the Learned Primal-Dual network transforms the digital wavefront set of an input array 
that is a discretisation of a function/distribution representing data, which is a key step in our approach to 
tomographic image reconstruction, outlined in Subsection 1.1.

4.1. Overview of approach

The starting point is the discretised tomographic inverse problem given in Subsection 3.2, where data 
and images are arrays in Rm1×m2 and Rm1×m2 , respectively. Assume next that the digital wavefront set 
is known for an input array g ∈ Rm1×m2 , representing measured data. Our aim is to compute the visible 
digital wavefront set of the array Rθ(g) ∈ Rn1×n2 representing the reconstructed image, i.e., to compute 
DWFvis(Rθ(g)) where Rθ : Rm1×m2 → Rn1×n2 is the non-linear Learned Primal-Dual network in (2.5) for 
tomographic reconstruction that was first introduced in [2]. This is a DNN that is made up of stacked 
convolutional residual neural networks of the form (2.6) that in our setting are given as in Definition 2.1
with A = A : Rn1×n2 → Rm1×m2 denoting the discretised Radon transform in (3.6).
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One approach to derive the mapping between g and DWFvis(Rθ(g)) is to work entirely within the discrete 
setting. Such an approach would require us to describe how the discrete Radon transform along with its 
adjoint transforms the digital wavefront set of an array. An alternative approach is to utilise the rich 
and well-developed microlocal theory for the (continuum) Radon transform outlined in Subsection 3.3. In 
particular, this theory describes how the Radon transform, and hence also its adjoint (back-projection), 
modifies visible wavefront sets in limited-angle tomography. However, such an attempt at leveraging on the 
continuum theory requires us to formulate a continuum version of the Learned Primal-Dual network.

In Subsection 4.2, we derive the non-linear operator, which is a continuum version of the Learned Primal-
Dual network. This results from replacing every step used in the construction of Rθ : Rm1×m2 → Rn1×n2

with a natural corresponding continuum version, resulting in an operator Rθ : Y → X, where Y and X are 
not necessarily finite dimensional vector spaces. The key part is to assemble appropriate continuum versions 
of the convolutional residual neural networks in (2.6). While a continuous convolution seems to be the most 
natural correspondence to a discrete convolution, this begs the question, which continuous filter to choose. 
Alternatively, following [74] one can view each discrete convolution as a discretisation of a corresponding 
fourth-order differential operator with coefficients that relate precisely to the discrete filter. Naturally, the 
coordinate-wise application of an activation function to a discrete input corresponds to the composition 
with that activation function in the continuous realm. Since the differential operators do not necessarily 
yield L2 functions but only distributions, this concept needs to be extended to tempered distributions 
(see Definition 4.1). Finally, the residual block consists only of summation, which naturally translates to 
summation of continuous inputs.

Subsection 4.3 shows how each of the above operations affect the wavefront set of a function or tempered 
distribution. A key result is Theorem 4.11 that analyses the action of ReLU. When combined, these provide 
a precise theoretical description of the way a continuum version of the Learned Primal-Dual network trans-
forms the wavefront set. Its canonical relation can then be used to derive the associated digital canonical 
relation for the Learned Primal-Dual network in [2].

4.2. Continuum Learned Primal-Dual network

Towards the end of Subsection 2.2, we specified the architecture for the Learned Primal-Dual network 
that was introduced in [2] for tomographic reconstruction. This is a mapping

Rθ : Rm1×m2 → Rn1×n2

given by a DNN that acts on arrays in finite dimensional vector spaces. In inverse problems these spaces 
typically represent discretised functions as outlined in Subsection 3.4. The aim here is to formulate a natural 
continuum version of Rθ : Y → X that acts on functions or distributions that are not necessarily discretised.

As outlined in the overview in Subsection 4.1, a key step lies in appropriately extending the residual 
convolutional networks in (2.5). To this end, we replace every discrete operation of the Learned Primal-
Dual by a continuum analogue, i.e., an operator that takes as an input a distribution. In principle, only 
four types of operations happen in the definition of the Learned Primal-Dual. These are the convolutions, 
the application of a ReLU, the application of a discretised Radon transform or the adjoint of the Fréchet 
derivative of the Radon transform, and taking sums of functions, either between channels in the convolution 
or due to residual connections. The discretised Radon transform as well as the back-projection, which 
is the adjoint of its Fréchet derivative, already stem from continuum counterparts which are the natural 
replacement. Furthermore, a sum of discrete images naturally corresponds to sums of continuum images. 
However, it is not immediately clear how to extend a discrete convolution to a continuum convolution. 
For example, replacing discrete convolutions by convolutions defined over R2 begs the question how the 
continuum convolution kernel should be chosen. We will see in the subsection below, that there exists a 
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natural replacement of the convolution operator, which however, necessitates that we work with distributions 
instead of L2 functions. Because of this, also the application of the ReLU will need to be generalised to 
distributions. In the following two subsections we discuss the continuum counterparts of convolution and 
ReLU. Thereafter, we present the continuum Learned Primal-Dual network.

4.2.1. From discrete convolutions to differential operators
To find an appropriate continuum counterpart to the discrete convolution step in (2.7), we interpret the 

discrete convolution as a discretisation of a differential operator. This approach is inspired by [74].
Consider a continuum image f ∈ L2(R2) with discretisation f ∈ Rn1×n2 . Concretely, let

f =

⎛⎝ f11 . . . f1n1
...

. . .
...

fn21 . . . fn1n2

⎞⎠ .

Furthermore, let Kθ be a 3 × 3 (discretised) convolutional operator parametrised by the filter:

θ =
(
θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

)
, where θij ∈ R. (4.1)

Note that (Δij)3i,j=1 ⊂ R3×3 such that the following forms a basis for R3×3:

Δ11 =
(0 0 0

0 1 0
0 0 0

)
, Δ12 =

(0 1 0
0 0 0
0 −1 0

)
, Δ13 =

(0 −1 0
0 2 0
0 −1 0

)
,

Δ21 =
(0 0 0

1 0 −1
0 0 0

)
, Δ22 =

( 1 0 −1
0 0 0
−1 0 1

)
, Δ23 =

( 1 −2 1
0 0 0
−1 2 −1

)
,

Δ31 =
(0 0 0

1 −2 1
0 0 0

)
, Δ32 =

( 1 0 −1
−2 0 2
1 0 −1

)
, Δ33 =

(−1 2 −1
2 −4 2
−1 2 −1

)
.

(4.2)

Hence, we can, for a given h > 0, express θ as

θ = β11Δ11 + β12

2h Δ12 + β21

2h Δ21 + β22

4h2 Δ22 + β13

h2 Δ13

+ β31

h2 Δ31 + β32

2h3 Δ32 + β23

2h3 Δ23 + β33

h4 Δ33.

(4.3)

Note that the 3 × 3 matrices Δij can be seen as the finite difference discretisations of the partial derivatives 
of f if h corresponds to the distance between the sampling density underlying the discretisation f . For a 
smooth function f , we therefore observe that if the discretisation h goes to zero, then

θ ∗ f(i, j) →
(
β11f + β12∂2f + β21∂1f + β22∂1∂2f + β13∂

2
2f

+ β31∂
2
1f + β23∂

2
2∂1f + β32∂

2
1∂2f + β33∂

2
1∂

2
2f
)
((xi, yj)),

where (xi, yj)Ni,j=1 are the discretisation points. For an open set Ω ⊂ R2, this yields the following operator 
Kθ defined on S(Ω):

Kθ(f) :=β11f + β12∂2f + β21∂1f + β22∂1∂2f + β13∂
2
2f

+ β ∂2f + β ∂2∂ f + β ∂2∂ f + β ∂2∂2f.
(4.4)
31 1 23 2 1 32 1 2 33 1 2
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By duality, we can extend Kθ to S ′(Ω). Note also that Kθ is a linear second-order differential operator. In 
particular, it is a pseudodifferential operator with its symbol given by

pθ(ξ) =β11 + β12ξ2 + β21ξ1 + β22ξ1ξ2

+ β13ξ
2
2 + β31ξ

2
1 + β23ξ

2
2ξ1 + β32ξ

2
1ξ2 + β33ξ

2
1ξ

2
2 for ξ ∈ Ω.

(4.5)

The interpretation above of a discrete convolutional operator that takes non-smooth images as inputs neces-
sitates to have a continuum definition that acts on distributions. Consequently, also all further operations 
will need to be applicable to distributions.

4.2.2. Pointwise application of ReLU to distributions
The rectified linear unit (ReLU) is an activation function used in many neural network architectures. It is 

defined as the positive part of its argument, i.e., ReLU : R → R is given as ReLU(x) : = max{x, 0}. Our aim 
is to extend the ReLU to an operator that acts on tempered distributions on Ω ⊂ Rn, denoted as ReLU.

We start by rewriting the ReLU function in terms of the Heaviside function H : R → R:

ReLU(x) = H(x)x, where H(x) : =
{

1, if x > 0,
0, if x ≤ 0.

(4.6)

The above can be used to extend ReLU in a straightforward manner to f ∈ C∞(Ω), by simply defining

ReLU(f)(x) : =ReLU
(
f(x)

)
= H

(
f(x)

)
f(x) =

{
f(x), if f(x) > 0,
0, if f(x) ≤ 0.

(4.7)

We only know that ReLU: S(Ω) → L∞(Ω) and in fact ReLU(f) may not be smooth for f ∈ S(Ω). Hence, 
ReLU does not map S(Ω) to S(Ω), i.e., we cannot use duality to define ReLU on distributions. Using 
the characterisation in (4.7) to extend ReLU to distributions involves extending the Heaviside function to 
tempered distributions and also ensuring the subsequent multiplication is well-defined.

We start by defining the Heaviside function of a distribution f ∈ S ′(Ω) as the characteristic function of 
its positive support, i.e., we define the Heaviside operator H : S ′(Ω) → L∞(Ω) as

H(f) : =1supp+(f), for f ∈ S ′(Ω), (4.8)

where supp+(f) ⊂ Ω is the positive support of f (Definition A.2) and 1supp+(f) denotes the character-
istic function of supp+(f). Before proceeding, we list desirable properties for an extension of ReLU to 
distributions. More precisely, ReLU: S ′(Ω) → S ′(Ω) should preferably come with the following properties:

1. esssup ReLU(f) ⊂ supp+(f) (the essential support esssup is defined in Definition A.2),
2. ReLU(f)(φ) = f(φ) for all test functions φ ∈ S(Ω) supported in supp+(h),
3. ReLU(f) = H(f) f whenever f ∈ S ′(Ω).

Having extended the Heaviside function to distributions as in (4.8), our main concern is to ensure that 
the multiplication between the distribution f ∈ S ′(Ω) and H(f) ∈ L∞(Ω) is well-defined. By Definition A.3
and Theorem A.4, this is indeed the case whenever (x, −λ) /∈ WF(f) for all (x, λ) ∈ WF

(
H(f)

)
, i.e., we can 

define ReLU(f) by (4.7) for any f ∈ S ′(Ω) that satisfies these criteria. However, the multiplication is not 
necessarily well-defined whenever there exists (x, λ) ∈ WF

(
H(f)

)
such that (x, −λ) ∈ WF(f). Thus, all we 

know is that the multiplication of H(f) and f is always defined if f ∈ L2
loc(Ω) (Remark A.5).

One idea is therefore to locally dampen f close to points where we cannot define the multiplication of f
with H(f). This leads to the following definition of ReLU on distributions.
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Definition 4.1. Let Ω ⊂ R2 be open, κ > 0, and φκ ∈ S(R2) be a function that integrates to 1, is positive 
and is supported on a compact subset of Bκ(0). Then define

ReLUκ,φκ
(f) : =H(f)fs, for f ∈ S ′(Ω), (4.9)

where fs : =(1 − θκ)f . Here θκ : =1X ∗ φκ with

X : =
{
x ∈ R2 \ suppL2(f) : (x, λ) ∈ WF(H(h)), (x,−λ) ∈ WF(h) for a λ ∈ S1

}
+ Bκ(0).

In the above, suppL2(f) ⊂ Ω denotes the L2-support of f (Definition A.6).

We next show that Definition 4.1 can be used to extend the ReLU function to distributions.

Proposition 4.2. Consider ReLUκ,φκ
in (4.9) for some κ > 0 and let φκ ∈ S(R2) that integrates to 1, 

is positive, and is supported on a compact subset of Bκ(0). Then ReLUκ,φκ
: S ′(Ω) → S ′(Ω) for an open 

domain Ω ⊂ R2.

Proof. We need to show that ReLUκ,φκ
(f) ∈ S ′(Ω), whenever f ∈ S ′(Ω). To see this, note first that 1 − θκ

is smooth and vanishes on a neighbourhood of every x ∈ Ω \ suppL2(f), where

(x, λ) ∈ WF
(
H(f)

)
and (x,−λ) ∈ WF(f) for some λ ∈ S1.

Hence, the product (1 − θκ)f is well-defined and by Theorem A.4, there does not exist an x ∈ Ω \ suppL2(f)
such that

(x, λ) ∈ WF
(
H(f)

)
and (x,−λ) ∈ WF((1 − θκ)f).

Theorem A.4 and Remark A.5 now imply that ReLUκ,φκ
(f) ∈ S ′(Ω) whenever f ∈ S ′(Ω), which concludes 

the proof. �
Remark 4.3. The set X in Definition 4.1 is a neighbourhood of the set on which the definition of ReLU(h)
via the multiplication H(h)h is not well defined. To understand the nature of this set, we consider three 
examples:

1. f ∈ S ′(Ω). Then X = ∅, and hence ReLUκ,φκ
(f) = ReLU(f). In particular, if f = H(h) for some 

h ∈ S ′(Ω), then ReLUκ,φκ
(f) = ReLU(f) = f .

2. f = P (1B) for some domain B ⊂ Ω and P is an elliptic linear differential operator of order at least one. 
Then esssup(f) ⊂ ∂B, so H(f) = 0 which in turn implies that X = ∅ and ReLUκ,φκ

(f) = 0.
3. f = P (1B + h) for some domain B ⊂ Ω and P is an elliptic linear differential operator. Assume 

furthermore that h ∈ C∞(Ω) is such that P (h) is positive on B. Then X = ∂B + Bκ(0), since f is not 
a function at ∂B and H(f) = 1B . Thus WF

(
H(f)

)
= WF(f).

We conclude by pointing out that ReLUκ,φκ
: S ′(Ω) → S ′(Ω) in Definition 4.1 fulfils almost all of the 

criteria stipulated earlier for an extension of ReLU to distributions. It satisfies the first and third criteria. 
Moreover, ReLUκ,φκ

(f)(φ) = f(φ) holds for all φ ∈ S(Ω) with a support that has a distance of more than 
2κ from WF

(
H(f)

)
⊂ ∂ supp+(f).
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4.2.3. The continuum Learned Primal-Dual network
To define the continuum Learned Primal-Dual network, we start by introducing a continuum ResNet.

Definition 4.4 (Continuum two-dimensional convolutional ResNet). Let Ω ⊂ R2 be open and let N ∈
N, j ∈ {1, 2, 3, 4}, where n4 = 1 be the numbers of channels per layer. Further, for j = 1, . . . , 4, let 
θj : =(θl,k

j )nj−1,nj

l=1,k=1 ⊂ (R3×3)nj−1×nj−1 be a set of coefficients. Let κ > 0 and let φκ ∈ S(Ω) be a function 
that integrates to 1, is positive and is supported on a compact subset of Bκ(0).

We define the continuum convolutional affine operator W c
θj

: (S ′(Ω))nj−1 → (S ′(Ω))nj as

Wθj
(f)k =

nj−1∑
l=1

Kθl,k
j

(f) for k ∈ {1, . . . , nj} and f ∈ (S ′(Ω))nj−1 . (4.10)

The continuum ResNet operator ResNetκ,φκ
: (S ′(Ω))n0 → S ′(Ω) is then given by

ResNetκ,φκ
(f1, . . . , fn0) = f1 + G(f1, . . . , fn0) for f1, . . . , fn0 ∈ S ′(Ω),

where G : (S ′(Ω))n0 → S ′(Ω) is the operator

G(f1, . . . , fn0) =
(
Wθ4 ◦ ReLUκ,φκ

◦Wθ3 ◦ ReLUκ,φκ
◦Wθ2 ◦ ReLUκ,φκ

◦Wθ1

)
(f1, . . . , fn0)

for f1, . . . , fn0 ∈ S ′(Ω).

Remark 4.5.

1. Slightly deviating from Definition 2.1, we do not include a bias term in the definition of the continuum 
ResNet above, since no such term will appear in our implementation in Subsection 6.

2. Note that besides the previously defined operators Kθl,k
j

and ReLUκ,φκ
, only addition is applied in the 

continuum ResNet. Since the set of distributions is a linear space, we conclude that ResNetκ,φκ
is a 

well-defined operator from S ′(Ω) to S ′(Ω).

Based on the definition above for the continuum ResNet, we can now define the continuum Learned 
Primal-Dual network as in (2.5) with operators in (2.6) given as continuum ResNets. Hence, a continuum 
Learned Primal-Dual network is a mapping

Rθ : S ′(Ξ) → S ′(Ω) where Rθ(g) : = fN

with fN ∈ S ′(Ω) given by the N -step iterative scheme in Algorithm 1 in which Λi and Γi are continuum 
two-dimensional convolutional ResNets as in Definition 4.4.

Algorithm 1: Continuum Learned Primal-Dual network.
Input: f0 ∈ S′(R2), h0 ∈ S′(Ξ) and g ∈ S′(Ξ).
Output: Primal solution fN ∈ S′(R2) and dual solution hN ∈ S′(Ξ).
for i = 1, . . . , N − 1 do

hi+1 ←− Γi(hi, A(fi), g);
fi+1 ←− Λi(fi, [∂A(fi)]∗(hi+1));

end

4.3. Canonical relation for the continuum Learned Primal-Dual network

It is clear that we can describe the canonical relation for the continuum Learned Primal-Dual network, if 
we can identify such a relation for continuum ResNets Λi and Γi for i = 1, . . . , I. In addition, we also need 



178 H. Andrade-Loarca et al. / Appl. Comput. Harmon. Anal. 59 (2022) 155–197
to combine these canonical relations with the canonical relations for the Radon transform, and the relations 
for the Fréchet derivative of the adjoint of the Radon transform.

4.3.1. Differential operator
The canonical relation for a differential operator is typically very straightforward to compute, if this 

operator is an (elliptic) pseudodifferential operator. In this respect, we recall the following result.

Theorem 4.6 (Pseudolocal property, [50, Theorem 14]). A pseudodifferential operator P satisfies the pseu-
dolocal property, i.e.,

sing supp(Pf) ⊂ sing supp(f) and WF(Pf) ⊂ WF(f) for all f ∈ S ′(R2).

If P is elliptic, then we have equality instead of inclusion, i.e.,

sing supp(Pf) = sing supp(f) and WF(Pf) = WF(f) for all f ∈ S ′(R2).

Since Kθ defined in (4.4) is a pseudodifferential operator, we obtain that

WF(Kθf) ⊂ WF(f). (4.11)

This means that Kθ does not introduce new singularities to f , and might even delete some of them; in the 
case that the coefficients βij are such that

0 < |pθ(ξ)| for all ‖ξ‖ 
= 0,

the operator Kθ is elliptic and preserves the singularities, i.e., WF(Kθf) = WF(f). Here pθ is the symbol 
defined in (4.5).

4.3.2. ReLU application
Since for h ∈ S ′(R2) the distribution ReLUκ,φκ

(h) is defined in most parts of the domain as H(h)h, we 
can study its wavefront set using Theorem A.4. We now first study the wavefront set of H(h). Afterward, 
we estimate the wavefront set of ReLUκ,φκ

(h) in Subsection 4.3.4.

4.3.3. The wavefront set of H(f)
For a function g ∈ L2(Ω), the wavefront set of H(g) is determined through the following factors: A 

point x ∈ Ω, such that on a neighbourhood thereof g is almost always positive will be mapped to something 
constant by the Heaviside function. Since constant functions are smooth, this operation erases the wavefront 
set associated with a neighbourhood of x. The same argument can be made on neighbourhoods where 
g is almost everywhere negative. Points x′ ∈ Ω in which g vanishes have the potential to create new 
discontinuities, since the Heaviside function has a jump at 0. If g is smooth in x′ and also has non-vanishing 
gradient, then the implicit function theorem tells us the form of the discontinuity of H(g). We will see below 
in Proposition 4.8 that the same argument can be made for tempered distributions. A crucial ingredient for 
that result will be the following estimation of the wavefront set of indicator functions.

Proposition 4.7 ([11, Proposition 20]). Let n ∈ N and B ⊂ Rn be a domain with smooth boundary. Then, 
WF(1B) = {(x, λ) ∈ Rn × S1 : x ∈ ∂B, λ normal to ∂B in x}.

We can now state the following result describing the wavefront set of H(g).
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Proposition 4.8. Let g ∈ S ′(Ω) for Ω ⊂ R2 an open domain. Let further

Rg : ={x ∈ R2 : x ∈ ∂(supp+(g)), x /∈ sing supp(g),∇g(x) 
= 0},

Cg : ={x ∈ R2 : x ∈ ∂(supp+(g)), x /∈ sing supp(g),∇g(x) = 0},

Sg : ={x ∈ R2 : x ∈ ∂(supp+(g)), x ∈ sing supp(g)}.

Then, (x, λ) ∈ WF
(
H(g)

)
, if, for an α 
= 0,

x ∈ Rg and λ = ±∇x(g)/‖∇x(g)‖. (4.12)

Moreover, (x, λ) ∈ WF
(
H(g)

)
only if (4.12) holds or x ∈ Cg ∪ Sg.

Proof. We start with the “only if” part. The statement is clear if WF
(
H(g)

)
= ∅. Otherwise, let (x, λ) ∈

WF
(
H(g)

)
.

Assume first that x ∈ ∂(supp+(g))c. Then either x ∈ supp−,0(g) or x ∈ supp+(f)◦. Since both supp−,0(g)
and supp+(g)◦ are open sets, we have that there exists an open neighbourhood U of x such that U ⊂
supp−,0(g) or U ⊂ supp+(g)◦. As a result, H(g) is constant on U . Therefore, (x, λ) cannot be in WF

(
H(g)

)
, 

which produces a contradiction.
Hence, we can assume that (x, λ) ∈ WF

(
H(g)

)
and x ∈ ∂(supp+(g)). In addition, we assume that 

x /∈ Cg ∪Sg. Then, x /∈ sing supp(g). Therefore, there exists a neighbourhood U ′ of x, on which g is smooth 
and ∇g does not vanish.

We wish to show now that on U ′ the set {g = 0} is a smooth curve with normal ∇xg at x. For this, 
we invoke a smooth version of the implicit function theorem [54, Theorem 2.1]. In this form, the theorem 
considers a smooth function g̃ : Ω → R such that

0 = g̃(x∗
1, x

∗
2), for (x∗

1, x
∗
2) ∈ Ω.

Assuming that ∂g̃
∂x2


= 0, then there exists a smooth κ defined on a neighbourhood of x∗
1 such that locally, 

i.e., for x1 in an open neighbourhood of x∗
1,

g̃(x1, κ(x1)) = 0 and κ′(x1) = ∂g̃

∂x1
(x1)

/
∂g̃

∂x2
(x1).

Moreover, in an open neighbourhood of x∗
1, x

∗
2 every (x1, x2) such that g̃(x1, x2) = 0 is of the form (x1, κ(x1)). 

Applying the implicit function theorem to g if ∂g
∂x2


= 0 yields that ηx = ∇g(x)/‖∇g‖ is a normal at the 

zero level set of g at x. By swapping variables, the same argument can be made if ∂g
∂x1


= 0. We obtain that 
locally H(g) = 1B with ∂B being a smooth curve that has normal ηx at x. By Proposition 4.7, this implies 
that (x, λ) ∈ WF(1B) if λ = ±ηx for an α 
= 0. This concludes the proof of the “only if” part.

For the “if” part, we notice again that if x ∈ Rg, then x ∈ ∂(supp+(g)). Thus, x /∈ Sg which implies 
that x /∈ sing supp(g). Therefore, and since x /∈ Cg, the implicit function theorem is applicable. The same 
argument as before yields (4.12). �
Remark 4.9. We may ask ourselves whether or not the statement in Proposition 4.8 is tight. To improve 
our intuition in this regard, we provide an example for each of the cases of Proposition 4.8 that may lead 
to a wavefront set.

1. Creation of wavefront set according to (4.12):
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Let g(x) = 1 − ‖x‖2. The squared Euclidean norm is a smooth function and {g = 0} = {x : ‖x‖ = 1}
is the unit circle. Moreover, H(g) = 1B1 is the indicator of the unit ball. It is not hard to see that the 
wavefront set of this function is {(x, x) : x ∈ S1}. Also

∇x(1 − ‖x‖2) =
(

2x1

2x2

)
= 2x.

2. x ∈ Cg and x ∈ sing supp
(
H(g)

)
:

Let g1 be a positive C∞ function, supported on a set D1 that contains (0, 0). Let g2 be another such 
function, however, with D1 ∩D2 = {(0, 0)}. If D1 ∪D2 is not an open neighbourhood of (0, 0), which is 
possible, then H(g1 + g2) is discontinuous at (0, 0) implying that (0, 0) is a singular point of H(g1 + g2). 
One concrete example, would be given by D1 = [−1, 0]2, D2 = [0, 1]2. In this case, ∂(supp+(g1 + g2)) is 
not given by a single curve in the neighbourhood of (0, 0). Note that, necessarily by the smoothness of 
g1 and g2 it holds that ∇x(g1 + g2) = 0 for x = (0, 0).

3. x ∈ Cg and x /∈ sing supp
(
H(g)

)
: Let g be a smooth compactly supported positive function. Then every 

x ∈ ∂ supp(g) satisfies that x ∈ Cg and x /∈ sing supp
(
H(g)

)
= sing supp(g).

4. x ∈ Sg and x ∈ sing supp
(
H(g)

)
:

Let g = 1R+×R, then x ∈ Sg and g = H(g).
5. x ∈ Sg and x /∈ sing supp

(
H(g)

)
:

Let φ : R → R be a C∞ function with compact support on R+. The function g(x) = φ(x1) +1R−(x1)x3
1

is not smooth since it has a jump in its third derivative at the x1 = 0 axis. At the same time {x1 = 0} =
∂(supp+(g)). Finally, we observe that H(g)(x) = φ(x) and hence the wavefront set of H(g) is empty.

Notice that Proposition 4.8 stays short of a precise characterisation of the wavefront set of H(f). It 
implies that all singularities must be in one of the sets Rg, Cg, or Sg. However, there is a closed-form of the 
orientations of the singularities only if x ∈ Rg.

4.3.4. Wavefront set of ReLU(f) = H(f)f
In this subsection, we chose a fixed κ > 0 and φκ ∈ S(R2) that integrates to 1, is positive, and is supported 

on a compact subset of Bκ(0). To reduce the computation of WF(ReLUκ,φκ
(f)) to that of WF(H(f)), we 

will make use of the following version of the product theorem:

Theorem 4.10 ([11, Theorem 13]). Let u and v be distributions in S ′(U) for an open domain U . Assume 
that for no point (x, λ) in WF(u) we have (x, −λ) ∈ WF(v). Then, uv ∈ S ′(U) and

WF(uv) = S+ ∪ Su ∪ Sv,

where S+ : ={(x, λ + μ) : (x, λ) ∈ WF(u), (x, μ) ∈ WF(v)}, Su : ={(x, λ) : (x, λ) ∈ WF(u), x ∈ ess supp(v)}, 
and Sv : ={(x, λ) : (x, λ) ∈ WF(v), x ∈ ess supp(u)}.

In particular, for g ∈ S ′(R2) and f ∈ C∞(R2) where supp(f) is compact, we have that WF(fg) ⊂
WF(g) ∩ (supp(f) ×R2).

Let Ω ⊂ R2, f ∈ S ′(Ω), and let us assume that WF(f) is known. In addition, using the results of 
Subsection 4.3.3 we have also access to WF(H(f)). We denote as in Definition 4.1:

Xh : ={x ∈ R2 \ suppL2(h) : (x, λ) ∈ WF(H(h)), (x,−λ) ∈ WF(h) for a λ ∈ S1} + Bκ(0) (4.13)

and
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X3κ
h : ={x ∈ R2 \ suppL2(h) : (x, λ) ∈ WF(H(h)), (x,−λ) ∈ WF(h) for a λ ∈ S1} + B3κ(0). (4.14)

Note that per Definition 4.1 we have that θκ = 0 on (X3κ
h )c and hence hs = h on (X3κ

h )c.
Now we have collected all necessary ingredients to be able to compute the wavefront set of ReLUκ,φκ

(f) =
H(f)f , which is the goal of the following result.

Theorem 4.11. Let Ω ⊂ R2 be open and let f ∈ S ′(Ω). In addition, let

Af : = WF(f) ∩ (supp+(f)o × S1), (4.15)

Rf : ={(x, λ) ∈ Rf × S1 : (x, λ) follows (4.12)}, (4.16)

where Rf is defined as in Proposition 4.8. In addition, CSf is given by

CSf : ={(x, ξ) ∈ (Sf ∪ Cf ) × S1 : (x, ξ) ∈ WF(ReLUκ,φκ
(f))}, (4.17)

where Cf and Sf are defined as in Proposition 4.8. Then WF(ReLUκ,φκ
(f)) is given by:

WF(ReLUκ,φκ
(f)) ∩ (X3κ

h × S1)c = (Af ∪Rf ∪ CSf ) ∩ (X3κ
h × S1)c, (4.18)

WF(ReLUκ,φκ
(f)) ∩ (X3κ

h × S1) ⊂ (Af ∪Rf ∪ CSf ) ∩ (X3κ
h × S1). (4.19)

In particular, we have that

WF(ReLUκ,φκ
(f)) ⊂ Af ∪Rf ∪

(
(Cf ∪ Sf ) × S1) . (4.20)

Proof. Since R2 can be decomposed as

R2 = supp+(f)o ∪ ∂(supp+(f)) ∪ supp−,0(f),

we have that WF(ReLUκ,φκ
(f)) can be decomposed as

WF(ReLUκ,φκ
(f)) = Af,κ ∪ Bf,κ ∪ Df,κ, (4.21)

where

Af,κ : =WF(ReLUκ,φκ
(f)) ∩ (supp+(f)o × S1),

Bf,κ : =WF(ReLUκ,φκ
(f)) ∩ (supp−,0(f) × S1),

Df,κ : =WF(ReLUκ,φκ
(f)) ∩ (∂(supp+(f)) × S1).

Notice in addition that Af,κ, Bf,κ and Df,κ are disjoint. Now, since supp+(f)o is open, we find for every 
x ∈ supp+(f)o with x /∈ X3κ

h an open neighbourhood U of x such that ReLUκ,φκ
(f)|U = H(f)|Ufs|U = f |U , 

since H(f)(x) = 1 for every x ∈ U and hs = h on (X3κ
h )c. Thus

Af,κ ∩ (X3κ
h × S1)c = WF(f) ∩ (supp+(f)o × S1) ∩ (X3κ

h × S1)c = Af ∩ (X3κ
h × S1)c, (4.22)

where Af is as in the statement of the proposition. Moreover, for every x ∈ supp+(f)o with x ∈ X3κ
h there 

is an open neighbourhood U ′ of x such that ReLUκ,φκ
(f)|U ′ = H(f)|U ′fs|U ′ = fs|U ′ . Therefore,

Af,κ ∩ (X3κ
h × S1) = WF(fs) ∩ (supp+(f)o × S1) ∩ (X3κ

h × S1)

⊂ WF(f) ∩ (X3κ × S1) = A ∩ (X3κ × S1).
(4.23)
h f h
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On the other hand, since ess supp(H(f)) = supp+(f), by Theorem 4.10, we can conclude that

supp−,0(f) ⊂ (sing supp(H(f)fs))c = (sing supp(ReLUκ,φκ
(f)))c.

Then, we have

Bf,κ = WF(ReLUκ,φκ
(f)) ∩ (supp−,0(f) × S1) = ∅. (4.24)

Let us now study the set Df,κ : = WF(ReLUκ,φκ
(f)) ∩ (∂(supp+(f)) ×S1). Following the notation of Propo-

sition 4.8, we can decompose the set ∂(supp+(f)) as

∂(supp+(f)) = Rf ∪ Cf ∪ Sf . (4.25)

Using this decomposition, we can write Df,κ as

Df,κ = Rf,κ ∪ CSf,κ,

where

Rf,κ : =WF(ReLUκ,φκ
(f)) ∩ (Rf × S1),

CSf,κ : =WF(ReLUκ,φκ
(f)) ∩ ((Cf ∪ Sf ) × S1).

Next, we would like to show that

Rf,κ ∩ (X3κ
h × S1)c = {(x, λ) ∈ Rf × S1 : (x, λ) follows (4.12)} ∩ (X3κ

h × S1)c = Rf ∩ (X3κ
h × S1)c,

(4.26)

Rf,κ ∩ (X3κ
h × S1) ⊂ {(x, λ) ∈ Rf × S1 : (x, λ) follows (4.12)} ∩ (X3κ

h × S1) = Rf ∩ (X3κ
h × S1). (4.27)

Let us start with (4.26). Consider first (x, λ) ∈ Rf , x /∈ X3κ
h . Then, x ∈ Rf and thus x /∈ sing supp f . 

In particular, x /∈ sing supp fs. Moreover, since ∇xf 
= 0, we conclude that x ∈ ess supp(f) and therefore 
x ∈ ess supp(fs). Using Theorem 4.10, we conclude that (x, λ) ∈ WF(ReLUκ,φκ

(f)) = WF(fs H(f)) if 
and only if (x, λ) ∈ WF(H(f)). Since x /∈ Cf ∪ Sf , we conclude from Proposition 4.8 that (x, λ) satisfies 
(4.12). To show the converse embedding, assume that (x, λ) is such that x ∈ Rf and (x, λ) satisfies (4.12). 
By Proposition 4.8, we have that (x, λ) ∈ WF(H(f)). Furthermore, x /∈ sing supp f and ∇xf 
= 0, which 
implies that x ∈ ess suppf . We conclude by Theorem 4.10 that (x, λ) ∈ WF(fs H(f)) = WF(ReLUκ,φκ

(f)). 
This shows (4.26).

To show (4.27) it suffices to observe that x ∈ Rf implies that x /∈ sing supp f and hence x /∈ sing supp(1 −
θκ)f . Therefore, we conclude that

Rf,κ ∩ (X3κ
h × S1) ⊂ WF(H(f)) ∩ (Rf × S1) ∩ (X3κ

h × S1) = Rf ∩ (X3κ
h × S1),

where the last equality follows from Proposition 4.8. This yields (4.27).
The full result now follows by considering the decomposition (4.21). The part associated with Af,κ is 

estimated via (4.22) and (4.23). The part associated with Bf,κ vanishes due to (4.24). Finally, the part 
associated with Dκ,φκ

is estimated via the decomposition (4.25), where the Rf,κ part is estimated via (4.26)
and (4.27) and CSf = CSf,κ holds per definition. �
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Remark 4.12. Theorem 4.11 only yields an estimate for the wavefront set associated with the set (Xκ
h)c. In 

the sequel, since we are using the continuum relations to infer certain properties of digital relations, we will 
assume that κ is chosen very small and Xκ

h is not seen by the discretisation. In other words, in practice, we 
compute the wavefront set only via (4.18).

Even on (Xκ
h )c, Theorem 4.11 does not entirely save us from computing WF(ReLUκ,φκ

(f)), but restricts 
the necessity for such a computation to the cases where x ∈ Sf ∪Cf . The set CSf can also be further split 
up: For x ∈ R2 \ Xκ

h , we denote by WF(f)x the x-slice of the wavefront set of f defined as Λ ⊂ R2 such 
that (x, λ) ∈ {x} × Λ for all (x, λ) ∈ WF(f).

Proposition 4.13. Let Ω ∈ R2 be open, f ∈ S ′(Ω) be a distribution and CSf be as in Theorem 4.11. Then

CSf

⋂
(Xκ

h × S1)c =
{

(x, λ) : x ∈ Cg \Xκ
h and (x, λ) ∈ WF

(
H(f)

)}
⋃{

(x, λ) : x ∈ Sg \Xκ
h ,WF(f)x ∩ −WF

(
H(f)

)
x

= ∅, λ ∈ (WF(f)x + WF
(
H(f)

)
x
) \ {0}

}
⋃{

(x, λ) : x ∈ Sg \Xκ
h ,WF(f)x ∩ −WF

(
H(f)

)
x

= ∅, (x, λ) ∈ WF

(
ReLUκ,φκ

(f)
)}

.

(4.28)

Proof. The result follows immediately from Theorem 4.10. �
Theorem 4.11 yields two ways to estimate the wavefront set of ReLUκ,φκ

(f) on (Xκ
h )c. First, it can 

be precisely computed by (4.18). This, however, may require us to compute CSf via Proposition 4.13. 
This computation could be performed according to (4.28), by using a method such as DeNSE to find 
WF(ReLUκ,φκ

(f)) if required.
Second, the wavefront set on (Xκ

h )c can be estimated using (4.20). Since we expect that it is not prob-
lematic to overestimate the wavefront set slightly, we opt for the second option and cast this wavefront set 
extraction algorithm as Algorithm 2.

Algorithm 2: Wavefront set classifier of ReLUκ,φκ
(f).

Input: Distribution f ∈ S′(Ω), WF(f), x ∈ Ω.
Output: Estimate WF(ReLUκ,φκ

(f))x ⊂ Ω.
initialisation;
if x ∈ supp+(f)o then

return Λx = WF(f)x;
end
if x ∈ Rf then

return Λx = {±∇x(f)/‖∇x(f)‖};
end
if x ∈ Cf ∪ Sf then

return Λx = Ω;
end

4.3.5. Microlocal analysis of the residual layer and sum-taking
In the continuous setting, residual neural networks are operators P : S ′(Ω) → S ′(Ω) of the form

P(f) = f + C(f),

where C : S ′(Ω) → S ′(Ω) is continuum two-dimensional convolutional ResNet according to Definition 4.4. 
In addition, in Subsection 4.2.3, we allow summing over the channels of a convolutional block.

Because of this, we would like to identify WF(f +g) for two distributions of which we know the wavefront 
set. The following two results yield a complete description thereof.
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Theorem 4.14 ([70, Page 93]). Let Ω ⊂ R2 be open, let f, g ∈ S ′(Ω) and (x; λ) be a regular directed point of 
f and g, then (x; λ) is a regular directed point of f + g.

In particular, if (x, λ) ∈ WF(f) and (x; λ) is a regular directed point of g, then (x, λ) ∈ WF(f + g).

Corollary 4.15. Let Ω ⊂ R2 be open and let f, g ∈ S ′(Ω), then WF(f + g) is given by

WF(f + g) = Af ∪ Ag ∪ Af+g, (4.29)

where

Af : ={(x;λ) ∈ WF(f) : x /∈ WF(g)}, Af+g : =((WF(f) ∩ WF(g))) ∩ WF(f + g),

Ag : ={(x;λ) ∈ WF(g) : x /∈ WF(f)}

In particular, we have that

Af+g ⊂ WF(f) ∩ WF(g). (4.30)

Proof. The result follows immediately from Theorem 4.14. �
In a similar fashion as we did for the wavefront set of ReLU(f), using Corollary 4.15 we can find two 

ways to extract the wavefront set of f + g via Corollary 4.15. We cast the one that yields a superset of the 
wavefront set of f + g via (4.30) as Algorithm 3.

Algorithm 3: Wavefront set classifier of f + g.
Input: Distribution f, g ∈ S′(Ω), WF(f), WF(g), x ∈ Ω.
Output: Estimate WF(f + g)x ⊂ Ω.
initialisation;
if x ∈ WF(f) ∩ WF(g)c then

return Λx = WF(f)x;
end
if x ∈ WF(f)c ∩ WF(g) then

return Λx = WF(g)x;
end
if x ∈ WF(f) ∩ WF(g) then

return Λx = WF(g)x ∪ WF(f)x;
end

4.3.6. Microlocal analysis of continuous Learned Primal-Dual networks
Let us first notice that the continuum residual neural network operator introduced in Definition 4.4 has 

four basic components, the differential layers, summation over channels, application of the ReLU, and the 
residual connection. We have seen in Subsection 4.3.5 that the effect on the wavefront set through summation 
over channels and the residual connection can be described as the output of Algorithm 3. In addition, the 
effect of the differential layers is described by (4.11) and the wavefront set after an application of the ReLU 
can be found through an application of Algorithm 2. Overall, there is an algorithm that produces for every 
continuum convolutional ResNet and every input function of which the wavefront set is known, an estimate 
of the wavefront set of the output. The microlocal behaviour of the full continuum Learned Primal-Dual 
network (Algorithm 1) can now be found by iteratively applying the canonical relation for the continuum 
residual neural network operator as well as the canonical relation for the Radon transform (3.11) and the 
adjoint of its Fréchet derivative (back-projection) in (3.17).
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Fig. 4. Graphical representation of the workflow for the joint reconstruction and wavefront set inpainting algorithm. The input is 
partial sinogram data. In the top row first a Learned Primal-Dual architecture is applied. In the bottom row we first apply DeNSE 
to extract the wavefront set, then we apply the canonical relation for the Learned Primal-Dual network of Subsection 4.3.6. To the 
output thereof we apply the U-Net for inpainting. This together with the output from the Learned Primal-Dual is then input into 
the joint loss function.

5. The joint reconstruction and wavefront set extraction algorithm

In this section, we present our numerical algorithm for the digital reconstruction problem associated with 
the inverse tomography problem. We first introduce the algorithm in the framework of statistical learning 
theory as an empirical risk minimisation problem over a special set of deep neural networks with a specific 
loss term. Then, we evaluate our approach on a test set and compare its results with various benchmarks.

5.1. Outline of our algorithm

The setting for our data driven approach is to have a supervised tomographic training dataset of the 
form (f i, gi)Ni=1 ∈ Rn×Rm. Here, f i ∈ Rn is an array that is a discretisation of a function f ∈ X = L2(R2)
that represents the true image (signal). Likewise, gi ∈ Rm is an array corresponding to a discretisation of 
continuum data, which here is a function gi ∈ Y = L2(Ξ) representing a noisy limited-angle sinogram with 
Ξ denoting the corresponding manifold of lines. In addition, we also know the complete wavefront set for 
data gi and signal f i. Subsection 5.2 explores this statistical framework approach in more detail.

From the above, in absence of observation noise we have gi = A(fi) where A : X → Y is the Radon 
transform (forward operator) restricted to Ξ (limited-angle data). The elements (fi, gi) ∈ X×Y are assumed 
to be independent samples generated by some (X × Y )-valued random variable (f, g). The reconstruction 
operator Rθ : Rm → Rn is now a DNN given by the Learned Primal-Dual network [2] and its parameter 
θ = θ̂ is set by training this DNN to achieve two tasks simultaneously:

1. Applying Rθ̂ : Rm → Rn (trained reconstruction operator) to an input sinogram g ∈ Rm that is a 
discretisation of g ∈ Y drawn from g, should produce f ∈ Rn that is a discretisation of a function 
f ∈ X such that A(f) = g.

2. The trained reconstruction operator Rθ̂ : Rm → Rn should output a discretisation of the wavefront set 
of f , which we denote by DWF(f), i.e., DWF

(
Rθ̂(g)

)
= DWF(f).

While we are, in the end, only interested in an accurate reconstruction of f (see Subsection 5.3), we believe 
that requiring a neural network to perform both tasks at the same time constitutes a strong prior. Indeed, 
we will see below that this joint approach yields vastly superior reconstruction results to a neural network 
that only reconstructs f . As a key ingredient towards the solution of the aforementioned task, we can rely 
on a digital wavefront set extraction operator DeNSE [4] which allows us to extract the digital wavefront 
set of a digital image, this task is briefly introduced in Subsection 5.4. Furthermore, it is reasonable to 
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construct an appropriate loss function L that measures the discrepancy between Φ(g) and f and between 
DWF(Φ(g)) and DWF(f).

However, it turns out that for the training of the neural network it is computationally prohibitive to 
compute DWF(Φ(g)) in every training iteration with the shearlet-based wavefront set extractor DeNSE [4]. 
Because of this, we introduced a heuristic based on the mapping properties of a continuum operator, the 
continuum Learned Primal-Dual network, to estimate DWF(Φ(g)) in Subsection 4.3.

Through the canonical relation for the continuous Learned Primal-Dual operator, we obtain an estimate 
of a discretisation of the visible wavefront set WFvis(Φ(g)) based on the weights of the neural network Φ. 
To relate this estimate to DWF(f), we apply wavefront set inpainting with a neural network Ψ of U-Net 
architecture [72], this is explained in detail in Subsection 5.5. Overall, this leads to an operator Q that takes 
as an input g and the neural networks Φ and Ψ and outputs an estimate of f and DWF(f). We therefore 
use the loss function

L(Φ,Ψ, g,f ,DWF(f)) : =C �1(f ,Φ(g)) + (1 − C) �2(DWF(f),Ψ(Q(g,Φ))), (5.1)

where C ∈ (0, 1] and �1, �2 are appropriate distance measures on discretised images and discretised wavefront 
sets that will be discussed in Subsection 3.4 below. This strategy that jointly trains a reconstruction and a 
task (wavefront set inpainting) falls in the framework of task-adapted reconstruction was introduced in [1]. 
Based on the loss function of (5.1), we now train the neural networks Φ and Ψ to minimise the objective

1
N

N∑
i=1

L(Φ,Ψ, gi,f i,DWF(fi)). (5.2)

To find a minimiser, we use stochastic gradient descent-based optimisation over the neural network’s weights 
as is standard in deep learning. Finally, Subsection 5.6 explores in detail the joint reconstruction in the digital 
setting.

5.2. Statistical learning framework

We would like to frame the problem of reconstruction and joint wavefront set extraction as a statistical 
learning problem [77,20]. For this, we first introduce some relevant notions:

Definition 5.1 (Setting of statistical learning theory). Let X, Y be two sets. We call X the sample space, 
and Y the label space. Further, let D be a distribution on X × Y , and let � : Y × Y → R be a measurable 
function. We refer to � as loss function. Then the risk R of a measurable function h : X → Y is defined as

R(h) : =E(x,y)∼D(�(h(x), y)).

For m ∈ N, a set of samples (xi, yi)mi=1 ∼ Dm and for a hypothesis class H, we define the empirical risk 
minimiser h∗ as

h∗ : = arg min
h∈H

1
m

m∑
i=1

�(h(xi), yi)).

Under certain assumptions on the complexity of the hypothesis set H, it can be shown that for sufficiently 
large m, the function h∗ will also achieve a small risk [77,20]. This means that the empirical risk minimiser 
h∗ resolves the unknown relation between input and output described by D. Because of this, we treat the 
empirical risk minimisation problem in this work as the central problem of interest.
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Next we would like to phrase the problems of digital tomographic reconstruction, of digital visible wave-
front set extraction, of full digital wavefront set extraction via inpainting, and of the joint reconstruction 
and digital wavefront set extraction and inpainting in the framework of statistical learning theory.

5.3. Digital tomographic reconstruction

A joint probability distribution on function spaces as described through the statistical formulation of the 
tomographic reconstruction problem in Definition 3.3 implies, via the discretisation procedure of Subsec-
tion 3.4, a joint probability distribution Drec on discretised image-sinogram data. In the discrete problem, 
the sample space is RIs =: X for Is ⊂ [m1] × [m2], where [M ] : ={1, . . . , M}, with the label space being 
defined by Rn1×n2 =: Y . As loss function we choose �rec to be the squared Euclidean distance between two 
elements in Y , i.e.,

�rec(y1, y2) : =
n1,n2∑
i,j=1

|(y1)i,j − (y2)i,j |2. (5.3)

Moreover, we choose as a hypothesis set Hrec : =(hϑ)ϑ∈Θres the set of functions which perform the mapping 
f0 �→ fI according to Algorithm 1 parametrised via the weights of the discrete two-dimensional convolutional 
ResNets introduced in Definition 2.1.

5.4. Digital visible wavefront set extraction

Similarly to the previous Subsection 5.3, the discretisation procedure of Subsection 3.4 implies a joint 
distribution between the digital wavefront set of a measured sinogram and the digital visible wavefront 
set of the image, precisely defined below. Here we use the shorthand notation AB : ={h : B → A} for two 
sets A, B. If B is a finite set then this can be interpreted as a set of A-valued vectors indexed by B, i.e., 
AB = {(ab)b∈B : ab ∈ A for all b ∈ B}.

Definition 5.2. Let Is ⊂ [m1] × [m2] be a digital grid in the sinogram domain and Id ⊂ [180]. The digital 
visible wavefront set of the sinogram data is given by an element of the set Xvis : =RIs × {0, 1}Id , where Id
represents the set of visible angles. Moreover, let Js ⊂ [n1] × [n2] be a digital grid in the image domain and 
Jd ⊂ [180], determined through the canonical relation for the Radon transform. The digital visible wavefront 
set of the image data is then described by an element of the set Yvis : =RJs × {0, 1}Jd .

The underlying loss function over Yvis is the multi-class cross-entropy loss given by:

�vis(y, y′) : =−
∑

(i1,i2)∈Js

∑
i3∈Jd

yi1,i2,i3 log
(
y′i1,i2,i3

)
for y, y′ ∈ Yvis.

As a hypothesis set we choose Hvis : =(ĥϑ)ϑ∈Θres as the set of maps resulting from the digital canonical 
relation described in Subsection 4.3.6. These maps are parametrised via the weights of the discrete two-
dimensional convolutional ResNets introduced in Definition 2.1. The important point to notice here is that 
Hvis and Hrec are parametrised by the same parameter set.

5.5. Digital wavefront set extraction and inpainting

To reconstruct the full digital wavefront set of an image from its sinogram data, we combine the visible 
wavefront set extraction of the previous subsection with a wavefront set inpainting step which will be 
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performed using a U-Net. We have chosen this architecture since it has shown state-of-the-art performance 
in image inpainting and segmentation, [72]. In this case, the sample set is Xinp : =RIs × {0, 1}Id , where 
Is ⊂ [m1] × [m2] and Id ⊂ [180], and label space has consequently to be chosen as Yinp : =Rn1×n2 ×{0, 1}180. 
The loss function is then

�inp(y, y′) : =−
n1,n2∑
i1,i2=1

180∑
i3=1

yi1,i2,i3 log
(
y′i1,i2,i3

)
for y, y′ ∈ Yinp.

As a hypothesis set Hinp, we use the set of maps resulting from the digital canonical relation described 
in Subsection 4.3.6 composed with a U-Net. These maps are parametrised via the weights of the discrete 
two-dimensional convolutional ResNets introduced in Definition 2.1 as well as by the weights of the U-Net. 
Because of this, we can write Hinp : =(hϑ,θ)ϑ∈Θres,θ∈ΘU

.

5.6. Joint reconstruction and digital wavefront set extraction and inpainting

We will now describe a joint approach in which the reconstruction problem as well as the wavefront 
set reconstruction and inpainting problem are solved simultaneously. This task certainly requires that the 
hypotheses classes underlying the risk minimisation problem are, at least partially, parametrised by the 
same parameter set.

This joint approach leads to the sample space being chosen as Xjoint : =RIs × RIs × {0, 1}Id for Is ⊂
[m1] × [m2] and Id ⊂ [180], and the label space being defined as Yinp : =Rn1×n2 × (Rn1×n2 ×{0, 1}180). The 
loss function needs then to be chosen �joint as a weighted average of �rec and �inp in the following sense: For 
a λ ∈ (0, 1] we set, for g1, g2 ∈ Rn1×n2 , (h1, h2) ∈ Rn1×n2 × {0, 1}180

�joint((g1, h1), (g2, h2)) : =λ�rec(g1, g2) + (1 − λ)�inp(h1, h2). (5.4)

The task-adapted reconstruction architecture involving the joint loss function (5.4) is depicted in Fig. 4.
Finally, the hypothesis set for the joint approach is given by Hjoint : =((hϑ, hϑ,θ))ϑ∈Θres,θ∈ΘU

.

6. Numerical results

We now provide numerical results for the joint reconstruction and wavefront set extraction algorithm of 
Section 5. We first present the set-up, followed by a description of our results, and finally an interpretation 
of the outcome.

6.1. Set-up

The set-up follows our viewpoint taken in Subsection 5.6, namely regarding the joint reconstruction 
problem from an empirical risk minimisation standpoint. Therefore, as a training set we use an artificial 
data set comprised of piecewise smooth functions, where the singularity curves are given by random splines 
of degree at most four and the smooth regions are polynomials of degree at most two. We call this data set 
the random cartoon-functions data set. Some examples of functions in this data set were shown in Fig. 2. 
Notice that for the images in this data set the digital wavefront set is known. We then study two types 
of partial data, namely limited-angle data, where we assume that a wedge of 40◦ is missing (a total angle 
interval of 80◦), and sparse-view, where we only measure 40 angles. This is followed by evaluating the trained 
task-adapted architecture (see Fig. 4) on the OASIS dataset [53] formed by real brain scans (see https://
www .oasis -brains .org/).

The results are then compared with classical approaches for the limited-angle and sparse-view tomogra-
phy, including filtered back-projection [50], Tikhonov [82], and total variation [88]. In addition, we have also 

https://www.oasis-brains.org/
https://www.oasis-brains.org/
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Table 1
Realistic dataset performance for general benchmarks for sparse-view CT on the left and 
limited-angle CT on the right.
Sparse-view CT:

Method SSIM PSNR
FBP 0.51 19.90
Tikhonov 0.73 24.77
TV 0.88 26.59
Shearlet-L2 sparse 0.73 24.69
Shearlet-L1 sparse 0.78 25.42
Learned Primal-Dual 0.89 27.55
Joint approach 0.92 28.46

Limited-angle CT:
Method SSIM PSNR
FBP 0.44 14.53
Tikhonov 0.73 22.62
TV 0.83 23.09
Shearlet-L2 sparse 0.70 22.20
Shearlet-L1 sparse 0.76 22.29
PhantomNet 0.87 25.50
Learned Primal-Dual 0.86 25.55
Joint approach 0.95 29.80

performed variational regularisation using as regulariser the L2 and L1-norm of the shearlet coefficients of 
the reconstruction [37,52]. We named these methods Shearlet-L2 sparse and Shearlet-L1 sparse. The deep-
learning based benchmarks, namely the Learned Primal-Dual [2] and the Phantom-Net architectures [13], 
were similarly trained using the random cartoon functions data set. The code to reproduce our experiments 
can be found in http://shearlab .math .lmu .de /applications.

6.2. Results

We now present some exemplary results for our algorithm in the case of limited-angle tomography (80◦
wedge) and sparse-view (40 measured angles). The visual results are depicted in Figs. 5 and 6. The com-
parison with the benchmark approaches from Subsection 6.1 is shown in Table 1.

In addition, we show in Figs. 7 and 8 reconstruction results of the limited-angle and sparse-view tomogra-
phy for the benchmarks already mentioned in Subsection 6.1. In all cases, the joint approach outperforms all 
classical approaches. Table 1 presents the performance measure of the benchmarks in terms of the average 
self similarity (SSIM) and peak signal-to-noise ratio (PSNR).

6.3. Interpretation

In Table 1, we see that the joint approach significantly outperforms all competing approaches. The 
same observation can be made by observing Figs. 8 and 7 that demonstrate a strong improvement in the 
reconstruction accuracy in comparison with the other methods and in particular to the Learned Primal-Dual 
architecture. In this context, it is noteworthy that the performance gap in this application is much more 
pronounced than in the sparse-view application. Since the Learned Primal-Dual corresponds to one half of 
the workflow of the joint approach, we observe that the additional wavefront set information is especially 
helpful in the limited-angle case. Since the gaps in the visible wavefront set are significantly smaller in the 
sparse-view set-up, we expect that, in this set-up, considerably more information on the wavefront set is 
already included in the observed data, whereas in the limited-angle set-up more prior knowledge needs to 
be invoked. It appears as if this necessary prior knowledge was very successfully extracted and incorporated 
in the training phase of the joint approach.

In Figs. 5 and 6 we performed a type of ablation study by looking at the prowess of the inpainting 
algorithm alone. It transpires from those figures that the inpainting is less successful if it is not coupled 
with the reconstruction workflow. This clearly shows that the strength of the joint approach does not solely 
lie in wavefront set identification and inpainting but in the interplay of inpainting and reconstruction jointly.

We wish to remark that our algorithm is not trained on real-world images but instead on artificial 
phantoms from the random cartoon-functions data set. This shows that the joint prior that incorporates 
physical information is not based on memorisation or overfitting. From the standpoint of applications, this 
could be a very desirable feature, as it prevents overfitting on specific biases in real-world data sets.

http://shearlab.math.lmu.de/applications
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Fig. 5. Realistic data set results on the joint CT reconstruction and WFset inpainting for limited-angle case, missing wedge = 40◦.

In Fig. 6, we see that the Learned Primal-Dual, as well as the joint approach, appear to produce re-
constructions that exhibit almost no texture-like areas but instead are piecewise smooth. This effect could 
potentially be an effect of the underlying data set. In this context, it may be worthwhile to expand the 
training data set by artificial images with more texture-like features.
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Appendix A. Notions and results from distribution theory

Below, we collect some essential notions and results from distribution theory and the analysis of the 
wavefront set. These were used extensively in Subsection 4.3.4.

Definition A.1 (Essential support [73]). Let Ω ⊂ Rn be a domain. The essential support of f ∈ S ′(Ω) is the 
defined as the set
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Fig. 6. Realistic dataset results on the joint CT reconstruction and WFset inpainting for sparse-view case, number of angles = 40.

esssup(f) : =Rn \
⋃
U∈U

U,

where U : =
{
U ⊂ Ω : U is open and f

∣∣
U

= 0
}

with f
∣∣
U

denoting the restriction of f to U ⊂ Ω.

Note that if f ∈ C(Ω), then esssup(f) = supp(f), i.e., the essential support coincides with the usual 
support. We also introduce the notion of positive and negative supports of a distribution.

Definition A.2 (Positive support, [73]). Let Ω ⊂ Rn be a domain. The positive support of f ∈ S ′(Ω) is the 
defined as the set

supp+(f) : =
⋃
U∈U

U,

where U : =
{
U ⊂ Ω : f(φ) > 0 for all φ ∈ S(Ω) \ {0}, suppφ ⊂ U, φ ≥ 0

}
. Finally, the negative support of f

is defined as supp−(f) : =(supp+(f))c.

From the definition, we see that

supp+(f) = supp
(
|f | + f

)
= {x ∈ Ω : f(x) > 0

}
whenever f ∈ C∞(Ω).
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Fig. 7. Realistic dataset results for general benchmarks for limited-angle CT, wedge = 40◦.

We now turn our attention to defining the product of two distributions.

Definition A.3 (Product of distributions, [11, Definition 2]). Let Ω ⊂ Rn be a fixed domain and consider the 
distributions u, v ∈ S ′(Ω). We say that w ∈ S ′(Ω) is the product of u and v if an only if, for each x ∈ Rn, 
there exists a test function ψ ∈ S(Ω), with ψ = 1 on a neighbourhood of x, so that

ψ̂2w(ξ) =
(
ψ̂u ∗ ψ̂v

)
(ξ) =

∫
ψ̂u(ξ) ψ̂v(ξ − η) dη (A.1)
Rn
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Fig. 8. Realistic data set results for general benchmarks for sparse-view CT using 40 angles only.

converges absolutely for each ξ ∈ Rn. In addition, under these conditions, we can define w by (A.1).

Theorem A.4 (Product theorem/Hörmander condition, [11, Section 3.2]). Let Ω ⊂ Rn and u, v ∈ S ′(Ω). 
Assume there are no points (x, ξ) ∈ WF(u) such that (x, −ξ) ∈ WF(v). Then, w defined as in Definition A.3
is a well-defined unique distribution that is the product uv. Moreover, in this case we have

WF(uv) ⊂ S+ ∪ Su ∪ Sv,
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where

S+ : =
{(

x, (ξ + ω)/‖ξ + ω‖2
)

: (x, ξ) ∈ WF(u) and (x, ω) ∈ WF(v)
}
,

Su : =
{
(x, ξ) : (x, ξ) ∈ WF(u) and x ∈ supp(v)

}
,

Sv : =
{
(x, ω) : (x, ω) ∈ WF(v) and x ∈ supp(u)

}
.

Remark A.5. If u, v ∈ L2
loc(R) and we define uv(x) = u(x)v(x) almost everywhere, then the multiplication of 

u and v defined in (A.1) coincides with uv almost everywhere. This holds even if there exist (x, λ) ∈ WF(u)
such that (x, −λ) ∈ WF(v). To see this, let x ∈ R2 and ψ be as in Definition A.3. Then

ψ̂2(uv)(ξ) =
∫
R2

ψ̂u(ξ)ψ̂v(ν − ξ)dξ

holds in an L2 sense. Moreover, by Plancherel’s identity, we have that ψ̂u, ψ̂v ∈ L2(R2), which yields with 
the Cauchy-Schwarz identity, that∫

R2

∣∣ψ̂u(ξ)ψ̂v(ν − ξ)
∣∣dξ ≤ ‖ψ̂u‖2

∥∥ψ̂v(ν − ·)
∥∥

2 = ‖ψ̂u‖2 ‖ψ̂v‖2 < ∞.

This yields absolute convergence in (A.1).

Definition A.6. The L2-support of f ∈ S ′(Ω) is defined as the largest open set on Ω where f is given by an 
L2-function:

suppL2(h) : =
⋃{

U ⊂ Ω open : f
∣∣
U
∈ S ′(U)

}
.

Thus, if x ∈ suppL2(h) then there is an open set x ∈ U ⊂ Ω and fU ∈ L2(U) such that f(φ) =∫
U
fU (x)φ(x)dx for all φ ∈ S(U).
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