

Uppsala University

Department of Informatics and Media

Decision-making AI in digital games

By Ahmad Al Shehabi

Information Systems: Master’s Degree Project

Semester: VT2022

Date of the presentation seminar: 24 May 2022

2

Abstract

The field of artificial intelligence has gained much knowledge through the implementation of

decision-making systems in video games. One of these systems was the Goal Oriented Action

Planning system (GOAP) which directs the behavior of an AI-agent through multiple digital

artifacts categorized as goals, actions, and plans. The aim of the thesis is to aid in the

understanding and creation of GOAP driven AI-agents in a video game setting to promote

research on this topic. The research question of this thesis was about finding out how the GOAP

architecture compares to other video game decision-making systems. The theoretical framework

introduces the concept of the illusion of intelligence in video games and presents a discussion

focused on the different components which make up a GOAP system and other components that

support it. Additionally, the theoretical framework explains the need for a comparison between

different decision-making systems and explains the social impact of game AI research. The

methods section introduces the criteria for the comparison between GOAP and other decision-

making systems and presents a comparison process that was driven by a literature review. A

GOAP system was designed for this thesis using the unified modeling language and concept

maps. It was then implemented using C# code in a free-of-charge game engine called Unity. We

present the pseudocode for the implementation of the GOAP system and show that this

framework is a modular, customizable, and reusable system that enables AI-agents to create

plans from a varied set of actions. Finally, the paper suggests further research within game

decision-making AI and emphasizes the importance of game AI research for communities of

game developers, hobbyists, and others who could benefit from game AI in their projects.

Keywords

Decision-making, Goal Oriented Action Planning, GOAP, Agent, AI, Artificial Intelligence,

Behavior Trees, Finite State Machines, FSM.

3

Table of Contents

Table of Contents .. 3

List of Tables .. 6

List of figures .. 6

Chapter 1 Introduction ... 7

1.1 Aim ... 8

1.2 Research question ... 8

1.3 Disposition .. 9

Chapter 2 Background ... 10

2.1 The significance of Decision-Making systems in video games .. 11

2.2 Relevance to the field of information systems and contribution to the field 12

Chapter 3 Existing research ... 14

3.1 Finite State Machines (FSM) .. 14

3.2 Behavior trees ... 16

3.3 Goal Oriented Action Planning ... 16

3.4 The research gap ... 17

Chapter 4 Theoretical framework .. 19

4.1 The significance of the illusion of intelligence ... 19

4.2 Creating the illusion .. 20

4.3 Planner system, A* algorithm and goal-driven (regressive) search 21

4.3.1 The planner .. 22

4.3.2 The A* algorithm and costs per action .. 23

4.3.3 Heuristics and the set of relevant actions ... 23

4.4 Vision in video games ... 24

4.5 Working memory for AI-agents .. 26

4

4.6 Different decision-making systems... 27

4.7 The social impact of game AI research ... 28

4.8 Summary of the theoretical framework .. 29

Chapter 5 Methods and empirical data .. 30

5.1 Design Science Research .. 30

5.2 Analysis and Comparison ... 31

5.3 Literature review ... 33

5.3.1 Defining the alternatives .. 33

5.3.2 Analyzing the alternatives .. 34

5.3.3 Asking questions about the alternatives and making a result sheet 36

5.3.4 Defining pros and cons .. 37

5.4 Concept maps .. 37

Chapter 6 Ethics... 39

Chapter 7 Presentation of results ... 40

7.1 Project creation in the Unity engine ... 40

7.2 Unified Modeling Language (UML) .. 41

7.3 Implementation ... 44

7.3.1 The Planner .. 45

7.3.2 Goal .. 47

7.3.3 Action ... 48

7.3.4 Plan .. 49

7.3.5 ActionSet.. 50

7.3.6 World Representation .. 51

7.3.7 Agent .. 53

7.3.8 VisionSensor .. 55

5

7.4 Comparison results.. 58

7.4.1 Analysis of the comparison .. 61

Chapter 8 Discussion ... 65

8.1 Summary of the work as a whole .. 65

8.2 AI in games in design science – process and obstacles .. 68

8.3 Ease of access to game development research ... 71

Chapter 9 Conclusion .. 73

9.1 Main conclusions .. 73

9.2 Limitations and future work.. 74

Chapter 10 References ... 76

6

List of Tables

Table 1: a table showing the requirements for the decision-making system that was developed 32

Table 2: table of analysis of alternatives ... 35

Table 3: Questions and results about the alternatives ... 37

Table 4: “bad, good and best” comparison table of the alternative decision-making systems 61

List of figures

Figure 1: The ghost’s FSM from the classic Pac-Man game. Adapted from figure 5-1 in (Source:

Cossu, 2020b, p117-p139) .. 15

Figure 2: Vision cones. Green check marks show which targets can be seen and red crosses show

which targets cannot be seen by the agent .. 25

Figure 3: Concept map of relations between the agent’s different components 38

Figure 4: UML diagram of the developed GOAP system .. 42

Figure 5: a UML diagram of the relations between the VisionCone and the Agent's

WorkingMemory... 43

Figure 6: the project’s SearchActions method from Planner class ... 47

Figure 7: Two scriptable action instances in the Unity engine’s interface 49

Figure 8: The hunter’s action set in the Unity engine’s interface ... 51

Figure 9: The Memory struct from the project ... 53

Figure 10: A code snippet that shows the method GrabKey from the PlanExecuter class 55

Figure 11: A “Hunter” character with two vision cones ... 57

Figure 12: a concept map of the relation between the vision sensor, working memory, planner,

and the blackboard .. 58

Figure 13: a screenshot from the project showing a “hunter” AI-agent chasing a “hunted” AI-

agent .. 66

Figure 14: a screenshot from the project showing a “hunted” AI-agent finding and grabbing a

key ... 66

7

Chapter 1 Introduction

This section introduces the reader to the general area of study that this thesis paper is about and

explains the aim of the thesis in relation to the Goal Oriented Action Planning architecture.

Furthermore, the research question of this paper is introduced in this chapter. Lastly, the

disposition of the research paper is made available in the last part of this chapter.

The field of artificial intelligence (AI) is a large field that contributes to many industries and has

many uses. AI has been used in facial recognition, search engines, robotics and even video

games. One strange observation that some academics have noticed about people’s view of AI is

that once a certain kind of AI becomes mainstream, people stop viewing it as real intelligence

(Haenlein & Kaplan, 2019). However, just because a certain AI technology is no longer deemed

intelligent does not mean that it is any less useful. Video game AI is one of these AI fields that

has become mainstream and is often expected to be part of any modern video game. But

programming AI requires structure. It is not as simple as telling the computer to do “A” if

condition “X” is fulfilled. Instead, a more organized system should be engineered to protect the

AI’s code from becoming unmanageable. One AI architecture that has been used in some video

games is the Goal Oriented Action Planning architecture (GOAP). This thesis studied the GOAP

architecture (Orkin, 2003) for AI decision making in video games and was accompanied by a

development project of a GOAP system that was implemented in a digital game prototype. This

was important because there is not enough accessible research about different AI-systems for

game development. Smaller game studios and game development hobbyists do not have large

budgets or enough time to do their own research and therefore, the game AI research community

has a responsibility towards these kinds of developers (Cook, 2021). Additionally, the GOAP

architecture (Orkin, 2003) is not as popular as other types of AI systems such as behavior trees

and FSMs (Sweetser & Wiles, 2002), therefore it is also not as well documented either. Because

of that, this research presents a valuable contribution to the field of game AI research.

8

1.1 Aim

The focus of this thesis was to understand the GOAP architecture (Orkin, 2003) and how it is

built and then program a prototype of a GOAP driven AI-agent to be used in a digital game

environment. By creating a prototype that uses GOAP AI and documenting that development

process, this thesis aimed to advance the research within the fields of artificial intelligence and

game development and make GOAP a better understood system with publicly accessible

documentation. The chosen game type that was used was made to be similar to the basic

mechanics of the game Dead by Daylight (2016). This meant creating a game prototype that had

a type of character whose goal was to hunt other characters and another type of character whose

goal was to escape. These types will be described as the hunter and the hunted in this paper. The

prototype developed for this thesis used the GOAP architecture to create AI players that played

against each other as opposed to having an online multiplayer game with real human players as is

the case in Dead by Daylight. The reason for this choice of game category was that it presented

two kinds of players with two main goals, hunt, or escape. This meant that the number of goals

that the GOAP agent had, could be narrowed down to a smaller amount to fit the scale of this

thesis paper and project.

1.2 Research question

The Goal Oriented Action Planning architecture (Orkin, 2003) is not the only decision-making

type of system that is used in video game artificial intelligence. Therefore, it was important to

understand its significance when compared to other systems that were used for similar purposes.

The research question that this thesis wanted to answer was:

- How does the Goal Oriented Action Planning architecture compare to other artificially

intelligent decision-making systems in video games?

9

1.3 Disposition

In Chapter 2 we present a background on the topic of Goal Oriented Action Planning. In Chapter

3 we cover existing research in the field of game decision-making systems. Chapter 4 is a theory-

based chapter in which the theories around pertinent topics in artificial intelligence and video

games are presented. Chapter 5 is the methods and empirical data chapter where the different

methods that were used are presented followed by a brief chapter on ethical concerns about this

research paper. Finally, in Chapter 7 we present the results of the research paper and provide a

discussion in Chapter 8 and the conclusion of the research paper in Chapter 9.

10

Chapter 2 Background

This chapter briefly explains the concept of the Goal Oriented Action Planner (Orkin, 2003) and

why it is an improvement compared to other methods of game character AI. Additionally, a

motivation for the need for this kind of AI is introduced in relation to programming efficiency

and an explanation of its relevance to the field of information systems is presented.

Video games have used several standards for non-player character AI, ranging from simple ones

to more complicated ones that are harder to code. One of the most common methods of creating

game AI is by using (FSMs) finite state machines (Sweetser and Wiles, 2002). Sweetser and

Wiles explained that FSMs are the most used AI technique in video games because of how easy

they are to program and get running. They elaborated that the way that FSMs work is that they

divide behaviors into a limited number of states that a game character can alternate between.

However, FSMs that are poorly structured can become too hard to manage the bigger the project

becomes. Sweetser and Wiles noted that bigger games might require many states to be handled at

the same time and having too many states in an FSM can easily become a problem. The Goal

Oriented Action Planning architecture is one solution to this problem. Orkin (2003) said that

GOAP does not replace the need for an FSM, but rather simplifies it so that it can be managed

more easily. Orkin explained that in GOAP, instead of making a new state for each action in the

FSM, a game character’s actions can be grouped together in a state. That way, the total number

of states in an FSM remains smaller. For example, he said that actions such as dodge and reload

weapon can be grouped together in one state called animate. Furthermore, Orkin stated that the

GOAP architecture helps create characters that are able to create plans and exhibit unique

artificially intelligent behaviors. The characters become less repetitive and less predictable as he

puts it.

Games that use AI to create game characters that are able to intelligently hunt, and chase down

other game characters have seen a rise in popularity in recent years. Examples of those are the

Alien from Alien: Isolation (2014) which chases the player around the game area and reacts to

the player (searches for the player if they are hiding and attacks if they are visible) as well as the

11

characters Mr. X (Resident Evil 2, 2019) and Lady Demetrescu (Resident Evil Village, 2021)

who exhibit similar behavior as they search for the player when they are hiding and chase them

all through the game environment once they see them. This modern popularity of what could be

called a Hunter AI in video games could make use of the GOAP architecture to enable creating

intelligent hunter behaviors that can alternate between different states and create organized

decision-making plans. Doing research on how this kind of AI can be created will help make this

area of game development more accessible. This could be beneficial for smaller game studios

that do not have big budgets to do research on AI for their games and would rather learn from

publicly accessible thesis papers on the topic.

2.1 The significance of Decision-Making systems in video games

A game programmer could write long lines of code where they define the conditions for making

a decision using “if this then that” lines of code. That could work perfectly fine for a game where

the decisions to be made come from a small set of actions. Think for example about a game

where an AI-agent needs to choose between the actions “Sleep” and “Eat”, where the need to

sleep is directly related to the variable “Tired” and the need to eat is directly related to the

variable “Hungry”. The logic to make a game character make a decision about those needs could

look as such:

if(Hungry = true & Tired = false)

 //Do action 'Eat'

else if(Hungry = false & Tired = true)

 //Do action 'Sleep'

else if(Hungry = true & Tired = true)

 //Do action 'Eat' first

 //Wait until finished eating

 //Do action 'Sleep'

The above pseudocode makes a game character eat as long as it is not tired and sleep as long as it

is not hungry and finally it makes it prefer to eat first and sleep second if it is both hungry and

tired. This logic could work perfectly fine for an extremely simple video game. However, in a

game where many needs are part of the game and there are many variables to consider,

programming the game using simple “if this then that” statements creates very long lines of

12

unmaintainable code. Imagine for example a game where an AI-agent has the same two

previously mentioned needs. This time however, fulfilling the “Sleep” action requires not only

the agent to be tired, but that they also own a bed and know where it is located in the game’s 3D

or 2D-space. Additionally, the agent should also be programmed to know that if they do not own

a bed, then they should sleep on the couch. And then the same conditions would apply for the

couch (the game character must own one and know where it is). In a game such as this, the

simple action of going to sleep has so many conditions that affect it. This also applies to the

“Eat” action and many other actions that the programmer would want to program into the game.

Furthermore, the programmer might want to create different priorities for each action. Going to

sleep while very hungry would be bad for the game character, so they should prioritize eating

first. Programming action-priorities would create even longer lines of code that would have to

account for every single combination of actions and which action of each pair of actions needs to

happen before the other.

The previous example illustrates the need for Decision-making systems in video games. A well-

structured decision-making system can eliminate long and unmaintainable lines of code. The

GOAP architecture (Orkin, 2003) does that by using a combination of digital artifacts called

actions, goals, and plans. Actions have preconditions and effects which help the system make

decisions regarding prioritization of actions. Furthermore, the system uses costs per action to

simulate decisions regarding preference.

2.2 Relevance to the field of information systems and contribution to the field

Video game designers need to collaborate using different information systems to create their

games. Information system research is concerned with the interactions between individuals,

systems, and organizations (Hirschheim & Klein, 2012) and information systems are described

as systems that process data and provide information. Viewing the Goal Oriented Action

Planning architecture (Orkin, 2003) through the lens of information systems, it can be seen that

GOAP provides a way for game designers, programmers, and technical artists as separate

individuals, to each do their part in a way that utilizes GOAP as a system. Ultimately, working

together as an organization to produce a video game. Additionally, GOAP can be seen as an

13

information system because it can be provided with data from the designers. That data is in the

form of definitions of individual actions as digital artifacts of the system. The GOAP system then

processes that data using its planner and provides information to an AI-agent in the form of a

plan. Furthermore, more design science research could be done for the field of information

systems according to Peffers et al. (2007). They explained that a design science research project

entails creating a digital artifact, evaluating it, and presenting it to an audience. This means that

following a design science methodology, a GOAP system can be designed as part of a research

project that would contribute to the field of IS. Additionally, considering that information

systems are widely understood as tools for problem solving in organizations (Lyytinen, 1987), it

can be understood that a decision-making AI system such as GOAP solves a problem for game

development organizations. That problem being a lack of a common structure of managing AI-

agent actions, which causes unmaintainable code and projects. GOAP provides a framework for

game developers to understand an AI-agent’s behaviors as being motivated by goals, actions, and

plans. The three important digital components of the GOAP system. Additionally, Peffers et al.

(2007) explained that the field of information systems has struggled with applying design science

research as a component of research in the field of IS. Thus, conducting a design science project

to develop a GOAP system and evaluate it contributes to the field of information systems and

benefits game development organizations.

14

Chapter 3 Existing research

There are several ways that a game character’s AI can be programmed to influence its decision-

making abilities. However, some of them can quickly become complicated and unmanageable.

This section will discuss some of the existing research on game AI and decision-making.

3.1 Finite State Machines (FSM)

A finite state machine is a commonly used technique in video game artificial intelligence.

Sweetser and Wiles (2002) explained that the commonality of FSMs in the field of game

development could be attributed to their ease of programming and debugging. They revealed that

FSMs are used to divide a game object’s behavior into several parts. Each part helps exhibit a

certain behavior. Furthermore, they said that an example of how an FSM could be used was to

represent a monster that expresses different emotional states such as berserk, rage, mad,

annoyed, or uncaring. Each of these states are activated by different events in the game and each

state makes the character exhibit certain behaviors.

In his book about game-AI programming, Cossu (2020a) explained that the classic arcade game

Pac-Man used an FSM where the ghosts that chased the player had 3 states. Roam, chase and

flee. Each of these states was triggered by an event in the game and each of them could make a

transition to the other. For example, as Cossu explained it, the ghosts would be in the Roam state

when Pac-Man (the player) was not in range, and their FSM would transition to the chase state

when they saw Pac-Man. Additionally, the FSM would transition to the flee state if the player

had picked up a pill, which made the ghosts run away from the player. The illustration below

(Figure 1) (Cossu, 2020b) explains the FSM of Pac-Man.

15

Figure 1: The ghost’s FSM from the classic Pac-Man game. Adapted from figure 5-1 in (Source: Cossu, 2020b,

p117-p139)

It can be seen in the illustration above how each state in the FSM uses three conditions to

determine whether the FSM should stay in its current state or move to the next or previous states.

A bigger game than Pac-Man can easily require more than 3 states which might imply the need

to create a complicated FSM with a web of states, each requiring different conditions to

transition from and to several other states. This is a well-known concern when developing game-

AI using an FSM. Sweetser and Wiles (2002) said that game FSMs can become too large and

grow out of control when needing to implement many states and state transitions.

16

3.2 Behavior trees

Another commonly used technique in video game artificial intelligence are behavior trees. Rabin

(2017, Chapter 9) explained that behavior trees were a common architecture that is used to create

control mechanisms for non-playable characters (NPCs). As he put it, a behavior tree has nodes

that tell the NPC how to behave. Additionally, he claimed that behavior trees were easy to

customize, because they were composed of smaller changeable behaviors each working as a

small component.

The building blocks of a behavior tree (Rabin, 2014, Chapter 6) consisted of many components.

The three most basic ones were behaviors, actions, and conditions. He explained that behaviors

can be seen as an interface where actions and conditions create special implementations of the

behavior interface. While actions were the leaf nodes of a tree, and they were responsible for

gaining access to information about the game world and reacting to it. And finally, conditions

were also leaf nodes in a behavior tree, which have the responsibility of checking for information

about the game world.

Rabin warned however of some of the pitfalls of behavior trees. He said that because behavior

trees were intended to aid in decision-making within larger systems, the tree could become too

complicated if it is programmed to have too many responsibilities. Therefore, he explained that it

is best to keep the following in mind:

● Avoid adding too many classes to the tree’s decision-making architecture

● Do not build an entire programming language into the behavior tree prior to requiring

such a feature

● Avoid using the blackboard as a point of communication for everything.

3.3 Goal Oriented Action Planning

The video game F.E.A.R (2005) was the first video game to use GOAP (Orkin, 2003) to plan

decisions made by game characters. Orkin (2006) explained that the FSM for the characters in

17

F.E.A.R had only three states and that the A* algorithm was used to generate pathfinding plans

as well as plans for sequences of actions. An A* algorithm is an algorithm which represents

knowledge as a graph and finds the best path towards a certain goal in the graph (Hart et al.,

1968). Orkin (2006) explained that the AI in this game had the ability to do things such as take

cover, shoot fire blindly and even communicate with other AI teammates. The game used the

states GoTo, Animate and UseSmartObject as Orkin explained. Furthermore, he elaborated that

the UseSmartObject state was actually a version of the Animate state except that it holds an

animation that is specific to the game object being used.

3.4 The research gap

The Goal Oriented Action Planning architecture for video game decision-making is a more

advanced system compared to traditional finite state machines that are used in simpler video

game AI. But there is a lack of sufficiently clear and easily accessible documentation and

implementation examples of the GOAP system. Therefore, it is important to create an

understanding of the GOAP architecture through a development and design project accompanied

by good documentation and evaluation of the process and the developed artifact. Creating a

GOAP system for any video game requires a planning process where the main components of the

system must be outlined in order to direct the programming in the correct direction. There are

some sources online that explain what GOAP is, but they do not show a clear overview of the

system. Peffers et al. (2007) explained the design science research methodology which helps in

doing research alongside a design project. They said this could be done by following some

guidelines. They added that the most important of these guidelines was that the research must

result in the creation of an artifact which acts as a solution for a problem. Furthermore, they said

the artifact must be evaluated and the research should present a valid contribution while the

development of that artifact must be based on previous research on the topic. Finally, they said

that the research should be presented to a relevant community or audience. Therefore, to conduct

a design science research project, this research paper will address that by developing a GOAP

system which is the artifact of this research. To do that, it would be important to review the

preexisting literature on the topic and create a clear blueprint that displays what the components

18

of the GOAP system is and how they interact with other objects in a game world. Additionally,

each video game genre presents different challenges and uses for decision-making. To evaluate

the produced artifact a comparison of the developed GOAP system to other decision-making

systems is required. This helps in understanding when it is most useful to use GOAP and when to

otherwise avoid using it and opt for a different decision-making system altogether. That will

make this research paper a contribution to the field and the relevant communities of game

developers.

19

Chapter 4 Theoretical framework

This section presents a theoretical framework for video game AI. Different concepts are

explored. Some of which relate directly to video-game programming and others are more related

to artificial intelligence in general. Together, these concepts are explained in relation to the

GOAP planning system and how it all comes together as a video-game decision-making system.

4.1 The significance of the illusion of intelligence

An important part of video game AI programming is the illusion of intelligence as Rabin (2017,

Chapter 1) explained. He said that even if an AI had human level intelligence, it could be

perceived as unintelligent if it does not meet the player’s expectation. Therefore, as Rabin

explained, the illusion of intelligence in video games could be more important than real human-

level intelligence. This point was further supported by Barrera et al. (2018) who stated that

artificial intelligence for the purpose of video games is the illusion of intelligence. They added

that intelligent game agents do not really need to learn things to be intelligent, they just have to

convince the player that they are learning things. Additionally, they explained that intelligent

game agents use different sets of sensors to react to their environment, similarly to how our

brains use our eyes and ears but in a much less complex way. The reason why illusions work

according to Rabin (2017, Chapter 1) comes from three aspects. The first aspect is that players

want to believe in the illusion. Rabin said that players like to participate in the illusion that the

video games they play have human-like qualities. He explained that as long as the AI does not

make any visibly obvious mistakes, players will continue to participate in the illusion of the AI’s

intelligence.

The second aspect was that people are eager to anthropomorphize (Rabin, 2017). Rabin

explained that people apply human traits to familiar behaviors to make sense of an ambiguous

situation. Rabin believed that when this view is applied to video games, it can be said that people

perceive an AI-agent’s intelligence as human-like intelligence. Additionally, he added that video

20

games often have human-looking avatars that animate and move like human beings and

therefore, the effect of anthropomorphism plays an important part in the illusion.

Finally, the third aspect according to Rabin (2017) was the power of expectation. He explained

that people will believe certain things depending on what expectations they have. He gave an

example from an experiment done by researchers in Caltech and Stanford where participants

were given a 45$ bottle of wine and a 5$ bottle of wine and were asked to taste them. They used

brain-imaging techniques and noticed that people’s brains showed signs of experiencing more

pleasure when the participants were tasting the more expensive wine. What the participants did

not know was that both wines were actually the same. Rabin also added that the well known

placebo effect in the medical field was another example of how people’s expectations play an

important role in what they experience. He concluded that managing player expectations in

video-games was important for the illusion of intelligence in AI-agents.

These three aspects are an important point of interest in developing a decision-making AI. With

these aspects taken into consideration, it becomes easier to understand that it is not enough to

create an AI that is able to pick and choose from a set of different actions that lead to a goal.

Rather, it is also important that this AI in one way or the other expresses to the human player that

it is in fact actively making decisions that are influenced by the state of the environment around

them. If the human player does not notice the game agent’s artificial ability to make decisions

and does not participate in the illusion, then the AI-agent’s decision-making abilities would be

lacking in significance.

4.2 Creating the illusion

After explaining the importance of illusion in the creation of artificial intelligence for video

games, Rabin (2017, Chapter 1) revealed a few ways to create the illusion. Two of those are

discussed in the following sections.

Firstly, Rabin (2017) started by explaining that a subtle way to manage expectations is to tell the

player about the AI’s abilities. He advised to use the loading screen in the game for example to

mention an AI character’s ability to make different decisions based on a given situation. This can

21

be done in a subtle way where that information could be framed as part of a gameplay tip, he

added. Rabin warned however of how this could backfire if the game builds high expectations,

but the AI and the game’s code do not actually meet those expectations.

Secondly, Rabin highlighted that the use of animations and dialog advances the illusion of

intelligence in games. He pointed out that despite character animations not explicitly being part

of the AI programming, they play an important role in highlighting when the AI is making

different actions. Rabin gave an example of how using head movement animations helps show

the player that an AI-agent is aware. He explained that an AI-agent’s ability to look at an object

or character that it is pursuing, shows the player that the AI-agent is intelligent. In reality the AI

does not need to look at (or move its head towards) an object in order to interact with it but using

animations this way highlights the game character’s artificial intelligence. In addition to

animations, Rabin said that intelligence can be illustrated by programming the ability for an AI-

agent to adjust its speed. Running faster when the situation calls for it and walking slowly

otherwise. Furthermore, dialog that is related to what is happening in the game between AI

characters emphasizes their intelligence as Rabin explained.

4.3 Planner system, A* algorithm and goal-driven (regressive) search

The Goal Oriented Action Planning architecture (Orkin, 2003, 2004, 2006) uses a combination

of smaller programming concepts to create a system that is able to create plans of actions in real

time. This section explains those concepts in further detail and how they work with each other.

The Goal Oriented Action Planner is a planner that can be used by non-playable characters

(NPCs) to satisfy a specific goal (Orkin, 2004). Orkin explained that the planner looks for a

suitable arrangement of actions that can be executed to fulfill the goal. He added that each action

can have some preconditions that also need to be met for the planner to work correctly.

Additionally, Orkin said that in the case of there being multiple actions which have the same

effect, the planner deals with those actions in a way that allows higher priority actions to

override others when that is suitable. Furthermore, Orkin explained that actions and goals in this

case have no explicit connection to one another, but rather, the planner creates that connection by

22

creating plans during the execution of the program. This, according to Orkin, allows engineers to

define what a goal is and what an action is during development. Meanwhile, designers get to

define the data files which describe each individual action and goal.

4.3.1 The planner

What made the FSM in GOAP different from other video game FSMs was that the logic to

transition from one state to another was not embedded in the FSM itself but was rather embedded

in a planner system (Orkin, 2006). Orkin explained that a planning system could tell the AI what

the goal was and what actions were available and then let the AI create its plan in real time. This

was contrary to regular FSMs which told the AI exactly what to do at any given situation, which

meant that the FSM had to be designed to react to every possible situation and that made overly

complicated designs.

A planner system according to Orkin (2003) is a system that searches the space of possible

actions that could take a game character from a starting state to a goal state. If the planner

succeeds in finding a plan, the character follows the plan until the goal is achieved or until a

better plan becomes more relevant. If the plan becomes invalid during its execution for whatever

reason, the planner tries to formulate a new plan for the character to follow. The planning system

in F.E.A.R was based on the STRIPS planning system (Orkin, 2006).

STRIPS (STanford Research Institute Problem Solver) is a planning system that uses operators

and goals (Fikes & Nilsson, 1971). Goals define a state of the world that the system wants to

reach. Operators are the steps that are taken in order to reach that goal where each operator

partially changes the state of the world (Fikes & Nilsson, 1971). For the STRIPS system to create

a sequence of operators to reach its goal, it needs descriptions of the operators. These

descriptions were separated in three main categories: 1. Name and parameters of the operator, 2.

Preconditions, 3. Effects (Fikes & Nilsson, 1971). In GOAP, operators were referred to as

actions (Orkin, 2006). Orkin revealed that in the game F.E.A.R (2005), different character types

had different action sets. What this meant according to him was that in the game, when an

assassin character and a rat character were given the same goal named KillEnemy, the assassin

23

would actually be able to form a plan consisting of the actions patrol and attack. Meanwhile, the

rat did not have the attack action in its set of possible actions, therefore, if it tried to formulate a

plan to kill the player it would only be able to go as far as to patrol the area (Orkin, 2006).

Another way that GOAP was different from STRIPS according to Orkin was that GOAP had the

added functionality of cost per action and procedural preconditions and effects.

4.3.2 The A* algorithm and costs per action

Cost per action as explained by Orkin (2006) is where actions are assigned different values and

the system gets to create a plan that is cost effective out of the set of available actions. That way,

even if there are many different ways that a goal can be achieved, the AI system will only create

a plan for the one way that is most cost effective (costs the least). He added that this functionality

was implemented using the A* algorithm. The A* algorithm is a graph algorithm that uses an

evaluation function which expands the node that has the least value (Hart et al., 1968). It repeats

that function until it finds a full path of nodes with the least total cost to reach a given goal in the

graph. For each node that the algorithm expands it marks that node as open. It searches for the

next node with the smallest value (and at the lower level of the graph) and marks that as open

and then marks the previous one as closed (Hart et al., 1968). Orkin (2003) suggested that the A*

algorithm should be used for regressive search in video games. He explained that searching

backwards meant that the search starts with the goal and finds the action that will satisfy that

goal. Next, it will find the second action that satisfies the preconditions of the previous one. The

algorithm will continue this way until it is able to formulate a full plan to satisfy the goal.

4.3.3 Heuristics and the set of relevant actions

In order for the GOAP planner to formulate a plan, it is not enough for it to simply pick

whichever actions had the least costs. The chosen actions must also be heuristically and

contextually relevant. Orkin (2003) explained that the planner needed to represent the state of the

game world using a list of properties about the world. Each property in the list, as he said, would

contain variables about that state of the world. An example he gave was how the KillEnemy goal

could be represented in the game code. He showed that the goal could be represented with a

world property structure that contained:

24

● GAME_OBJECT-ID: represents the object that this world property is concerned with. In

the case of KillEnemy it’s the human player (the AI’s enemy)

● WORLD_PROPERTY_KEY: a key that represents the state of the world that this goal

wants to achieve. kTargetIsDead for the goal KillEnemy.

● Value: some variable value (float, integer, boolean, etc.) that could describe the world

property. kTargetIsDead needed a boolean variable with the value true.

Orkin added that the planner adds actions in the plan as each action adds a precondition which

requires a different action. It does that until all preconditions for the goal state are met. The

search for a viable plan successfully completes when the current state of the plan matches the

goal state (Orkin, 2003).

4.4 Vision in video games

Video game vision is one part of game programming that really makes good use of the illusion of

intelligence. In this section, game vision for AI-agents is discussed and explained in longer

detail.

Every AI agent needs some way to perceive the environment around it. For AI agents in 3D

video games, this is often done using what is called a vision cone (Rabin, 2017, Chapter 7.4.1).

Rabin revealed that a vision cone determines the field of view (FOV) of a game character. As he

put it, extending the length of a vision cone meant that the FOV also expanded in width.

Furthermore, game vision is said to be composed of three vision checks, namely: distance, field

of view and ray cast (Rabin, 2015, Chapter 4). Rabin explained that the distance check was used

to restrict how far an AI agent could see. While the FOV check helped make sure that the agent

only saw what was inside their view and not what was behind them for example. Lastly, the ray

cast was said to be used to prevent an agent from seeing things that were behind walls or

obstacles.

He further explained that ray casts are used to check if there is a clear line of vision between an

AI-agent and their target (Rabin, 2014, Chapter 31). According to him, this is done by casting a

ray from the AI-agent towards their target to check that the target is not obstructed by something

25

else. To limit the number of times an agent needs to do this check, Rabin elaborated that a ray

cast and a vision cone can be used together. That helps an agent see their target using a vision

cone first and then check if it is obstructed or not using a ray cast.

In some video games, an agent might be using several vision cones at once. In an article about

the game Alien: Isolation (2014), the game’s AI was explored, and they found out that all

characters in the game had four different view cones (AIandGames, 2020). A normal vision cone

for distant objects, another for objects that are straight ahead and in short distance, a third which

was a peripheral vision cone and the last one which was for immediately close objects.

For a clearer explanation of these concepts see the figure below

Figure 2: Vision cones. Green check marks show which targets can be seen and red crosses show which targets

cannot be seen by the agent

26

Figure 2 is an example of an agent that uses two vision cones. It shows how target 1 can be seen

by the agent because it is within the normal vision cone and there is a clear line of sight (a

straight line/ray can reach from the agent to the target). Whereas target 2 cannot be seen because

despite it being in the blue cone, it is obstructed by a wall. Target 3 cannot be seen, even though

a clear line of sight can be established, the target is not inside either of the vision cones. And

finally, target 4 can be seen by the agent because it is within the immediate vision cone (red

cone).

To summarize, a programmer can equip an AI-agent with a combination of vision cones and ray

casting to simulate vision. This further supports the idea that game intelligence is an illusion of

intelligence, rather than a real human-like intelligence. The agent does not see in color nor in

black and white. In fact, it does not really see anything at all, rather, it merely checks if a target is

inside a vision cone object or not and if it is obstructed by a 3rd object. Simulating vision this

way, does not require very complicated systems, yet it offers a crucial sensory ability for an

agent’s intelligence and aids in its decision-making abilities.

4.5 Working memory for AI-agents

In the field of artificial intelligence, there is a concept known as the “Working memory”. This

section explains this concept and how it could be used in video game AI to further develop a

decision-making system.

In their article about brain science and artificial intelligence, Fan et al. (2020) revealed that the

working memory was discovered using functional magnetic resonance imaging (fMRI) from

brain studies. This discovery aided in the creation of the artificial intelligence concept of long

short-term memory (LSTM) which helped in many innovations within several fields such as, for

example, natural language processing. Additionally, it was made clear that a working memory

module can perform tasks that require complicated reasoning and inference.

Considering how useful the concept of a working memory is in computation and artificial

intelligence, it was only a matter of time until the term started showing up in the field of game

development. Orkin (2005) said that a working memory can be programmed for a game agent

27

such that the agent’s sensory systems would be able to deposit acquired information in the

working memory. Additionally, the agent’s planner can be programmed to react to changes in the

working memory, making it create a new plan when new information is acquired and added to

the working memory. Furthermore, he added that sensors give perception facts to the working

memory through a common format. In the paper, he described a project where he used a type

which he programmed and called WorkingMemoryFact. This format was used as a record to save

different attributes that represent things in the game world such as characters, objects, and their

locations.

4.6 Different decision-making systems

The Goal Oriented Action Planning architecture (Orkin, 2003) is one of many decision-making

systems that are used in game development. Therefore, looking into some other systems might

create a better perspective into the prominence of decision-making AI-systems in video games.

Rabin (2014) argued that behavior trees were amongst the most popular game AI architectures.

He added that they were not as simple to develop as finite state machines, yet still somewhat

easy to develop. It was also argued that behavior trees were helpful because they were modular

and could be extended with new features and functionalities (Colledanchise & Ogren, 2017;

Rabin, 2014). Sweetser and Wiles (2002) explained that finite state machines were used more

often than any other AI systems in video games. They said that this was because of how easy

they were to develop and how they give a clear structure of the different behaviors that a game

character can exhibit by separating them into individual logical states.

The prevalence of these different decision-making systems in the field of game development

warrants conducting a comparison between them. Because FSMs and behavior trees are the most

popular system kinds used in game AI, they present a good base of comparison to see how

GOAP compares against them. This will help understand how GOAP differs from the most

popular solutions and in what ways they otherwise are similar to each other which would answer

the paper’s research question. Lastly, this will help in creating an understanding of what situation

each of the three decision-making systems is best suited for.

28

4.7 The social impact of game AI research

When it comes to the value that game AI research can provide to society, Cook (2021) argued

that game AI researchers had a responsibility towards society because of the impact that game AI

research has. He explained that more increasingly, games are being used as a testbed for artificial

intelligence and private labs like Google Deepmind and OpenAI have shown interest in video

game AI research. Cook said that game AI researchers have a responsibility towards several

groups of people. Firstly, he argued that they had a responsibility towards game developers

because the researchers’ work impacts developers' work opportunities and livelihoods. Meaning,

that research in game AI impacts the scale of projects and work that is expected from game

developers. He even warned that advancements in game AI research could lead to putting

smaller developers out of work entirely.

Secondly, Cook (2021) added that researchers had a responsibility towards artists, hobbyists, and

others. He explained that by focusing on game AI research as a tool for large commercial game

companies, the research field would be excluding the kind of game developers that are making

games as a hobby or ones who live in places that are internationally sanctioned and cannot sell

their games on online global storefronts. Therefore, he said that research that results in software

that is not open-source or that is incompatible with popular free tools makes it harder and costlier

for many small developers to advance in the field of game development. As a result, game AI

research becomes an exclusive tool only for larger wealthier companies which operate to benefit

the global north (Cook, 2021).

Therefore, research on video game artificial intelligence, including decision-making systems for

AI-agents, should be more easily accessible to better enable smaller game developers and

hobbyists to participate in the creation of video games and to gain more control over their

position as workers in the industry.

29

4.8 Summary of the theoretical framework

To summarize the theoretical framework of the topic, the flow of theories can be observed as

such: First, video game AI does not need to be highly complicated to perfectly mimic human

decision making. Instead, game intelligence can be thought of as an illusion of intelligence where

smaller algorithms and systems work together to create an illusion of intelligent decision-

making. Second, the Goal Oriented Action Planner is a decision-making planner system that

makes use of the illusion of intelligence by creating an illusion that is the result of smaller

components working together. Those components being an A* algorithm component that

calculates the relevance of actions based on costs, and a world representation component that

represents game world facts as a group of variables. This world representation component also

informs the decision making because it gives heuristic meaning to the actions that an AI-agent

can make. The GOAP planner interacts with and instantiates software objects called plans,

actions, action sets and goals to create its effect. Third, a decision-making system is often

supported by sensory systems such as vision cones and a working memory system where sensory

systems can save game world facts as memories. Those memories/world facts are used by the

decision-making system as previously mentioned. And finally, there are different types of

decision-making AI systems in the field of game development and research on those topics has a

social impact on people in and outside of commercial game development communities.

Therefore, developing a decision-making system for games as part of this research paper’s work,

comparing it against other popular decision-making systems for games, and making it an

accessible resource for future research is important. This would benefit the communities of game

makers that do not have access to large budgets the same way that large commercial companies

do.

30

Chapter 5 Methods and empirical data

This section discusses the methods that were used during the execution of this research project

and the data and information that was acquired using those methods. These methods included

design science research which motivated a comparison between the different decision-making

systems, a literature review as part of the comparison and methods relating to the practical

implementation of the project.

5.1 Design Science Research

Design science has been used in the field of engineering more than it has in the field of

information systems, but Peffers et al. (2007) argued that more design science research could be

done for the field of information systems. They argued for a design science research

methodology where there were six main activities. First, the problem identification and

motivation, which aids in the development of the research artifact (a GOAP system in this case).

Second, defining the objectives for a solution. This activity is used to infer the objectives that the

research is trying to achieve. Third, design and development. Peffers et al. (2007) said that this

includes designing an artifact that has an inherent contribution to the research topic. Fourth,

Demonstration, which entails putting the designed artifact to the test in a relevant environment

where its ability to solve a problem can be observed. Fifth, evaluation, which means inspecting

how well the artifact solves the problem at hand. This inspection can be done by comparing the

artifact to the original objectives that were outlined or using different ways of inspection. Sixth,

communication, which is important for delivering information about the usefulness of the artifact

to researchers and other audiences that can learn from it.

Peffers et al, (2007) said that these activities do not need to be done in a particular order.

Different research projects might need to begin with different activities. Having already defined

the research problem in section “3.4 The research gap”, the first activity of the “problem

identification and motivation” activity can be considered finished. Additionally, the

31

“communication” activity is concerned with the publication of the research paper, which means

this activity will be finished after this paper is published. The creation of this research paper and

publicly publishing it will be helpful for many game AI developers and hobbyists (Cook, 2021).

These groups are the relevant audience for this research paper and the paper will serve as

learning material for them. The following sections of the paper will explain how each of the

other design science research activities were conducted.

5.2 Analysis and Comparison

Comparing digital systems can be crucial in determining the choices that should be made during

a development process, but they can also be useful in determining how an already developed

system compares against other systems which fulfill the same goal. Lazarevich (2018), explained

that software solutions and frameworks can be analyzed and compared by using a 5-step process.

The purpose of Lazarevich’s analysis and comparison method was to decide which system out of

the ones under question was the best to develop. In this paper however, the analysis and

comparison were used to compare the GOAP (Orkin, 2003) system to other game decision-

making AI systems. Which means that the chosen system that was developed was the GOAP

system from the start, and then came the comparison step which is meant to contextualize GOAP

as a decision-making system in comparison with other more popular systems (FSMs and

Behavior Trees).

Before comparing the different AI-systems in question, a general understanding of the project’s

requirements was needed. In design science research this was outlined as the “defining the

objectives for a solution” activity (Peffers et al., 2007). In this case, the project was a game

prototype where two types of AI-controlled characters (hunter and hunted), played against each

other. The hunter character would have the ability to catch other characters and remove them

from the play area, while the hunted character type would have the ability to hide and find and

obtain keys to unlock a door through which they could escape the hunter. Therefore, the

decision-making AI system that is developed for this project, must be able to manage many

actions and allow a game designer to create new actions. It also needs to be able to automatically

manage the actions’ priority in the decision-making process among other features. Therefore,

32

Table 1 below was created to explain what the project’s requirements were and why they were

needed:

Decision-making system

requirements/objectives

Motivation

manages many decisions Each character type in-game has a set of

several different decisions. Therefore, the

system must be able to represent the variety of

decision sets.

decisions are modular To be able to create different decision sets, the

system must allow for representing each

decision as a separate object that can be added

or removed from a decision set

automatic coordination of decisions The system must have an ability to create

plans that consist of multiple decisions that

are played out in a correct order

automatic replanning The system must be able to replan when a

previous plan becomes invalid because of

some change in the Gameworld.

reusable with different game character types The system must be reusable for most AI-

controlled character types

easy to set up The system should not be very complicated to

develop

Adopts a way for world representation The game world must be represented

somehow in the system in order to allow the

AI-agents to react to different Gameworld

changes

Ease of customization The system should allow for easy

customization for game designers, and give

them freedom to create new decisions that a

character is able to make

Table 1: a table showing the requirements for the decision-making system that was developed

The comparison process (Lazarevich, 2018) was comprised of 5 steps:

33

● Define the alternatives

● Analyze the alternatives

● Ask questions to create a complete image of each alternative

● Make a result sheet

● Define pros and cons and make your choice

5.3 Literature review

To develop a project that uses the GOAP architecture, the literature on the topic was reviewed to

base the project’s code from the information that was described in the literature. Additionally,

the literature review informed the analysis and comparison steps when comparing the GOAP

architecture to other solutions. The literature review included the following sources for each of

the different AI decision-making solutions:

● FSM: Cossu (2020a) and Sweetser and Wiles (2002).

● Behavior trees: Rabin (2014, 2017).

● GOAP: Orkin (2003, 2005, 2006).

5.3.1 Defining the alternatives

Going back to Lazarevich’s 5-step comparison (Lazarevich, 2018), the alternatives to creating a

decision-making AI for game characters (Step 1 in the comparison) could be described as such:

Goal Oriented Action Planning (Orkin, 2003): An AI system that uses multiple components

to enable a game character to dynamically create plans while the game is running.

Finite State Machines (Cossu, 2020a): A system that has definitions for the different states

that a game character could have. The transitions between the states are embedded in the

game’s code. Therefore, any plan that a character could make, must be pre-defined by the

developers.

34

Behavior trees (Rabin, 2017): a common technique of developing game-AI. It is used when

there are many states and transitions between them which could justify creating a tree-like

hierarchy of states to enable a more complex decision-making logic.

5.3.2 Analyzing the alternatives

This step requires a comparison between the different alternatives by finding information about

each alternative through different sources and learning how they work (Lazarevich, 2018).

Additionally, this step includes creating a test project. For this purpose, the game prototype that

was developed and used one of the alternatives, namely the GOAP architecture, was considered

part of this comparison. Finally, the game prototype’s GOAP implementation was analyzed in

comparison with the other alternatives based on the literature available on them. As mentioned

earlier in this paper, the comparison was to aid in understanding how GOAP (with its different

components) compares to other popular systems.

GOAP Components GOAP FSM Behavior Tree

Planner Has a dedicated

planner that uses an

AI search algorithm

to create plans

Does not have a

planner. Plans are

pre-designed by game

designers and

embedded in the state

transitions

Does not have a

planner. Has a

“Selector” class,

which tests different

predefined

“Sequences” and

checks which one

works

Goal Is an object class.

Instances can be

created from it

Does not use a “goal”

logic

Does not use a “goal”

logic

Action Is saved as a data file

in ex. Json, xml or

scriptableobject (for

Each state represents

an action

Actions are

implemented using a

“Behavior” interface

35

unity3D) formats class. Actions are leaf

nodes in the tree

Plan Is an object class.

Instances can be

created from it. Is

created dynamically

by the AI (Planner)

Embedded in the

FSM’s state transition

logic. Predetermined

by game designers

“Sequences” allow an

agent to follow a plan

that is predetermined

by game designers

Action set Is saved as a data file

in ex. Json, xml or

scriptableobject (for

unity3D) formats

Each agent type

requires a different

FSM due to a lack of

“Action Set” logic

Each agent type

requires a different

behavior tree.

Behaviors can be

reused and

recombined to create

different behavior

trees

World representation World states can be

represented as

“struct” or “enum”

type classes

Not represented in

any particular way for

regular FSMs

Using the

“Condition” leaf

node. Returns statuses

that represent the

success or failure of a

behavior

Table 2: table of analysis of alternatives

Table 2 lists the three different decision-making systems that the comparison was concerned

with. It also lists different components that the GOAP system uses and describes what each of

these components matches in Behaviour trees and FSMs.

36

5.3.3 Asking questions about the alternatives and making a result sheet

After analyzing the alternatives, Lazarevich (2018) suggested that questions should be asked

about each of the alternatives to get a clearer image about each of them. In addition to the

questions, a result sheet should be created in order to aid in the final “pros and cons” step of the

comparison. The following is the result sheet:

 GOAP FSM Behavior tree

How easy is it to customize? Easy to customize

because of its modular

components (actions

and action sets)

Not very customizable.

Each type of AI-agent

requires a different FSM

Easy to customize

because of modular

components such as

“Behaviors”. New

behavior trees can be

created easily

What are the capabilities? Dynamically creates

decision-making plans

during a game’s

execution. Leads the

decision-making of an

AI-agent

Makes decisions based

on hardcoded game

logic. Best used with AI-

agents that exhibit few

states/actions

Leads the decision-

making logic. Allows for

creating AI-agents that

exhibit many different

behaviors

What are the limitations? Each action requires

preconditions and

effects. If not

carefully designed,

these actions can

become useless if

their effects cannot

chain with other

actions’ preconditions

Not suitable for AI-

agents that perform many

actions. Creating FSMs

that contain many states

can easily become hard

to maintain. Each

different type of AI-

agent requires a different

FSM

Each different type of AI-

agent requires a different

behavior tree. This means

a lot of work has to be

done if there are many

different types of game

characters in the game

Is it easy to develop? Requires good

knowledge in game

Very easy to develop and

does not require a very

deep knowledge of game

Requires good knowledge

in games and systems

37

programming and

systems programming

or systems programming.

Is beginner friendly

programming. Not

beginner friendly.

Table 3: Questions and results about the alternatives

Table 3 is a result sheet for several questions that were produced to be asked about each of the

decision-making system alternatives. The answers for each of the questions were inferred from

the literature while the answers about GOAP specifically were also aided by the developed game

prototype which used GOAP AI.

5.3.4 Defining pros and cons

The final step of the comparison is defining the pros and cons of each of the alternatives

according to Lazarevich (2018). He added that these pros and cons can be checked against the

scope and requirements of the project to put them into context. The Design Science methodology

had the “evaluation” activity (Peffers et al., 2007) which meant inspecting how well the solution

solves the given problem. This “evaluation” step is covered by the final step of the comparison.

This will be presented in Chapter 7. Lazarevich (2018) also suggested that this step might lead to

several viable options to choose from.

5.4 Concept maps

In their article about literature reviews, Rowley and Slack (2004) revealed that some researchers

used concept mapping to map out key concepts within a research area and the relations between

them. They also pointed out that there was no correct way to draw a concept map. What really

mattered about a concept map according to Rowley and Slack was that it assisted a researcher in

understanding their topic. Using this method, a concept map was developed to organize key

concepts from the relevant literature. See Figure 3 below

38

Figure 3: Concept map of relations between the agent’s different components

The developed concept map (Figure 3) helped set into perspective the relation of the GOAP

system to other components of a game’s AI agent. This was helpful in coherently separating the

different parts of the project’s components from the GOAP system during development.

39

Chapter 6 Ethics

This paper compared different decision-making systems for video games. The comparison was

based on information acquired through a literature review of the three types of systems (FSMs,

behavior trees and GOAP). However, when it comes to GOAP, the acquired information was

also aided by the prototype that was developed for this thesis. This might have caused a bias for

GOAP compared to the other two systems because of the time spent on and the experience of

developing a GOAP AI-agent. Therefore, the comparison could have possibly been more

informed and fairer had a larger scale project been conducted which would have included

developing prototypes of all three types of systems.

40

Chapter 7 Presentation of results

The following section presents pseudocode that shows how the GOAP prototype was

programmed. The pseudocode shown in this section was for the classes of the planner, goal,

action, action set, plan, goal, GOAP-agent, world representation, vision sensor and the

blackboard. Finally, the results of the comparison between the GOAP, FSM, and Behavior Tree

system types are presented followed by an analysis.

As previously mentioned, the problem with having simpler system such as FSMs or possibly not

having any coherent system whatsoever is that as soon as the AI starts becoming more complex

and is required to do many things and alternate between many decisions, the project’s code

becomes very long and unmaintainable. Therefore, it is important to have systems that can

manage that complexity and accommodate a variety of decisions. This is where the GOAP

system comes in.

Developing an artifact as part of the research project was important to understand GOAP through

more than just the literature. This development process aided in the comparison step and was

documented using pseudocode. This makes the paper an accessible resource for others who are

interested in understanding or developing a GOAP system. The following sections describe how

this research paper’s artifact, (the GOAP system) was designed and implemented.

7.1 Project creation in the Unity engine

In order to program a functioning GOAP AI, a game engine was required to remove the bulk of

unrelated work that did not directly have to do with the decision-making AI. A game engine is a

collection of software modules which are responsible for simulation but do not directly specify

the game’s behavior, logic nor environment (Lewis & Jacobson, 2002). The Unity game engine

(2021) was chosen for this project. Unity has built-in features that simulate important things that

were needed in this project but were not the main focus of it. Such features were for example,

41

simulating the passing of time, physics simulation (gravity, collision, etc.), rendering 3D

graphics, creating navigation meshes (places where a 3D object is allowed to move), lighting and

shadows and other features.

Additionally, the Unity engine allows the use of C# code which was used to implement the

GOAP decision-making system. Implementing the GOAP system in a relevant game engine was

important based on the design science methodology’s activity “demonstration” (Peffers et al.,

2007) This activity required that the developed artifact should be demonstrated in a relevant

context. The Unity engine fulfilled that purpose. The Unity engine is a free of charge game

engine that is also very popular among hobbyist game creators. Cook (2021) emphasized the role

of popular and free of charge software in advancing game AI research. He believes that it is

necessary that research be accessible for a larger group of people and that this could be done by

implementing the research in software that is free to use and known by many.

7.2 Unified Modeling Language (UML)

After identifying the important concepts of a GOAP system through the literature and separating

the non-GOAP components using a concept map (see Figure 3), the next step was to create a

UML diagram to represent the GOAP components as UML classes (see Figure 4). It was

important to keep the diagram simple in order to not restrict the actual code writing process later

in the project.

42

Figure 4: UML diagram of the developed GOAP system

43

Figure 4 shows that an AI-agent can have one or more sensors (a vision cone is an example of a

sensor), a GOAP-planner system and a class that runs the planner’s plans (named PlanExecuter

in the diagram). Additionally, the GOAP system as seen in the diagram, shows the relationships

between the previously mentioned parts of a GOAP system. Namely, a planner, goals, plans,

action sets and actions (named ScriptableAction in the diagram). A planner uses a goal to create

a plan, which is used by the plan executer. Both the plan executer and different sensors can

create new goals. A plan consists of one or more actions. And finally, a planner contains an

action set which in its turn contains a predefined list of actions.

Figure 5: a UML diagram of the relations between the VisionCone and the Agent's WorkingMemory

Figure 5 shows that an agent can have one or more vision cones and also has a working memory.

A vision cone can create memories which are then saved in the working memory.

Both concept mapping and using UML diagrams were part of the design process of this research

paper’s artifact. The design science activity “design and development” (Peffers et al., 2007)

requires that an artifact which adds value to the research topic, should be developed for this kind

44

of research. Additionally, more documentation about the development of the GOAP system (the

artifact) is presented in the following section (7.3 Implementation).

7.3 Implementation

This project was done in the UnityEngine (2021) and therefore, all the code for the project was

written in C#, which is the main programming language used in the engine. The following

section describes some of that code and how it works. The code in this paper is partially C# but

is otherwise pseudocode. MonoBehaviour is a base class for much of the game code that is

written in Unity. Therefore, when writing code for games in Unity, sometimes, creating a new

class means it should be made to inherit from the MonoBehaviour class in order to use some of

the engine’s most basic functionalities.

Documenting the development process was important to communicate the results of what was

previously designed and programmed in the project (Peffers et al., 2007). The project’s code can

otherwise be found on an online repository as it was uploaded incrementally during the duration

of this research project (Al Shehabi, 2022). Keeping both an easily readable pseudocode version

and the project’s real code publicly accessible helps game developers, hobbyists and others who

might be interested in experimenting or learning from this research paper. Doing that was

important, because as Cook (2021) explained, researchers had a responsibility to make game AI

research accessible to those communities who are involved in game development regardless of if

it was related to their work or purely for fun or self-expression purposes. This was important for

this research paper’s aim in advancing research in the field.

Furthermore, the development of a GOAP system was important to further understand this

system through more than just reading the literature. The developed artifact was also important

for the comparison step which answers this paper’s research question “How does the Goal

Oriented Action Planning architecture compare to other artificially intelligent decision-making

systems in video games?”.

45

7.3.1 The Planner

The planner was programmed to create plans based on a provided set of actions that an AI

character could make. Additionally, the planner’s plan creation method required a goal. This

way, anytime the AI character gained a new goal, it would give it to its planner and the planner

creates a plan based on that goal. The AI character then follows that organized plan of actions.

The code for this project’s planner class looked approximately like this:

public class Planner

{

 private List<ScriptableAction> closed;

 public Plan CreatePlan(//Requires: goal)

 {

 //Create instance of ‘Plan’

 //Execute ‘SearchActions’ using ‘goal’

 //Save the output of ‘SearchActions’ in the instance ‘Plan’

 //Output the ‘Plan’

 }

 List<ScriptableAction> SearchActions(//Requires: goal, openList,

 actionSet)

 {

 private List<ScriptableAction> graphRow;

 //Create a row of actions that fulfill the provided goal

 //Add those actions to the ‘graphRow’ list

 //Add contents of ‘graphRow’ to the ‘closed’ list

 //Remove actions from the ‘actionSet’ list if they also exist in

 ‘closed’

 //Find the action with the smallest cost in the ‘graphRow’ list

 //Add cheapest action to ‘openList’

 //Make the cheapest action’s precondition into a ‘goal’

 //Run ‘SearchActions’ using the new ‘goal’, ‘openList’ and

 ‘Actionset’ (this implies recursion of this method inside

46

 itself)

 //Output the ‘openList’ after all recursions have executed

 }

}

Notice that using a “graphRow” list in this manner means that a new list is created in each

recursion of the SearchActions method, and it holds only the row of actions from that recursion.

Meanwhile, the openList keeps expanding with actions added to it from each recursion. The

SearchActions method uses an A* algorithm to find the solution. An A* search algorithm

requires a graph of some sort to find the cheapest path in the graph from point A to point B. It is

important to point out that SearchActions search algorithm runs a regressive search. Which

means it runs backwards from the goal towards the first action that should be taken. In other

words, it starts from point B and finds its way backwards to point A.

The SearchActions method starts by creating a row in a graph by examining the available set of

actions and finding the actions which fulfill the end goal (see Figure 6). A recursion is a

recurrence of a method that calls itself until it finds its desired solution. During each recursion of

the SearchActions method, it first finds a suitable row of actions as mentioned, then it finds the

action that has the smallest cost (this is where the A* algorithm is in effect) and adds it to the

opened list. After that, the method runs itself again (recursion) to create the next row and find the

cheapest action in it. This process continues to happen until a plan which fulfils the given goal

has been found.

To explain this process with an example, imagine a scenario where a virtual character wants to

buy and set up a new chandelier in their house and do it in the most effective way. The search

algorithm for a situation like this could go on as such: First, it creates a row of suitable stores to

buy chandeliers from. Meaning that it searches through a set of many stores and only adds the

ones that sell chandeliers to the row. This is important, because when the algorithm starts

looking for the cheapest chandelier, it should not be looking for it at stores that do not sell

chandeliers. Second, it selects the one store from the row that is closest to where the character

lives. Third, it searches through all the products at that store and creates a row of the products

that are chandeliers. Fourth, it selects the cheapest chandelier available in the row.

47

Figure 6: the project’s SearchActions method from Planner class

In essence, the previous example explains that this kind of search algorithm recursively takes

two steps at a time and repeats. One step to create a row and one step to make the cheapest

decision. The example could continue like this until the chandelier is up on the ceiling (take the

shortest path home, find the most suitable tool to hang the chandelier, etc.).

7.3.2 Goal

The Goal class was programmed to contain a variable which represented what the state of the

48

world should be when the Goal was fulfilled by the AI agent. The planner needs a goal each time

it creates a new plan. This goal acts as a starting point for the search algorithm that finds a

suitable plan of decisions. As previously mentioned, the search algorithm runs regressively, so it

does not try each action to see if it leads towards a goal. Instead, it starts with the goal and runs

backwards to create a logical plan.

public class Goal

{

 public WorldState goalState;

 public Goal(//Requires: a new goalState)

 {

 //Set the value of the local goalState to equal the new

 goalState

 }

}

When an instance of this class is created (a new goal), it requires a new state of the world

through its constructor and saves it in its local goalState variable. An instance of a Goal class is

used by the planner to create a plan that fulfills that goal.

7.3.3 Action

Actions in this project were represented as a class which was named ScriptableAction. The

ScriptableAction class was programmed to inherit from a Unity base class called

ScriptableObject (Unity, 2018). According to Unity, scriptable objects are data containers that

are intended to be used to save data that is unchanging. Therefore, this base class was useful

because GOAP actions are meant to be defined during the design process and then remain

unchanged during execution of the program.

public class ScriptableAction : ScriptableObject

{

 public int cost;

 public WorldState effect;

 public WorldState precondition;

49

}

The ScriptableAction class represents GOAP actions as previously mentioned. The information

that was saved in each of these actions was cost, effect, and precondition. Each action has a

precondition that needs to exist in the current state of the game world and an effect that it applies

to the state of the game world. Preconditions and effects were important because the Planner

class requires them in order to be able to tell if one action can be chained with another action. In

other words, an action’s effect needs to match the next action’s precondition. This way, actions

could be chained together to create a full plan of actions.

Figure 7: Two scriptable action instances in the Unity engine’s interface

Figure 7 above shows two different actions in the unity engine’s interface. The action on the

right can heuristically chain to the action on the left. The Planner class does this when it sees that

the action on the right has the effect “target near” which is a precondition in the action on the

left. Assuming that the planner had created a plan which contained these two actions, if the final

action in the plan was “Attack Player Melee”, that would mean that the goal that the plan

fulfilled was to have “Player Captured”.

7.3.4 Plan

A plan according to Orkin’s GOAP system (2003) is an array of actions that leads to satisfying a

given goal. In this project, a plan was represented as a class that contained a variable list which

contained a sequence of instances of the class ScriptableAction. This list of ScriptableAction

instances comes from the planner when a plan is created. The plan receives a list of

ScriptableActions through its constructor and saves it to its local list of ScriptableActions. After

that, the plan would be ready to be received by a GOAP game agent and executed.

50

public class Plan

{

 private List<ScriptableAction> actions;

 public Plan(//Requires: list of ScriptableActions)

 {

 //Save the received list of actions as the local list of

 actions

 }

}

7.3.5 ActionSet

The concept of the ActionSet was programmed in this project as a subclass of Unity’s built-in

ScriptableObject (Unity, 2018). Similarly to a ScriptableAction, the contents of the ActionSet are

defined during the design of the project only. They remain unchanged during the execution of the

game. In this project, an ActionSet was programmed to contain a list of ScriptableActions which

tells an AI-agent which actions it is allowed to choose from when making decisions (aka. when

creating plans).

public class ActionSet : ScriptableObject

{

 public List<ScriptableAction> actions;

}

Orkin (2006) explained that different sets of actions should be used for different kinds of game

characters. While some actions could be the same for all characters (such as a walking action),

not all actions should be shared between all characters. A cat character for example, should not

be able to pick up a firearm and use it. Therefore, a cat’s ActionSet should not contain the

exemplified action “Pick up firearm”.

51

Figure 8: The hunter’s action set in the Unity engine’s interface

The above figure (Figure 8) shows an action set from the Unity project that was done for this

paper. The action set in the image contains four different actions which were each defined using

the ScriptableAction class.

7.3.6 World Representation

The WorkingMemory class was implemented to contain an agent’s memories and run some

operations on them. Several classes in the project use the WorkingMemory’s methods. The

planner class, for example, checks the WorkingMemory to see if there are world facts that could

help it create new plans.

public class WorkingMemory

{

 private List<Memory> memories;

 private GoapAgent myAgent;

 public void AddMemory(Memory memory, Goal goal)

 {

 // Add a new memory to the working memory

 //Tell myAgent’s planner to create a new plan using the given

 goal and execute it

 }

52

 public List<Memory> GetMemories()

 {

 return memories;

 }

 public void RemoveMemory(Memory memory, Goal goal)

 {

 //Remove a given memory from the working memory

 //Tell myAgent’s planner to create a new plan using the given

 goal and execute it

 }

 //Checks if there is a given worldfact that matches a worldfact in

 memory

 public bool ContainsMatchingMemory(Memory worldFact)

 {

 //Check if the given worldFact already exists in the working

 memory

 }

The WorkingMemory has four methods. AddMemory, which adds a new memory to the

memories list and tells the agent’s planner to create a new plan. The GetMemories method

returns the list of memories from an agent’s working memory. The method RemoveMemory

removes a memory and tells the agent’s planner to create a new plan. And finally, the

ContainsMatchingMemory returns a true/false value about whether a given memory already

exists in the agent’s working memory.

Additionally, the WorldState enum class was programmed in order to represent the state of the

game world at a given moment. This class contained a collection of values that were expanded

on during the development of the project. Each value represented a state of the world that an AI-

agent could know about. When a world state is fulfilled in the game, it gets added to the relevant

AI-agent’s WorkingMemory.

public enum WorldState

{

53

 playerCaptured,

 projectileAvailable,

 playerSeen,

 meleeAvailable

}

Figure 9: The Memory struct from the project

Adding these WorldState values to an agent’s memory means that the planner gets new

information to use when creating a plan. A WorldState is added to the WorkingMemory as part

of a Memory instance (see Figure 9). The Memory struct was implemented to contain a

WorldState value and a GameObject value which represented the target of that memory.

7.3.7 Agent

An agent as described by Orkin (2005) was composed of multiple parts and those were a

blackboard, a working memory, some subsystems, and sensors. The role of the sensors was to

detect game-world changes and save that information in the working memory. The blackboard

acts as a bridge that communicates information between the agent and its subsystems. In this

project, the GoapAgent class was created to communicate information between the planner,

working memory, sensors, and other classes. The GoapAgent class looked like this:

public class GoapAgent : MonoBehaviour

{

 public WorkingMemory memory;

 public ActionSet agentActionSet;

 public Planner planner;

 public Plan ObtainNewPlan(Goal goal)

 {

54

 //Recieve a new goal

 //Ask the planner to create a new plan

 }

 public void ExecutePlan(Plan plan)

 {

 //Send the plan to the blackboard to be run

 }

}

The blackboard (Orkin, 2005) was implemented as a separate class which all game agents had

access to. This class was named PlanExecuter

public class PlanExecuter : MonoBehaviour

{

 public void Execute(Plan plan)

 {

 //Take each action in the plan

 //Find a suitable method for that action from the implemented

 methods in this class

 //Run that method

 }

 void ActionA()

 {

 //Run an action A with custom code

 }

 void ActionB()

 {

 //Run an action B with custom code

 }

 void ActionEtc()

 {

55

 //Run custom code

 }

}

The PlanExecuter class was created to receive plans from the GoapAgent and run each individual

action within that plan. The methods inside the class were not actually named ActionA, B, etc.

Rather, they were given action specific names with each method running different lines of code.

For example, see Figure 10 below which shows an action’s custom code using a C# method

named GrabKey.

Figure 10: A code snippet that shows the method GrabKey from the PlanExecuter class

Other actions were for example things like: go to location, find other characters, cast projectile,

hide, etc. Because the actions were many and their code changed during the creation of the

project, they were not something that could be represented in detail in the pseudocode parts of

this paper.

7.3.8 VisionSensor

The vision sensor class was implemented to represent an agent’s vision cone. In this project,

there were two different agent types, Hunter and Hunted. Therefore, the VisionCone class was an

abstract class with two different implementations for each agent type.

public abstract class VisionSensor : MonoBehaviour

{

 protected GoapAgent agent;

 protected List<GameObject> FovTarget;

 private void OnTriggerEnter(Collider other)

56

 {

 if (//If an enemy enters the borders of the vision cone)

 {

 //Add enemy to the FovTarget list

 //Run method StareAtTarget

 }

 }

 private void OnTriggerExit(Collider other)

 {

 if (//If an enemy leaves the scope of the vision cone)

 {

 //Remove the enemy from the FovTarget list

 //Remove from the agent’s working memory, the memory that

 contained the WorldState “targetSeen” for the current

 target

 }

 }

 public abstract IEnumerator StareAtTarget(GameObject target);

 //Continuously cast a line of sight towards a target to make sure it is

 not behind an obstacle

 //Add a memory to the agent’s working memory about which target was seen

 in the vision cone and was not behind an obstacle

}

The OnTriggerEnter and OnTriggerExit methods are two methods that come from the

MonoBehavior class (a base class in the unity engine). These methods check if something

entered or exited a 3D trigger. A 3D trigger can be any 3D shape and, in this case, it is the vision

cone (see Figure 11). In the vision sensor class, these two methods were used to check if an

enemy character entered or exited the borders of a vision cone.

57

Figure 11: A “Hunter” character with two vision cones

The figure above (Figure 11) shows the hunter character in the project. It has two vision cones,

one for near sight and one for far sight. If another character walks into this agent’s vision cones,

a ray will be cast to check that they are not behind an obstacle (wall). This is done by the

StareAtTarget method in the VisionSensor class. That method also adds the target of the vision

cone to its agent’s working memory.

And finally, Figure 12 below is a concept map that shows the relations between the vision

sensor, working memory, planner, and the blackboard

58

Figure 12: a concept map of the relation between the vision sensor, working memory, planner, and the blackboard

As seen in the concept map above, a game agent’s vision sensor (or any other sensor for that

matter) can create a memory about certain game events that the sensor witnesses. This memory is

then added to the working memory which prompts the working memory to tell the GOAP-

planner to create a new plan. The new plan is then given to the PlanExecuter (the blackboard)

which makes the AI-agent do the actions that were in the plan.

7.4 Comparison results

As stated earlier in this paper, a comparison was made between the developed GOAP system and

two other decision-making types of AI. The two other types of AI in question were the “behavior

tree” and the “finite state machine”. The final step of Lazarevich’s comparison (2018) was to

define the pros and cons of each system to find which one is the most viable solution for the

intended purpose. In the following table however, a “bad, good, best” categorization was used.

This allows representing the comparison with more nuance. Only one system can be considered

59

best at a certain task, but multiple systems can be good or bad at certain tasks. What the intended

purpose is and what counts as a good, bad or best was based on the previously stated

requirements of the system. The results of the comparison were the following (see Table 4):

 FSM Behavior tree GOAP

manages many decisions Bad

Having many

decisions in the

FSM makes it

unmanageable

Good

Manages many

decisions using

different tree nodes

Good

Manages many

decisions using

different actions

decisions are modular Bad

The logic for each

decision is

embedded in the

states of the FSM.

Which makes them

hard to configure

or reconfigure

without needing to

reprogram the logic

Good

Designers need to

design new

behavior trees by

adding different

leaf nodes to a new

instance of a tree

Best

ActionSets allow

game designers to

create different

configurations of

possible decisions

for an AI-agent.

This is easily done

by adding actions to

a new list of actions

automatic coordination

of decisions

Bad

Unable to

automatically

create plans. Plans

consisting of

different decisions

are implemented as

FSM states which

must be designed

manually

Bad

Unable to

automatically

create plans. Plans

consisting of

different decisions

are implemented as

tree branches

which must be

designed manually

Best

Done automatically

by the planner class

in real time (while

the game is

running)

automatic replanning Bad

Does not have a

dedicated planner.

The FSM’s state

transitions are the

only way for this

system to move

from one decision

to another (replan)

Bad

The predesigned

tree branches are

the only way for

the system to

change plans. That

is if designers have

accounted for all

possible situations

in the game and

created suitable

Best

Done by the

Planner class. Each

new memory that is

added to the

working memory

prompts the planner

to create a new plan

of actions

60

tree branches for

them

reusable with different

game character types

Bad

New FSMs must be

designed and

programmed for

different character

types

Good

New behavior trees

must be designed

for different

character types.

This can be done

using

preprogrammed

leaf nodes.

Requires

redesigning

transitions between

leaves

Best

Different action

sets allow

reusability for

different character

types. No need to

redesign the

planner nor the

individual actions

to fit different

characters

easy to set up Best

Beginner friendly

and easy to set up.

Many games use

this system in their

AI-agents. Does

not contain many

components and is

therefore easier to

program

Bad

Requires good

programming

knowledge. Several

types of leaf nodes

need to be

programmed before

the system

becomes functional

Bad

Requires a good

understanding of

different algorithms

and several

components need to

be programmed

before the system

becomes functional

Adopts a way for

world representation

Bad

Does not support a

particular way to

represent changes

in the game world

Good

Uses condition

leaves to represent

the success or

failure states of

different behaviors

Best

Uses a dedicated

working memory to

save information

about different

game objects and

game world events.

Ease of customization Bad

Game logic is

embedded in the

states which means

different states and

their transition

logic need to be

hardcoded making

the game

designer’s work

harder

Good

Easy to customize

because it allows

game designers to

design new

behavior trees, tree

branches and

leaves without

needing to write

new code. Requires

redesigning

transitions between

leaves

Best

Easy to customize

because it allows

game designers to

create new actions

and action sets

without needing to

write new code

61

Table 4: “bad, good and best” comparison table of the alternative decision-making systems

If a winner had to be selected based on which system had a higher number of Good and Best in

the table, the obvious winner of the comparison would be the GOAP architecture. However,

making different comparisons that take different criteria into account would probably yield

different results. Therefore, this comparison should be viewed only within the scope of the

criteria listed above. It is not a general comparison of the three systems. Ultimately, the

comparison was made to contextualize the GOAP system in comparison with other popular

decision-making systems. It was not made to determine which AI system was the best one. Every

project has different requirements and those are what really matter when selecting an AI

decision-making system to work with. To further motivate these results, an analysis of the

comparison had to be made:

7.4.1 Analysis of the comparison

The three different types of systems represent decision-making in different ways. GOAP’s

decisions are represented as actions, while behavior trees represent decisions as leaf nodes that

are called behaviors. And finally, FSMs represent decisions as states.

Managing many decisions:

The Goal Oriented Action Planning architecture had the ability to manage many actions in its

planner. Each action was represented as its own object and for this thesis’ project, this was done

by developing the ScriptableAction class. In comparison, behavior trees had behavior nodes and

FSMs had states. FSMs presented a disadvantage when it came to the management of many

decisions because decisions were represented as states and an FSM with many states was

considered to be an unmanageable system.

Modularity of decisions:

As mentioned earlier, GOAP had a way of representing decisions as actions. This allows the

game designer to pick and choose which actions go inside which action sets and that means that

the decisions in the system are modular and can be configured in different ways. This was

implemented in this thesis’ project in the ScriptableAction and ActionSet classes in such a way

that a character type can have an individual ActionSet that contains a list of ScriptableAction

62

instances that represent what decisions that character could make in the game. In comparison, a

game designer could configure different behavior trees by adding or removing behavior leaf

nodes to a tree. FSM systems fall behind in this domain because they represent decisions as

states. Those states are not modular which means they are hardcoded in the FSM’s code.

Removing or adding new states requires writing more code or removing code from the program.

Automatic coordination of decisions:

GOAP has a dedicated planner that creates plans consisting of heuristically relevant actions and

sets them in a correct order for them to be played out. The developed project contained the

Planner class which was able to receive a goal and create a plan based on that goal and

information that is saved in the working memory. The planner examines the available action set

and using a regressive search algorithm it finds each relevant action beginning with the action

that fulfills the goal back towards the first action that an agent can start a plan with. Neither

FSMs nor behavior trees have a similar ability to GOAP’s planner. Instead, what could be

perceived as plans are predesigned connections between the states in FSMs and between the

tree’s leaves in behavior trees. The two systems (FSM and behavior tree) are not able to

automatically create plans at runtime.

Automatic replanning:

This feature relies on the Planner class as well. In the thesis’ project, whenever a new memory is

added to the AI-agent’s working memory, a request is also automatically sent to the planner to

create a new plan that takes the newly added memory into consideration. Behavior trees and

FSMs do not have planners as previously mentioned; therefore, they fail to match the GOAP

architecture in this feature as well.

Reusability with different character types:

The developed GOAP system allowed reusability with a very simple implementation of the

ActionSet class. Each instance of this class contained a list of actions. Which meant that different

characters could very easily be assigned different sets of actions that they were allowed to make.

No changes to the planner or other parts of the code were needed to ensure the system’s

compatibility with each character type. Behavior trees and FSMs do not have a matching way to

63

easily reuse the system to the game designer’s advantage. Instead, the designer has to design

different behavior trees for each different character type in their game. The same applies to

FSMs where a game designer has to design new FSMs for each different character type.

Ease of setting up:

While the GOAP architecture had many advantages, it could not be compared with the ease of

set up of an FSM. By the time a programmer could finish programming their version of a GOAP

system without designing any actions, they could already have programmed a finite state

machine with its different actions and transitions between them. FSMs are known to be easy to

program because their logic is simple. An FSM switches between each state provided some

condition was met (ex. If X = true, transition to State 2). On the opposite side, the GOAP system

in this thesis project required programming a planner class which took some time to get up and

running. It also required programming all the other parts of the GOAP architecture that were

described in the literature. Behavior trees are not easy to set up either, considering they have

many classes that need to be programmed to represent each type of leaf in the tree (leaves can

represent behaviors or conditions among other types).

World representation:

The developed GOAP project used memories to represent the state of the world. These memories

were saved in the WorkingMemory whenever something relevant happened in the game (ex,

another character was seen, key was found, etc.). Behavior trees do not use the same kind of

logic, but they do have what is called a Condition leaf inside the tree. These condition leaves

represent whether a certain behavior was successful or not. FSMs do not have any particular way

of representing changes/statuses in the Gameworld.

Ease of customization:

The developed project allowed for easy customizability of the scope of decisions that could be

made. This was because of the modularity of the actions, as new actions could be easily

instantiated and assigned costs, effects, and preconditions. This way, a game designer could

customize the actions in a game based on costs and context without needing to change the code

for the planner to accommodate new actions that are created later in the project. Behavior trees

64

were also easy to customize because they contain definitions of what a behavior is and what a

condition is (among other leaf types). The game designer gets to chain different behaviors and

conditions to create new tree branches that could exhibit a desired line of action. FSMs on the

other hand do not allow for easy customizability. Game designers need to hardcode every new

state in the FSM.

65

Chapter 8 Discussion

This section presents a concluding discussion about this thesis paper. It summarizes the work as

a whole. It discusses AI in games in relation to the design science methodology and discusses the

issue of accessibility to game development research.

8.1 Summary of the work as a whole

This thesis began with the aim of understanding the Goal Oriented Action Planning architecture

and developing a GOAP system. This was to advance the research within the fields of artificial

intelligence and game development and make GOAP a better documented system with publicly

accessible research. The developed GOAP system was used in a game prototype where there

were two different character types (Hunter and hunted) where the hunter type had the goal of

catching as many other characters as possible (see Figure 13) and the hunted type had the goal of

finding special keys that allowed them to escape the game area (see Figure 14).

66

Figure 13: a screenshot from the project showing a “hunter” AI-agent chasing a “hunted” AI-agent

Figure 14: a screenshot from the project showing a “hunted” AI-agent finding and grabbing a key

67

The thesis also wanted to answer the research question “How does the GOAP architecture

compare to other decision-making AI systems in video games? ”. As mentioned earlier, two

other decision-making systems were chosen. Those two systems (FSMs and Behavior Trees)

were chosen because they were both commonly used in video game development and were very

well documented in the literature. The content of the comparison was based on the acquired

knowledge about all three systems through reviewing the literature on the topic. Additionally, the

developed GOAP system also aided in gaining knowledge for the comparison.

The background section of the thesis introduced the reader to the topic of artificially intelligent

game agents in video games. Additionally, it briefly explained why there was a need for

dedicated decision-making systems in video games and how those were better than simply using

basic “if this then do that” logic. Furthermore, the existing research section introduced the three

decision-making systems that this thesis was concerned with comparing. It roughly explained the

logic behind them and finally, it introduced the research gap.

The theoretical framework introduced the theoretical discussions that were relevant in the area of

artificially intelligent decision-making systems in video games. The idea of the illusion of

intelligence was proposed by several professionals as a way of thinking about developing AI for

games. This idea helped create boundaries for the scope of the project and eliminated the need to

think about game-AI with too much complexity. Furthermore, more concrete theoretical ideas

were introduced and those were planner systems, the A* algorithm, heuristics, vision in video

games and working memory systems. Finally, the theoretical framework introduced the need to

conduct a comparison between different AI-systems in video games and motivated the need for

game AI-research because of its social impact on society.

Afterwards, the paper presented the methods and empirical data section where the design science

research methodology was explained, multiple steps for an analysis and comparison were

introduced and included a literature review for data collection. These were concerned with

establishing a way to compare the three different decision-making systems, namely, GOAP,

behavior trees and FSMs. And finally, the usefulness of concept maps was explained.

Furthermore, the ethics section brought up the possibility of bias in the comparison, due to the

68

fact that the developed prototype was only concerned with developing a GOAP system and not

the two other ones (Behavior tree or FSM).

Finally, the results section was presented. It presented the designed unified modeling language

(UML) diagrams and explained the use of game engine software (Unity Engine) where the

prototype was programmed and developed. A pseudocode presentation of the main components

of the developed GOAP system and other supporting components was shown and an explanation

of what each of them was responsible for performing was presented. Those components included

the planner, goal, action, plan, actionset, vision sensor and the blackboard. Subsequently, the

results of the comparison were presented using a “bad, good, best” table that is based off of the

system requirements which were previously outlined in the method section. In addition to that, a

more detailed analysis of the comparison results was presented.

8.2 AI in games in design science – process and obstacles

The thesis had the aim of understanding the goal oriented action planning architecture by

programming a prototype which implements that architecture. That required setting the prototype

in a video game environment in order to truly understand its advantages and limitations as a

decision-making system for video game AI-agents. Decision-making systems like GOAP are

important because they present a structured solution for game AI. Without such decision-making

systems, game programming would easily become unmaintainable and troubled with too many

“if this do that” long lines of code. In the literature, it was easy to find documentation for

behavior trees and finite state machines and how to program and implement them in video

games. The same could not be said about the GOAP architecture however. But that was part of

the research gap, and this thesis was written to address that issue. The literature on GOAP that

was reviewed for this paper, was more open to interpretation. This meant that it became easier to

program the prototype in a way that best fit the chosen game engine (Unity Engine). The purpose

of creating a GOAP system for this research paper was to further understand GOAP. This was

done from a design science perspective where the research was centered around six different

activities. Those were “problem identification and motivation” which included the identification

of the research gap, that being a lack of enough clear and easily accessible documentation and

69

implementation examples of the GOAP system. The second activity was “defining the objectives

for a solution” which was done in Table 1 where multiple requirements were outlined for the

GOAP system before developing it. The third activity was “design and development” which was

done by designing concept maps and UML diagrams which in their turn served as a base for the

development of the GOAP system. The fourth activity was “Demonstration” which was done by

demonstrating that the developed GOAP system was functional in a virtual game setting for AI

game agents in the Unity engine. The fifth activity was “evaluation” and this was done through a

comparison between the GOAP system and Behavior trees and FSMs (the latter two being some

of the most common AI decision-making systems for games). And finally, the sixth activity in

the design science methodology was “communication” which is presented by the culmination of

information and implementation documentation of the produced artifact (GOAP system) in this

research paper. Making this paper an accessible resource for game developers, hobbyists, and

other relevant audiences. And a resource which contributes to the information systems field

using a design science approach while also advancing research in game development and AI

research.

Furthermore, programming a decision-making system for game AI-agents is not as much of a

complicated endeavor as it might seem. The literature supported this idea in the discussion about

how game intelligence is an illusion of intelligence. A decision-making system in this case only

needed to take into account the least possible information that could help it achieve its goals. The

GOAP system does this by using a regressive search algorithm in its planner to find a

heuristically relevant chainable line of actions that fulfills a given goal. The set of actions is up

for the game designer to develop. Each action in the set has a precondition which must be

fulfilled to allow this action to be considered as a part of a plan. Actions also have effects, which

are used to create a chain with the next action’s precondition. Meaning that an effect matches the

next action’s precondition in the plan. And finally, an action has a cost, which helps the planner

choose the cheapest action if there are more than one action with the same effect.

After developing the GOAP planner and its components, it became clear that the rest of the game

prototype also had to be programmed in a new way. The idea that a game’s AI-agent’s actions

would be chosen by an automated planner presented a new way of game programming. Instead

of writing code that immediately tells an AI-agent to do a certain behavior if a certain event was

70

witnessed, the code for the game prototype had to be written in such a way where there was a

high focus on the agent’s working memory. The significance of the working memory for such a

project was not highlighted well enough in the literature. The working memory acted as a

middleman between the agent’s planner and the blackboard. This meant that when an agent

witnessed an event through their sensory systems, those sensors would add a memory about that

event into the working memory. The planner could then do with that knowledge what it sees best

and create a plan of actions which are then invoked from the blackboard. This reflects Orkin’s

idea about seeing the game’s agents as those who are in the best position to make their own

decisions (Orkin, 2003).

Another important aspect of GOAP powered AI-agents are their sensory systems. These are also

not discussed as well enough as they should be in the literature concerning GOAP. However,

they were discussed in many other sources of literature because they are important components

of video game AI-agents regardless of which decision-making system the game characters have.

What is meant by sensors here is for example, vision sensors, audio sensors, proximity sensors,

etc. Any game object that can be used to relay Gameworld events to the working memory can be

seen as a sensor in this case. In this thesis’ game prototype, the developed sensors were a long-

range vision sensor, a short-range vision sensor and a proximity sensor. The vision sensors were

programmed to create a memory about if a target was seen, and which target it was. It then sends

that memory to the working memory so that the planner could reprioritize which actions it

should be making.

The comparison part of the paper concluded by illustrating the contextual differences of the three

decision-making systems. This comparison was not intended to show which system was the best

out of the three but was rather intended to show what things the GOAP system could do that the

other decision-making systems could not do. The conclusion was that the GOAP architecture

was a system that could support a combination of features, and these were: managing many

decisions, having decisions be represented in a modular way, a planner that creates and recreates

correct sequences of decisions, a system that can be reused in multiple game character types, a

system that has a heuristical way of representing Gameworld events and is easy to customize. On

the other hand, if a game designer needed an AI system where they could design their game

characters’ sequences of actions manually but still be able to create characters that are able to

71

make many decisions, then a behavior tree could be more suited for that purpose. And finally, if

the designer wanted to be able to quickly prototype a game agent’s AI and did not need it to do

too many actions, then a finite-state-machine AI (FSM) would be the best choice.

Lastly, there are many different artificial intelligence frameworks one could choose from when

building a project that utilizes decision-making. Every framework has its pros and cons and no

one framework should be deemed the best without considering the requirements of the project in

question. The goal oriented action planning architecture shines best when used to design agents

that are capable of making many choices and decisions. And it truly becomes useful when the

need to implement new actions arises, considering its Planner class, which does not need to be

reprogrammed every time a new action is implemented in the agent’s blackboard.

8.3 Ease of access to game development research

Independent game studios that are composed of a small team of developers usually have to work

on many things at the same time. This is contrary to bigger companies which might have

divisions for every part of a video game’s lifecycle going from research to development and even

marketing. That is why it is important that more papers are written on video game artificial

intelligence systems in a digestible and easy to understand manner. Design science research

presents a very appropriate model to do such research where an understanding of a certain

artifact is best done by creating one such artifact as part of the research. More research in the

field of game AI would enable smaller developers and hobbyists to easily learn from them and

implement them in their own projects. This is not only limited to game development however.

As was discussed earlier in this paper in “the social impact of game AI research” section, video

games have been used as a testbed for artificial intelligence research to test certain software

patterns before using them in other domains for example in robotics or smart home products.

Additionally, many organizations use domain specific information systems that are employed to

solve problems and process information. Game development studios are among these

organizations. They use different information systems such as the GOAP system. This gives

them a unified understanding in the organization of what input individual developers can give to

72

the system and what kinds of output it will produce. Thus, enabling the organization to develop

games through a well-structured system.

This paper could help some developers understand the Goal Oriented Action Planning

architecture, or perhaps introduce it to them for the first time. Advanced decision-making AI

systems can help developers create new kinds of games or games that are not usually released by

smaller game studios. For example, GOAP can be used to create games or virtual environments

where many agents/characters are in one environment and are each taking individual courses of

action to achieve separate goals or one common goal. For example, in a game where players can

build houses together from materials found in the game, there could be AI-agent characters that

help the player by collecting materials to build the house. Finding a material would be set as a

goal by the agents’ GOAP planners and each agent would go and collect a different material to

build the same house.

Finally, doing more accessible research on artificial intelligence systems in games is important

because it gives new opportunities to game developers, hobbyists and other communities who do

not have access to expensive scientific journals nor the ability to hire their own research teams.

These new opportunities could create new jobs, artistic expressions or even lead the path towards

new technologies.

73

Chapter 9 Conclusion

This section presents the main conclusions of the thesis. And then discusses the implications and

limitations of this paper and lists possible related work that could be done on the topic in the

future.

9.1 Main conclusions

The Goal Oriented Action Planning system presents a useful framework for games that have AI-

agents which need to create multi-action plans and alternate between many different actions.

Unlike an FSM or a behavior tree, the GOAP system frees the developer from the need to write

code that specifies how each action may precede or proceed the next action in a plan.

Additionally, the GOAP system frees developers from predefining sets of plans altogether.

Instead, the system creates plans during the execution of the program using an algorithm that

uses preconditions, effects, and costs to decide which actions could create a suitable plan to

achieve a given goal. GOAP uses a set of main technical concepts that should be implemented

and those were: Goal, action, action sets, plans, planner. Additionally, a working memory and

several sensors can be implemented to give the GOAP system the ability to react to different

events in the game world and create plans based on memories.

Different video games require different AI systems depending on the level of variety of actions

or decisions that an AI-agent is expected to display. This is an important factor in selecting a

type of AI-system to implement in a game. A traditional FSM works best for simple AI-agents

with a small handful of actions they can make. Behavior trees are better for more complex

behaviors consisting of several actions or decisions. And finally, a GOAP system is good for AI-

agents that dynamically create their own plans based on the decisions they need to make to

achieve certain goals in a game.

Lastly, doing research using a design science approach allows the researcher to create an artifact

of the phenomena or technology that is being researched and thoroughly document it so that

different researchers and other relevant communities can benefit from the research. This makes

74

this research paper not just a source of information that was collected at a certain time, but

rather, it serves as a guide for future research and for developers who are interested in

developing their own version of the research’s artifact. Namely, a GOAP system.

9.2 Limitations and future work

As previously mentioned, this paper only addresses three decision-making systems for game

agents’ artificial intelligence. In reality, there are more of them in the industry than just the three.

Different kinds of projects or games require different solutions of course. Therefore, the

takeaway from this thesis paper should not be that the GOAP architecture is the best solution for

game AI. Instead, game programmers should carefully consider their game’s requirements and

choose the best system for the job based on that.

Additionally, a future comparison of the three systems (GOAP, FSM and Behavior Trees) should

be done after having programmed three different digital artifacts of each, instead of developing

an artifact of only one of them (GOAP). This could further improve the understanding of these

systems and how they differ from each other. Furthermore, it could expose more advantages in

behavior trees and FSMs which might not have been visible through this paper’s literature

review.

Because the GOAP architecture makes very good use of working memory and sensory systems,

it becomes very intriguing to think of the applications it could have in microelectronics. Perhaps,

smaller robotics that have a specific set of actions could make use of a decision-making system

such as GOAP. This could be a much better choice than complicated machine learning solutions

which might not be suitable for the low-powered processors that microelectronics usually have.

Finally, the domain of decision-making systems continues to make new advancements through

experimenting on and developing new video games. Two more decision-making systems that are

already used in some modern video games are the Utility AI (Walkup, 2021) which makes

different calculations based on a given situation and decides the best course of action in a given

moment and Director AI (Middler, 2021) which monitors different variables in the game such as

the player’s health, shooting accuracy, etc. and based on that makes decisions about for example,

75

how many enemies should go after the player, how strong those should be and in which parts of

the game they should exist, etc. More research on these systems and especially research that uses

a design science approach can be done to expose their internal logic and make them more easily

available to learn from for smaller game development teams, hobbyists and others who might be

interested. And lastly, this paper did not cover the different ways where multiple kinds of

decision-making AI can be combined in a project to achieve different goals. Creating new AI-

models based on a combination of multiple decision-making systems could aid in developing

more robust and useful solutions.

76

Chapter 10 References

• AIandGames. (2020, May 20). Revisiting the AI of Alien: Isolation,. AI and Games.

https://www.aiandgames.com/2020/05/20/revisiting-alien-isolation/

• Al Shehabi, A. (2022). GitHub - sonic6/GOAP-project [C# Classes for a Unity project].

https://github.com/sonic6/GOAP-project/tree/main/GOAP-project/Assets/Scripts

• Alien: Isolation. (2014). [Video game].

https://store.steampowered.com/app/214490/Alien_Isolation/

• Barrera, R., Kyaw, A. S., & Swe, T. N. (2018). Unity 2017 Game AI Programming -

Third Edition: Leverage the power of Artificial Intelligence to program smart entities for

your games (Rev. ed.). Packt Publishing. https://learning.oreilly.com/library/view/unity-

2017-game/9781788477901/

• Colledanchise, M., & Ogren, P. (2017). How Behavior Trees Modularize Hybrid Control

Systems and Generalize Sequential Behavior Compositions, the Subsumption

Architecture, and Decision Trees. IEEE Transactions on Robotics, 33(2), 372–389.

https://doi.org/10.1109/tro.2016.2633567

• Cook, M. (2021). The Social Responsibility of Game AI. 2021 IEEE Conference on

Games (CoG), 1–8. https://doi.org/10.1109/cog52621.2021.9619090

• Cossu, S. M. (2020a). Behaviors. In Beginning Game AI with Unity: Programming

Artificial Intelligence with C# (1st ed., pp. 117–139). Apress.

https://doi.org/10.1007/978-1-4842-6355-6_5

https://www.aiandgames.com/2020/05/20/revisiting-alien-isolation/
https://github.com/sonic6/GOAP-project/tree/main/GOAP-project/Assets/Scripts
https://store.steampowered.com/app/214490/Alien_Isolation/
https://learning.oreilly.com/library/view/unity-2017-game/9781788477901/
https://learning.oreilly.com/library/view/unity-2017-game/9781788477901/
https://doi.org/10.1109/tro.2016.2633567
https://doi.org/10.1109/cog52621.2021.9619090
https://doi.org/10.1007/978-1-4842-6355-6_5

77

• Cossu, S. M. (2020b). Pac-Man ghost FSM [Illustration]. In Beginning Game AI with

Unity: Programming Artificial Intelligence with C# (pp. 117–139).

• Dead by Daylight. (2016). [Video Game]. Behaviour Interactive.

https://store.steampowered.com/app/381210/Dead_by_Daylight/

• Fan, J., Fang, L., Wu, J., Guo, Y., & Dai, Q. (2020). From Brain Science to Artificial

Intelligence. Engineering, 6(3), 248–252. https://doi.org/10.1016/j.eng.2019.11.012

• F.E.A.R. (2005). [Video Game]. https://store.steampowered.com/app/21090/FEAR/

• Fikes, R. E., & Nilsson, N. J. (1971). Strips: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3–4), 189–208.

https://doi.org/10.1016/0004-3702(71)90010-5

• Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the

Past, Present, and Future of Artificial Intelligence. California Management Review,

61(4), 5–14. https://doi.org/10.1177/0008125619864925

• Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2), 100–107. https://doi.org/10.1109/tssc.1968.300136

• Hirschheim, R., & Klein, H. (2012). A Glorious and Not-So-Short History of the

Information Systems Field. Journal of the Association for Information Systems, 13(4),

188–235. https://doi.org/10.17705/1jais.00294

• Lazarevich, V. (2018, October 25). How to Compare Software Products, Solutions or

Frameworks. Digiteum. https://www.digiteum.com/how-to-compare-software-solutions-

frameworks-libraries-and-other-components/

https://store.steampowered.com/app/381210/Dead_by_Daylight/
https://doi.org/10.1016/j.eng.2019.11.012
https://store.steampowered.com/app/21090/FEAR/
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1177/0008125619864925
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.17705/1jais.00294
https://www.digiteum.com/how-to-compare-software-solutions-frameworks-libraries-and-other-components/
https://www.digiteum.com/how-to-compare-software-solutions-frameworks-libraries-and-other-components/

78

• Lewis, M., & Jacobson, J. (2002). GAME ENGINES IN SCIENTIFIC RESEARCH.

Communications of the ACM, 45(1), 27–31.

https://www.cse.unr.edu/~sushil/class/gas/papers/GameAIp27-lewis.pdf

• Lyytinen, K. (1987). Different perspectives on information systems: problems and

solutions. ACM Computing Surveys, 19(1), 5–46. https://doi.org/10.1145/28865.28867

• Middler, J. (2021, November 17). ‘Left 4 Dead’ veterans reveal AI Director 2.0. NME.

https://www.nme.com/news/gaming-news/left-4-dead-veterans-reveal-ai-director-2-0-

3097693

• Orkin, J. (2003). Applying Goal-Oriented Action Planning to Games. MIT Media Lab.

https://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf

• Orkin, J. (2004). Symbolic Representation of Game World State: Toward Real-Time

Planning in Games. Proceedings of the AAAI Workshop on Challenges in Game AI.

http://alumni.media.mit.edu/~jorkin/WS404OrkinJ.pdf

• Orkin, J. (2005). Agent Architecture Considerations for Real-Time Planning in Games.

AIIDE’05: Proceedings of the First AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment, 105–110.

https://www.aaai.org/Papers/AIIDE/2005/AIIDE05-018.pdf

• Orkin, J. (2006). Three States and a Plan: The A.I. of F.E.A.R. Proceedings of the Game

Developer’s Conference (GDC). Game Developers Conference.

http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

• Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design

Science Research Methodology for Information Systems Research. Journal of

https://www.cse.unr.edu/~sushil/class/gas/papers/GameAIp27-lewis.pdf
https://doi.org/10.1145/28865.28867
https://www.nme.com/news/gaming-news/left-4-dead-veterans-reveal-ai-director-2-0-3097693
https://www.nme.com/news/gaming-news/left-4-dead-veterans-reveal-ai-director-2-0-3097693
https://alumni.media.mit.edu/~jorkin/GOAP_draft_AIWisdom2_2003.pdf
http://alumni.media.mit.edu/~jorkin/WS404OrkinJ.pdf
https://www.aaai.org/Papers/AIIDE/2005/AIIDE05-018.pdf
http://alumni.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf

79

Management Information Systems, 24(3), 45–77. https://doi.org/10.2753/mis0742-

1222240302

• Rabin, S. (2014). Game AI Pro: Collected Wisdom of Game AI Professionals (1st ed.).

CRC Press. https://doi.org/10.1201/b16725

• Rabin, S. (2015). Game AI Pro 2: Collected Wisdom of Game AI Professionals (1st ed.).

A K Peters/CRC Press. https://doi.org/10.1201/b18373

• Rabin, S. (2017). Game AI Pro 3: Collected Wisdom of Game AI Professionals (1st ed.).

A K Peters/CRC Press. https://doi.org/10.4324/9781315151700

• Resident Evil 2. (2019). [Video Game]. Capcom.

https://store.steampowered.com/app/883710/Resident_Evil_2/

• Resident Evil Village. (2021). [Video Game]. Capcom.

https://store.steampowered.com/app/1196590/Resident_Evil_Village/

• Rowley, J., & Slack, F. (2004). Conducting a literature review. Management Research

News, 27(6), 31–39. https://doi.org/10.1108/01409170410784185

• Sweetser, P., & Wiles, J. (2002). Current AI in games : a review. Australian Journal of

Intelligent Information Processing Systems, 8(1), 24–42.

https://eprints.qut.edu.au/45741/1/AJIIPS_paper.pdf

• Unity. (2018, October 15). Unity - Manual: ScriptableObject. Unity3D.

https://docs.unity3d.com/Manual/class-

ScriptableObject.html#:%7E:text=A%20ScriptableObject%20is%20a%20data,your%20P

roject%20has%20a%20Prefab

• Unity. (2021). [Game engine]. Unity Technologies. https://unity.com

https://doi.org/10.2753/mis0742-1222240302
https://doi.org/10.2753/mis0742-1222240302
https://doi.org/10.1201/b16725
https://doi.org/10.1201/b18373
https://doi.org/10.4324/9781315151700
https://store.steampowered.com/app/883710/Resident_Evil_2/
https://store.steampowered.com/app/1196590/Resident_Evil_Village/
https://doi.org/10.1108/01409170410784185
https://eprints.qut.edu.au/45741/1/AJIIPS_paper.pdf
https://docs.unity3d.com/Manual/class-ScriptableObject.html#:%7E:text=A%20ScriptableObject%20is%20a%20data,your%20Project%20has%20a%20Prefab
https://docs.unity3d.com/Manual/class-ScriptableObject.html#:%7E:text=A%20ScriptableObject%20is%20a%20data,your%20Project%20has%20a%20Prefab
https://docs.unity3d.com/Manual/class-ScriptableObject.html#:%7E:text=A%20ScriptableObject%20is%20a%20data,your%20Project%20has%20a%20Prefab
https://unity.com/

80

• Walkup, M. (2021, July 24). AI Made Easy with Utility AI - Morgan Walkup. Medium.

https://medium.com/@morganwalkupdev/ai-made-easy-with-utility-ai-fef94cd36161

https://medium.com/@morganwalkupdev/ai-made-easy-with-utility-ai-fef94cd36161

