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Sammanfattning

Automatisk ogräsdetektion skulle kunna användas för mer effektiv ogräsbekämp-
ning inom jordbruk. I detta examensarbete har ogräsdetektorer tränats och utvär-
derats på data från rise för att undersöka ifall träning på rise’s data kan generera
en träffsäker detektor. När endast annoteringar av ogräsklassen åkertistel använ-
des för träning och evaluering så uppnåddes en map på 0.33. När fyra klasser av
ogräs användes så uppnåddes en map på 0.07. Träffsäkerheten var sämre än vad
som uppnåtts i en annan studie som behandlat ogräsdetektering. Hypoteser för
varför träffsäkerheten inte var bättre undersöktes. Experiment indikerade att pro-
blemet inte helt kan förklaras av att en för enkel modell använts, inte heller av
att objektens bakgrunder var för snarlika förgrunden, och inte heller av att kvali-
tén på annotationerna var för dålig. Prestandan var bättre när modellen tränades
på så stor andel av datan som möjligt snarare än när endast utvalda segment av
datan användes.
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Abstract

Automatic detection of weeds could be used for more efficient weed control in
agriculture. In this master thesis, weed detectors have been trained and exam-
ined on data collected by rise to investigate whether an accurate weed detector
could be trained on the collected data. When only using annotations of the weed
class Creeping thistle for training and evaluation, a detector achieved a map of
0.33. When using four classes of weed, a detector was trained with a map of
0.07. The performance was worse than in a previous study also dealing with
weed detection. Hypotheses for why the performance was lacking were exam-
ined. Experiments indicated that the problem could not fully be explained by
the model being underfitted, nor by the object’s backgrounds being too similar
to the foreground, nor by the quality of the annotations being too low. The per-
formance was better when training the model with as much data as possible than
when only selected segments of the data were used.

v





Acknowledgments

I want to thank my supervisors at RISE for enabling me to write my thesis at
RISE. Daniel was the one most involved with the thesis and was always willing to
help. Fredrik and Anderson also gave valuable inputs on the thesis. I also want
to thank my supervisors at ISY. Pavlo gave feedback regarding my experiments
and both Pavlo and Johan helped with the report. I would also like to thank my
examiner Per-Erik for guidance during the thesis.

Linköping, May 2022
Axel Ahlqvist

vii





Contents

Notation xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . 5
2.1.2 Deep residual learning . . . . . . . . . . . . . . . . . . . . . 6

2.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Intersection over Union . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Mean Average Precision . . . . . . . . . . . . . . . . . . . . 7

3 Related Work 9
3.1 Noise or Signal: The Role of Image Backgrounds in Object Recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Weed Detection in Soybean Crops Using ConvNets . . . . . . . . . 9

4 Methodology 11
4.1 Examining Underfitting . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Training Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1 Model Architecture . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Optimiser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 Partitioning the Data Set . . . . . . . . . . . . . . . . . . . . 13
4.2.4 Hyperparameter Optimization of the Parameters of the Op-

timizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.5 Choosing Backbone Architecture . . . . . . . . . . . . . . . 14

4.3 Examining the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.1 Comparing Backgrounds . . . . . . . . . . . . . . . . . . . . 14

ix



x Contents

4.3.2 Comparing Annotations Types . . . . . . . . . . . . . . . . 14
4.3.3 Examining Distortions . . . . . . . . . . . . . . . . . . . . . 15

4.4 Evaluating Generalization . . . . . . . . . . . . . . . . . . . . . . . 15

5 Experiments and Results 17
5.1 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1.1 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1.2 Bounding Box Annotations . . . . . . . . . . . . . . . . . . . 17
5.1.3 Extreme Point Annotations . . . . . . . . . . . . . . . . . . . 18
5.1.4 Polygon Annotations . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2 Big . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Soil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.4 Grass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.5 Poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.6 EP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.7 Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Checking for Underfitting . . . . . . . . . . . . . . . . . . . 22
5.3.2 Hyperparameter Optimization . . . . . . . . . . . . . . . . 23
5.3.3 Backbone Architecture Choice . . . . . . . . . . . . . . . . . 23
5.3.4 Comparing Detection on Different Backgrounds . . . . . . 25
5.3.5 Examining Quality of Annotations . . . . . . . . . . . . . . 25

5.4 Evaluating on Test data set . . . . . . . . . . . . . . . . . . . . . . . 28

6 Discussion 29
6.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Examination of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Conclusion 31

A Data sets 35

B Calculations 37
B.1 Agriculture Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.2 Pesticide Expense US . . . . . . . . . . . . . . . . . . . . . . . . . . 37

C Closer Look at a Model 39
C.1 Detections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C.2 Precision-Recall Curves . . . . . . . . . . . . . . . . . . . . . . . . . 41
C.3 Performance Based on Threshold . . . . . . . . . . . . . . . . . . . 42

Bibliography 43



Notation

Abbreviations

Abbreviation Meaning

us United States
usd United States Dollar
gdp Gross Domestic Product
cnn Convolutional Neural Network
map Mean Average Precision
ap Average Precision
cvat Computer Vision Annotation Tool
rise Research Institutes of Sweden
iou Intersection over Union
tp True Positive
tn True Negative
tf False Positive
sgd Stochastic Gradient Descent
rpn Region Proposal Network

Faster r-cnn Faster Region based Convolutional Neural Network
sd Standard Deviation

xi





1
Introduction

Agriculture is one of the worlds biggest industries, generating approximately
3.2% of the world gdp, see appendix B.1. Weeds are the most important biotic
constraints to agricultural production, both in developing and developed coun-
tries [6]. The negative effects of weeds differ based on the geographic region, but
in the us, weeds cause a reduction of 12% in crop yields [11]. This reduction oc-
curs despite the application of pesticides. Pesticides account for approximately
1.5% of the agriculture expenses in the us, see appendix B.2. Furthermore, pes-
ticides are associated with several biological problems, such as the evolution of
herbicide-resistant weeds [6]. Automatic weed control could make a significant
part of the global economy more effective. This could either be through being
cheaper, by producing more crops or being more sustainable than herbicides.

1.1 Background

Research Institutes of Sweden (RISE) is a research institute owned by the state of
Sweden. In order to support decision making and automated efforts in agricul-
ture, the institute is carrying out a project of annotating a data set of weeds and
crops in an agricultural context [1]. Annotations can be procured by different
methods and of different quality. In order to evaluate the quality of the annota-
tions and make better decision when proceeding, it is of interest to examine the
accuracy of detectors trained on the currently available annotations. Most of the
annotations collected by rise are bounding boxes with the corresponding plant
species, labeled. Bounding boxes contain the objects background in addition to
the object itself. In agricultural weed detection, the foreground is typically simi-
lar to the grass background as they are both plants. Occlusions do occur, which
can split the foreground. Previous attempts by rise to create a weed detector
have not yielded satisfying results. One hypothesis proposed by rise to explain
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2 1 Introduction

the poor performance is that the detector puts too much emphasis on the back-
ground. Instead of learning the shapes of the weeds, it learns to find a pattern
in the background grass. Previous research has shown that neural networks typi-
cally overemphasize the importance of the background. In Xiao et al. [13] it was
found that, for 87,5% of the foregrounds, the model could be tricked by an ad-
versely generated background. Neural networks use information from the back-
ground because it provides useful information for predictions on the training
set. However, it can lead to poor performance in an out-of-distribution setting or
overfitting if the training set is too small.

1.2 Problem Formulation

This thesis investigates whether training on the currently available annotations
can produce an accurate detector. Choices such as architectures and meta-parameters
are explored. Which subset of the annotations generates more accurate detectors
is examined. The objective being to get a better understanding of the require-
ments of the annotations in the context of weed detectors.

1.2.1 Research Questions

• What performance can be achieved by training different models on the cur-
rently available annotations?

• Does training on a certain subset of the data generate more accurate detec-
tors?

• What changes should be made to the annotation process to enable better
weed detectors to be trained?

1.3 Delimitations

The total number of annotations collected at the start of the thesis was around
170 000 image patches. Technical problems prevent many of these earlier anno-
tations from being used. Another technical problem prevents using entire images
as input. The images have a resolution of 3840x2160 pixels. Since lens distortions
are more pronounced at the edges of the images, only the top-center part of the
images are used, creating image frames with a resolution of 1920x1080 pixels.
For many of the plant species there are not enough annotations to train and eval-
uate a detector. Therefore, most experiments are done with the species Creeping
thistle. A few experiments also include Dandelion, Curled dock and Scentless
mayweed. Around 6 000 annotations are used in this thesis. A technical problem
with memory sporadically prevented deeper models from being trained. There-
fore, the experimentation of using different model architectures was limited.
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1.4 Thesis Structure

The Theory chapter presents theoretical concepts and evaluation measures rele-
vant to the thesis. The Related Work chapter presents previous research which
has dealt with similar problems and examined problems in image detection. The
Methodology chapter describes the different approaches and techniques used to
answer the research questions. The Experiments and Results chapter describe
how the experiments are set up. This includes details about the data sets used
and choices for hyperparameters. The results of the experiments are also pre-
sented in this chapter. The Discussion chapter discusses the results and their
implications. Proposals for future work are also made in this chapter. The Con-
clusion chapter uses the discussion to answer the research questions posed in this
chapter.





2
Theory

This chapter explains the theory behind concepts relevant to the thesis.

2.1 Deep Learning

Neural networks is a machine learning technique which can approximate a map-
ping from input to output. An architecture of layers is formulated where the
outputs of a layer is the input to the next layer. The functions in each layer
mapping its input to output is tuned by having the network observe many input-
output samples. A simple example of a fully connected feed forward network
can be seen in figure 2.1. Deep learning is when several layers are used in the
architecture.

2.1.1 Convolutional Neural Networks

Around 2012 the publication of Krizhevsky et al. [10] popularized using convolu-
tional neural networks (cnns) for computer vision applications. The technique

Figure 2.1: "Artificial neural network" By Offnfopt, CC BY-SA 3.0.

5

https://commons.wikimedia.org/w/index.php?curid=39533797


6 2 Theory

Figure 2.2: "ResNet-18 Architecture" By Gaurav Singhal.

has shown a general ability to handle visual tasks. cnns have a specialized archi-
tecture where convolution and pooling operations are utilized. Weight sharing is
used to reuse the same filter of weights across the entire visual field. This reduces
the number of free parameters which improves the networks generalization on vi-
sual tasks.

2.1.2 Deep residual learning

When working with neural networks, there is a problem distinct from underfit-
ting and overfitting documented in for example He et al. [9]. It manifests in an
increase in both training loss and validation loss when attempting to increase
the number of layers of the model. To counteract this He et al. [9] introduced
the deep residual learning framework. The problem is dealt with by adding an
identity connection that skips two or more layers, see figure 2.2. This enables the
network to learn a simpler mapping when beneficial. The network uses convolu-
tional layers.

2.2 Measures

This section explains the measures used to evaluate the trained detectors.

2.2.1 Intersection over Union

Intersection over union (iou) is a measurement of how similar two bounding
boxes are. The intersection of the boxes is divided by the union of the boxes,
see figure 2.3.

https://www.pluralsight.com/guides/introduction-to-resnet
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Figure 2.3: "iou visual equation" by Adrian Rosebrock, licensed under CC
BY-SA 4.0.

2.2.2 Mean Average Precision

When training a detector the network will output multiple predicted bounding
boxes with a predicted class and a confidence score. The predicted box counts
as a true positive (tp) when its intersection over union (iou) with a ground truth
box of the correct class passes a certain threshold. If there are multiple predicted
boxes with an iou above the threshold of the correct class, then only the one with
the highest iou counts as a tp while the rest counts as false positives (fp). If a
ground truth box exists with no prediction box overlapping enough to pass the
iou threshold and have the correct class, then the ground truth box counts as a
false negative (fn). The number of tp, fp and fn will depend on the threshold.
The number of tp, fp and fn can be used to calculate the precision and recall for
each class. The precision is defined as:

P recision =
tp

tp + fp
, (2.1)

and the Recall is defined as:

Recall =
tp

tp + fn
. (2.2)

For each class and for each of the thresholds a precision-recall curve is plotted.
First, only the prediction with the highest confidence is included. The precision
and the recall is calculated based on how many tps, fp and fn there is. A point
of the curve is made by using the recall as the x-coordinate and the precision as
the y-coordinate. Then, more and more predictions are included based on their
confidence score. When a prediction is included a new point is made with the
recalculated precision and recall values. A line is drawn trough these points to
create the precision-recall curve. This curve is then smoothed by setting each
point precision value to the highest precision value achieved with a higher recall
value, see figure 2.4. Examples of precision-recall curves based on models trained
in this thesis can be seen in appendix C.2. [15].

Average Precision (ap) is defined as the area under the smoothed precision-
recall curve. The mean of these aps are then calculated over all the classes and
thresholds. This is the mean average precision (map). The standard is to only
use the 10 equidistant thresholds between 0.5 and 0.95, inclusive. When com-
paring different models, this thesis uses the 19 thresholds that are equidistant

https://en.wikipedia.org/wiki/Jaccard_index##/media/File:Intersection_over_Union_-_visual_equation.png
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Figure 2.4: Example of a precision-recall curve including the smoothed ver-
sion.

between 0.05 and 0.95. This is because the detectors performed poorly, the lower
thresholds were included to better distinguish the differences in performance.
However, the standard set of thresholds are used when answering the research
question about what performance can be achieved on the data. A plot of aps for
different iou thresholds can be seen in appendix C.3. [15].



3
Related Work

This chapters presents related work that have dealt with similar problems.

3.1 Noise or Signal: The Role of Image Backgrounds
in Object Recognition

Xiao et al. [13] explored the general problem of background overemphasis in com-
puter vision. When they changed the background for the test set, the accuracy
was drastically reduced. A method they tried was to train the models with ran-
domized backgrounds. It resulted in slightly worse accuracy but with much more
robustness to background changes. Saliency maps were used to qualitatively in-
vestigate how much focus is on the background.

The paper provides support for rise’s hypothesis that the poor performance
is due to the model putting to much emphasis on the background.

3.2 Weed Detection in Soybean Crops Using
ConvNets

Dos Santos Ferreira et al. [7] divided images from a soybean plantation into seg-
mented images with the help of the simple linear iterative clustering algorithm.
A cnnwas trained to detect the classes soil, crop, grass weed and broadleaf weed.
A few other detection algorithms were implemented for comparison but the cnn
performed at least as well as the rest. Above 98% accuracy was achieved for all
classes.

The problem examined by Dos Santos Ferreira et al. [7] is similar to the one
this thesis deals with. One difference is that their data is segmented. Another dif-

9



10 3 Related Work

ference is that there does not seem to be any images with the overwhelming grass
background that are common in the data used for this thesis. However, none of
these differences would appear to be crucial, meaning that a high accuracy de-
tector should be possible to generate by training a cnn on rise’s annotations. It
is also of interest that the technique of cnns performed at least as well as the
considered alternatives. This gives confidence in the choice of using cnns in this
thesis.



4
Methodology

This chapter explains the techniques used in the thesis to examine the problem of
training a weed detector on rise’s data. It is important to understand the problem
in order to deal with it in an intelligent manner. It is also necessary to properly
categorise the problem in order for the results to be of use to other researchers
and practitioners in the field.

4.1 Examining Underfitting

Since the detection models previously generated by rise have had low training
and validation loss, the problem of underfitting is examined. If the model is
versatile enough to approximate the desired function from images to detected
weeds, then it should be possible to achieve a low training loss. The model was
overfitted to the training data. Overfitting the model means that the model is
trained to only minimize the training loss without any consideration for whether
the model can generalize to unseen data.

4.2 Training Models

Multiple models are trained and evaluated with different setups.

4.2.1 Model Architecture

In order to utilize neural networks, the python framework PyTorch is used. Py-
Torch’s faster region based convolutional neural network (Faster r-cnn) is used
as a model. The technique was introduced in Ren et al. [12]. A conception of
the model can be seen in figure 4.1. The model consists of two modules. A re-
gion proposal module and a detection module. A cnn backbone is applied to the

11



12 4 Methodology

image to generate a feature map. This backbone is shared between the modules
which speeds up training. The backbone used in this thesis is either the ResNet-
18 or ResNet-34 architecture. The region proposal module uses a region proposal
network (rpn) on the feature map to generate proposals. The proposals are gen-
erated with the help of reference boxes of different sizes and aspect rations called
anchor boxes. The detection module is the Fast r-cnn detector from Girshick [8].
A regions of interest pooling layer takes the feature map and each proposed box
and outputs the box’s class probabilities and the box’s offset

Training the Model

The weights of the backbone convolutional layers are initialized with a pre-trained
model on imageNet.

Each ground truth box is compared to each anchor and their iou is calculated.
If the iou is above 0.7 then the anchor box is labeled as positive. If no anchor box
has an iou above 0.7, then the one with the highest iou is labeled as positive. If
a non-positive anchor has an iou below 0.3, it is labeled as negative. The anchor
boxes that are neither positive nor negative are not used when calculating the
training loss. The training loss for each image is defined as:

L(pi , ti) =
1

Ncls

∑
i

Lcls(pi , p
∗
i ) +

1
Nreg

∑
i

p∗i · Lreg (ti , t
∗
i ), (4.1)

where i is the index of an anchor and pi is the predicted probability of anchor i
being positive. The label p∗i is 1 if the anchor is positive and zero if negative. ti
and t∗i each contains four coordinates defining the predicted bounding box and
the ground truth-box respectively. The terms Ncls and Nreg are used to normalize
the sums. The Lcls loss is defined as:

Lcls(pi , p
∗
i ) = −(p∗i · log(pi) + (1 − p∗i ) · log(1 − pi)). (4.2)

The Lreg loss is defined as:

Lreg (ti , t
∗
i ) = Lsmooth(x = ti − txi ) =

0.5x2 if |x| < 1
|x| − 0.5 otherwise

. (4.3)

4.2.2 Optimiser

Stochastic gradient descent with momentum and weight decay was used to tune
the model. The optimizer has five parameters which were tuned with hyper-
parameter optimization: the learning rate, step size, gamma, momentum and
weight decay. The learning rate is the coefficient of the weight changes each gradi-
ent update. In order to converge to a local optimum the learning rate is regularly
decreased by being multiplied by the hyperparameter gamma. This happens af-
ter a number of gradient updates equal to the hyperparameter step size. The
momentum adds some consistency to the direction of the learning by being the
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Figure 4.1: Faster R-CNN from Ren et al. [12]

coefficient to the previous step’s direction. A regularizer term is a term that disin-
centivizes the model from being overtuned by adding a loss in proportion to the
weights of the model. The weight decay is a regularizer term that is equal to the
sum of the squares of the weights used in the network. This disincentivizes the
model from being overtuned to the training data.

4.2.3 Partitioning the Data Set

Different experiments uses different data sets in this thesis. These data sets are
partitioned in order to enable evaluation of the model both during and after train-
ing. Each data set is partitioned into a training, a validation and a test set. They
make up approximately 80, 10 and 10 percent of the annotations of the data
set respectively. The training set is used to tune the model. The validation set
is used to evaluate the model during hyperparameter optimization and training.
The version of the model with the lowest validation loss is the one used in order
to avoid the model being overfitted. The test set is finally used to evaluate the
performance of the trained model.

The partitioning was performed by including images and their corresponding
annotations into the validation set until at least 10 percent of the total annota-
tions had been included. The same was done with the test set. The rest of the
images with their annotations made up the training set.

4.2.4 Hyperparameter Optimization of the Parameters of the
Optimizer

The hyperparameter optimization library SHERPA [4], is used to tune the hyper-
parameters of the model. There are two parameters that SHERPA needs as input.
The number of training epochs to train the models for each configuration of hy-

https://github.com/sherpa-ai/sherpa
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perparameters and the number of configurations to try. For each configuration, a
model is trained the number of training epochs on the training set. The version
of the model with the lowest validation loss is saved. Using the validation loss of
this model in conjunction with previous configuration-loss pairs, an acquisition
function is estimated. This is a function that takes a configuration of hyperpa-
rameters as input and outputs a validation loss. For the input of the domain
which have not been evaluated, the posterior mean and the variance is estimated.
Using the mean and variance, the expected improvement of the minimum loss is
estimated for the entire domain. The configuration of hyperparameters with the
biggest expected improvement are evaluated next.

4.2.5 Choosing Backbone Architecture

The architecture ResNet-34 have more expressibility than ResNet-18. however, it
takes more computation time to train since there are more parameters to tune.
The performance of detectors based on the two architectures are compared to see
if the added expressibility of the model is worth the extra training time.

4.3 Examining the Data

Models trained on different subsets of the data was compared in order to examine
what features of the data is leading to low performance.

4.3.1 Comparing Backgrounds

It is examined whether the backgrounds with a lot of grass is causing the poor
performance. Performance when detecting weeds with grass as background is
compared to when detecting weeds with soil as background. The gap should
indicate whether the complex background is causing the issues.

4.3.2 Comparing Annotations Types

rise’s annotations include mostly bounding boxes. However, a few hundred an-
notations of polygon type are included. These were the last annotations done by
the annotators. If the quality of the bonding box annotations is lacking, then it
is probably the case that the bounding box of the polygon annotations will be of
higher quality. This is because much more care is required to make polygon an-
notations. Also since they were the last to be done by the annotators, whom had
no experience annotating prior to this project, they were more experienced when
doing the polygon annotations. Detectors are trained and evaluated on either an-
notated bounding boxes or on boxes from polygon annotations. If training on the
polygon boxes generates a detector with higher accuracy, then it indicates that
acquiring bounding box annotations of higher quality should be a priority.
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4.3.3 Examining Distortions

It is examined whether the training is sensitive to a reduction in quality of the
annotations. This is done by distorting the annotations in the training set and
validation set, either making them smaller or larger. If training on distorted data
severely decreases the performance that would indicate that the quality of the
annotations is very relevant.

4.4 Evaluating Generalization

In general the test set partition of each data set is used to evaluate the perfor-
mance of the detector. However, it is of interest to examine how general the re-
sults are. Therefore, a data set consisting of annotations from separate tasks are
used to evaluate the models evaluation at the end of the thesis. Different tasks
means that the images are from another day and most likely the annotations were
done another day as well. The performance on the test data set. task will give an
indication as to the model’s ability to handle distributional shift.





5
Experiments and Results

This chapter goes through the experiments carried out in this thesis and presents
their results.

5.1 Annotations

The annotations used in this thesis, were manually annotated in Computer Vi-
sion Annotation Tool [3] (cvat). The weeds were categorized into 9 weed species
and an Unknown Weed category. Since there were too few annotations of most
species to train a model, most models were only trained and evaluated on Creep-
ing thistle annotations. However, some models were trained and evaluated also
using the three species Curled dock, Dandelion and Scentless mayweed. Exam-
ples of annotations of the four species can be seen in figure 5.1.

5.1.1 Quality

When examining the data, some annotations appeared to be of low quality and
some appeared to be completely erroneous. It was assumed that as the employ-
ees received feedback and gained experience, the quality of the annotations got
better.

5.1.2 Bounding Box Annotations

A bounding box is a rectangular box defining an image patch. These image
patches are roughly the size of 250x250 pixels but the size varies based on the
physical size of the weed as well as the distance from the camera. Roughly 5 500
bounding box annotations were used for training, validation and evaluation in
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this thesis. An example of a bounding box with some surrounding context can be
seen in figure 5.2.

5.1.3 Extreme Point Annotations

The extreme points of an object are the four points on the edge of the object that
are at the objects maximum y-coordinate, minimum y-coordinate, maximum x-
coordinate and minimum x-coordinate respectively. There were 230 annotations
of this type available for the thesis. An example can be seen in figure 5.2.

5.1.4 Polygon Annotations

Polygons are annotated by making multiple points around the object. There were
330 polygon annotations available for this thesis. An example can be seen in
figure 5.2.
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Figure 5.1: Example image patches from bounding box annotations of the
four species used. Top left is Creeping thistle, top right is Dandelion, bottom
left is Curled dock and bottom right is Scentless mayweed.
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Figure 5.2: Bounding box, extreme points and polygon annotations of Creep-
ing thistle.

5.2 Data Sets

Different subsets of the data are extracted into smaller data sets to examine which
subsection of the data generates more accurate detectors. How the data sets were
created can be found in the appendix A. Table 5.1 contains information on the
distribution of plant species in the data sets Benchmark and Test. Only the an-
notations of the species Creeping thistle was used from the data sets; Soil, Grass,
Big, Poly and EP. The table 5.2 contains the number of Creeping thistle annota-
tions for those data sets.

When a data set is used for an experiment it is partitioned into a training, a
validation and a test set with approximately 80, 10 and 10 percent of the annota-
tions respectively. Only the annotations in the top-center quarter of the images
were extracted.

Since the mAP of the detectors were low and most of the annotations were
Creeping thistle, most of the models were only trained and evaluated on the
Creeping thistle annotations. When the four classes Creeping thistle, Dande-
lion, Curled dock and Scentless mayweed were used, the map looking only at
the Creeping thistle class is presented in parenthesis.

Data set Benchmark Test
All species 1455 308

Creeping thistle 717 100
Dandelion 486 177

Curled dock 157 30
Scentless mayweed 93 1

Table 5.1: Distribution of annotations for the data sets Benchmark and Test.
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Data set Soil Grass Big Poly EP
Creeping thistle 499 663 4800 330 230

Table 5.2: Number of annotations for the data sets Soil, Grass, Big, Poly and
EP.

5.2.1 Benchmark

The bounding boxes that were annotated most recently, when the annotators had
the most experience.

5.2.2 Big

A data set with all the annotations used in this thesis except for those in the data
set Test. This includes mostly bounding box annotations but also some extreme
points and polygon annotations.

5.2.3 Soil

A data set which included three cvat tasks where the vast majority of the back-
grounds consisted of Soil. This was determined through sampling image patches
in the tasks and manually examining them. An example of an image from the
Grass data set can be seen in figure 5.3.

5.2.4 Grass

A data set which included two cvat tasks where the vast majority of weeds’
backgrounds consisted of grass. This was determined through sampling image
patches in the tasks and manually examining them. An example of an image
from the Grass data set can be seen in figure 5.3.

5.2.5 Poly

A data set which includes all of the polygon annotations. These were annotated
later when the annotators had more experience.

5.2.6 EP

A data set which includes the extreme points that were annotated last when the
annotators had more experience.

5.2.7 Test

Of the cvat tasks with bounding box annotations, one was randomized with a
random number generator. The annotations in this task were not used until the
end of the thesis. This was done in order to have an untouched test set which
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Figure 5.3: Example images from the data sets Grass (left) and Soil (right).

could not have influenced the decisions of the thesis before the evaluation. When
evaluating with this task, the entire data set was used as the test partition. Per-
formance on this data set will give an indication to whether the success of the
methods used are a result of overfitting to the frequently used data sets.

5.3 Results

In this section the results of the experiments are presented.

5.3.1 Checking for Underfitting

During the hyperparameter optimization in all other experiments, the set of hy-
perparameters that lead to the lowest validation loss was returned. For this exper-
iment the code was changed so that the set of hyperparameters that lead to the
lowest training loss was returned instead. The data set Benchmark and the back-
bone ResNet-18 were used. The progression of the losses can be seen in figure 5.4.
The hyperparameters used and the performance on the training set can be seen
in table 5.3. The results indicate that there is not a problem of underfitting and
that the model is expressive enough to handle the data.

Gamma Learning rate Momentum Step size Weight decay Training loss
0.9 0.025 0.00000001 5 0.000001 0.0095

Table 5.3: Overfitting hyperparameters and results.
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Figure 5.4: Training loss (left) and validation loss (right) progression
through the training epochs on Benchmark data set.

5.3.2 Hyperparameter Optimization

There are three choices to make when conducting hyperparameter optimization
in SHERPA. One is how many configurations of hyperparameters to try, the sec-
ond is how many epochs to train the model with each configuration and the third
is which data to use. In order to get an accurate performance measure, only the
training, and validation partitions are used when generating hyperparameters.
The map of the test partition is used as the performance measure.

Different values for number of configurations and training epochs are tried on
the data set Benchmark and with the ResNet-18 architecture as that is the fastest
architecture to test. The results can be seen in table 5.4. The conclusion is that
the performance does not appear to increase as much after 20 train epochs and
10 configurations. Also it appears that the variance is large between runs.

In order to get hyperparameters that can be reused to train different models,
a time-consuming hyperparameter optimization is carried out on the data set Big,
testing 13 configurations and using 100 train epochs. The setup to create the sets
of hyperparameters can be seen in table 5.5 and the resulting sets can be seen in
5.6. The sets CTstandard and Standard-34 were generated when using only the
annotations of Creeping thistle while the set Standard was generated also using
annotations of Dandelion, Curled dock and Scentless mayweed. For some exper-
iments a custom hyperparameter set is created using SHERPA. In those cases the
backbone architecture used in the experiment is used to generate the hyperpa-
rameters. The data set used to generate a training and a validation partition is
the same data set used in the experiment, extracting the same classes.

5.3.3 Backbone Architecture Choice

The architectures ResNet-18 and ResNet-34 were compared. Models of both ar-
chitectures were trained with a few different setups. The results can be observed
in table 5.7.

The results are that while ResNet-34 performed better with some setups, the
attempt to create a set of general hyperparameters failed, given that performance
was poor using Standard-34.



24 5 Experiments and Results

Train epochs Number of configurations map
20 5 0.019

100 5 0.030
100 10 0.049
100 20 0.0043
20 10 0.08
20 15 0.08
20 20 0.028

Table 5.4: Comparison of different values for parameters used for SHERPA
hyperparameter optimization on the data set Benchmark. The mAP is eval-
uated on the test set partition of Benchmark.

Set Architecture Training set Classes Training epochs Number of configurations
Standard ResNet-18 Big All 100 13

CTstandard ResNet-18 Big Creeping thistle 100 13
Standard-34 ResNet-34 Big Creeping thistle 100 13

Custom Same as experiment Same as experiment Same as experiment 20 10

Table 5.5: Creating sets of hyperparameters.

Set Gamma Learning rate Momentum Step size Weight decay
Standard 0.05116 0.000006748 0.316 3 0.04704

CTstandard 0.01 0.001 0.00001 5 0.000000719
Standard-34 0.01 0.001 0.9 5 0.1

Custom 0.01-0.5 0.000005-0.001 0.00001-0.9 1-5 0.0000001-0.9
Table 5.6: Sets of hyperparameters.
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Training set Architecture Hyperparameters Classes map
Benchmark ResNet-18 CTstandard Creeping thistle 0.33
Benchmark ResNet-34 CTstandard Creeping thistle 0.27
Benchmark ResNet-34 Standard-34 Creeping thistle 0.094
Benchmark ResNet-18 Custom Creeping thistle 0.15
Benchmark ResNet-34 Custom Creeping thistle 0.44

Big ResNet-18 CTstandard Creeping thistle 0.34
Big ResNet-34 Standard-34 Creeping thistle 0.0027

Benchmark ResNet-18 Standard All 0.024, (0.052)
Benchmark ResNet-18 Custom All 0.059, (0.11)
Benchmark ResNet-34 Custom All 0.071, (0.17)
Table 5.7: Comparison between ResNet-18 and ResNet-34. The map is eval-
uated on the test set partition of the training set. For the models trained
with all four classes the map when only evaluating on the Creeping thistle
annotations is given in parenthesis.

Training set Architecture Hyperparameters Classes Average map SD Samples
Benchmark ResNet-18 CTstandard Creeping thistle 0.33 0.046 4
Benchmark ResNet-34 Custom Creeping thistle 0.35 0.11 3

Table 5.8: Examining variance. The map is evaluated on the test set partition
of the training set. The standard deviation is given in the SD column.

In order to get reliable and replicable results it is beneficial if the experiments
have low variance. Therefore, the variance of performance was compared be-
tween the architectures. Multiple models where trained with the same setup. The
results can be seen in table 5.8. ResNet-34 was less consistent, possibly because
of the failure to generate good general hyperparameters.

Since the performance of ResNet-34 is less consistent and takes more compu-
tation time to train, ResNet-18 was used for most of the experiments in this thesis.
It will be the architecture used unless noted otherwise.

5.3.4 Comparing Detection on Different Backgrounds

Detectors trained on the data sets Grass and Soil were compared. Since the data
sets had different frequencies of weed species, only the samples of Creeping this-
tle were used. The results can be seen in table 5.9. The detector performed better
on the data set Grass, which was unexpected. It indicates that there are factors
more important than the type of background that make a certain data set difficult
to train a detector with. One such factor could be the quality of the annotations.

5.3.5 Examining Quality of Annotations

To examine the quality of the annotations two assumptions are made. The first
is that the extreme points of the polygon annotations are of higher quality than
bounding box annotations since more care is typically put into making polygon
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Training set Classes mAP

Grass Creeping thistle 0.21
Soil Creeping thistle 0.04

Table 5.9: Comparison of performance on grass and soil background respec-
tively. The map is evaluated on the test set partition of the training set.

Training set Hyperparameters Classes map
Poly CTstandard Creeping thistle 0.011
EP CTstandard Creeping thistle 0.20

Benchmark CTstandard Creeping thistle 0.33
Poly Custom Creeping thistle 0.005

Benchmark Custom Creeping thistle 0.15
Table 5.10: Comparison between annotated polygons and bounding boxes.
The map is evaluated on the test set partition of the training set.

annotations. The second assumption is that the quality increased over time with
the annotators getting more experience.

The data set Poly, which only include polygon annotations, was compared
to Benchmark, which only include bounding box annotations. The data set EP,
which only includes extreme points, was also included since it is hypothesised
that its annotation quality should be somewhere between the polygon and the
bounding box annotations. The Poly data set was annotated shortly after the EP
data set which was annotated shortly after Benchmark. The results can be seen
in table 5.10. Surprisingly the Benchmark data set produced the best results
and the Poly data set produced the worst results. This indicates that there are
other factors that affect the performance more than the improved quality of the
annotations of the Poly data set.

Another way of examining the importance of the quality of the annotations is
to distort the annotations of the training and validation sets. The extreme points
were changed so as to produce either a bigger or a smaller bounding box but
with the same center point. The results can be seen in plot 5.5. The percent of
distortion specifies the bounding box’s height and width as a percentage of the
original bounding box’s measurement. Since the detectors trained on Benchmark
performed poorly, the distortion experiment was also carried out with the data
set Benchmark. Distortions making the bounding box smaller was also carried
out. The results can be seen in the plot 5.6.

It appears that increasing the size of the bounding boxes first leads to an
increase of variance where some models manage about as well as the original,
where as others perform poorly. But once the height and width has reached 300%
the performance is consistently bad. When decreasing the size of the bounding
box the same pattern emerges with first inconsistent, but often good performance,
followed by consistently low mAP. The consistently bad results start at 84 per-
cent.
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Figure 5.5: Performance as a function of distortion on the data set Poly.

Figure 5.6: Performance as a function of distortion on the data set Bench-
mark.
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5.4 Evaluating on Test data set

To examine whether some models could generalise to other tasks the data set
Test was used to evaluate four models. Other evaluations in this thesis have used
a test partition from the same tasks as the training and evaluation data. The data
set Test used another cvat task, meaning that the images and annotations were
from other occasions. These evaluation will be using the standard mAP from 0.5-
0.95 while the other results in this thesis have used 0.05-0.95. The results can be
see in table 5.11. The model trained on the larger data set appeared to generalise
the best. The model trained on all the classes generalised poorly with a map of
only 0.07. The downgrade in performance was the same for Creeping thistle as
for the mean. This means that the loss of performance was probably not due to
the difference in distribution of plants, which is quite similar between the data
sets. The more probable explanation is that the more difficult the task the more
samples are needed to produce a general model and the data set Benchmark was
too small. The performance on the different species of weeds were closely related
to the number of annotations of the class in the training and validation set. The
map on the different species for the model trained with all the classes can be seen
in table 5.12. These evaluations are made with mAP 0.05-0.95.

Both the model trained on the data set Big and the model trained on Poly/tabbrap
when evaluated on the separate test task in comparison to when evaluated on the
test partition.

The model trained on the data set Big achieved the highest map of the thesis
when using the set of IoU threshold between 0.5 to 0.95. Details of the results
from this evaluation can be seen in appendix C.

Training set Hyperparameters Classes map map on data set Test
Benchmark CTstandard Creeping thistle 0.12 0.050

Big CTstandard Creeping thistle 0.15 0.33
Benchmark Custom All 0.07, (0.11) 0.07, (0.032)

Poly CTstandard Creeping thistle 0.0016 0.024
Table 5.11: Evaluation on the data set Test. map 0.5-0.95 is used. The first
map value is evaluated on the test set partition of the training set. For the
model trained with all classes the map when only evaluating on the Creep-
ing thistle annotations is given in parenthesis.

Training set Hyperparameters Creeping thistle Dandelion Curled dock Scentless mayweed
Benchmark Custom 0.28 0.25 0.028 0

Table 5.12: map on the different species of the test partition of the data set
Benchmark.



6
Discussion

This chapter discusses the findings in chapter 5, their implications and makes
proposals for future work.

6.1 General Performance

The data was evaluated by examining whether accurate detectors could be trained
on the data. Accurate detectors have been trained in similar contexts such as the
one trained in Dos Santos Ferreira et al. [7]. When only using the Creeping thistle
class, the best performance achieved in this thesis was a map of 0.33. Samples
of the predictions from this evaluation can be seen in C.1. This performance was
achieved on data from a task separate than the one where the training and valida-
tion data had come from. When using four classes the best performance achieved
was a map of 0.07.

Most evaluations were done on an unseen partition from the same task. How-
ever, when evaluating the models based on annotations from a separate task. The
model trained on the data set Big generalised very well while the performance
decreased significantly for the model trained on the small data set Benchmark. A
likely explanation is that the more difficult the task the more samples are needed
to produce a general model. Another interesting result was that both the model
trained on the data set Big and the model trained on Poly performed better on
the separate task. A likely explanation is that there are fewer weeds present but
not annotated in the data set Test. Especially in comparison to Poly which has a
lot of weeds not annotated.
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6.2 Examination of Data

Experiments were carried out to examine why the performance was not better.
To examine if the backgrounds were the problem, an experiment was carried out.
Two data sets were created where one contained more backgrounds with grass,
and the other with more soil backgrounds. The result was surprisingly that the
data set with grass backgrounds performed better making the hypothesis about
the background being the problem less likely.

The performance on the different weeds was closely related to the number
of annotations in the training set. This made it difficult to say if there was a
meaningful difference in the inherent difficulty of detecting the different species.

To examine whether the quality of annotations could be the problem, the an-
notations were distorted to see if the performance was sensitive to small losses
of quality. While the distortion did impact the performance negatively, the dis-
tortions needed to be quite large for them to have a major impact. When looking
through the annotations almost no annotations appeared to be 300% or more the
size of the plant, nor 84% or less. Therefore, it does seem as though the reduction
in performance caused by low quality annotations is limited. This indicates that
while quality of annotations is important, it is probably not the only reason for
the inaccurate detectors. It also appeared as though it is preferable to make too
big annotations rather than too small ones, which makes sense as adding noise
should be less detrimental than removing information.

Another experiment was carried out where performance was compared when
using annotations believed to be of higher and lower quality respectively. The
extreme points of polygon annotations were believed to be of higher quality while
bounding box annotations were believed to be of lower quality. Surprisingly, the
bounding box annotations produced better results. This is probably because the
images with the polygon annotations had more weeds that were not annotated in
them. The conclusion was that low quality annotations decrease the performance,
though mostly if the mistakes are big.

6.3 Future Work

It would be of interest to confirm the hypothesis that a major problem is the
weeds present in the images but not annotated. One way of doing this could
be to fill in the missing annotations of the tasks used and see by what amount
the performance improves. Another approach could be to evaluate with a mea-
surement like Recall that does not decrease when the the model predicts false
positives that are actually true positives. More theoretical approaches could be
used to examine why the performance is low. For example class activation map-
ping, as described in Zhou et al. [14], could be used to better investigate whether
there is an overemphasis on the background.
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Conclusion

This chapter answers the research questions posed in chapter 2.

• What performance can be achieved by training different models on the cur-
rently available annotations?
When only using the Creeping thistle class, the best performance achieved
in this thesis was a map of 0.33. When using four classes the best perfor-
mance achieved in this thesis was a map of 0.07.

• Which subset of the annotations produces more accurate detector?
Training on bounding box annotations led to better results then training on
the extreme points from the polygon annotations. However, the best results
were achieved when training on as many annotations as possible.

• What changes should be made to the annotation process to enable better
weed detectors to be trained? Annotating every weed on a every frame
appears to be important. Also, making sure the quality of the annotations
is consistently high and especially avoiding making too small annotations.

It was possible to train a detector that performed considerably better than ran-
dom. However, the performance was not as high as one would expect given other
results in the field. After examining the backgrounds and the quality of the anno-
tations the hypothesis is that the biggest reason for the poor performance is that
the images contain weeds not annotated.
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A
Data sets

In this appendix chapter presents the information of which cvat tasks where
used to create the data sets introduced in section 5.2. The information is pre-
sented in table A.1. Only annotations from the top-center quarter of the images
were extracted. For the data sets Soil, Grass, Poly, EP and Big only the Creeping
thistle annotations were used. When using the data sets Benchmark and Test, the
Creeping thistle, Dandelion, Curled dock and Scentless mayweed annotations
were used.

Name CVAT tasks Annotations

Benchmark 20200520145736 1L GH020068 1455
FieldData 20200603102414 3R GH020082,
FieldData 20200603102414 3R GH010082,
FieldData 20200603102414 3R GH010081,
FieldData 20200603102414 1L GH010353,
FieldData 20200603102414 1L GH010352

Soil 20200508122912 3R GH070070, 499
FieldData 20200520145736 3R GH070072,
FieldData 20200520145736 1L GH010068

Grass 20190529111505 10 iframes2, 633
20190529111505 06 iframes2

Poly Seg FieldData 20200520145736 3R GH070072, 330
Seg FieldData 20200520145736 3R GH020072,
Seg FieldData 20200520145736 1L GH020068,
Seg FieldData 20200515101008 2R GH070120,
Seg FieldData 20200515101008 2L GH070066,
Seg FieldData 20200515101008 3R GH070071

EP Seg FieldData 20200520145736 1L GH070068 230
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Seg FieldData 20200520145736 1L GH010068,
Seg FieldData 20200508122912 1L GH070066,
Seg FieldData 20200508122912 3R GH070070

Big Seg FieldData 20200520145736 3R GH070072, 4800
Seg FieldData 20200520145736 3R GH020072,
Seg FieldData 20200520145736 1L GH020068,
Seg FieldData 20200515101008 2R GH070120,
Seg FieldData 20200515101008 2L GH070066,
Seg FieldData 20200515101008 3R GH070071,
FieldData 20200603102414 1L GH020352,
FieldData 20200603102414 3R GH020082,
FieldData 20200603102414 3R GH010082,
FieldData 20200603102414 3R GH010081,
FieldData 20200603102414 1L GH010353,
FieldData 20200603102414 1L GH010352,
FieldData 20200528110542 3R GH070073,
FieldData 20200528110542 3R GH060073,
FieldData 20200528110542 1L GH070073,
FieldData 20200528110542 1L GH060073,
FieldData 20200528110542 1L GH020073,
FieldData 20200528110542 1L GH010073,
FieldData 20200520145736 3R GH050072,
FieldData 20200520145736 1L GH050068,
FieldData 20200515101008 2R GH070120,
FieldData 20200515101008 2R GH060120,
FieldData 20200515101008 2L GH070066,
FieldData 20200515101008 2L GH060066,
FieldData 20200520145736 3R GH070072,
FieldData 20200520145736 3R GH060072,
FieldData 20200520145736 3R GH010072,
FieldData 20200520145736 1L GH010068,
FieldData 20200520145736 1L GH070068,
FieldData 20200520145736 1L GH060068,
FieldData 20200520145736 1L GH020068,
FieldData 20200515101008 3R GH070071,
FieldData 20200515101008 3R GH060071,
FieldData 20200515101008 1L GH070067,
FieldData 20200508122912 3R GH070070,
FieldData 20200508122912 3R GH060070

Test FieldData 20200515101008 1L GH060067 308

Table A.1: Construction of the data sets.



B
Calculations

In this appendix chapter, it is explained how certain estimations were calculated.

B.1 Agriculture Industry

The agriculture industry generated approximately 2.4 trillion usd 2015 [2]. The
world gdp for 2015 was approximately 76 trillion usd [5]. Therefore, the agricul-
ture industry generates approximately 2.4/76 ≈ 3.2% of the world gdp.

B.2 Pesticide Expense US

According to Pimentel et al. [11] the value of all of us crops is approximately 267
billion per year usd while using 4 billion usd in pesticide each year. Therefor
the pesticide is approximately 4/267 ≈ 1.5% of the expenses.
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C
Closer Look at a Model

In this appendix chapter a closer look is presented at one models performance.
The model based on the architecture ResNet-18, was trained with the set of hy-
perparameters called CTstandard on the training partition from the data set Big.
Only annotations of the class Creeping thistle were included. The map is 0.56
when evaluated on the data set Test.

C.1 Detections

In the figure C.1, six frames are displayed. The first is an example of a frame with
an instances of Creeping thistle that was not annotated. The following five are
randomly sampled frames from the data set Test.
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Figure C.1: Samples of frames with ground truth and prediction boxes. The
ground truth boxes are in blue while the predictions are in red.
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C.2 Precision-Recall Curves

In the figure C.2 two precision-recall curves from the evaluation of the model can
be seen. The model outputs a confidence score to each detections. The curve is
created by adding detections one-by-one in the order of their confidence score.
The iou threshold for the curves are 0.05 and 0.5 respectively. The ap of these
curves are 0.85 and 0.73 when using 0.05 and 0.5 respectively.
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Figure C.2: Precision-recall curve for two iou thresholds.

C.3 Performance Based on Threshold

In figure C.3 the ap when evaluating the model can be seen when the iou thresh-
olds are set to numbers between 0.05 and 0.95. The map when including the
points from 0.05 to 0.95 is 0.56 but only 0.33 when only including the points
between 0.5 and 0.95, as is standard practice in the field. For the models in
this thesis the ap got lower when the threshold increased. The detectors that
performed poorly had such recall that the right side of the plot did not contain
enough information. For this reason the interval 0.05 to 0.95 was used in this
thesis.

Figure C.3: Performance when using different thresholds.
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