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Abstract  

The field of artificial intelligence has gained much knowledge through the implementation of 

decision-making systems in video games. One of these systems was the Goal Oriented Action 

Planning system (GOAP) which directs the behavior of an AI-agent through multiple digital 

artifacts categorized as goals, actions, and plans. The aim of the thesis is to aid in the 

understanding and creation of GOAP driven AI-agents in a video game setting to promote 

research on this topic. The research question of this thesis was about finding out how the GOAP 

architecture compares to other video game decision-making systems. The theoretical framework 

introduces the concept of the illusion of intelligence in video games and presents a discussion 

focused on the different components which make up a GOAP system and other components that 

support it. Additionally, the theoretical framework explains the need for a comparison between 

different decision-making systems and explains the social impact of game AI research. The 

methods section introduces the criteria for the comparison between GOAP and other decision-

making systems and presents a comparison process that was driven by a literature review. A 

GOAP system was designed for this thesis using the unified modeling language and concept 

maps. It was then implemented using C# code in a free-of-charge game engine called Unity. We 

present the pseudocode for the implementation of the GOAP system and show that this 

framework is a modular, customizable, and reusable system that enables AI-agents to create 

plans from a varied set of actions. Finally, the paper suggests further research within game 

decision-making AI and emphasizes the importance of game AI research for communities of 

game developers, hobbyists, and others who could benefit from game AI in their projects.  

 

Keywords  
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Chapter 1 Introduction  

 

This section introduces the reader to the general area of study that this thesis paper is about and 

explains the aim of the thesis in relation to the Goal Oriented Action Planning architecture. 

Furthermore, the research question of this paper is introduced in this chapter. Lastly, the 

disposition of the research paper is made available in the last part of this chapter.  

The field of artificial intelligence (AI) is a large field that contributes to many industries and has 

many uses. AI has been used in facial recognition, search engines, robotics and even video 

games. One strange observation that some academics have noticed about people’s view of AI is 

that once a certain kind of AI becomes mainstream, people stop viewing it as real intelligence 

(Haenlein & Kaplan, 2019). However, just because a certain AI technology is no longer deemed 

intelligent does not mean that it is any less useful. Video game AI is one of these AI fields that 

has become mainstream and is often expected to be part of any modern video game. But 

programming AI requires structure. It is not as simple as telling the computer to do “A” if 

condition “X” is fulfilled. Instead, a more organized system should be engineered to protect the 

AI’s code from becoming unmanageable. One AI architecture that has been used in some video 

games is the Goal Oriented Action Planning architecture (GOAP). This thesis studied the GOAP 

architecture (Orkin, 2003) for AI decision making in video games and was accompanied by a 

development project of a GOAP system that was implemented in a digital game prototype. This 

was important because there is not enough accessible research about different AI-systems for 

game development. Smaller game studios and game development hobbyists do not have large 

budgets or enough time to do their own research and therefore, the game AI research community 

has a responsibility towards these kinds of developers (Cook, 2021). Additionally, the GOAP 

architecture (Orkin, 2003) is not as popular as other types of AI systems such as behavior trees 

and FSMs (Sweetser & Wiles, 2002), therefore it is also not as well documented either. Because 

of that, this research presents a valuable contribution to the field of game AI research.  
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1.1 Aim 

 

The focus of this thesis was to understand the GOAP architecture (Orkin, 2003) and how it is 

built and then program a prototype of a GOAP driven AI-agent to be used in a digital game 

environment. By creating a prototype that uses GOAP AI and documenting that development 

process, this thesis aimed to advance the research within the fields of artificial intelligence and 

game development and make GOAP a better understood system with publicly accessible 

documentation. The chosen game type that was used was made to be similar to the basic 

mechanics of the game Dead by Daylight (2016). This meant creating a game prototype that had 

a type of character whose goal was to hunt other characters and another type of character whose 

goal was to escape. These types will be described as the hunter and the hunted in this paper. The 

prototype developed for this thesis used the GOAP architecture to create AI players that played 

against each other as opposed to having an online multiplayer game with real human players as is 

the case in Dead by Daylight. The reason for this choice of game category was that it presented 

two kinds of players with two main goals, hunt, or escape. This meant that the number of goals 

that the GOAP agent had, could be narrowed down to a smaller amount to fit the scale of this 

thesis paper and project.  

1.2 Research question  

 

The Goal Oriented Action Planning architecture (Orkin, 2003) is not the only decision-making 

type of system that is used in video game artificial intelligence. Therefore, it was important to 

understand its significance when compared to other systems that were used for similar purposes. 

The research question that this thesis wanted to answer was:  

- How does the Goal Oriented Action Planning architecture compare to other artificially 

intelligent decision-making systems in video games?  
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1.3 Disposition 

 

In Chapter 2 we present a background on the topic of Goal Oriented Action Planning. In Chapter 

3 we cover existing research in the field of game decision-making systems. Chapter 4 is a theory-

based chapter in which the theories around pertinent topics in artificial intelligence and video 

games are presented. Chapter 5 is the methods and empirical data chapter where the different 

methods that were used are presented followed by a brief chapter on ethical concerns about this 

research paper. Finally, in Chapter 7 we present the results of the research paper and provide a 

discussion in Chapter 8 and the conclusion of the research paper in Chapter 9.  
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Chapter 2 Background  

 

This chapter briefly explains the concept of the Goal Oriented Action Planner (Orkin, 2003) and 

why it is an improvement compared to other methods of game character AI. Additionally, a 

motivation for the need for this kind of AI is introduced in relation to programming efficiency 

and an explanation of its relevance to the field of information systems is presented.  

Video games have used several standards for non-player character AI, ranging from simple ones 

to more complicated ones that are harder to code. One of the most common methods of creating 

game AI is by using (FSMs) finite state machines (Sweetser and Wiles, 2002). Sweetser and 

Wiles explained that FSMs are the most used AI technique in video games because of how easy 

they are to program and get running. They elaborated that the way that FSMs work is that they 

divide behaviors into a limited number of states that a game character can alternate between. 

However, FSMs that are poorly structured can become too hard to manage the bigger the project 

becomes. Sweetser and Wiles noted that bigger games might require many states to be handled at 

the same time and having too many states in an FSM can easily become a problem. The Goal 

Oriented Action Planning architecture is one solution to this problem. Orkin (2003) said that 

GOAP does not replace the need for an FSM, but rather simplifies it so that it can be managed 

more easily. Orkin explained that in GOAP, instead of making a new state for each action in the 

FSM, a game character’s actions can be grouped together in a state. That way, the total number 

of states in an FSM remains smaller. For example, he said that actions such as dodge and reload 

weapon can be grouped together in one state called animate. Furthermore, Orkin stated that the 

GOAP architecture helps create characters that are able to create plans and exhibit unique 

artificially intelligent behaviors. The characters become less repetitive and less predictable as he 

puts it.  

Games that use AI to create game characters that are able to intelligently hunt, and chase down 

other game characters have seen a rise in popularity in recent years. Examples of those are the 

Alien from Alien: Isolation (2014) which chases the player around the game area and reacts to 

the player (searches for the player if they are hiding and attacks if they are visible) as well as the 
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characters Mr. X (Resident Evil 2, 2019) and Lady Demetrescu (Resident Evil Village, 2021) 

who exhibit similar behavior as they search for the player when they are hiding and chase them 

all through the game environment once they see them. This modern popularity of what could be 

called a Hunter AI in video games could make use of the GOAP architecture to enable creating 

intelligent hunter behaviors that can alternate between different states and create organized 

decision-making plans. Doing research on how this kind of AI can be created will help make this 

area of game development more accessible. This could be beneficial for smaller game studios 

that do not have big budgets to do research on AI for their games and would rather learn from 

publicly accessible thesis papers on the topic.  

2.1 The significance of Decision-Making systems in video games  

 

A game programmer could write long lines of code where they define the conditions for making 

a decision using “if this then that” lines of code. That could work perfectly fine for a game where 

the decisions to be made come from a small set of actions. Think for example about a game 

where an AI-agent needs to choose between the actions “Sleep” and “Eat”, where the need to 

sleep is directly related to the variable “Tired” and the need to eat is directly related to the 

variable “Hungry”. The logic to make a game character make a decision about those needs could 

look as such:  

if(Hungry = true & Tired = false) 

 //Do action 'Eat' 

else if(Hungry = false & Tired = true) 

 //Do action 'Sleep' 

else if(Hungry = true & Tired = true) 

 //Do action 'Eat' first 

 //Wait until finished eating 

 //Do action 'Sleep' 

The above pseudocode makes a game character eat as long as it is not tired and sleep as long as it 

is not hungry and finally it makes it prefer to eat first and sleep second if it is both hungry and 

tired. This logic could work perfectly fine for an extremely simple video game. However, in a 

game where many needs are part of the game and there are many variables to consider, 

programming the game using simple “if this then that” statements creates very long lines of 
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unmaintainable code. Imagine for example a game where an AI-agent has the same two 

previously mentioned needs. This time however, fulfilling the “Sleep” action requires not only 

the agent to be tired, but that they also own a bed and know where it is located in the game’s 3D 

or 2D-space. Additionally, the agent should also be programmed to know that if they do not own 

a bed, then they should sleep on the couch. And then the same conditions would apply for the 

couch (the game character must own one and know where it is). In a game such as this, the 

simple action of going to sleep has so many conditions that affect it. This also applies to the 

“Eat” action and many other actions that the programmer would want to program into the game. 

Furthermore, the programmer might want to create different priorities for each action. Going to 

sleep while very hungry would be bad for the game character, so they should prioritize eating 

first. Programming action-priorities would create even longer lines of code that would have to 

account for every single combination of actions and which action of each pair of actions needs to 

happen before the other.  

The previous example illustrates the need for Decision-making systems in video games. A well-

structured decision-making system can eliminate long and unmaintainable lines of code. The 

GOAP architecture (Orkin, 2003) does that by using a combination of digital artifacts called 

actions, goals, and plans. Actions have preconditions and effects which help the system make 

decisions regarding prioritization of actions. Furthermore, the system uses costs per action to 

simulate decisions regarding preference.  

2.2 Relevance to the field of information systems and contribution to the field  

 

Video game designers need to collaborate using different information systems to create their 

games. Information system research is concerned with the interactions between individuals, 

systems, and organizations (Hirschheim & Klein, 2012) and information systems are described 

as systems that process data and provide information. Viewing the Goal Oriented Action 

Planning architecture (Orkin, 2003) through the lens of information systems, it can be seen that 

GOAP provides a way for game designers, programmers, and technical artists as separate 

individuals, to each do their part in a way that utilizes GOAP as a system. Ultimately, working 

together as an organization to produce a video game. Additionally, GOAP can be seen as an 
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information system because it can be provided with data from the designers. That data is in the 

form of definitions of individual actions as digital artifacts of the system. The GOAP system then 

processes that data using its planner and provides information to an AI-agent in the form of a 

plan. Furthermore, more design science research could be done for the field of information 

systems according to Peffers et al. (2007). They explained that a design science research project 

entails creating a digital artifact, evaluating it, and presenting it to an audience. This means that 

following a design science methodology, a GOAP system can be designed as part of a research 

project that would contribute to the field of IS. Additionally, considering that information 

systems are widely understood as tools for problem solving in organizations (Lyytinen, 1987), it 

can be understood that a decision-making AI system such as GOAP solves a problem for game 

development organizations. That problem being a lack of a common structure of managing AI-

agent actions, which causes unmaintainable code and projects. GOAP provides a framework for 

game developers to understand an AI-agent’s behaviors as being motivated by goals, actions, and 

plans. The three important digital components of the GOAP system. Additionally, Peffers et al. 

(2007) explained that the field of information systems has struggled with applying design science 

research as a component of research in the field of IS. Thus, conducting a design science project 

to develop a GOAP system and evaluate it contributes to the field of information systems and 

benefits game development organizations.  
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Chapter 3 Existing research  

 

There are several ways that a game character’s AI can be programmed to influence its decision-

making abilities. However, some of them can quickly become complicated and unmanageable. 

This section will discuss some of the existing research on game AI and decision-making.   

3.1 Finite State Machines (FSM) 

 

A finite state machine is a commonly used technique in video game artificial intelligence. 

Sweetser and Wiles (2002) explained that the commonality of FSMs in the field of game 

development could be attributed to their ease of programming and debugging. They revealed that 

FSMs are used to divide a game object’s behavior into several parts. Each part helps exhibit a 

certain behavior. Furthermore, they said that an example of how an FSM could be used was to 

represent a monster that expresses different emotional states such as berserk, rage, mad, 

annoyed, or uncaring. Each of these states are activated by different events in the game and each 

state makes the character exhibit certain behaviors.  

In his book about game-AI programming, Cossu (2020a) explained that the classic arcade game 

Pac-Man used an FSM where the ghosts that chased the player had 3 states. Roam, chase and 

flee. Each of these states was triggered by an event in the game and each of them could make a 

transition to the other. For example, as Cossu explained it, the ghosts would be in the Roam state 

when Pac-Man (the player) was not in range, and their FSM would transition to the chase state 

when they saw Pac-Man. Additionally, the FSM would transition to the flee state if the player 

had picked up a pill, which made the ghosts run away from the player. The illustration below 

(Figure 1) (Cossu, 2020b) explains the FSM of Pac-Man.  



15 

 

Figure 1: The ghost’s FSM from the classic Pac-Man game. Adapted from figure 5-1 in (Source: Cossu, 2020b, 

p117-p139) 

It can be seen in the illustration above how each state in the FSM uses three conditions to 

determine whether the FSM should stay in its current state or move to the next or previous states. 

A bigger game than Pac-Man can easily require more than 3 states which might imply the need 

to create a complicated FSM with a web of states, each requiring different conditions to 

transition from and to several other states. This is a well-known concern when developing game-

AI using an FSM. Sweetser and Wiles (2002) said that game FSMs can become too large and 

grow out of control when needing to implement many states and state transitions.  
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3.2 Behavior trees  

 

Another commonly used technique in video game artificial intelligence are behavior trees. Rabin 

(2017, Chapter 9) explained that behavior trees were a common architecture that is used to create 

control mechanisms for non-playable characters (NPCs). As he put it, a behavior tree has nodes 

that tell the NPC how to behave. Additionally, he claimed that behavior trees were easy to 

customize, because they were composed of smaller changeable behaviors each working as a 

small component.  

The building blocks of a behavior tree (Rabin, 2014, Chapter 6) consisted of many components. 

The three most basic ones were behaviors, actions, and conditions. He explained that behaviors 

can be seen as an interface where actions and conditions create special implementations of the 

behavior interface. While actions were the leaf nodes of a tree, and they were responsible for 

gaining access to information about the game world and reacting to it. And finally, conditions 

were also leaf nodes in a behavior tree, which have the responsibility of checking for information 

about the game world.  

Rabin warned however of some of the pitfalls of behavior trees. He said that because behavior 

trees were intended to aid in decision-making within larger systems, the tree could become too 

complicated if it is programmed to have too many responsibilities. Therefore, he explained that it 

is best to keep the following in mind:  

● Avoid adding too many classes to the tree’s decision-making architecture  

● Do not build an entire programming language into the behavior tree prior to requiring 

such a feature  

● Avoid using the blackboard as a point of communication for everything.  

3.3 Goal Oriented Action Planning  

 

The video game F.E.A.R (2005) was the first video game to use GOAP (Orkin, 2003) to plan 

decisions made by game characters. Orkin (2006) explained that the FSM for the characters in 
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F.E.A.R had only three states and that the A* algorithm was used to generate pathfinding plans 

as well as plans for sequences of actions. An A* algorithm is an algorithm which represents 

knowledge as a graph and finds the best path towards a certain goal in the graph (Hart et al., 

1968). Orkin (2006) explained that the AI in this game had the ability to do things such as take 

cover, shoot fire blindly and even communicate with other AI teammates. The game used the 

states GoTo, Animate and UseSmartObject as Orkin explained. Furthermore, he elaborated that 

the UseSmartObject state was actually a version of the Animate state except that it holds an 

animation that is specific to the game object being used.  

3.4 The research gap  

 

The Goal Oriented Action Planning architecture for video game decision-making is a more 

advanced system compared to traditional finite state machines that are used in simpler video 

game AI. But there is a lack of sufficiently clear and easily accessible documentation and 

implementation examples of the GOAP system. Therefore, it is important to create an 

understanding of the GOAP architecture through a development and design project accompanied 

by good documentation and evaluation of the process and the developed artifact. Creating a 

GOAP system for any video game requires a planning process where the main components of the 

system must be outlined in order to direct the programming in the correct direction. There are 

some sources online that explain what GOAP is, but they do not show a clear overview of the 

system. Peffers et al. (2007) explained the design science research methodology which helps in 

doing research alongside a design project. They said this could be done by following some 

guidelines. They added that the most important of these guidelines was that the research must 

result in the creation of an artifact which acts as a solution for a problem. Furthermore, they said 

the artifact must be evaluated and the research should present a valid contribution while the 

development of that artifact must be based on previous research on the topic. Finally, they said 

that the research should be presented to a relevant community or audience. Therefore, to conduct 

a design science research project, this research paper will address that by developing a GOAP 

system which is the artifact of this research. To do that, it would be important to review the 

preexisting literature on the topic and create a clear blueprint that displays what the components 
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of the GOAP system is and how they interact with other objects in a game world. Additionally, 

each video game genre presents different challenges and uses for decision-making. To evaluate 

the produced artifact a comparison of the developed GOAP system to other decision-making 

systems is required. This helps in understanding when it is most useful to use GOAP and when to 

otherwise avoid using it and opt for a different decision-making system altogether. That will 

make this research paper a contribution to the field and the relevant communities of game 

developers.   
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Chapter 4 Theoretical framework  

 

This section presents a theoretical framework for video game AI. Different concepts are 

explored. Some of which relate directly to video-game programming and others are more related 

to artificial intelligence in general. Together, these concepts are explained in relation to the 

GOAP planning system and how it all comes together as a video-game decision-making system.  

4.1 The significance of the illusion of intelligence  

 

An important part of video game AI programming is the illusion of intelligence as Rabin (2017, 

Chapter 1) explained. He said that even if an AI had human level intelligence, it could be 

perceived as unintelligent if it does not meet the player’s expectation. Therefore, as Rabin 

explained, the illusion of intelligence in video games could be more important than real human-

level intelligence. This point was further supported by Barrera et al. (2018) who stated that 

artificial intelligence for the purpose of video games is the illusion of intelligence. They added 

that intelligent game agents do not really need to learn things to be intelligent, they just have to 

convince the player that they are learning things. Additionally, they explained that intelligent 

game agents use different sets of sensors to react to their environment, similarly to how our 

brains use our eyes and ears but in a much less complex way. The reason why illusions work 

according to Rabin (2017, Chapter 1) comes from three aspects. The first aspect is that players 

want to believe in the illusion. Rabin said that players like to participate in the illusion that the 

video games they play have human-like qualities. He explained that as long as the AI does not 

make any visibly obvious mistakes, players will continue to participate in the illusion of the AI’s 

intelligence.  

The second aspect was that people are eager to anthropomorphize (Rabin, 2017). Rabin 

explained that people apply human traits to familiar behaviors to make sense of an ambiguous 

situation. Rabin believed that when this view is applied to video games, it can be said that people 

perceive an AI-agent’s intelligence as human-like intelligence. Additionally, he added that video 
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games often have human-looking avatars that animate and move like human beings and 

therefore, the effect of anthropomorphism plays an important part in the illusion.  

Finally, the third aspect according to Rabin (2017) was the power of expectation. He explained 

that people will believe certain things depending on what expectations they have. He gave an 

example from an experiment done by researchers in Caltech and Stanford where participants 

were given a 45$ bottle of wine and a 5$ bottle of wine and were asked to taste them. They used 

brain-imaging techniques and noticed that people’s brains showed signs of experiencing more 

pleasure when the participants were tasting the more expensive wine. What the participants did 

not know was that both wines were actually the same. Rabin also added that the well known 

placebo effect in the medical field was another example of how people’s expectations play an 

important role in what they experience. He concluded that managing player expectations in 

video-games was important for the illusion of intelligence in AI-agents.  

These three aspects are an important point of interest in developing a decision-making AI. With 

these aspects taken into consideration, it becomes easier to understand that it is not enough to 

create an AI that is able to pick and choose from a set of different actions that lead to a goal. 

Rather, it is also important that this AI in one way or the other expresses to the human player that 

it is in fact actively making decisions that are influenced by the state of the environment around 

them. If the human player does not notice the game agent’s artificial ability to make decisions 

and does not participate in the illusion, then the AI-agent’s decision-making abilities would be 

lacking in significance.  

4.2 Creating the illusion  

 

After explaining the importance of illusion in the creation of artificial intelligence for video 

games, Rabin (2017, Chapter 1) revealed a few ways to create the illusion. Two of those are 

discussed in the following sections.  

Firstly, Rabin (2017) started by explaining that a subtle way to manage expectations is to tell the 

player about the AI’s abilities. He advised to use the loading screen in the game for example to 

mention an AI character’s ability to make different decisions based on a given situation. This can 
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be done in a subtle way where that information could be framed as part of a gameplay tip, he 

added. Rabin warned however of how this could backfire if the game builds high expectations, 

but the AI and the game’s code do not actually meet those expectations.  

Secondly, Rabin highlighted that the use of animations and dialog advances the illusion of 

intelligence in games. He pointed out that despite character animations not explicitly being part 

of the AI programming, they play an important role in highlighting when the AI is making 

different actions. Rabin gave an example of how using head movement animations helps show 

the player that an AI-agent is aware. He explained that an AI-agent’s ability to look at an object 

or character that it is pursuing, shows the player that the AI-agent is intelligent. In reality the AI 

does not need to look at (or move its head towards) an object in order to interact with it but using 

animations this way highlights the game character’s artificial intelligence. In addition to 

animations, Rabin said that intelligence can be illustrated by programming the ability for an AI-

agent to adjust its speed. Running faster when the situation calls for it and walking slowly 

otherwise. Furthermore, dialog that is related to what is happening in the game between AI 

characters emphasizes their intelligence as Rabin explained.  

4.3 Planner system, A* algorithm and goal-driven (regressive) search  

 

The Goal Oriented Action Planning architecture (Orkin, 2003, 2004, 2006) uses a combination 

of smaller programming concepts to create a system that is able to create plans of actions in real 

time. This section explains those concepts in further detail and how they work with each other.  

The Goal Oriented Action Planner is a planner that can be used by non-playable characters 

(NPCs) to satisfy a specific goal (Orkin, 2004). Orkin explained that the planner looks for a 

suitable arrangement of actions that can be executed to fulfill the goal. He added that each action 

can have some preconditions that also need to be met for the planner to work correctly. 

Additionally, Orkin said that in the case of there being multiple actions which have the same 

effect, the planner deals with those actions in a way that allows higher priority actions to 

override others when that is suitable. Furthermore, Orkin explained that actions and goals in this 

case have no explicit connection to one another, but rather, the planner creates that connection by 
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creating plans during the execution of the program. This, according to Orkin, allows engineers to 

define what a goal is and what an action is during development. Meanwhile, designers get to 

define the data files which describe each individual action and goal.  

4.3.1 The planner  

 

What made the FSM in GOAP different from other video game FSMs was that the logic to 

transition from one state to another was not embedded in the FSM itself but was rather embedded 

in a planner system (Orkin, 2006). Orkin explained that a planning system could tell the AI what 

the goal was and what actions were available and then let the AI create its plan in real time. This 

was contrary to regular FSMs which told the AI exactly what to do at any given situation, which 

meant that the FSM had to be designed to react to every possible situation and that made overly 

complicated designs.  

A planner system according to Orkin (2003) is a system that searches the space of possible 

actions that could take a game character from a starting state to a goal state. If the planner 

succeeds in finding a plan, the character follows the plan until the goal is achieved or until a 

better plan becomes more relevant. If the plan becomes invalid during its execution for whatever 

reason, the planner tries to formulate a new plan for the character to follow. The planning system 

in F.E.A.R was based on the STRIPS planning system (Orkin, 2006).  

STRIPS (STanford Research Institute Problem Solver) is a planning system that uses operators 

and goals (Fikes & Nilsson, 1971). Goals define a state of the world that the system wants to 

reach. Operators are the steps that are taken in order to reach that goal where each operator 

partially changes the state of the world (Fikes & Nilsson, 1971). For the STRIPS system to create 

a sequence of operators to reach its goal, it needs descriptions of the operators. These 

descriptions were separated in three main categories: 1. Name and parameters of the operator, 2. 

Preconditions, 3. Effects (Fikes & Nilsson, 1971). In GOAP, operators were referred to as 

actions (Orkin, 2006). Orkin revealed that in the game F.E.A.R (2005), different character types 

had different action sets. What this meant according to him was that in the game, when an 

assassin character and a rat character were given the same goal named KillEnemy, the assassin 
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would actually be able to form a plan consisting of the actions patrol and attack. Meanwhile, the 

rat did not have the attack action in its set of possible actions, therefore, if it tried to formulate a 

plan to kill the player it would only be able to go as far as to patrol the area (Orkin, 2006). 

Another way that GOAP was different from STRIPS according to Orkin was that GOAP had the 

added functionality of cost per action and procedural preconditions and effects.  

4.3.2 The A* algorithm and costs per action 

Cost per action as explained by Orkin (2006) is where actions are assigned different values and 

the system gets to create a plan that is cost effective out of the set of available actions. That way, 

even if there are many different ways that a goal can be achieved, the AI system will only create 

a plan for the one way that is most cost effective (costs the least). He added that this functionality 

was implemented using the A* algorithm. The A* algorithm is a graph algorithm that uses an 

evaluation function which expands the node that has the least value (Hart et al., 1968). It repeats 

that function until it finds a full path of nodes with the least total cost to reach a given goal in the 

graph. For each node that the algorithm expands it marks that node as open. It searches for the 

next node with the smallest value (and at the lower level of the graph) and marks that as open 

and then marks the previous one as closed (Hart et al., 1968). Orkin (2003) suggested that the A* 

algorithm should be used for regressive search in video games. He explained that searching 

backwards meant that the search starts with the goal and finds the action that will satisfy that 

goal. Next, it will find the second action that satisfies the preconditions of the previous one. The 

algorithm will continue this way until it is able to formulate a full plan to satisfy the goal.  

4.3.3 Heuristics and the set of relevant actions  

In order for the GOAP planner to formulate a plan, it is not enough for it to simply pick 

whichever actions had the least costs. The chosen actions must also be heuristically and 

contextually relevant. Orkin (2003) explained that the planner needed to represent the state of the 

game world using a list of properties about the world. Each property in the list, as he said, would 

contain variables about that state of the world. An example he gave was how the KillEnemy goal 

could be represented in the game code. He showed that the goal could be represented with a 

world property structure that contained:  
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● GAME_OBJECT-ID: represents the object that this world property is concerned with. In 

the case of KillEnemy it’s the human player (the AI’s enemy) 

● WORLD_PROPERTY_KEY: a key that represents the state of the world that this goal 

wants to achieve. kTargetIsDead for the goal KillEnemy.  

● Value: some variable value (float, integer, boolean, etc.) that could describe the world 

property. kTargetIsDead needed a boolean variable with the value true.  

Orkin added that the planner adds actions in the plan as each action adds a precondition which 

requires a different action. It does that until all preconditions for the goal state are met. The 

search for a viable plan successfully completes when the current state of the plan matches the 

goal state (Orkin, 2003).  

4.4 Vision in video games  

 

Video game vision is one part of game programming that really makes good use of the illusion of 

intelligence. In this section, game vision for AI-agents is discussed and explained in longer 

detail.  

Every AI agent needs some way to perceive the environment around it. For AI agents in 3D 

video games, this is often done using what is called a vision cone (Rabin, 2017, Chapter 7.4.1). 

Rabin revealed that a vision cone determines the field of view (FOV) of a game character. As he 

put it, extending the length of a vision cone meant that the FOV also expanded in width. 

Furthermore, game vision is said to be composed of three vision checks, namely: distance, field 

of view and ray cast (Rabin, 2015, Chapter 4). Rabin explained that the distance check was used 

to restrict how far an AI agent could see. While the FOV check helped make sure that the agent 

only saw what was inside their view and not what was behind them for example. Lastly, the ray 

cast was said to be used to prevent an agent from seeing things that were behind walls or 

obstacles.  

He further explained that ray casts are used to check if there is a clear line of vision between an 

AI-agent and their target (Rabin, 2014, Chapter 31). According to him, this is done by casting a 

ray from the AI-agent towards their target to check that the target is not obstructed by something 
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else. To limit the number of times an agent needs to do this check, Rabin elaborated that a ray 

cast and a vision cone can be used together. That helps an agent see their target using a vision 

cone first and then check if it is obstructed or not using a ray cast.  

In some video games, an agent might be using several vision cones at once. In an article about 

the game Alien: Isolation (2014), the game’s AI was explored, and they found out that all 

characters in the game had four different view cones (AIandGames, 2020). A normal vision cone 

for distant objects, another for objects that are straight ahead and in short distance, a third which 

was a peripheral vision cone and the last one which was for immediately close objects.  

For a clearer explanation of these concepts see the figure below  

 

Figure 2: Vision cones. Green check marks show which targets can be seen and red crosses show which targets 

cannot be seen by the agent 
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Figure 2 is an example of an agent that uses two vision cones. It shows how target 1 can be seen 

by the agent because it is within the normal vision cone and there is a clear line of sight (a 

straight line/ray can reach from the agent to the target). Whereas target 2 cannot be seen because 

despite it being in the blue cone, it is obstructed by a wall. Target 3 cannot be seen, even though 

a clear line of sight can be established, the target is not inside either of the vision cones. And 

finally, target 4 can be seen by the agent because it is within the immediate vision cone (red 

cone).  

To summarize, a programmer can equip an AI-agent with a combination of vision cones and ray 

casting to simulate vision. This further supports the idea that game intelligence is an illusion of 

intelligence, rather than a real human-like intelligence. The agent does not see in color nor in 

black and white. In fact, it does not really see anything at all, rather, it merely checks if a target is 

inside a vision cone object or not and if it is obstructed by a 3rd object. Simulating vision this 

way, does not require very complicated systems, yet it offers a crucial sensory ability for an 

agent’s intelligence and aids in its decision-making abilities.  

4.5 Working memory for AI-agents  

 

In the field of artificial intelligence, there is a concept known as the “Working memory”. This 

section explains this concept and how it could be used in video game AI to further develop a 

decision-making system.  

In their article about brain science and artificial intelligence, Fan et al. (2020) revealed that the 

working memory was discovered using functional magnetic resonance imaging (fMRI) from 

brain studies. This discovery aided in the creation of the artificial intelligence concept of long 

short-term memory (LSTM) which helped in many innovations within several fields such as, for 

example, natural language processing. Additionally, it was made clear that a working memory 

module can perform tasks that require complicated reasoning and inference.  

Considering how useful the concept of a working memory is in computation and artificial 

intelligence, it was only a matter of time until the term started showing up in the field of game 

development. Orkin (2005) said that a working memory can be programmed for a game agent 
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such that the agent’s sensory systems would be able to deposit acquired information in the 

working memory. Additionally, the agent’s planner can be programmed to react to changes in the 

working memory, making it create a new plan when new information is acquired and added to 

the working memory. Furthermore, he added that sensors give perception facts to the working 

memory through a common format. In the paper, he described a project where he used a type 

which he programmed and called WorkingMemoryFact. This format was used as a record to save 

different attributes that represent things in the game world such as characters, objects, and their 

locations.  

4.6 Different decision-making systems  

 

The Goal Oriented Action Planning architecture (Orkin, 2003) is one of many decision-making 

systems that are used in game development. Therefore, looking into some other systems might 

create a better perspective into the prominence of decision-making AI-systems in video games. 

Rabin (2014) argued that behavior trees were amongst the most popular game AI architectures. 

He added that they were not as simple to develop as finite state machines, yet still somewhat 

easy to develop. It was also argued that behavior trees were helpful because they were modular 

and could be extended with new features and functionalities (Colledanchise & Ogren, 2017; 

Rabin, 2014). Sweetser and Wiles (2002) explained that finite state machines were used more 

often than any other AI systems in video games. They said that this was because of how easy 

they were to develop and how they give a clear structure of the different behaviors that a game 

character can exhibit by separating them into individual logical states.  

The prevalence of these different decision-making systems in the field of game development 

warrants conducting a comparison between them. Because FSMs and behavior trees are the most 

popular system kinds used in game AI, they present a good base of comparison to see how 

GOAP compares against them. This will help understand how GOAP differs from the most 

popular solutions and in what ways they otherwise are similar to each other which would answer 

the paper’s research question. Lastly, this will help in creating an understanding of what situation 

each of the three decision-making systems is best suited for.  
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4.7 The social impact of game AI research  

 

When it comes to the value that game AI research can provide to society, Cook (2021) argued 

that game AI researchers had a responsibility towards society because of the impact that game AI 

research has. He explained that more increasingly, games are being used as a testbed for artificial 

intelligence and private labs like Google Deepmind and OpenAI have shown interest in video 

game AI research. Cook said that game AI researchers have a responsibility towards several 

groups of people. Firstly, he argued that they had a responsibility towards game developers 

because the researchers’ work impacts developers' work opportunities and livelihoods. Meaning, 

that research in game AI impacts the scale of projects and work that is expected from game 

developers. He even warned that advancements in game AI research could lead to putting 

smaller developers out of work entirely.  

Secondly, Cook (2021) added that researchers had a responsibility towards artists, hobbyists, and 

others. He explained that by focusing on game AI research as a tool for large commercial game 

companies, the research field would be excluding the kind of game developers that are making 

games as a hobby or ones who live in places that are internationally sanctioned and cannot sell 

their games on online global storefronts. Therefore, he said that research that results in software 

that is not open-source or that is incompatible with popular free tools makes it harder and costlier 

for many small developers to advance in the field of game development. As a result, game AI 

research becomes an exclusive tool only for larger wealthier companies which operate to benefit 

the global north (Cook, 2021).  

Therefore, research on video game artificial intelligence, including decision-making systems for 

AI-agents, should be more easily accessible to better enable smaller game developers and 

hobbyists to participate in the creation of video games and to gain more control over their 

position as workers in the industry.  
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4.8 Summary of the theoretical framework  

 

To summarize the theoretical framework of the topic, the flow of theories can be observed as 

such: First, video game AI does not need to be highly complicated to perfectly mimic human 

decision making. Instead, game intelligence can be thought of as an illusion of intelligence where 

smaller algorithms and systems work together to create an illusion of intelligent decision-

making. Second, the Goal Oriented Action Planner is a decision-making planner system that 

makes use of the illusion of intelligence by creating an illusion that is the result of smaller 

components working together. Those components being an A* algorithm component that 

calculates the relevance of actions based on costs, and a world representation component that 

represents game world facts as a group of variables. This world representation component also 

informs the decision making because it gives heuristic meaning to the actions that an AI-agent 

can make. The GOAP planner interacts with and instantiates software objects called plans, 

actions, action sets and goals to create its effect. Third, a decision-making system is often 

supported by sensory systems such as vision cones and a working memory system where sensory 

systems can save game world facts as memories. Those memories/world facts are used by the 

decision-making system as previously mentioned. And finally, there are different types of 

decision-making AI systems in the field of game development and research on those topics has a 

social impact on people in and outside of commercial game development communities. 

Therefore, developing a decision-making system for games as part of this research paper’s work, 

comparing it against other popular decision-making systems for games, and making it an 

accessible resource for future research is important. This would benefit the communities of game 

makers that do not have access to large budgets the same way that large commercial companies 

do.  
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Chapter 5 Methods and empirical data  

 

This section discusses the methods that were used during the execution of this research project 

and the data and information that was acquired using those methods. These methods included 

design science research which motivated a comparison between the different decision-making 

systems, a literature review as part of the comparison and methods relating to the practical 

implementation of the project.  

5.1 Design Science Research  

 

Design science has been used in the field of engineering more than it has in the field of 

information systems, but Peffers et al. (2007) argued that more design science research could be 

done for the field of information systems. They argued for a design science research 

methodology where there were six main activities. First, the problem identification and 

motivation, which aids in the development of the research artifact (a GOAP system in this case). 

Second, defining the objectives for a solution. This activity is used to infer the objectives that the 

research is trying to achieve. Third, design and development. Peffers et al. (2007) said that this 

includes designing an artifact that has an inherent contribution to the research topic. Fourth, 

Demonstration, which entails putting the designed artifact to the test in a relevant environment 

where its ability to solve a problem can be observed. Fifth, evaluation, which means inspecting 

how well the artifact solves the problem at hand. This inspection can be done by comparing the 

artifact to the original objectives that were outlined or using different ways of inspection. Sixth, 

communication, which is important for delivering information about the usefulness of the artifact 

to researchers and other audiences that can learn from it.  

Peffers et al, (2007) said that these activities do not need to be done in a particular order. 

Different research projects might need to begin with different activities. Having already defined 

the research problem in section “3.4 The research gap”, the first activity of the “problem 

identification and motivation” activity can be considered finished. Additionally, the 
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“communication” activity is concerned with the publication of the research paper, which means 

this activity will be finished after this paper is published. The creation of this research paper and 

publicly publishing it will be helpful for many game AI developers and hobbyists (Cook, 2021). 

These groups are the relevant audience for this research paper and the paper will serve as 

learning material for them. The following sections of the paper will explain how each of the 

other design science research activities were conducted.  

5.2 Analysis and Comparison  

 

Comparing digital systems can be crucial in determining the choices that should be made during 

a development process, but they can also be useful in determining how an already developed 

system compares against other systems which fulfill the same goal. Lazarevich (2018), explained 

that software solutions and frameworks can be analyzed and compared by using a 5-step process. 

The purpose of Lazarevich’s analysis and comparison method was to decide which system out of 

the ones under question was the best to develop. In this paper however, the analysis and 

comparison were used to compare the GOAP (Orkin, 2003) system to other game decision-

making AI systems. Which means that the chosen system that was developed was the GOAP 

system from the start, and then came the comparison step which is meant to contextualize GOAP 

as a decision-making system in comparison with other more popular systems (FSMs and 

Behavior Trees).  

Before comparing the different AI-systems in question, a general understanding of the project’s 

requirements was needed. In design science research this was outlined as the “defining the 

objectives for a solution” activity (Peffers et al., 2007). In this case, the project was a game 

prototype where two types of AI-controlled characters (hunter and hunted), played against each 

other. The hunter character would have the ability to catch other characters and remove them 

from the play area, while the hunted character type would have the ability to hide and find and 

obtain keys to unlock a door through which they could escape the hunter. Therefore, the 

decision-making AI system that is developed for this project, must be able to manage many 

actions and allow a game designer to create new actions. It also needs to be able to automatically 

manage the actions’ priority in the decision-making process among other features. Therefore, 
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Table 1 below was created to explain what the project’s requirements were and why they were 

needed:  

 

Decision-making system 

requirements/objectives 

Motivation 

manages many decisions Each character type in-game has a set of 

several different decisions. Therefore, the 

system must be able to represent the variety of 

decision sets.  

decisions are modular To be able to create different decision sets, the 

system must allow for representing each 

decision as a separate object that can be added 

or removed from a decision set 

automatic coordination of decisions The system must have an ability to create 

plans that consist of multiple decisions that 

are played out in a correct order  

automatic replanning The system must be able to replan when a 

previous plan becomes invalid because of 

some change in the Gameworld.  

reusable with different game character types The system must be reusable for most AI-

controlled character types 

easy to set up The system should not be very complicated to 

develop 

Adopts a way for world representation The game world must be represented 

somehow in the system in order to allow the 

AI-agents to react to different Gameworld 

changes 

Ease of customization The system should allow for easy 

customization for game designers, and give 

them freedom to create new decisions that a 

character is able to make  

Table 1: a table showing the requirements for the decision-making system that was developed 

The comparison process (Lazarevich, 2018) was comprised of 5 steps:  
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● Define the alternatives  

● Analyze the alternatives  

● Ask questions to create a complete image of each alternative  

● Make a result sheet  

● Define pros and cons and make your choice  

5.3 Literature review 

 

To develop a project that uses the GOAP architecture, the literature on the topic was reviewed to 

base the project’s code from the information that was described in the literature. Additionally, 

the literature review informed the analysis and comparison steps when comparing the GOAP 

architecture to other solutions. The literature review included the following sources for each of 

the different AI decision-making solutions:  

● FSM: Cossu (2020a) and Sweetser and Wiles (2002).  

● Behavior trees: Rabin (2014, 2017).  

● GOAP: Orkin (2003, 2005, 2006).  

5.3.1 Defining the alternatives  

Going back to Lazarevich’s 5-step comparison (Lazarevich, 2018), the alternatives to creating a 

decision-making AI for game characters (Step 1 in the comparison) could be described as such:  

Goal Oriented Action Planning (Orkin, 2003): An AI system that uses multiple components 

to enable a game character to dynamically create plans while the game is running.  

Finite State Machines (Cossu, 2020a): A system that has definitions for the different states 

that a game character could have. The transitions between the states are embedded in the 

game’s code. Therefore, any plan that a character could make, must be pre-defined by the 

developers.  
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Behavior trees (Rabin, 2017): a common technique of developing game-AI. It is used when 

there are many states and transitions between them which could justify creating a tree-like 

hierarchy of states to enable a more complex decision-making logic.  

5.3.2 Analyzing the alternatives  

This step requires a comparison between the different alternatives by finding information about 

each alternative through different sources and learning how they work (Lazarevich, 2018). 

Additionally, this step includes creating a test project. For this purpose, the game prototype that 

was developed and used one of the alternatives, namely the GOAP architecture, was considered 

part of this comparison. Finally, the game prototype’s GOAP implementation was analyzed in 

comparison with the other alternatives based on the literature available on them. As mentioned 

earlier in this paper, the comparison was to aid in understanding how GOAP (with its different 

components) compares to other popular systems.  

GOAP Components  GOAP FSM Behavior Tree 

Planner Has a dedicated 

planner that uses an 

AI search algorithm 

to create plans  

Does not have a 

planner. Plans are 

pre-designed by game 

designers and 

embedded in the state 

transitions 

Does not have a 

planner. Has a 

“Selector” class, 

which tests different 

predefined 

“Sequences” and 

checks which one 

works 

Goal Is an object class. 

Instances can be 

created from it  

Does not use a “goal” 

logic 

Does not use a “goal” 

logic 

Action Is saved as a data file 

in ex. Json, xml or 

scriptableobject (for 

Each state represents 

an action 

Actions are 

implemented using a 

“Behavior” interface 
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unity3D) formats class. Actions are leaf 

nodes in the tree  

Plan Is an object class. 

Instances can be 

created from it. Is 

created dynamically 

by the AI (Planner) 

Embedded in the 

FSM’s state transition 

logic. Predetermined 

by game designers  

“Sequences” allow an 

agent to follow a plan 

that is predetermined 

by game designers 

Action set Is saved as a data file 

in ex. Json, xml or 

scriptableobject (for 

unity3D) formats 

Each agent type 

requires a different 

FSM due to a lack of 

“Action Set” logic 

Each agent type 

requires a different 

behavior tree. 

Behaviors can be 

reused and 

recombined to create 

different behavior 

trees  

World representation World states can be 

represented as 

“struct” or “enum” 

type classes  

Not represented in 

any particular way for 

regular FSMs 

Using the 

“Condition” leaf 

node. Returns statuses 

that represent the 

success or failure of a 

behavior 

Table 2: table of analysis of alternatives 

Table 2 lists the three different decision-making systems that the comparison was concerned 

with. It also lists different components that the GOAP system uses and describes what each of 

these components matches in Behaviour trees and FSMs.  
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5.3.3 Asking questions about the alternatives and making a result sheet  

After analyzing the alternatives, Lazarevich (2018) suggested that questions should be asked 

about each of the alternatives to get a clearer image about each of them. In addition to the 

questions, a result sheet should be created in order to aid in the final “pros and cons” step of the 

comparison. The following is the result sheet:  

 

 

 GOAP FSM Behavior tree 

How easy is it to customize? Easy to customize 

because of its modular 

components (actions 

and action sets) 

Not very customizable. 

Each type of AI-agent 

requires a different FSM  

Easy to customize 

because of modular 

components such as 

“Behaviors”. New 

behavior trees can be 

created easily  

What are the capabilities? Dynamically creates 

decision-making plans 

during a game’s 

execution. Leads the 

decision-making of an 

AI-agent  

Makes decisions based 

on hardcoded game 

logic. Best used with AI-

agents that exhibit few 

states/actions 

Leads the decision-

making logic. Allows for 

creating AI-agents that 

exhibit many different 

behaviors 

What are the limitations? Each action requires 

preconditions and 

effects. If not 

carefully designed, 

these actions can 

become useless if 

their effects cannot 

chain with other 

actions’ preconditions 

Not suitable for AI-

agents that perform many 

actions. Creating FSMs 

that contain many states 

can easily become hard 

to maintain. Each 

different type of AI-

agent requires a different 

FSM 

Each different type of AI-

agent requires a different 

behavior tree. This means 

a lot of work has to be 

done if there are many 

different types of game 

characters in the game  

Is it easy to develop? Requires good 

knowledge in game 

Very easy to develop and 

does not require a very 

deep knowledge of game 

Requires good knowledge 

in games and systems 
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programming and 

systems programming 

or systems programming. 

Is beginner friendly  

programming. Not 

beginner friendly.  

Table 3: Questions and results about the alternatives 

Table 3 is a result sheet for several questions that were produced to be asked about each of the 

decision-making system alternatives. The answers for each of the questions were inferred from 

the literature while the answers about GOAP specifically were also aided by the developed game 

prototype which used GOAP AI.  

5.3.4 Defining pros and cons  

The final step of the comparison is defining the pros and cons of each of the alternatives 

according to Lazarevich (2018). He added that these pros and cons can be checked against the 

scope and requirements of the project to put them into context. The Design Science methodology 

had the “evaluation” activity (Peffers et al., 2007) which meant inspecting how well the solution 

solves the given problem. This “evaluation” step is covered by the final step of the comparison. 

This will be presented in Chapter 7. Lazarevich (2018) also suggested that this step might lead to 

several viable options to choose from.  

5.4 Concept maps 

 

In their article about literature reviews, Rowley and Slack (2004) revealed that some researchers 

used concept mapping to map out key concepts within a research area and the relations between 

them. They also pointed out that there was no correct way to draw a concept map. What really 

mattered about a concept map according to Rowley and Slack was that it assisted a researcher in 

understanding their topic. Using this method, a concept map was developed to organize key 

concepts from the relevant literature. See Figure 3 below 
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Figure 3: Concept map of relations between the agent’s different components 

The developed concept map (Figure 3) helped set into perspective the relation of the GOAP 

system to other components of a game’s AI agent. This was helpful in coherently separating the 

different parts of the project’s components from the GOAP system during development.  
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Chapter 6 Ethics  

 

This paper compared different decision-making systems for video games. The comparison was 

based on information acquired through a literature review of the three types of systems (FSMs, 

behavior trees and GOAP). However, when it comes to GOAP, the acquired information was 

also aided by the prototype that was developed for this thesis. This might have caused a bias for 

GOAP compared to the other two systems because of the time spent on and the experience of 

developing a GOAP AI-agent. Therefore, the comparison could have possibly been more 

informed and fairer had a larger scale project been conducted which would have included 

developing prototypes of all three types of systems.  
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Chapter 7 Presentation of results  

 

The following section presents pseudocode that shows how the GOAP prototype was 

programmed. The pseudocode shown in this section was for the classes of the planner, goal, 

action, action set, plan, goal, GOAP-agent, world representation, vision sensor and the 

blackboard. Finally, the results of the comparison between the GOAP, FSM, and Behavior Tree 

system types are presented followed by an analysis.  

As previously mentioned, the problem with having simpler system such as FSMs or possibly not 

having any coherent system whatsoever is that as soon as the AI starts becoming more complex 

and is required to do many things and alternate between many decisions, the project’s code 

becomes very long and unmaintainable. Therefore, it is important to have systems that can 

manage that complexity and accommodate a variety of decisions. This is where the GOAP 

system comes in.  

Developing an artifact as part of the research project was important to understand GOAP through 

more than just the literature. This development process aided in the comparison step and was 

documented using pseudocode. This makes the paper an accessible resource for others who are 

interested in understanding or developing a GOAP system. The following sections describe how 

this research paper’s artifact, (the GOAP system) was designed and implemented.  

7.1 Project creation in the Unity engine  

 

In order to program a functioning GOAP AI, a game engine was required to remove the bulk of 

unrelated work that did not directly have to do with the decision-making AI. A game engine is a 

collection of software modules which are responsible for simulation but do not directly specify 

the game’s behavior, logic nor environment (Lewis & Jacobson, 2002). The Unity game engine 

(2021) was chosen for this project. Unity has built-in features that simulate important things that 

were needed in this project but were not the main focus of it. Such features were for example, 
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simulating the passing of time, physics simulation (gravity, collision, etc.), rendering 3D 

graphics, creating navigation meshes (places where a 3D object is allowed to move), lighting and 

shadows and other features.  

Additionally, the Unity engine allows the use of C# code which was used to implement the 

GOAP decision-making system. Implementing the GOAP system in a relevant game engine was 

important based on the design science methodology’s activity “demonstration” (Peffers et al., 

2007) This activity required that the developed artifact should be demonstrated in a relevant 

context. The Unity engine fulfilled that purpose. The Unity engine is a free of charge game 

engine that is also very popular among hobbyist game creators. Cook (2021) emphasized the role 

of popular and free of charge software in advancing game AI research. He believes that it is 

necessary that research be accessible for a larger group of people and that this could be done by 

implementing the research in software that is free to use and known by many.  

7.2 Unified Modeling Language (UML) 

 

After identifying the important concepts of a GOAP system through the literature and separating 

the non-GOAP components using a concept map (see Figure 3), the next step was to create a 

UML diagram to represent the GOAP components as UML classes (see Figure 4). It was 

important to keep the diagram simple in order to not restrict the actual code writing process later 

in the project.  
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Figure 4: UML diagram of the developed GOAP system 
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Figure 4 shows that an AI-agent can have one or more sensors (a vision cone is an example of a 

sensor), a GOAP-planner system and a class that runs the planner’s plans (named PlanExecuter 

in the diagram). Additionally, the GOAP system as seen in the diagram, shows the relationships 

between the previously mentioned parts of a GOAP system. Namely, a planner, goals, plans, 

action sets and actions (named ScriptableAction in the diagram). A planner uses a goal to create 

a plan, which is used by the plan executer. Both the plan executer and different sensors can 

create new goals. A plan consists of one or more actions. And finally, a planner contains an 

action set which in its turn contains a predefined list of actions.  

 

 

Figure 5: a UML diagram of the relations between the VisionCone and the Agent's WorkingMemory 

 

Figure 5 shows that an agent can have one or more vision cones and also has a working memory. 

A vision cone can create memories which are then saved in the working memory.  

Both concept mapping and using UML diagrams were part of the design process of this research 

paper’s artifact. The design science activity “design and development” (Peffers et al., 2007) 

requires that an artifact which adds value to the research topic, should be developed for this kind 
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of research. Additionally, more documentation about the development of the GOAP system (the 

artifact) is presented in the following section (7.3 Implementation).  

7.3 Implementation  

 

This project was done in the UnityEngine (2021) and therefore, all the code for the project was 

written in C#, which is the main programming language used in the engine. The following 

section describes some of that code and how it works. The code in this paper is partially C# but 

is otherwise pseudocode. MonoBehaviour is a base class for much of the game code that is 

written in Unity. Therefore, when writing code for games in Unity, sometimes, creating a new 

class means it should be made to inherit from the MonoBehaviour class in order to use some of 

the engine’s most basic functionalities.  

Documenting the development process was important to communicate the results of what was 

previously designed and programmed in the project (Peffers et al., 2007). The project’s code can 

otherwise be found on an online repository as it was uploaded incrementally during the duration 

of this research project (Al Shehabi, 2022). Keeping both an easily readable pseudocode version 

and the project’s real code publicly accessible helps game developers, hobbyists and others who 

might be interested in experimenting or learning from this research paper. Doing that was 

important, because as Cook (2021) explained, researchers had a responsibility to make game AI 

research accessible to those communities who are involved in game development regardless of if 

it was related to their work or purely for fun or self-expression purposes. This was important for 

this research paper’s aim in advancing research in the field.  

Furthermore, the development of a GOAP system was important to further understand this 

system through more than just reading the literature. The developed artifact was also important 

for the comparison step which answers this paper’s research question “How does the Goal 

Oriented Action Planning architecture compare to other artificially intelligent decision-making 

systems in video games?”. 
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7.3.1 The Planner  

The planner was programmed to create plans based on a provided set of actions that an AI 

character could make. Additionally, the planner’s plan creation method required a goal. This 

way, anytime the AI character gained a new goal, it would give it to its planner and the planner 

creates a plan based on that goal. The AI character then follows that organized plan of actions. 

The code for this project’s planner class looked approximately like this:  

 

public class Planner 

{ 

    private List<ScriptableAction> closed; 

 

    public Plan CreatePlan(//Requires: goal)  

    {  

       //Create instance of ‘Plan’    

       //Execute ‘SearchActions’ using ‘goal’ 

       //Save the output of ‘SearchActions’ in the instance ‘Plan’ 

       //Output the ‘Plan’ 

    } 

 

    List<ScriptableAction> SearchActions(//Requires: goal, openList, 

    actionSet)  

    {  

       private List<ScriptableAction> graphRow; 

 

       //Create a row of actions that fulfill the provided goal 

       //Add those actions to the ‘graphRow’ list 

       //Add contents of ‘graphRow’ to the ‘closed’ list 

       //Remove actions from the ‘actionSet’ list if they also exist in 

         ‘closed’ 

       //Find the action with the smallest cost in the ‘graphRow’ list 

       //Add cheapest action to ‘openList’ 

       //Make the cheapest action’s precondition into a ‘goal’ 

       //Run ‘SearchActions’ using the new ‘goal’, ‘openList’ and 

         ‘Actionset’ (this implies recursion of this method inside  
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          itself) 

       //Output the ‘openList’ after all recursions have executed 

    } 

} 

 

Notice that using a “graphRow” list in this manner means that a new list is created in each 

recursion of the SearchActions method, and it holds only the row of actions from that recursion. 

Meanwhile, the openList keeps expanding with actions added to it from each recursion. The 

SearchActions method uses an A* algorithm to find the solution. An A* search algorithm 

requires a graph of some sort to find the cheapest path in the graph from point A to point B. It is 

important to point out that SearchActions search algorithm runs a regressive search. Which 

means it runs backwards from the goal towards the first action that should be taken. In other 

words, it starts from point B and finds its way backwards to point A.  

The SearchActions method starts by creating a row in a graph by examining the available set of 

actions and finding the actions which fulfill the end goal (see Figure 6). A recursion is a 

recurrence of a method that calls itself until it finds its desired solution. During each recursion of 

the SearchActions method, it first finds a suitable row of actions as mentioned, then it finds the 

action that has the smallest cost (this is where the A* algorithm is in effect) and adds it to the 

opened list. After that, the method runs itself again (recursion) to create the next row and find the 

cheapest action in it. This process continues to happen until a plan which fulfils the given goal 

has been found.  

To explain this process with an example, imagine a scenario where a virtual character wants to 

buy and set up a new chandelier in their house and do it in the most effective way. The search 

algorithm for a situation like this could go on as such: First, it creates a row of suitable stores to 

buy chandeliers from. Meaning that it searches through a set of many stores and only adds the 

ones that sell chandeliers to the row. This is important, because when the algorithm starts 

looking for the cheapest chandelier, it should not be looking for it at stores that do not sell 

chandeliers. Second, it selects the one store from the row that is closest to where the character 

lives. Third, it searches through all the products at that store and creates a row of the products 

that are chandeliers. Fourth, it selects the cheapest chandelier available in the row.  
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Figure 6: the project’s SearchActions method from Planner class 

In essence, the previous example explains that this kind of search algorithm recursively takes 

two steps at a time and repeats. One step to create a row and one step to make the cheapest 

decision. The example could continue like this until the chandelier is up on the ceiling (take the 

shortest path home, find the most suitable tool to hang the chandelier, etc.).  

7.3.2 Goal  

The Goal class was programmed to contain a variable which represented what the state of the 
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world should be when the Goal was fulfilled by the AI agent. The planner needs a goal each time 

it creates a new plan. This goal acts as a starting point for the search algorithm that finds a 

suitable plan of decisions. As previously mentioned, the search algorithm runs regressively, so it 

does not try each action to see if it leads towards a goal. Instead, it starts with the goal and runs 

backwards to create a logical plan.  

public class Goal 

{ 

    public WorldState goalState; 

 

    public Goal(//Requires: a new goalState) 

    { 

        //Set the value of the local goalState to equal the new  

        goalState 

    } 

} 

When an instance of this class is created (a new goal), it requires a new state of the world 

through its constructor and saves it in its local goalState variable. An instance of a Goal class is 

used by the planner to create a plan that fulfills that goal.  

7.3.3 Action  

Actions in this project were represented as a class which was named ScriptableAction. The 

ScriptableAction class was programmed to inherit from a Unity base class called 

ScriptableObject (Unity, 2018). According to Unity, scriptable objects are data containers that 

are intended to be used to save data that is unchanging. Therefore, this base class was useful 

because GOAP actions are meant to be defined during the design process and then remain 

unchanged during execution of the program.  

public class ScriptableAction : ScriptableObject 

{ 

    public int cost; 

    public WorldState effect; 

    public WorldState precondition; 
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} 

The ScriptableAction class represents GOAP actions as previously mentioned. The information 

that was saved in each of these actions was cost, effect, and precondition. Each action has a 

precondition that needs to exist in the current state of the game world and an effect that it applies 

to the state of the game world. Preconditions and effects were important because the Planner 

class requires them in order to be able to tell if one action can be chained with another action. In 

other words, an action’s effect needs to match the next action’s precondition. This way, actions 

could be chained together to create a full plan of actions.  

 

Figure 7: Two scriptable action instances in the Unity engine’s interface 

Figure 7 above shows two different actions in the unity engine’s interface. The action on the 

right can heuristically chain to the action on the left. The Planner class does this when it sees that 

the action on the right has the effect “target near” which is a precondition in the action on the 

left. Assuming that the planner had created a plan which contained these two actions, if the final 

action in the plan was “Attack Player Melee”, that would mean that the goal that the plan 

fulfilled was to have “Player Captured”.  

7.3.4 Plan  

A plan according to Orkin’s GOAP system (2003) is an array of actions that leads to satisfying a 

given goal. In this project, a plan was represented as a class that contained a variable list which 

contained a sequence of instances of the class ScriptableAction. This list of ScriptableAction 

instances comes from the planner when a plan is created. The plan receives a list of 

ScriptableActions through its constructor and saves it to its local list of ScriptableActions. After 

that, the plan would be ready to be received by a GOAP game agent and executed.  
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public class Plan 

{ 

    private List<ScriptableAction> actions; 

 

    public Plan(//Requires: list of ScriptableActions) 

    { 

        //Save the received list of actions as the local list of  

        actions  

    } 

} 

7.3.5 ActionSet  

The concept of the ActionSet was programmed in this project as a subclass of Unity’s built-in 

ScriptableObject (Unity, 2018). Similarly to a ScriptableAction, the contents of the ActionSet are 

defined during the design of the project only. They remain unchanged during the execution of the 

game. In this project, an ActionSet was programmed to contain a list of ScriptableActions which 

tells an AI-agent which actions it is allowed to choose from when making decisions (aka. when 

creating plans).  

public class ActionSet : ScriptableObject 

{ 

    public List<ScriptableAction> actions; 

} 

Orkin (2006) explained that different sets of actions should be used for different kinds of game 

characters. While some actions could be the same for all characters (such as a walking action), 

not all actions should be shared between all characters. A cat character for example, should not 

be able to pick up a firearm and use it. Therefore, a cat’s ActionSet should not contain the 

exemplified action “Pick up firearm”.  
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Figure 8: The hunter’s action set in the Unity engine’s interface  

The above figure (Figure 8) shows an action set from the Unity project that was done for this 

paper. The action set in the image contains four different actions which were each defined using 

the ScriptableAction class.  

7.3.6 World Representation  

The WorkingMemory class was implemented to contain an agent’s memories and run some 

operations on them. Several classes in the project use the WorkingMemory’s methods. The 

planner class, for example, checks the WorkingMemory to see if there are world facts that could 

help it create new plans.  

public class WorkingMemory 

{ 

    private List<Memory> memories; 

    private GoapAgent myAgent; 

 

    public void AddMemory(Memory memory, Goal goal) 

    { 

        // Add a new memory to the working memory 

        //Tell myAgent’s planner to create a new plan using the given 

        goal and execute it 

    } 
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    public List<Memory> GetMemories() 

    { 

        return memories; 

    } 

 

    public void RemoveMemory(Memory memory, Goal goal) 

    { 

       //Remove a given memory from the working memory 

       //Tell myAgent’s planner to create a new plan using the given 

        goal and execute it 

    } 

 

    //Checks if there is a given worldfact that matches a worldfact in  

    memory 

    public bool ContainsMatchingMemory(Memory worldFact) 

    { 

       //Check if the given worldFact already exists in the working 

       memory  

    } 

The WorkingMemory has four methods. AddMemory, which adds a new memory to the 

memories list and tells the agent’s planner to create a new plan. The GetMemories method 

returns the list of memories from an agent’s working memory. The method RemoveMemory 

removes a memory and tells the agent’s planner to create a new plan. And finally, the 

ContainsMatchingMemory returns a true/false value about whether a given memory already 

exists in the agent’s working memory.  

Additionally, the WorldState enum class was programmed in order to represent the state of the 

game world at a given moment. This class contained a collection of values that were expanded 

on during the development of the project. Each value represented a state of the world that an AI-

agent could know about. When a world state is fulfilled in the game, it gets added to the relevant 

AI-agent’s WorkingMemory.  

public enum WorldState 

{ 
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    playerCaptured, 

    projectileAvailable, 

    playerSeen, 

    meleeAvailable 

} 

 

Figure 9: The Memory struct from the project 

Adding these WorldState values to an agent’s memory means that the planner gets new 

information to use when creating a plan. A WorldState is added to the WorkingMemory as part 

of a Memory instance (see Figure 9). The Memory struct was implemented to contain a 

WorldState value and a GameObject value which represented the target of that memory.  

7.3.7 Agent  

An agent as described by Orkin (2005) was composed of multiple parts and those were a 

blackboard, a working memory, some subsystems, and sensors. The role of the sensors was to 

detect game-world changes and save that information in the working memory. The blackboard 

acts as a bridge that communicates information between the agent and its subsystems. In this 

project, the GoapAgent class was created to communicate information between the planner, 

working memory, sensors, and other classes. The GoapAgent class looked like this:  

public class GoapAgent : MonoBehaviour 

{ 

    public WorkingMemory memory; 

    public ActionSet agentActionSet; 

    public Planner planner; 

 

    public Plan ObtainNewPlan(Goal goal) 

    { 
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        //Recieve a new goal 

        //Ask the planner to create a new plan 

    } 

 

    public void ExecutePlan(Plan plan) 

    { 

        //Send the plan to the blackboard to be run 

    } 

} 

 

The blackboard (Orkin, 2005) was implemented as a separate class which all game agents had 

access to. This class was named PlanExecuter  

public class PlanExecuter : MonoBehaviour 

{ 

    public void Execute(Plan plan) 

    { 

        //Take each action in the plan 

        //Find a suitable method for that action from the implemented 

        methods in this class 

        //Run that method 

    } 

 

    void ActionA() 

    { 

        //Run an action A with custom code   

    } 

 

    void ActionB() 

    { 

        //Run an action B with custom code 

    } 

 

    void ActionEtc() 

    { 
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        //Run custom code  

    } 

} 

The PlanExecuter class was created to receive plans from the GoapAgent and run each individual 

action within that plan. The methods inside the class were not actually named ActionA, B, etc. 

Rather, they were given action specific names with each method running different lines of code. 

For example, see Figure 10 below which shows an action’s custom code using a C# method 

named GrabKey.  

 

Figure 10: A code snippet that shows the method GrabKey from the PlanExecuter class 

Other actions were for example things like: go to location, find other characters, cast projectile, 

hide, etc. Because the actions were many and their code changed during the creation of the 

project, they were not something that could be represented in detail in the pseudocode parts of 

this paper.  

7.3.8 VisionSensor  

The vision sensor class was implemented to represent an agent’s vision cone. In this project, 

there were two different agent types, Hunter and Hunted. Therefore, the VisionCone class was an 

abstract class with two different implementations for each agent type.  

public abstract class VisionSensor : MonoBehaviour 

{ 

    protected GoapAgent agent; 

    protected List<GameObject> FovTarget; 

 

    private void OnTriggerEnter(Collider other) 
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    { 

        if (//If an enemy enters the borders of the vision cone) 

        { 

            //Add enemy to the FovTarget list 

            //Run method StareAtTarget  

        } 

    } 

 

    private void OnTriggerExit(Collider other) 

    { 

        if (//If an enemy leaves the scope of the vision cone) 

        { 

            //Remove the enemy from the FovTarget list 

            //Remove from the agent’s working memory, the memory that 

            contained the WorldState “targetSeen” for the current  

            target 

        } 

    } 

 

    

    public abstract IEnumerator StareAtTarget(GameObject target); 

    //Continuously cast a line of sight towards a target to make sure it is 

    not behind an obstacle 

    //Add a memory to the agent’s working memory about which target was seen 

    in the vision cone and was not behind an obstacle  

} 

The OnTriggerEnter and OnTriggerExit methods are two methods that come from the 

MonoBehavior class (a base class in the unity engine). These methods check if something 

entered or exited a 3D trigger. A 3D trigger can be any 3D shape and, in this case, it is the vision 

cone (see Figure 11). In the vision sensor class, these two methods were used to check if an 

enemy character entered or exited the borders of a vision cone.  
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Figure 11: A “Hunter” character with two vision cones 

The figure above (Figure 11) shows the hunter character in the project. It has two vision cones, 

one for near sight and one for far sight. If another character walks into this agent’s vision cones, 

a ray will be cast to check that they are not behind an obstacle (wall). This is done by the 

StareAtTarget method in the VisionSensor class. That method also adds the target of the vision 

cone to its agent’s working memory.  

And finally, Figure 12 below is a concept map that shows the relations between the vision 

sensor, working memory, planner, and the blackboard  
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Figure 12: a concept map of the relation between the vision sensor, working memory, planner, and the blackboard 

As seen in the concept map above, a game agent’s vision sensor (or any other sensor for that 

matter) can create a memory about certain game events that the sensor witnesses. This memory is 

then added to the working memory which prompts the working memory to tell the GOAP-

planner to create a new plan. The new plan is then given to the PlanExecuter (the blackboard) 

which makes the AI-agent do the actions that were in the plan.  

7.4 Comparison results  

 

As stated earlier in this paper, a comparison was made between the developed GOAP system and 

two other decision-making types of AI. The two other types of AI in question were the “behavior 

tree” and the “finite state machine”. The final step of Lazarevich’s comparison (2018) was to 

define the pros and cons of each system to find which one is the most viable solution for the 

intended purpose. In the following table however, a “bad, good, best” categorization was used. 

This allows representing the comparison with more nuance. Only one system can be considered 
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best at a certain task, but multiple systems can be good or bad at certain tasks. What the intended 

purpose is and what counts as a good, bad or best was based on the previously stated 

requirements of the system. The results of the comparison were the following (see Table 4):  

 

 FSM Behavior tree GOAP 

manages many decisions Bad 

Having many 

decisions in the 

FSM makes it 

unmanageable 

Good 

Manages many 

decisions using 

different tree nodes  

Good 

Manages many 

decisions using 

different actions  

decisions are modular Bad 

The logic for each 

decision is 

embedded in the 

states of the FSM. 

Which makes them 

hard to configure 

or reconfigure 

without needing to 

reprogram the logic 

Good 

Designers need to 

design new 

behavior trees by 

adding different 

leaf nodes to a new 

instance of a tree 

Best 

ActionSets allow 

game designers to 

create different 

configurations of 

possible decisions 

for an AI-agent. 

This is easily done 

by adding actions to 

a new list of actions 

automatic coordination  

of decisions 

Bad 

Unable to 

automatically 

create plans. Plans 

consisting of 

different decisions 

are implemented as 

FSM states which 

must be designed 

manually 

Bad 

Unable to 

automatically 

create plans. Plans 

consisting of 

different decisions 

are implemented as 

tree branches 

which must be 

designed manually 

Best 

Done automatically 

by the planner class 

in real time (while 

the game is 

running)  

automatic replanning Bad 

Does not have a 

dedicated planner. 

The FSM’s state 

transitions are the 

only way for this 

system to move 

from one decision 

to another (replan) 

Bad  

The predesigned 

tree branches are 

the only way for 

the system to 

change plans. That 

is if designers have 

accounted for all 

possible situations 

in the game and 

created suitable 

Best 

Done by the 

Planner class. Each 

new memory that is 

added to the 

working memory 

prompts the planner 

to create a new plan 

of actions 
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tree branches for 

them 

reusable with different  

game character types 

Bad 

New FSMs must be 

designed and 

programmed for 

different character 

types  

Good 

New behavior trees 

must be designed 

for different 

character types. 

This can be done 

using 

preprogrammed 

leaf nodes. 

Requires 

redesigning 

transitions between 

leaves 

Best 

Different action 

sets allow 

reusability for 

different character 

types. No need to 

redesign the 

planner nor the 

individual actions 

to fit different 

characters  

easy to set up Best 

Beginner friendly 

and easy to set up. 

Many games use 

this system in their 

AI-agents. Does 

not contain many 

components and is 

therefore easier to 

program 

Bad 

Requires good 

programming 

knowledge. Several 

types of leaf nodes 

need to be 

programmed before 

the system 

becomes functional 

 

Bad 

Requires a good 

understanding of 

different algorithms 

and several 

components need to 

be programmed 

before the system 

becomes functional 

Adopts a way for  

world representation 

Bad 

Does not support a 

particular way to 

represent changes 

in the game world  

Good 

Uses condition 

leaves to represent 

the success or 

failure states of 

different behaviors 

Best 

Uses a dedicated 

working memory to 

save information 

about different 

game objects and 

game world events.  

Ease of customization Bad 

Game logic is 

embedded in the 

states which means 

different states and 

their transition 

logic need to be 

hardcoded making 

the game 

designer’s work 

harder 

Good 

Easy to customize 

because it allows 

game designers to 

design new 

behavior trees, tree 

branches and 

leaves without 

needing to write 

new code. Requires 

redesigning 

transitions between 

leaves 

Best 

Easy to customize 

because it allows 

game designers to 

create new actions 

and action sets 

without needing to 

write new code 
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Table 4: “bad, good and best” comparison table of the alternative decision-making systems 

If a winner had to be selected based on which system had a higher number of Good and Best in 

the table, the obvious winner of the comparison would be the GOAP architecture. However, 

making different comparisons that take different criteria into account would probably yield 

different results. Therefore, this comparison should be viewed only within the scope of the 

criteria listed above. It is not a general comparison of the three systems. Ultimately, the 

comparison was made to contextualize the GOAP system in comparison with other popular 

decision-making systems. It was not made to determine which AI system was the best one. Every 

project has different requirements and those are what really matter when selecting an AI 

decision-making system to work with. To further motivate these results, an analysis of the 

comparison had to be made:  

7.4.1 Analysis of the comparison  

The three different types of systems represent decision-making in different ways. GOAP’s 

decisions are represented as actions, while behavior trees represent decisions as leaf nodes that 

are called behaviors. And finally, FSMs represent decisions as states.  

Managing many decisions:  

The Goal Oriented Action Planning architecture had the ability to manage many actions in its 

planner. Each action was represented as its own object and for this thesis’ project, this was done 

by developing the ScriptableAction class. In comparison, behavior trees had behavior nodes and 

FSMs had states. FSMs presented a disadvantage when it came to the management of many 

decisions because decisions were represented as states and an FSM with many states was 

considered to be an unmanageable system.  

Modularity of decisions:  

As mentioned earlier, GOAP had a way of representing decisions as actions. This allows the 

game designer to pick and choose which actions go inside which action sets and that means that 

the decisions in the system are modular and can be configured in different ways. This was 

implemented in this thesis’ project in the ScriptableAction and ActionSet classes in such a way 

that a character type can have an individual ActionSet that contains a list of ScriptableAction 
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instances that represent what decisions that character could make in the game. In comparison, a 

game designer could configure different behavior trees by adding or removing behavior leaf 

nodes to a tree. FSM systems fall behind in this domain because they represent decisions as 

states. Those states are not modular which means they are hardcoded in the FSM’s code. 

Removing or adding new states requires writing more code or removing code from the program.  

Automatic coordination of decisions:  

GOAP has a dedicated planner that creates plans consisting of heuristically relevant actions and 

sets them in a correct order for them to be played out. The developed project contained the 

Planner class which was able to receive a goal and create a plan based on that goal and 

information that is saved in the working memory. The planner examines the available action set 

and using a regressive search algorithm it finds each relevant action beginning with the action 

that fulfills the goal back towards the first action that an agent can start a plan with. Neither 

FSMs nor behavior trees have a similar ability to GOAP’s planner. Instead, what could be 

perceived as plans are predesigned connections between the states in FSMs and between the 

tree’s leaves in behavior trees. The two systems (FSM and behavior tree) are not able to 

automatically create plans at runtime.  

Automatic replanning:  

This feature relies on the Planner class as well. In the thesis’ project, whenever a new memory is 

added to the AI-agent’s working memory, a request is also automatically sent to the planner to 

create a new plan that takes the newly added memory into consideration. Behavior trees and 

FSMs do not have planners as previously mentioned; therefore, they fail to match the GOAP 

architecture in this feature as well.  

Reusability with different character types:  

The developed GOAP system allowed reusability with a very simple implementation of the 

ActionSet class. Each instance of this class contained a list of actions. Which meant that different 

characters could very easily be assigned different sets of actions that they were allowed to make. 

No changes to the planner or other parts of the code were needed to ensure the system’s 

compatibility with each character type. Behavior trees and FSMs do not have a matching way to 
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easily reuse the system to the game designer’s advantage. Instead, the designer has to design 

different behavior trees for each different character type in their game. The same applies to 

FSMs where a game designer has to design new FSMs for each different character type.  

Ease of setting up:  

While the GOAP architecture had many advantages, it could not be compared with the ease of 

set up of an FSM. By the time a programmer could finish programming their version of a GOAP 

system without designing any actions, they could already have programmed a finite state 

machine with its different actions and transitions between them. FSMs are known to be easy to 

program because their logic is simple. An FSM switches between each state provided some 

condition was met (ex. If X = true, transition to State 2). On the opposite side, the GOAP system 

in this thesis project required programming a planner class which took some time to get up and 

running. It also required programming all the other parts of the GOAP architecture that were 

described in the literature. Behavior trees are not easy to set up either, considering they have 

many classes that need to be programmed to represent each type of leaf in the tree (leaves can 

represent behaviors or conditions among other types).  

World representation:  

The developed GOAP project used memories to represent the state of the world. These memories 

were saved in the WorkingMemory whenever something relevant happened in the game (ex, 

another character was seen, key was found, etc.). Behavior trees do not use the same kind of 

logic, but they do have what is called a Condition leaf inside the tree. These condition leaves 

represent whether a certain behavior was successful or not. FSMs do not have any particular way 

of representing changes/statuses in the Gameworld.  

Ease of customization:  

The developed project allowed for easy customizability of the scope of decisions that could be 

made. This was because of the modularity of the actions, as new actions could be easily 

instantiated and assigned costs, effects, and preconditions. This way, a game designer could 

customize the actions in a game based on costs and context without needing to change the code 

for the planner to accommodate new actions that are created later in the project. Behavior trees 
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were also easy to customize because they contain definitions of what a behavior is and what a 

condition is (among other leaf types). The game designer gets to chain different behaviors and 

conditions to create new tree branches that could exhibit a desired line of action. FSMs on the 

other hand do not allow for easy customizability. Game designers need to hardcode every new 

state in the FSM.  
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Chapter 8 Discussion  

 

This section presents a concluding discussion about this thesis paper. It summarizes the work as 

a whole. It discusses AI in games in relation to the design science methodology and discusses the 

issue of accessibility to game development research.  

8.1 Summary of the work as a whole  

 

This thesis began with the aim of understanding the Goal Oriented Action Planning architecture 

and developing a GOAP system. This was to advance the research within the fields of artificial 

intelligence and game development and make GOAP a better documented system with publicly 

accessible research. The developed GOAP system was used in a game prototype where there 

were two different character types (Hunter and hunted) where the hunter type had the goal of 

catching as many other characters as possible (see Figure 13) and the hunted type had the goal of 

finding special keys that allowed them to escape the game area (see Figure 14).  
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Figure 13: a screenshot from the project showing a “hunter” AI-agent chasing a “hunted” AI-agent 

 

 

Figure 14: a screenshot from the project showing a “hunted” AI-agent finding and grabbing a key 
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The thesis also wanted to answer the research question “How does the GOAP architecture 

compare to other decision-making AI systems in video games? ”. As mentioned earlier, two 

other decision-making systems were chosen. Those two systems (FSMs and Behavior Trees) 

were chosen because they were both commonly used in video game development and were very 

well documented in the literature. The content of the comparison was based on the acquired 

knowledge about all three systems through reviewing the literature on the topic. Additionally, the 

developed GOAP system also aided in gaining knowledge for the comparison.  

The background section of the thesis introduced the reader to the topic of artificially intelligent 

game agents in video games. Additionally, it briefly explained why there was a need for 

dedicated decision-making systems in video games and how those were better than simply using 

basic “if this then do that” logic. Furthermore, the existing research section introduced the three 

decision-making systems that this thesis was concerned with comparing. It roughly explained the 

logic behind them and finally, it introduced the research gap.  

The theoretical framework introduced the theoretical discussions that were relevant in the area of 

artificially intelligent decision-making systems in video games. The idea of the illusion of 

intelligence was proposed by several professionals as a way of thinking about developing AI for 

games. This idea helped create boundaries for the scope of the project and eliminated the need to 

think about game-AI with too much complexity. Furthermore, more concrete theoretical ideas 

were introduced and those were planner systems, the A* algorithm, heuristics, vision in video 

games and working memory systems. Finally, the theoretical framework introduced the need to 

conduct a comparison between different AI-systems in video games and motivated the need for 

game AI-research because of its social impact on society.  

Afterwards, the paper presented the methods and empirical data section where the design science 

research methodology was explained, multiple steps for an analysis and comparison were 

introduced and included a literature review for data collection. These were concerned with 

establishing a way to compare the three different decision-making systems, namely, GOAP, 

behavior trees and FSMs. And finally, the usefulness of concept maps was explained. 

Furthermore, the ethics section brought up the possibility of bias in the comparison, due to the 
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fact that the developed prototype was only concerned with developing a GOAP system and not 

the two other ones (Behavior tree or FSM).  

Finally, the results section was presented. It presented the designed unified modeling language 

(UML) diagrams and explained the use of game engine software (Unity Engine) where the 

prototype was programmed and developed. A pseudocode presentation of the main components 

of the developed GOAP system and other supporting components was shown and an explanation 

of what each of them was responsible for performing was presented. Those components included 

the planner, goal, action, plan, actionset, vision sensor and the blackboard. Subsequently, the 

results of the comparison were presented using a “bad, good, best” table that is based off of the 

system requirements which were previously outlined in the method section. In addition to that, a 

more detailed analysis of the comparison results was presented.  

8.2 AI in games in design science – process and obstacles   

 

The thesis had the aim of understanding the goal oriented action planning architecture by 

programming a prototype which implements that architecture. That required setting the prototype 

in a video game environment in order to truly understand its advantages and limitations as a 

decision-making system for video game AI-agents. Decision-making systems like GOAP are 

important because they present a structured solution for game AI. Without such decision-making 

systems, game programming would easily become unmaintainable and troubled with too many 

“if this do that” long lines of code. In the literature, it was easy to find documentation for 

behavior trees and finite state machines and how to program and implement them in video 

games. The same could not be said about the GOAP architecture however. But that was part of 

the research gap, and this thesis was written to address that issue. The literature on GOAP that 

was reviewed for this paper, was more open to interpretation. This meant that it became easier to 

program the prototype in a way that best fit the chosen game engine (Unity Engine). The purpose 

of creating a GOAP system for this research paper was to further understand GOAP. This was 

done from a design science perspective where the research was centered around six different 

activities. Those were “problem identification and motivation” which included the identification 

of the research gap, that being a lack of enough clear and easily accessible documentation and 
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implementation examples of the GOAP system. The second activity was “defining the objectives 

for a solution” which was done in Table 1 where multiple requirements were outlined for the 

GOAP system before developing it. The third activity was “design and development” which was 

done by designing concept maps and UML diagrams which in their turn served as a base for the 

development of the GOAP system. The fourth activity was “Demonstration” which was done by 

demonstrating that the developed GOAP system was functional in a virtual game setting for AI 

game agents in the Unity engine. The fifth activity was “evaluation” and this was done through a 

comparison between the GOAP system and Behavior trees and FSMs (the latter two being some 

of the most common AI decision-making systems for games). And finally, the sixth activity in 

the design science methodology was “communication” which is presented by the culmination of 

information and implementation documentation of the produced artifact (GOAP system) in this 

research paper. Making this paper an accessible resource for game developers, hobbyists, and 

other relevant audiences. And a resource which contributes to the information systems field 

using a design science approach while also advancing research in game development and AI 

research.  

Furthermore, programming a decision-making system for game AI-agents is not as much of a 

complicated endeavor as it might seem. The literature supported this idea in the discussion about 

how game intelligence is an illusion of intelligence. A decision-making system in this case only 

needed to take into account the least possible information that could help it achieve its goals. The 

GOAP system does this by using a regressive search algorithm in its planner to find a 

heuristically relevant chainable line of actions that fulfills a given goal. The set of actions is up 

for the game designer to develop. Each action in the set has a precondition which must be 

fulfilled to allow this action to be considered as a part of a plan. Actions also have effects, which 

are used to create a chain with the next action’s precondition. Meaning that an effect matches the 

next action’s precondition in the plan. And finally, an action has a cost, which helps the planner 

choose the cheapest action if there are more than one action with the same effect.  

After developing the GOAP planner and its components, it became clear that the rest of the game 

prototype also had to be programmed in a new way. The idea that a game’s AI-agent’s actions 

would be chosen by an automated planner presented a new way of game programming. Instead 

of writing code that immediately tells an AI-agent to do a certain behavior if a certain event was 
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witnessed, the code for the game prototype had to be written in such a way where there was a 

high focus on the agent’s working memory. The significance of the working memory for such a 

project was not highlighted well enough in the literature. The working memory acted as a 

middleman between the agent’s planner and the blackboard. This meant that when an agent 

witnessed an event through their sensory systems, those sensors would add a memory about that 

event into the working memory. The planner could then do with that knowledge what it sees best 

and create a plan of actions which are then invoked from the blackboard. This reflects Orkin’s 

idea about seeing the game’s agents as those who are in the best position to make their own 

decisions (Orkin, 2003).  

Another important aspect of GOAP powered AI-agents are their sensory systems. These are also 

not discussed as well enough as they should be in the literature concerning GOAP. However, 

they were discussed in many other sources of literature because they are important components 

of video game AI-agents regardless of which decision-making system the game characters have. 

What is meant by sensors here is for example, vision sensors, audio sensors, proximity sensors, 

etc. Any game object that can be used to relay Gameworld events to the working memory can be 

seen as a sensor in this case. In this thesis’ game prototype, the developed sensors were a long-

range vision sensor, a short-range vision sensor and a proximity sensor. The vision sensors were 

programmed to create a memory about if a target was seen, and which target it was. It then sends 

that memory to the working memory so that the planner could reprioritize which actions it 

should be making.  

The comparison part of the paper concluded by illustrating the contextual differences of the three 

decision-making systems. This comparison was not intended to show which system was the best 

out of the three but was rather intended to show what things the GOAP system could do that the 

other decision-making systems could not do. The conclusion was that the GOAP architecture 

was a system that could support a combination of features, and these were: managing many 

decisions, having decisions be represented in a modular way, a planner that creates and recreates 

correct sequences of decisions, a system that can be reused in multiple game character types, a 

system that has a heuristical way of representing Gameworld events and is easy to customize. On 

the other hand, if a game designer needed an AI system where they could design their game 

characters’ sequences of actions manually but still be able to create characters that are able to 
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make many decisions, then a behavior tree could be more suited for that purpose. And finally, if 

the designer wanted to be able to quickly prototype a game agent’s AI and did not need it to do 

too many actions, then a finite-state-machine AI (FSM) would be the best choice.  

Lastly, there are many different artificial intelligence frameworks one could choose from when 

building a project that utilizes decision-making. Every framework has its pros and cons and no 

one framework should be deemed the best without considering the requirements of the project in 

question. The goal oriented action planning architecture shines best when used to design agents 

that are capable of making many choices and decisions. And it truly becomes useful when the 

need to implement new actions arises, considering its Planner class, which does not need to be 

reprogrammed every time a new action is implemented in the agent’s blackboard.  

8.3 Ease of access to game development research  

 

Independent game studios that are composed of a small team of developers usually have to work 

on many things at the same time. This is contrary to bigger companies which might have 

divisions for every part of a video game’s lifecycle going from research to development and even 

marketing. That is why it is important that more papers are written on video game artificial 

intelligence systems in a digestible and easy to understand manner. Design science research 

presents a very appropriate model to do such research where an understanding of a certain 

artifact is best done by creating one such artifact as part of the research. More research in the 

field of game AI would enable smaller developers and hobbyists to easily learn from them and 

implement them in their own projects. This is not only limited to game development however. 

As was discussed earlier in this paper in “the social impact of game AI research” section, video 

games have been used as a testbed for artificial intelligence research to test certain software 

patterns before using them in other domains for example in robotics or smart home products.  

Additionally, many organizations use domain specific information systems that are employed to 

solve problems and process information. Game development studios are among these 

organizations. They use different information systems such as the GOAP system. This gives 

them a unified understanding in the organization of what input individual developers can give to 
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the system and what kinds of output it will produce. Thus, enabling the organization to develop 

games through a well-structured system.  

This paper could help some developers understand the Goal Oriented Action Planning 

architecture, or perhaps introduce it to them for the first time. Advanced decision-making AI 

systems can help developers create new kinds of games or games that are not usually released by 

smaller game studios. For example, GOAP can be used to create games or virtual environments 

where many agents/characters are in one environment and are each taking individual courses of 

action to achieve separate goals or one common goal. For example, in a game where players can 

build houses together from materials found in the game, there could be AI-agent characters that 

help the player by collecting materials to build the house. Finding a material would be set as a 

goal by the agents’ GOAP planners and each agent would go and collect a different material to 

build the same house.  

Finally, doing more accessible research on artificial intelligence systems in games is important 

because it gives new opportunities to game developers, hobbyists and other communities who do 

not have access to expensive scientific journals nor the ability to hire their own research teams. 

These new opportunities could create new jobs, artistic expressions or even lead the path towards 

new technologies.  
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Chapter 9 Conclusion  

 

This section presents the main conclusions of the thesis. And then discusses the implications and 

limitations of this paper and lists possible related work that could be done on the topic in the 

future. 

9.1 Main conclusions  

The Goal Oriented Action Planning system presents a useful framework for games that have AI-

agents which need to create multi-action plans and alternate between many different actions. 

Unlike an FSM or a behavior tree, the GOAP system frees the developer from the need to write 

code that specifies how each action may precede or proceed the next action in a plan. 

Additionally, the GOAP system frees developers from predefining sets of plans altogether. 

Instead, the system creates plans during the execution of the program using an algorithm that 

uses preconditions, effects, and costs to decide which actions could create a suitable plan to 

achieve a given goal. GOAP uses a set of main technical concepts that should be implemented 

and those were: Goal, action, action sets, plans, planner. Additionally, a working memory and 

several sensors can be implemented to give the GOAP system the ability to react to different 

events in the game world and create plans based on memories.  

Different video games require different AI systems depending on the level of variety of actions 

or decisions that an AI-agent is expected to display. This is an important factor in selecting a 

type of AI-system to implement in a game. A traditional FSM works best for simple AI-agents 

with a small handful of actions they can make. Behavior trees are better for more complex 

behaviors consisting of several actions or decisions. And finally, a GOAP system is good for AI-

agents that dynamically create their own plans based on the decisions they need to make to 

achieve certain goals in a game.  

Lastly, doing research using a design science approach allows the researcher to create an artifact 

of the phenomena or technology that is being researched and thoroughly document it so that 

different researchers and other relevant communities can benefit from the research. This makes 
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this research paper not just a source of information that was collected at a certain time, but 

rather, it serves as a guide for future research and for developers who are interested in 

developing their own version of the research’s artifact. Namely, a GOAP system.   

9.2 Limitations and future work 

 

As previously mentioned, this paper only addresses three decision-making systems for game 

agents’ artificial intelligence. In reality, there are more of them in the industry than just the three. 

Different kinds of projects or games require different solutions of course. Therefore, the 

takeaway from this thesis paper should not be that the GOAP architecture is the best solution for 

game AI. Instead, game programmers should carefully consider their game’s requirements and 

choose the best system for the job based on that.  

Additionally, a future comparison of the three systems (GOAP, FSM and Behavior Trees) should 

be done after having programmed three different digital artifacts of each, instead of developing 

an artifact of only one of them (GOAP). This could further improve the understanding of these 

systems and how they differ from each other. Furthermore, it could expose more advantages in 

behavior trees and FSMs which might not have been visible through this paper’s literature 

review.  

Because the GOAP architecture makes very good use of working memory and sensory systems, 

it becomes very intriguing to think of the applications it could have in microelectronics. Perhaps, 

smaller robotics that have a specific set of actions could make use of a decision-making system 

such as GOAP. This could be a much better choice than complicated machine learning solutions 

which might not be suitable for the low-powered processors that microelectronics usually have.  

Finally, the domain of decision-making systems continues to make new advancements through 

experimenting on and developing new video games. Two more decision-making systems that are 

already used in some modern video games are the Utility AI (Walkup, 2021) which makes 

different calculations based on a given situation and decides the best course of action in a given 

moment and Director AI (Middler, 2021) which monitors different variables in the game such as 

the player’s health, shooting accuracy, etc. and based on that makes decisions about for example, 
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how many enemies should go after the player, how strong those should be and in which parts of 

the game they should exist, etc. More research on these systems and especially research that uses 

a design science approach can be done to expose their internal logic and make them more easily 

available to learn from for smaller game development teams, hobbyists and others who might be 

interested. And lastly, this paper did not cover the different ways where multiple kinds of 

decision-making AI can be combined in a project to achieve different goals. Creating new AI-

models based on a combination of multiple decision-making systems could aid in developing 

more robust and useful solutions.  
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