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Abstract 
To achieve a sustainable future fossil electricity is being replaced with renewable, leading to higher 
uncertainties in electricity production. This has resulted in an incentive for consumers to produce, sell, 
and store their own electricity, hence becoming prosumers. Austerland Skags is a Swedish project that 
explores the possibility to convert a small society into a prosumption system. The system includes 
solar and wind power as electricity producers and hydrogen-fueled vehicles for commodity transport. 
To capitalize the most on their produced electricity they want to store excess electricity. This master 
thesis uses Austerland Skags as a case study to develop a stochastic linear optimization model to 
determine the optimal energy storage solution for an energy prosumption system with both electricity 
and hydrogen demand. 

The method used in this thesis was the sample average approximation (SAA) algorithm. The results 
from the SAA were compared to the expected results from the expected value problem (EEV) to show 
the difference between a stochastic and deterministic solution. The results from the SAA turned out 
to consistently outperform the EEV for the samples created. 

Since hydrogen demand could only be sourced in-house, the model was forced to use an electrolyzer 
and hydrogen tank. The fnal result from the SAA showed that both a battery and fuel cell was used 
in addition to the electrolyzer and hydrogen tank in the optimal solution. All capacities stayed within 
reasonable levels showing the possibility of realizing a cost-effective prosumption system. 

Key words: Stochastic Optimization, Energy Prosumption, SAA, Linear Programming. 



Sammanfattning 
F¨ a en h˚ anslen ut mot f¨ allor, vilket leder till or att uppn˚ allbar framtid byts fossila br¨ ornyelsebara energik¨ 
högre osäkerheter i elproduktionen. Detta har skapat ett initiativ för konsumenter att börja producera, 
s¨ arav bli prosumenter. Austerland Skags ¨alja, och lagra sin egen elektricitet och d¨ ar ett svenskt pro-
jekt som unders¨ ojligheten att konvertera ett litet samh¨oker m¨ alle till ett prosumentsystem. Systemet 
ar¨ uppbyggt med sol och vindkraft för produktion av elektricitet och planerar att använda vätgas-
drivna fordon for¨ transport av r˚ F¨ a mycket som m¨avror. or att utnyttja s˚ ojligt av den producerade 
elektriciteten vill de kunna lagra overskotts¨ elektricitet. Den här masteruppsatsen använder Auster-
land Skag som en fallstudie för att utveckla en stokastisk linjär optimeringsmodell för att avgöra den 
optimala energilagringsl¨ or ett energiprosumentsystem med b˚ atgasbehov. osningen f¨ ade el och v¨ 

Metodvalet i denna uppsats var sample average approximation (SAA) algoritmen. Resultatet fran˚ 
SAA jämfördes med det förväntade resultatet från förväntade värdeproblemet (EEV) för att visa skill-
naden mellan stokastiska och deterministiska losningar.¨ Resultatet fran˚ SAA visade sig ständigt ge 
bättre resultat an¨ EEV för undersökta stickprov. 

Eftersom vätgasbehovet endast kunde förses in-house i modellen var den tvingad att dimensionera 
upp ett elektrolysör och vätgaslager. Slutresultatet av SAA visade att både batterier och bränsleceller 
var aktuellt tillsammans med elektrolysor¨ och v¨ osningen. Alla kapaciteteratgaslager i den optimala l¨ 
förhöll sig inom rimliga nivåer vilket påvisar möjligheten att realisera ett kostnadseffektivt prosu-
mentsystem. 
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1 Introduction 
This chapter presents the studied problems background followed by the problem formulation. The 
purpose of the thesis is then presented together with the research statement followed by the thesis 
delimitations. 

1.1 Problem Background 
In response to the EU:s sustainability goal to be carbon dioxide neutral by 2050, more and more fossil 
energy sources are being replaced with renewable energy sources. This has led to higher uncertainties 
of electricity production since a bigger share of renewable energy results in higher fuctuations in 
production. Wind power, as an example, can range from 0.5-48.8% of Sweden’s total electricity 
production for a specifc hour (Svenska Kraftnät, 2022). The result of high variability in electricity 
production has led to fuctuations in electricity prices. 

This has resulted in an incentive for consumers to produce, sell, and store their own electricity. These 
systems where the consumer both consume and produce is called prosumption. To use an electricity 
prosumption system effciently a solution where both production and consumption are balanced needs 
to be found. One solution to this could be to export electricity during overcapacity and import during 
under capacity. The problem is that export often occurs during low electricity prices and import during 
high prices since the locally produced electricity is dependent on the same factors as the national grid. 
Another solution to balance the system could be to store the electricity during excess capacity and use 
the stored electricity when needed. 

Austerland Skags is a Swedish project that explores the possibility to convert a small society located 
on Gotland into a prosumption system. The proposed energy system of Austerland Skags includes 
renewable energy production in the form of a wind and solar power park which, in combination with 
the electricity grid, will help power 200 households, a local farm, a treatment plant, and more, see 
fgure 1. The system also plans to include rooftop solar panels on the households. This way both the 
park and households will sometimes produce excess electricity. Excess electricity will either be stored 
in batteries or/and hydrogen for later use or sold to the electricity grid. The goals of the project are 
to produce and consume energy locally, create a system for storage and smart control, enable energy 
sharing within the system, and build a robust system that helps stabilize the regional electricity grid 
(Nygarn Utveckling AB, 2022). The case of Austerland Skags will be used in this master thesis as 
a small-scale example of how renewable energy sources can be implemented in combination with 
energy storage systems. 

1.2 Problem Formulation 
A common way to store electric energy is in batteries, there are however ways to convert electric 
energy and store it in other forms. Some examples of such storage mediums are thermal and mechan-
ical storage, this can be done through pumped hydro storage, compressed air, heated lithium fuoride, 
and more (Ferreira et al., 2013). A lot of these solutions are however dependent on the geographical 
location and not always possible to achieve (Møller et al., 2017). Hydrogen is another alternative 
to store energy, this method has high potential since it has an almost negligible self-discharge rate 
and high storage capacity which makes it an excellent storage medium for long-term storage (Energy 
Systems and Energy Storage Lab, 2020). The problem with hydrogen is that the energy effciency of 
converting electricity to hydrogen and then from hydrogen back to electricity is relatively low. When 
producing hydrogen through water electrolysis the energy effciency can vary between 62-90% de-
pending on the conditions and technology (Carmo et al., 2013; Kumar & Himabindu, 2019). When 
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Figure 1: Austerland Skags Energy System 

converting back to electricity from hydrogen in a fuel cell the effciency varies between 38-60% de-
pending on conditions and technology (Parra et al., 2019; Taner, 2018). This gives hydrogen storage 
a round trip effciency of 23.6-54% which is relatively low compared to the round trip effciency of 
batteries which usually lies between 63-97% depending on the type of battery (X. Luo et al., 2015). 

The problem with batteries is that they are less suitable to store energy for longer periods of time due 
to self-discharge rates, weight, and the size required to store larger capacities (X. Luo et al., 2015). 
Batteries are however an excellent storage technology during shorter periods and could be suitable to 
balance daily/weekly energy consumption. 

There are several studies that examine energy storage solutions and their applications (Ferreira et al., 
2013; X. Luo et al., 2015; Møller et al., 2017), and there exists several studies on prosumption systems 
(Anthony Jnr et al., 2020; Kubli et al., 2018; Sossan et al., 2016). But there is a lack of studies 
that focuses on the optimal capacity of multiple energy storage solutions in prosumption systems 
that consider both stochastic demand and supply. It hence exists an interest to develop a general 
optimization model that calculates the optimal storage capacities for a prosumption system and what 
storage mediums to use to achieve an optimal energy balance solution. This master thesis will use the 
case of Austerland Skags to test and verify the created optimization model. 

1.3 Purpose & Research Questions 
The purpose of this thesis can be formulated by the following research statement: 

Design and implement a linear optimization model which calculates the optimal storage capacity of 
different storage mediums, with stochastic demand and supply, in an energy prosumption system. 

To achieve this the statement has been divided into several research questions: 

1. What are relevant storage mediums for energy storage in a prosumption system? 

2 
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2. What found variables and parameters are relevant to an energy prosumption system? 

3. How do different degrees of self-suffciency affect the model? 

4. How will the stochastic demand and supply affect the model? 

1.4 Delimitations 
The situation analysis will only cover current technology, hence no new solutions of energy storage 
will be investigated. Renewable energy production capacity will be set, hence no analysis on the 
optimal capacities of wind and solar power will be considered. The system will be modeled after 
the case of Austerland Skags hence no connections other than those in fgure 1 will be considered. 
Electricity consumption and production is presented on an hourly resolution. This is not coherent 
with reality since consumption and production of electricity is continuous, this might result in errors 
regarding self-suffciency and self-consumption (Nyholm et al., 2016). Data for intra-hourly demand 
can however be hard to fnd and signifcantly increases computational burden. Transmission losses 
in the grid will also be neglected since the effect is deemed to small to motivate the computational 
complexity. The study will not consider the water supply to the electrolyzer, and will assume water 
to be suffcient to always run the electrolyzer. Excess oxygen produced from the electrolysis of water 
will also not be treated due to diffculties in approximating the excess oxygens value. 

3 
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2 Method 
This chapter presents the research purpose and approach for the thesis, followed by the data collection 
process and analysis. The chapter ends with the reliability and validity of the thesis. 

2.1 Research Purpose and Approach 
According to Saunders et al. (2007) most research purposes follow three different classifcations, these 
classifcations are exploratory, descriptive, and explanatory. A research purpose does not necessarily 
need to follow a specifc classifcation but can according to the author fulfll more than one purpose. 
The purpose of this thesis was to design a general optimization model to determine the optimal storage 
capacities of different storage mediums in an electricity prosumption system. This purpose could be 
classifed in several of the classifcations. The purpose was primarily explanatory in the way that it 
showed how different variables in the system correlated to each other and how that affected costs and 
self-suffciency. The purpose could be descriptive in the sense that it portrayed an accurate picture 
of how a real system would operate. One could also argue that the thesis was exploratory since it 
examined the possibility of including different technologies based on the local conditions of the place 
examined. 

The approach of this thesis has followed an abductive structure. The abductive approach is a mix-
ture of deductive and inductive based analysis, the approach consists of exploring a phenomenon by 
moving between theory and empirical data to successively build a deeper understanding of the subject 
(Saunders et al., 2007). The thesis started with searching the literature and analyzing the given case 
from Austerland Skags to form a frst version of the deterministic optimization model. The model 
was then tested with the data from the case and literature, the results of the model were then analyzed 
to see if the model acted as intended and gave realistic results. The implementation was updated in 
cases of unrealistic behaviors, the changes were then noted in the deterministic model. The literature 
was then revisited to fnd potential updates for the deterministic model, this process was repeated 
in an iterative manner until the deterministic model was deemed satisfactory to represent a realistic 
energy prosumption system. When the deterministic model was fnished it was used together with the 
literature on stochastic optimization to create a stochastic optimization model. The stochastic model 
was then together with a sample algorithm used to produce the fnal result. For an illustration of the 
research approach see fgure 2. 

Figure 2: Illustration of research approach 

2.2 Data Collection 
Collected data for the report consisted of both primary and secondary data. Primary data was provided 
by the studied case of Austerland Skags and consisted of necessary supply and demand parameters to 
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run an optimization of the system. It also included estimated prices for the relevant technologies to-
gether with technology lifetimes and operating expenditures. Heating demand data was not presented 
in the original case data, an estimate of annual heating demand was however delivered upon request. 

Secondary data was primarily collected through the literature review which mainly consists of sci-
entifc articles and books. The studied articles where collected from the databases Google Scholar 
and Scopus with keywords such as; ”stochastic optimization”, ”stochastic programming”, ”energy 
prosumption”, ”pv-battery”, and ”hydrogen energy storage”. The articles on stochastic optimization 
were primarily sorted by highest number of citations, articles on hydrogen and battery technology 
were primarily sorted by date since the technological advancements in those felds are moving fast 
and information on effciencies and proftability quickly gets outdated. After sorting, articles from 
renowned journals were prioritized. 

2.2.1 Sampling process 

For the case of Austerland Skags one year of necessary data was available, corresponding to one sam-
ple. Since the stochastic model needed several samples to capture the intermittent nature of renewable 
energy sources, electricity prices, and electricity demand profles more samples were needed. To cre-
ate more samples secondary data including wind speed, global solar irradiation, electricity prices, and 
demand profles were collected. The weather data was collected from weather stations on Gotland 
provided by SMHI (2022). Electricity price data for SE3 (Swedish electricity area 3) was gathered 
from Nordpool (2022) and consumption profles for Gotland can be found on Mimer (2022). 

The same processes of fnding the variance and mean for wind power, electricity prices, and demand 
profles were used. The process consisted of sorting the data by year and calculate the average and 
standard deviation for the same timestamps each year. Sorting of data and calculations of average and 
standard deviation were done in Microsoft Excel. Missing data was treated as empty cells, in other 
words it did not affect the calculations other than the sample size. When the average and standard 
deviation had been found, the relative deviation from the mean was calculated. The data from Auster-
land Skags case were then used as a mean together with the relative deviations to create distributions 
for the demand, these distributions were then used to create samples. Since the production of wind 
energy could drop to zero but not below a lognormal distribution was used to describe the variation. 
For the sun data, a uniform distribution was applied across years since the data did not follow a con-
tinuous model. Either the sun was shining resulting in high radiation or it was blocked by clouds 
resulting in low. For the electricity prices, a normal distribution was directly applied to the calculated 
means and standard deviations from the gathered secondary data. 

2.3 Analysis Method 
To fnd the optimal storage capacities and answer the research questions, methods within the feld 
of operations research were used. The foundation of the analysis was based on linear programming 
where real world restrictions are formulated as linear constraints and the objective is formed as a 
linear cost function that is either minimized or maximized. The formulated linear optimization model, 
see chapter 5.2, was implemented in Python 3.8 together with the mathematical optimization solver 
Gurobi version 9.1.0. All optimizations were performed on a Laptop with Intel(R) Core(TM) i5-
8250U 1.60GHz processor and 4GB RAM. The python implementation can be found in appendix 
A. 

Since heating demand for the system only existed as annual data it needed to be reworked to ft 
the same resolution as the rest of the data. To do this the seasonal variation of heating demand was 
gathered from Energimyndigheten (2022) statistics database. The database included quarterly heating 
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demand for Swedish households and was used to set the relative seasonal heating demand, which was 
then assumed to increase/decrease linearly throughout the months. The data was then assumed to be 
equally distributed over the hours throughout the month. 

The analysis continued with a cost optimization of the deterministic model, with and without uti-
lization of waste heat to see how it affected cost and self-suffciency. The degree of self-suffciency, 
with utilization of waste heat, achieved during cost optimization was later used as a minimum degree 
of self-suffciency. Another optimization based on self-suffciency was then performed to fnd the 
maximum possible degree of self-suffciency. The self-suffciency was then gradually increased 0.5 
percentage points at a time by forming a linear constraint on minimum degree of self-suffciency from 
the most economically viable to the maximum allowed. Several graphs were then plotted based on 
the results to show the correlation between self-suffciency and system variables. 

The linear deterministic optimization model was then integrated with the sampling algorithm and 
sample average approximation (SAA) method, see section 3.3.1, to see how much the stochastic 
parameters affected the results. Both the sampling algorithm and SAA was written in python script 
by the author and can be found in appendix B. The N, N’, and M of the SAA was increased until 
the 4GB RAM was fully occupied and the program stopped due to memory error. The SAA results 
where then compared to the result from the expected value problem to show the difference between 
an stochastic and deterministic solution. 

2.4 Reliability and Validity 
To uphold accurate results and keep good research quality high reliability and validity were of im-
portance. Reliability refers to how consistent the analysis and data collection procedures were. Will 
the thesis yield the same results on other occasions or by other observers? Was the thesis transparent 
in how it analyzed the data? Validity refers to if the study actually measured what it claimed to do 
(Saunders et al., 2007). 

Since this thesis was quantitative in its nature and very few subjective decisions were made during 
the study the reliability should be high. All collected data came from either governmental agencies 
or recent literature. In other words, it should not matter who performed the study, it should still 
yield similar results. The study would however yield different results depending on location due to 
different geographical conditions. This was however not an effect of the methodology but the data 
the model had to work with. The technology in the feld is progressing quickly, meaning that some of 
the parameters used in the thesis will change over time resulting in a different outcome than the one 
obtained in this study. The transparency was deemed to be suffcient since established methods in the 
feld of operations research were used to fnd the results. 

6 
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3 Literature Review 
This chapter presents literature regarding prosumption systems, stochastic optimization, and inven-
tory management under uncertainty. The purpose of the literature review is to provide a better under-
standing of the thesis topic and lay the foundation of the analysis. 

3.1 Electricity Prosumption Systems 
With the decreasing costs of solar panels and the possibility to sell electricity to the electricity grid, 
decentralized electricity production through photovoltaic (PV) panels in households has dramatically 
increased since the beginning of the 2000’s (Bellekom et al., 2016; Ellsworth-Krebs & Reid, 2016). 
This has created a situation where the households both produce and consumes electricity, hence cre-
ating an electricity prosumption system with electricity prosumers. The term prosumption was frst 
introduced by Toffer and Alvin (1980) and is a combination of the words production and consump-
tion. In other words, being a prosumer means that one both produces and consumes a commodity. 

A study by Couture et al. (2014) presented different drivers for the emerging prosumption systems, 
economic drivers, behavioral drivers, and technology drivers. The economic driver, the expected 
economic performance of the prosumption investment, is usually the primary driver for prosumers to 
install renewable energy sources such as solar PV panels. This is why Germany for example has a 
signifcantly higher installed residential production capacity than France and the US even tho both 
have higher potential daily production capacity per square meter than Germany. Due to the high 
electricity taxes in Germany it becomes more proftable to install PV panels compared to France and 
the US. 

Another driver brought up by Couture et al. (2014) is the behavioral driver. This type of driver 
can motivate consumers to become prosumers when there is little to no fnancial gain. Factors that 
infuence these behavioral drivers are usually: 

• Environmental values: The will to reduce electricity produced by fossil fuels to hinder climate 
change and reduce pollution. 

• Control: Some prosumers value the possibility of not only controlling how much energy they 
consume but also how the energy is produced. 

• Self-suffciency: The ability to be independent of third-party suppliers. 

• Reliability and safety: A PV system combined with a battery can act as a backup in case of a 
power outage. 

• Status and prestige: Certain people value and take prestige in owning and operating high 
technology equipment. 

• Interest in technology: Consumers who like to keep up with newer technology trends might 
invest in PV cells and become prosumers due to it being a new growing technology. 

• Desire for choice: Some consumers prefer the possibility to choose where they source their 
electricity from and might invest in solar PV just because they have the option. 

There also exist behavioral drivers that work against becoming a prosumer, such as lack of awareness, 
lack of trust in the technology, and inconvenience. 

The last primary driver that Couture et al. (2014) mentioned was the technology driver. Being an 
electricity prosumer is usually connected with the system of having an electric vehicle and battery 
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storage, all being connected with a smart grid. Hence with the technological advancements of other 
technologies such as batteries and electrical vehicles, it becomes more compelling to start producing 
your own electricity since the yield from the produced electricity becomes higher the better the in-
frastructure around it is. Technological advancements in electricity production such as PV panels also 
play an important role in this driver as well. 

Electricity prosumption is however not only important for the prosumer but also important for society 
as a whole. Having decentralized renewable electricity generation systems both increases redun-
dancy in the grid, lowers carbon emissions, and reduces the need for increased grid infrastructure 
by producing the electricity needed on sight (Couture et al., 2014; Ellsworth-Krebs & Reid, 2016). 
Electricity prosumption systems will hence play an important role in climate change, energy security, 
and electricity affordability (Ellsworth-Krebs & Reid, 2016). 

In a typical electricity prosumption system excess energy produced by the renewable energy source 
is sold to the electricity grid and during defcits electricity is bought from the grid. This creates a 
scenario where the prosumer is semi self-suffcient and can not utilize the full potential of their pro-
duction. This is why some prosumption systems include a battery, enabling the possibility to store 
the energy for later use increasing self-consumption of the renewable energy (Bellekom et al., 2016). 
To maximize proft from the system there exists a ratio between electricity stored in batteries and the 
amount sold to the grid. This ratio can be hard to fnd due to the intermittent nature of renewable 
energy sources which will be further discussed in section 3.3. The goal is however not always to 
maximize proft when installing renewable energy sources, some systems are designed to be as self-
suffcient as possible hence maximizing self-consumption (Bellekom et al., 2016). Some go as far 
as disconnecting from the grid completely and produce 100% of their own electricity (Couture et al., 
2014). Other systems are designed to even out load levels in the electricity grid, hence reducing net-
work infrastructure costs. In a study by Wang et al. (2013) a battery storage system was implemented 
to balance the load profles of the electricity grid while simultaneously balancing the electricity costs 
of households hence optimizing the storage capacity based on the total costs for both consumers and 
system operator. The way this was set up was that the consumers controlled a percentage of the bat-
tery capacity, say [x | 0 ≤ x ≤ 1], and the system operator controlled the remaining capacity, 1 − x. 
By then sending electricity to the battery during low demand in the electricity grid and using stored 
electricity during high demand the load profle could be balanced resulting in network investment 
savings for the system operators. The system also worked in a similar way for the consumers where 
they could charge the battery during low electricity costs and discharge during higher costs evening 
out the total electricity costs during the day. 

3.2 Technologies in Prosumption Systems 
In recent years the number of prosumers has seen a rapid increase due to the increase of residential 
PV panels (Dafalla et al., 2020). It is estimated that by 2050 the residual sector could be able to see 
up to 89% of their own electricity demand (Gährs et al., 2020). For this to be possible the prosumers 
have to work together and form collective prosumer networks to maximize self-consumption (Hahnel 
et al., 2020; Inês et al., 2020). This requires more people to adopt the idea of producing their own 
electricity. Currently some of the roadblocks for a broader general audience to adopt being a prosumer 
is, according to G¨ The author thusahrs et al. (2020), missing knowledge and acceptance issues. 
states that it is important to educate the importance and benefts of being a prosumer. The author 
continues to point out that policymakers can further haste the adoption of prosumption by reducing 
legal and administrative barriers, promoting communal self-consumption, and bringing forth fnancial 
initiatives. 
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Most of today’s prosumption systems are based on PV solar panels as electricity generators, a smart 
meter to control the electricity fow within the system, and potentially a battery storage technology to 
increase self-suffciency (Couture et al., 2014). Some of the systems are confgured in a way where the 
electricity production is placed after the smart meter hence selling all the electricity produced to the 
grid, these systems exist because of Feed-in Tariffs (FiTs). FiTs are an extra fee that the grid operator 
pays the prosumer for producing and selling renewable electricity. These kinds of systems never 
include a battery since there is no interest in balancing the produced electricity. The more common 
way however, is to place the production before the meter and utilize the produced electricity for 
oneself. If the goal for this system is maximizing self-suffciency then batteries are usually included 
to balance out the produced electricity throughout the day (Brown et al., 2019). There is speculation 
on including electric cars in the systems and utilizing the battery of the car as a storage medium for 
the entire household. This way an external battery is not needed since the electric vehicle can fulfll 
the role of electricity balancing. This technology is however not available yet (Couture et al., 2014). 

There are however speculations on other storage technologies than batteries to store energy over 
longer periods of time. Batteries are poorly ft to achieve this task due to high costs and capacity 
restrictions (Møller et al., 2017). These problems do not have a large impact on certain climates 
where the sun irradiation is somewhat balanced throughout the year, but for countries located in 
the northern hemisphere the limited capacity and costs of batteries start to show (Puranen et al., 
2021a). Batteries also lose some of the electricity stored over time, the phenomenon is called self-
discharge and usually lies between 0.1-0.3% per day. There are other storage technologies that do not 
experience self-discharge and suffer from the same capacity restrictions. The storage technologies 
mainly discussed in the literature for long time storage are pumped hydro storage, compressed air 
storage, and chemical storage in the form of hydrogen or methane (Ferreira et al., 2013; X. Luo et al., 
2015). The main problem with pumped hydro storage and compressed air storage is that they are 
heavily dependent on geographical location and require large initial investments (X. Luo et al., 2015). 
Hydrogen is not restricted by geographical limitations, even though it could beneft from it by storage 
in caverns, and it has the largest potential for large-scale energy storage (Møller et al., 2017). 

3.2.1 Batteries in Prosumption Systems 

The inclusion of battery storage in prosumption systems can increase self-suffciency and help bal-
ance the grid load. However depending on the type of battery the system can reach different levels 
of self-suffciency. The current most common battery used in prosumption systems is lithium-ion 
batteries. A part of the reason for the lithium-ion batteries progress in the grid implementations is due 
to the spillover effect from the electrical vehicle market (Kamiya et al., 2021). The Hornsdale Power 
Reserve, located in South Australia, was as of 2019 the worlds largest lithium-ion battery reserve with 
a 100MW discharge capacity and a 129 MWh storage capacity. The power reserve was supplied by 
Tesla, one of the leading suppliers of electric vehicles, and has due to its capability to help balance the 
electricity grid provided signifcant cost savings for the national electricity market (Aurecon, 2020). 
The battery technology from the electrical vehicle market is not ideal for grid implementation. The 
focus on the electric vehicle market is usually to create energy-dense batteries with low volume and 
weight. For stationary batteries, volume and weight are usually secondary considerations. Because 
of this lithium iron phosphate batteries are becoming more popular in grid-scale implementations due 
to their lower costs, higher safety, higher durability, and lower material scarcity than batteries more 
prominent in the electrical vehicle market (Kamiya et al., 2021). Lithium batteries are however not 
the only battery technology that has been implemented in prosumption systems. Lead-acid batteries 
are a mature technology that has seen many implementations in prosumption systems in the past. Its 
main selling point is that it is cheaper than the lithium-ion batteries but it suffers from a general lower 
effciency, 80-83% compared to lithium-ions 85-92%, 92-96% charge/discharge effciency (Gährs et 
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al., 2020; Han et al., 2022; Puranen et al., 2021b; Zou et al., 2022). Another beneft of lithium batter-
ies over lead acid is the higher depth of discharge (DoD). To prolong the lifetime of batteries they are 
rarely fully discharged and the minimum state of charge of a battery is decided by the DoD. The DoD 
of lead-acid batteries is usually 60% (Khiareddine et al., 2018; Parra et al., 2016), while lithium bat-
teries allows a DoD of 80% (Campana et al., 2021; Puranen et al., 2021b; Zou et al., 2022). Another 
technology that could replace lithium-ion batteries in battery storage projects is fow batteries. They 
are less sensitive to higher DoD, have fast response times, almost no daily self-discharge, and long 
life cycles. The problem with fow batteries is that they have a low energy density and low market 
maturity (Kamiya et al., 2021; X. Luo et al., 2015). 

A study by Puranen et al. (2021b) investigated the economic viability of different electric energy 
storage methods for two prosumer households in Finland. Among these methods was physical battery 
storage for electricity storage, the study concluded that physical battery storage is not economically 
viable for either of the two households. Another study by Campana et al. (2021) showed that including 
a battery for peak shaving and price arbitrage can lead to considerable annual savings. The study 
examined different geographical locations for their PV prosumer system, Stockholm, Johannesburg, 
and Rome, and showed that Stockholm had the largest potential for peak shavings but the lowest 
potential for annual revenues. All geographical locations showed that the net present value of the 
battery investment was negative, meaning that the annual savings are not high enough to fnancially 
motivate the investment of a battery. The study claimed that battery prices need to drop 50%, 250 
US$/kWh (2375 SEK/kWh), for the investment to be proftable. There are however other factors 
than battery prices that affect the economic value of batteries in PV prosumption systems. Barbour 
and González (2018) study examined what electricity prices and FiTs are needed for battery storage 
to be proftable with battery prices ranging from 400-700 US$/kWh (3800-6650 SEK/kWh). The 
study concluded that for battery storage solutions in prosumption systems to see economical viability 
the electricity prices need to exceed 0.40 US$/kWh (3.8 SEK/kWh) and FiTs below 0.05 US$/kWh 
(0.475 SEK/kWh). 

Most of the literature examined fnds that PV battery systems are not economically viable, there are 
however some studies that claim that it can be viable. Goop et al. (2021) mentions that the econom-
ical viability of a PV battery prosumer system is dependent on local conditions such as annual solar 
PV electricity generation, electricity prices, PV prices, and battery prices. The author continues to 
claim that studies on the economical viability of PV battery systems rarely consider the surrounding 
electricity system. By taking spot price, taxes, and grid fees into consideration when calculating eco-
nomic viability, the study found that a prosumption system of 2104 Swedish households with a solar 
PV capacity of 5-20 GWp (gigawatt peak) could beneft from a 0.5-10 GWh battery system depend-
ing on future conditions. The high variability of PV and battery capacity is due to the three different 
scenarios that the study examined where they varied the investment costs for batteries, 90-300 C/kWh 
(931.5-3105 SEK/kWh), and solar PV, 900-1200 C/kWp (9315-12420 SEK/kWp), for each scenario. 
Han et al. (2022) examines 26 regions in Switzerland and fnds that a battery PV prosumer system 
can already be more proftable than a PV-only system. The reason for examining multiple regions 
was because the author found that studies tended to focus on single households/buildings or clusters 
of households within the same region, which does not give a representative picture of a country’s PV 
battery system potential. The author claims that the battery sizes will continue to expand in the future 
as the technology matures and becomes cheaper, the prosumers that beneft the most from the system 
are those with high irradiation and electricity demand. 

Even though studies fnd different results on the economic viability of batteries in PV prosumption 
systems due to the uncertainties in battery costs, electricity costs, tariffs, and geographical conditions 
all examined studies are in agreement on the potential of increasing self-suffciency by implement-
ing a physical battery storage (Campana et al., 2021; Goop et al., 2021; Puranen et al., 2021b). A 
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study investigating battery storage for single households with PV systems found that using battery 
storage, 5-15 kWh, could increase self-suffciency by 20-30 percentage points (Gährs et al., 2020). 
The study by Puranen et al. (2021b) showed that a 20 kWh battery could increase self-suffciency by 
20-25 percentage points for two different households with a solar PV capacity of 8 kWp and 21.11 
kWp respectively. Hence increasing the households self-suffciency from 25% and 40% to 50% and 
60%. The study then concluded that the increase in self-suffciency stagnated with increasing battery 
capacities above 20 kWh only increasing by a few percentage points from 20 to 100 kWh of battery 
capacity. Another study found similar results showing that increased self-suffciency from batteries 
stagnates at a certain battery capacity. The study found that investments in battery storage, in kWh, 
larger than four times the annual PV production capacity, in MWh, results in minimal improvements 
in self-suffciency (Nyholm et al., 2016). 

3.2.2 Hydrogen in Prosumption Systems 

Hydrogen as a storage medium for electricity requires three components for the system to work. 
These are an electrolyzer, hydrogen storage tank, and fuel cell. The electrolyzer uses electricity to 
split water into hydrogen and oxygen, the hydrogen tank then stores the hydrogen so it can later be 
converted back into electricity, the fuel cell uses the excess energy that is created when hydrogen 
reacts with oxygen to create electricity (Zhang et al., 2017). The type of electrolyzer, hydrogen tank, 
and fuel cell will affect the effciency and costs of the system. The fuel cell most commonly used in 
prosumption systems is the proton exchange membrane (PEM) fuel cell due to its quick start-ups and 
low operating temperatures (X. Luo et al., 2015; US Department of Energy, 2011). The PEM fuel cell 
can reach electricity effciencies between 38-60% and if waste heat is utilized the system effciencies 
can reach 60-80% (Y. Luo et al., 2021; Parra et al., 2016; Puranen et al., 2021a). PEM electrolyzers 
are also a popular alternative in prosumption systems, one reason for this is connected with one of the 
problems with PEM fuel cells. The PEM fuel cell is sensitive to hydrogen impurities and the PEM 
electrolyzer produces hydrogen with high purity (99.99%). Other advantages of the PEM electrolyzer 
are quick responses, high effciency (80-90%), and a compact design (Kumar & Himabindu, 2019). 

Lacko et al. (2014) used a hydrogen system to enable an off-grid household to become 100% self-
sustainable using only renewable energy sources. This system also utilized the excess heat that is pro-
duced during both electrolysis and the fuel cell conversion. The study frst analyzed the use of excess 
heat from the hydrogen system without thermal storage, this resulted in 54% self-suffciency mainly 
due to a mismatch in production and consumption of the heat, primarily from the electrolyzer. By 
adding thermal storage the heat can be stored for later use and the household was able to completely 
remove their use of fossil fuels, achieving 100% self-suffciency. Another study that mentioned the 
potential of utilizing excess heat from the fuel cell was Puranen et al. (2021a). Their study claimed 
that the excess heat from the fuel cell could cover up to 1 MWh of electricity used for heating, the 
annual electricity demand for the system was 7.271 MWh. In their case this covered 50 kg, one-fourth 
of the total demand, of produced hydrogen. 

A study by Parra et al. (2016) also studied a stand-alone hydrogen system to increase the self-
consumption of solar PV electricity in a community energy system. The study found that the round 
trip effciency of the system reached 52% when utilizing waste heat. The system is still less viable 
than batteries for short-term storage but shows potential for medium to long-term storage. Puranen 
et al. (2021a) examines the potential of an off-grid household in northern climates utilizing a hybrid 
energy storage system with both batteries and hydrogen. The hydrogen system is modeled like the 
previously mentioned with an electrolyzer and fuel cell with a nominal power of 6 kW each and no 
minimum power output. In practice low power loads, below 20%, might shorten the life span of the 
technologies and cause problems due to increasing hydrogen crossover to oxygen during electrolysis. 
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This problem was partially considered since the fuel cell operated to also charge the battery during 
unmet demand from the renewable energy sources to avoid partial loads below 20% from the fuel cell 
and minimize the start and stops. The results from the study showed that hydrogen storage needed 
a capacity of at least 183 kg, 7.21 MWh using the higher heating value of hydrogen, to balance the 
annual electricity demand. The system did not include a compressor which means that the storage 
pressure was 50 bar, which is possible to achieve with some PEM electrolyzers, resulting in a storage 
volume of 45.8 m3. The study also concluded that the results were heavily dependent on geographical 
location, due to varying solar irradiation, and that the hydrogen storage would most likely decrease 
for more southern locations. 

When looking at larger electricity prosumer systems the balance of consumption and production starts 
to affect the grid. Usually when evaluating prosumer systems net present value and self-suffciency 
ratio are two important factors, but when the system reaches a large enough scale grid power fuctu-
ation also becomes a factor. Hydrogen storage can better help lower the negative grid impacts than 
battery storage due to the higher capacity of hydrogen storage for the same costs. The hydrogen stor-
age solution also reaches better self-sustainable ratios and net present values when taking grid impact 
into consideration (Zhang et al., 2017). 

3.3 Stochastic Demand and Supply 
An energy supply chain with renewable energy has two important technical properties, namely an 
intermittent energy source, and an intermittent energy demand (Schneider et al., 2016). There exist 
several approaches to optimize problems with uncertainty, they follow different modeling philoso-
phies such as minimizing deviation from goals, minimization of maximum costs, and optimization 
over soft constraints (Sahinidis, 2004). One of the approaches to optimizing with uncertainties is 
stochastic programming. Birge and Louveaux (2011) emphasizes the value of stochastic program-
ming and shows that the problem including stochastic uncertainty, called the recourse problem (RP), 
will always have at least as good of a solution as the expected results from the expected value problem 
(EEV). Both the EEV and the RP are then worse than the wait and see solution (WS) which is the best 
possible value for the given situation since the stochastic values are then no longer stochastic because 
they already occurred, hence resulting in the relation shown in equation 1: 

WS ≤ RP ≤ EEV (1) 

The WS solution is however not always accessible due to either high costs or due to the information 
not being available. Which is why the RP can be of value when dealing with uncertainty. How the 
RP and EEV is calculated will be further discussed in section 3.3.1. 

The RP is however not the only way to deal with uncertainties, there exist several different ways to 
approach stochastic programming in optimization models. Reddy et al. (2017) presents a review of 
several different stochastic optimization methods and compares the robustness, accuracy, and speed 
of the different approaches. The author states that recourse models are robust and accurate but can 
sometimes lead to a high computationally burden resulting in a time-consuming method, especially if 
the stochastic variables are continuous resulting in non-linear models. 

3.3.1 Fixed Recourse Two-Stage Programs 

For information on the following variables and parameters see table 1. The fxed recourse two-stage 
model was frst implemented by Beale (1955) and Dantzig (1955) and is the problem of fnding: 

Tmin z = c x + Eξ [min q(ω)T y(ω)] (2) 
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Subject to 
Ax = b (3) 

T (ω)x +Wy(ω) = h(ω) (4) 

x ≥ 0,y(ω) ≥ 0 (5) 

Where solving the problem 
Tz = min{c x | Ax = b,x ≥ 0} (6)

x 

is usually referred to as solving the frst stage problem. This frst stage problem is usually simple to 
solve, but the second stage can be more diffcult. Birge and Louveaux (2011) states that the diffculty 
derives from the expectation of the second stage objective q(ω)T y(ω) and that it has a linear solution 
y(ω) for every ω . To emphasise this the second stage value function for a given realization of ω is 
sometimes expressed as: 

Q(x,ξ (ω)) = min{q(ω)T y | Wy = h(ω) − T (ω)x,y ≥ 0} (7)
y 

Which allows the expected second stage value function to be expressed as: 

L (x) = Eξ Q(x,ξ (ω)) (8) 

Implementing equation 8 on the original two-stage recourse model the following deterministic equiv-
alent program is obtained: 

min z = cT x + L (x) (9) 

Subject to 
Ax = b 

x ≥ 0 

Showing that the difference between a deterministic and a stochastic model lies in the recourse func-
tion. If the recourse function were to be given the problem then turns into a nonlinear model. For 
more information on recourse functions and proofs of concepts see Birge and Louveaux (2011). 

Table 1: Description of the parameters and variables of the two-stage recourse model 

Symbol Dimension Description 
c n1 x 1 The frst stage objective c ∈ ℜn1 

A m1 x n1 The frst stage matrix 
x n1 x 1 Deterministic decision variable 
b m1 x 1 The frst stage right hand side b ∈ ℜm1 

Eξ The mathematical expectation regarding ξ 
ω A random event ω ∈ Ω where Ω is the set of all random events 
ξ n2 + m2 + (n2 x m2) The stochastic components such that 

ξ T (ω) = (q(ω)T ,h(ω)T ,T1(ω), .....,Tm2 (ω)) 
q(ω) n2 x 1 The second stage objective vector q(ω) ∈ ℜn2 

y(ω) n2 x 1 The second stage decision vector 
T (ω) m2 x n1 The technology matrix 
h(ω) m2 x 1 The right hand side in the second stage h(ω) ∈ ℜm2 

W m2 x n2 The recourse matrix 
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Birge and Louveaux (2011) mentions that when considering a nonlinear problem the computational 
effort tends to increase compared to linear problems. Hence, an interest in fnding a linear approxima-
tion or deterministic equivalent to L (x) exists. The problem can be solved with the expected value 
(EV), EV = min z(x,ξ ), but as previously mentioned the EEV 

x 

EEV = Eξ (z(x(ξ ),ξ )) (10) 

is at best equal to the recourse problem. Resulting in interest to fnd better approximations of the 
uncertainty than the mean. 

A common approximation of the recourse problem, L (x), is through the sample average approxima-
tion (SAA). By taking random samples ξ 1,...,ξ N of the random vector ξ the recourse function for the 
random sample can be rewritten as: 

N1 
Q(x,ξ k) (11)∑L (x) = 

N k=1 

Hence the non-linear objective function in equation 9 can be rewritten as the deterministic equivalent 
for a given ξ , see equation 12. 

N1T
∑ 
k 1= 

qT 
k yk | Ax = b,Wyk = hk − Tkx,x ≥ 0,yk ≥ 0} (12)= min{cz x + 

Nx,yk 

Where N is the sample size and N−1 is the probability of a possible realization ξ k . A study by Santoso 
et al. (2005) used the SAA to evaluate the expectation in the objective function. They let zN and x̂N 
denote the optimal value and optimal solution vector and then showed that as N increases zN and x̂N 
converges with a probability of one to the stochastic optimal solution exponentially fast. This means 
that the approximated solution of the recourse function should be fairly accurate with limited sample 
size, in the study by Santoso et al. (2005) a sample size of N=20 were used and the SAA solution 
came close to the true stochastic optimal solution. 

The following SAA algorithm is an adaption of the one presented in Kleywegt et al. (2002): 

1. Choose initial amount of samples M and sample sizes N and N′ such that N < N′ . 

2. For j = 1, ...,M repeat steps 2.1 and 2.2. 

2.1 Generate a sample ξ j 
1 , ...,ξ j

N ∈ ξ and solve the SAA problem in equation 12. Save the 
optimal objective value ẑN, j and the optimal solution x̂N, j. 

N′ 
T 12.2 Calculate f̂N′ (x̂N, j) := c x + Q(x,ξ k) and compare it with f̂N′∑ (x̂N, j′ ) where x̂N, j′ isN′ 

k=1 
the best solution found thus far and j′ < j. Then let x̂ denote the solution among x̂N, j′ and 
x̂N, j with the best value of f̂N′ (x̂). 

M
1 ẑN, j and f̂N′3. Let zN,M = ∑ (x̂) be the best solution found in 2.2. The estimated optimality gapM 

j=1 
can then be calculated with: gap = | fN′ (x̂) − zN,M|. The variance of the gap estimator is then 

N′ 
1estimated with σ2 (z)+σ2 where σ2 (z) = gap = σN 

2 
′ zN,M N′ ∑ (cT x̂+Q(x̂,ξ (ωn))− fN′ (x̂))2 

N′ (N′−1) 
n=1 

M
1and σz 

2 
N,M 

= ∑ (ẑN, j − zN,M)2 
M(M−1) 

j=1 
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4. If the optimality gap is large then increase N and/or N’ and return to step 2. The number of 
samples M can also be adjusted if deemed necessary. If the optimality gap is suffciently small 
then stop the process, x̂ is the best solution. 

The SAA algorithm proposed by Kleywegt et al. (2002) can produce good and often optimal solutions 
with low values of N and M. The gap estimator for the algorithm is however not good enough to verify 
that the solution is close to optimal when using a small N and M, thus requiring much larger sample 
sizes. Resulting in a larger computational burden to ensure good estimations. 

Another problem with the SAA is that step 2.1 involves solving a two-step stochastic program for 
every sample. Even though this problem is much smaller than the original it may still require a decent 
amount of calculations. This is why Birge and Louveaux (2011) proposes to use an approximation of 
the optimal solution in step 2.1 of the SAA. By doing this less calculation effort is spent on inaccurate 
samples. One of these approximation algorithm is the L-shaped decomposition algorithm (also known 
as Benders decomposition algorithm). For further information about the algorithm see Birge and 
Louveaux (2011). 

3.3.2 The Newsvendor Approach 

The problem with stochastic programming is that it can be computationally diffcult to solve, which 
is why simpler solutions are frequently used such as solving the deterministic problem instead by 
assuming that the stochastic parameter is deterministic (Birge & Louveaux, 2011). Several studies 
investigating stochastic demand and supply use some sort of approach to relax some of the random-
nesses in their model (Cristea et al., 2020; Nguyen & Chen, 2019; Schneider et al., 2016). Cristea et 
al. (2020) and Schneider et al. (2016) in particular chose to assume the demand as deterministic while 
keeping the supply as stochastic to fnd a model to optimize electrical energy storage in a system with 
renewable energy sources. They both modeled their optimization model after an unreliable supplier 
that can be backed up with a reliable, but more expensive, supplier. Where renewable sources in this 
case were unreliable and the electricity grid was the more reliable but expensive alternative. Both 
these studies ended up with an adaptation of the Newsvendor problem, where the optimal electric 
energy storage capacity C∗ was calculated by: 

C∗ = η ∗ S∗ (13) 

Where η stands for the conversion losses of the system and S∗ is the optimal order up to level decided 
by: 

S∗ = D − Qw (14) 

Qw is the smallest valid boundary that fulflls the requirements of: 

coFw(Qw) ≥ 
co + cu 

(15) 

Where Fw(.) is the cumulative additive distribution function of the yield (supply - demand) and co,cu 
is the overage and underage costs related to the Newsvendor model. For more information on the 
Newsvendor problem see Axsäter (2015) and Ghiani et al. (2004). 
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3.4 Safety Stock Under Uncertainty 
Uncertainties in demand, supply, and lead times can create the need for additional inventory to avoid 
shortages. This additional inventory is called safety stock and is the average amount of inventory on 
hand that allow for variations in demand and supply (Axsäter, 2015). This safety stock helps satisfy 
demand even during unfavorable conditions or unexpected peaks in demand. The downside with 
safety stock is the extra cost of increased storage volume and the increased tied capital (Ghiani et al., 
2004). 

Safety stock is usually determined based on a specifed service level. There exist several different 
defnitions of how the service level is calculated, two of the most popular are: 

• S1: The probability of no stock out 

• S2: Fraction of demand that can be fulflled immediately from stock 

Axsäter (2015) argues that S1 has some disadvantages due to it not considering batch size and can 
severely overestimate the actual service level if batch quantities are small. As a consequence S1 is a 
poor ft for practical applications, it is however very easy to calculate which is why it is still used by 
some. S2 on the other hand can give a better picture of the actual service level but will in turn require 
more calculations. The formulas as presented in Axsäter (2015) for S1 and S2 are: � � � �′R − µ SS 

P(D(L) ≤ R) = S1 = Φ = Φ (16)′ ′σ σ � � � � ��′ ′ ′σ R − µ R + Q − µ
S2 = 1− F(0) = 1 − G − G (17)′ ′Q σ σ 

′ ′Where R is the reorder point, µ is the average during the lead time, σ is the standard deviation 
during the lead time, SS represents the safety stock, Q the batch quantity, Φ the distribution function, 
and G(x) is the loss function of a normal distribution. 
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4 Situation Analysis 
This chapter explains the current situation for the case of Austerland Skags and the state of the 
surrounding environment. Specifc values of energy production and demand has been excluded due to 
confdentiality. 

4.1 The Austerland Skags Case 
The Austerland Skags project is a project funded by the Swedish energy authority to examine the 
possibilities for a smart energy system that can reduce the local carbon dioxide emissions from agri-
culture, transport, and the local residents (Nygarn Utveckling AB, 2022). This will be achieved by 
creating a model of a local energy system that considers energy fow, conversion losses, energy stor-
age, aggregator capacities, and more. Deciding appropriate technology for the different components 
of the system together with a cost calculation and practical feasibility study is also part of the project 
(Energicentrum Gotland, 2021). The system design for the frst simulation is set up in the following 
way. Wind and solar energy for renewable electricity production. Battery and hydrogen storage for 
increased self-suffciency of renewable electricity. Electricity demand from 200 households, an elec-
tric carpool, a treatment plant, and a farm. Hydrogen demand from hydrogen vehicles and a potential 
fuel cell that can help balance annual electricity consumption. 

For the frst optimization the renewable energy capacity was set to 2.6 MWp solar and 0.5 MWp 
wind. Excess electricity produced by renewable energy sources can be sold to the electricity grid. 
To do this the local grid needs to expand. The costs of expanding the local grid were set to 1 450 
SEK per kW of estimated max load during the optimization. There was also a use fee connected 
to importing electricity from the electricity grid, the cost was 0.484 SEK/kWh 06:00-22:00 from 
November to March and 0.16 SEK/kWh otherwise. The difference in cost is due to the higher grid 
loads during the winter period. There was also another fee connected to the maximum grid load 
per month named power fee that amounted to 35 SEK per kW of max load during the month. The 
electricity price, known as SPOT-price, varies every hour and can be found on Nordpool (2022). For 
the frst optimization the estimated electricity SPOT-price for the coming year was used. An electricity 
tax of 0.36 SEK/kWh was also added to the electricity costs, no additional taxes for self-consumed 
electricity was used. 

With the projected electricity produced by the solar and wind plant, the system of Austerland Sk-
ags could reach self-suffciency of almost 48% without using energy storage. This was under the 
assumption that: 

• Hydrogen is produced with an electrolyzer with 85% effciency and immediately consumed 
after production 

• Daily hydrogen demand is evenly spread throughout the day 

• Renewable electricity is used when available 

• Excess electricity is sold to the electricity grid 

The current state of the project is to evaluate the feasibility of using combined hydrogen and battery 
storage to increase self-suffciency from renewable energy sources. The estimated costs and lifetimes 
of the battery and hydrogen technologies for the case are presented in table 2. 
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Table 2: Costs of technologies 

Technology Investment Cost Annual Operating Cost 
(% of total investment) 

Lifetime 
(years) 

Batteries 5 500 SEK/kWh 0.1 15 
Electrolyzer 5 000 SEK/kW 0.5 15 
Hydrogen Tank 240 SEK/kWh 0.5 15 
Fuel Cell 5 000 SEK/kW 0.5 15 

4.1.1 Production and Consumption Patterns 

In the case data from Austerland Skags estimated production data for one year of solar and wind 
power was presented. The solar data shows great potential from April to August and then signif-
cantly drops in October and continues to be relatively low until March, see fgure 3a. The wind power 
was less reliable than the solar power, but it shows a higher potential in the beginning and towards 
the end of the year, see fgure 3b. Making it a good complement to solar power. The production 
capacity of wind power was however only one-ffth of the solar power production, resulting in a lack 
of renewable energy in October. 

(a) Solar Power Production 

(b) Wind Power Production 

Figure 3: One Year of Renewable Energy Production 

Electricity demand varied depending on the season. During winter the demand was higher and during 
the summer demand tended to be lower, see fgure 4. The electricity consumption also varied sig-
nifcantly depending on the time of the day. Electricity demand tended to peak around 17:00-19:00 
and was usually at its lowest around 07:00-09:00, fgure 5. There was no real difference in the daily 
consumption pattern during the year other than the increased consumption during the winter and oc-
casional lows during the summer when rooftop solar panels produced more electricity than consumed. 
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Figure 4: Yearly Electricity Consumption Pattern 

Figure 5: Average Daily Electricity Consumption Pattern Every Month 

The hydrogen demand was derived from replacing fossil fuel in the system with hydrogen under the 
assumption that 100% of fossil fuels could be replaced, resulting in agricultural vehicles being fueled 
by hydrogen only. The fossil fuel use came primarily from heating and transportation connected to 
Skags farm and showed signifcant peaks during seeding and harvest season, see fgure 6. 

Figure 6: Hydrogen Consumption Pattern 

The heating demand that was replaced by hydrogen for Skags farm represented 26% of total hydrogen 
demand. Table 3 presents the estimated percentage of heating demand per month based of data from 
Energimyndigheten (2022). 

Table 3: Relative heating demand per month 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Okt Nov Dec 
% 12.4 13.3 10.7 8.2 5.7 5 4.4 3.7 6 8.4 10.7 11.5 
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5 Analysis 
This chapter presents an analysis of the literature followed by the mathematical optimization models 
for the deterministic and stochastic case and the respective result of applying them to the Austerland 
Skags case. 

5.1 Literature Analysis 
From the information gathered in the Situation Analysis, section 4, the primary drivers for Austerland 
Skags where their environmental values and interest in technology. There was of course an fnancial 
aspect involved, hence the interest to fnd a balance between self-suffciency and costs. The system of 
Austerland Skags was modeled to potentially have both an lithium-ion battery and hydrogen storage 
system with an PEM electrolyzer and fuel cell. For the electrolyzer and fuel cell no consideration 
regarding minimum load was taken. This might affect the life times of the technologies, as stated by 
Puranen et al. (2021a), which in turn might affect the annual costs of electrolyzers and fuel cells. 

According to the literature batteries needed to cost less than 2375 SEK/kWh to be proftable or elec-
tricity prices needed to exceed 3.8 SEK/kWh togheter with FiTs below 0.475 SEK/kWh. In the case 
of Austerland Skags there existed no FiTs, the battery costs and electricity prices are however far 
from reaching the levels stated as proftable by the literature. But as Goop et al. (2021) mentioned the 
economic viability also depends on local weather conditions and the surrounding electricity system. 

A stochastic solution was examined since the WS was not accessible and the EEV is, according 
to Birge and Louveaux (2011), always equal or worse than the solution considering stochastic uncer-
tainty. When looking at the relative deviation for the supply, solar and wind data, it varies signifcantly 
more than the demand. This could motivate the use of the Newsvendor approach, as done in Cristea 
et al. (2020) and Schneider et al. (2016). However, the demand still varies and the Newsvendor does 
not take the randomness of electricity prices into consideration. Relaxing both of these conditions 
was deemed too inexact to motivate the use of the Newsvedor approach. There were also several 
other factors that the proposed Newsvendor approach did not consider, such as the hydrogen storage 
and seasonal variations. The SAA was hence chosen as the analysis method since it takes all the 
stochastic variables into consideration. 

5.2 Deterministic optimization model 
Indices: 

• t = {1, ...,T} : Set of time where every increment of t equals one hour 

• t0 = {0, ...,T : t0 ⊃ t} : Super set of t including period 0 

• tm = {0,744,1440,2184, ......,8784} : Cumulative hours per month (assuming 29 days in 
February) 

• m = {0,1, ....,M} : Set of months where M is the smallest integer that fulflls tM ≥ T 

Parameters: 

Grid: 

• CEH (t) : Costs of electricity from the grid to the system based on both power fee and electricity 
spot price in time period t 
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• CRE(t) : Selling price of renewable electricity to the grid in time period t 

• CP : Power fee based on monthly maximum power consumption from the electricity grid 

• Cc f : Cost of connection fee for scaling up the local electricity grid 

• Dh(t) : Electricity demand from households in time period t 

• Ds(t) : Electricity demand from Skags in time period t 

• Dn(t) : Electricity demand from Nyhagen in time period t 

• PR(t) : Produced renewable electricity in time period t 

• Tc : Electricity taxes for companies 

• Ts : Taxes for self consumed renewable electricity 

Batteries: 

• CB : Investment cost per kWh of battery capacity 

• COB : Annual operating cost of the battery storage (in % of total investment) 

• Dis : Self-discharge rate of battery (in % per hour) 

• Be f f : Effciency of the battery 

• DoD : Depth of discharge 

• C : Maximum charge/discharge rate of the battery 

• Bli f e : Lifetime of the battery 

Hydrogen: 

• CL : Investment cost per kW of electrolyzer capacity 

• CS : Investment cost per kWh of hydrogen storage capacity 

• CF : Investment cost per kW of fuel cell capacity 

• COL : Annual operating cost of the electrolyzer (in % of total investment) 

• COS : Annual operating cost of the hydrogen storage (in % of total investment) 

• COF : Annual operating cost of the fuel cell (in % of total investment) 

• Hd(t) : Hydrogen demand for the system in time period t 

• Dheat(t) : Part of hydrogen demand that is derived from heat in time period t 

• Le f f : Effciency of the electrolyzer 

• Fe f f : Effciency of the fuel cell 

• Lheat : Retrievable waste heat effciency of the electrolyzer 

• Fheat : Retrievable waste heat effciency of the fuel cell 
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• Lli f e : Lifetime of the electrolyzer 

• Sli f e : Lifetime of the hydrogen storage tank 

• Fli f e : Lifetime of the fuel cell 

Variables: 

Grid: 

• REmax : Maximum amount of renewable energy sent to the electricity grid 

• Emax(m) : Maximum amount of electricity sent from the electricity grid in month m 

• EH(t) : Amount of electricity from electricity grid to households in time period t 

• ES(t) : Amount of electricity from electricity grid to Skags in time period t 

• EN(t) : Amount of electricity from electricity grid to Nyhagen in time period t 

• RE(t) : Amount of renewable electricity to the electricity grid in time period t 

• RH(t) : Amount of renewable electricity directly to households in time period t 

• RS(t) : Amount of renewable electricity to Skags in time period t 

• RN(t) : Amount of renewable electricity to Nyhagen in time period t 

• HE(t) : Amount of electricity from the Houses to the Electricity grid in period t 

• y(t) : Binary indicator if the house demand is negative for period t 

Batteries: 

• Bcap : Total battery capacity 

• SB(t0) : Amount of electricity stored in batteries in time period t 

• RB(t) : Amount of renewable electricity to batteries in time period t 

• BH(t) : Amount of electricity from batteries to households in time period t 

• BS(t) : Amount of electricity from batteries to Skags in time period t 

• BN(t) : Amount of electricity from batteries to Nyhagen in time period t 

• HB(t) : Amount of electricity from the Houses to the Batteries 

Hydrogen: 

• Lcap : Total electrolyzer capacity 

• Scap : Total hydrogen storage tank capacity 

• Fcap : Total fuel cell capacity 

• SS(t0) : Amount of hydrogen stored in time period t 

• RL(t) : Amount of renewable electricity to the electrolyzer in time period t 
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• SF(t) : Amount of hydrogen from the hydrogen storage to the fuel cell in time period t 

• FH(t) : Amount of electricity from the fuel cell to households in time period t 

• FS(t) : Amount of electricity from the fuel cell to Skags in time period t 

• FN(t) : Amount of electricity from the fuel cell to Nyhagen in time period t 

• HL(t) : Amount of electricity from households to fuel cell in time period t 

• LW (t) : Waste heat produced from electrolyzer in time period t 

• FW (t) : Waste heat produced from fuel cell in time period t 

5.2.1 Objective function 

When selling excess electricity from the renewable energy sources the electricity has to be transported 
to the local grid. This means that the local grid needs to be expanded, the cost of expanding the local 
grid is proportional to the peak of electricity sent from the renewable energy sources to the local 
electricity grid. This grid expansion was assumed to be a one time cost during the lifetime of the 
project and was thus divided by the technical lifetime of the other technologies. 

REmax ∗Cc f (18)
Bli f e 

The storage technologies used in the system has both an immediate capital expenditure which is pro-
portional to the volume or possible output of the technology and an annual operational expenditure 
directly proportional to the initial investment of the technology. The capital expenditure for a tech-
nology was divided by the technical life time of the technology to estimate an annual cost which was 
used in the model. The different technologies are represented by indices where B stands for battery, 
L electrolyzer, S hydrogen storage, and F stands for fuel cell. � � 

∑ 
i={B,L,S,F} 

1
Ci ∗ icap ∗ COi + (19)

ili f e 

The cost of buying electricity from the electricity grid was based on a power fee that varies between 
seasons and hours, a electricity spot price, and electricity taxes. The total cost of importing electricity 
to the system was based of the electricity prices per kWh multiplied with the amount of electricity 
imported every hour. The total imported electricity costs was thus represent by the sum of costs over 
all hours. 

T 

∑(CEH(t)+ Tc) ∗ (EH(t)+ ES(t)+ EN(t)) (20) 
t=1 

There also exist taxes for self consumed electricity. This cost amounts to a specifed tax tariff multi-
plied with the renewable energy consumed within the system. 

T 

∑ Ts ∗ (RB(t)+ RH(t)+ RS(t)+ RN(t)+ RE(t)+ RL(t)) (21) 
t=1 

Electricity can also be exported to the electricity grid. The selling price of electricity is equal to the 
electricity spot price since there are no add on tariffs for selling renewable electricity on the Swedish 
market. Electricity can both be sold from the renewable energy sources or from households directly 
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in case of excess energy produced from rooftop solar panels. 

T 

∑CRE (t) ∗ (RE(t)+ HE(t)) (22) 
t=1 

The last cost was connected to the load on the local power grid. There exist a power fee connected to 
the peak electricity grid load every month. 

M 

∑ CP ∗ Emax(m) (23) 
m=1 

All components can be fnalized in the following objective function: 

TREmax ∗Cc f 1
∑ ∑min z Ci ∗ icap ∗ (COi + (CEH (t)+ Tc) ∗ (EH(t)+ ES(t)+ )+ = +

Bli f e ili f e t=1i={B,L,S,F} 

(24)EN(t)) + Ts ∗ (RB(t)+ RH(t)+ RS(t)+ RN(t)+ RL(t)) −CRE(t) ∗ (RE(t)+ HE(t)) 
M 

+ ∑ CP ∗ Emax(m) 
m=1 

5.2.2 Constraints 

The initial charge of the batteries in period 0 before the optimization started was assumed to be the 
minimum allowed charge for the battery according to the depth of discharge. This way the model will 
not overestimate self suffciency by adding extra electricity to the system. 

SB(0) = 1 − DoD (25) 

The maximum storage capacity of the batteries was determined by the highest amount of electricity 
stored in a single period. 

SB(t) ≤ Bcap ∀t (26) 

In every period of time there needs to be a balance condition that ensures that the next periods storage 
level is coherent with the previous periods. This balance condition is dependant on the amount of 
electricity charged into the battery, which equals electricity sent to the battery storage times the charge 
effciency of the battery. The battery charge level was also dependant on previous periods charge, 
where daily self-discharge rate per hour was included. Lastly next periods charge level was dependant 
on how much the batteries where discharged. 

Be f f ∗ (RB(t)+ HB(t)) + Dis ∗ SB(t − 1) − BH(t) − BS(t) − BN(t) = SB(t) ∀t (27) 

The demand and electricity sent to households, Skags farm, and Nyhagen sewage plant required bal-
ance conditions. To ensure that demands are met electricity sent from the solar/wind plant, batteries, 
fuel cell, and electricity grid are matched with demand. The energy sent from the batteries was mul-
tiplied with the discharge effciency to consider the effciency losses during discharge. Households, 
equation 28, are slightly different since they include roof top solar panels and can in some periods 
produce excess energy which results in negative demands. Since all variables can only represent posi-
tive values additional reverse fow variables was needed. A balance condition for produced renewable 
energy and consumed renewable energy was also needed, see equation 31. 

RH(t)+ BH(t) ∗ Be f f + EH(t)+ FH(t) − HE(t) − HB(t) − HL(t) = Dh(t) ∀t (28) 
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RS(t)+ BS(t) ∗ Be f f + ES(t)+ FS(t) = Ds(t) ∀t (29) 

RN(t)+ BN(t) ∗ Be f f + EN(t)+ FN(t) = Dn(t) ∀t (30) 

RB(t)+ RH(t)+ RS(t)+ RN(t)+ RE(t)+ RL(t) = PR(t) ∀t (31) 

For the batteries to uphold a long lifespan they should not exceed a depth of discharge above 80%. The 
following constraint ensures that the battery level was above at least 20% of its maximum capacity at 
all times. 

SB(t) ≥ Bcap ∗ (1 − DoD) ∀t (32) 

Since energy will be sent from the renewable energy sources to the electricity grid the grid needs to 
be scaled up based on the highest achieved load for the power line. 

RE(t) ≤ REmax ∀t (33) 

Due to the power fee cost per month there was an interest in fnding the maximum power consumption 
from the grid every month. By letting tm represent the last hour of every month, the span of [tm + 
1, tm+1] represented every hour of a specifc month m. By fnding the largest sum of electricity grid 
outputs of any given hour of a month it will represent the largest distributed output from the electricity 
grid for that month. 

EH(t)+ ES(t)+ EN(t) ≤ Emax(m + 1) ∀m \{M}, t ∈ [tm + 1, tm+1] (34) 

Since the future households had their own installed solar panels the electricity demand for the house-
holds could be negative. This potential negative demand was checked by equation 35. During negative 
demand the households needed to either sell the electricity to the grid, send it to the electrolyzer, or 
store in batteries. This balance condition was upheld by equation 36. 

0 ≤ Dh(t) ∗ (1 − y(t)) ∀t (35) 

HE(t)+ HB(t)+ HL(t) = −Dh(t) ∗ y(t) ∀t (36) 

The batteries can in practice not discharge or charge their full capacity in a single hour. The amount 
that they can charge/discharge is dependant on the specifc charge/discharge rate of the battery, C, 
and the total battery capacity, Bcap. Thus all electricity sent to the battery and from the battery is 
restricted by the total battery capacity multiplied with the specifc charge/discharge rate. Equation 37 
represented the discharge and equation 38 the charge constraint. 

BH(t)+ BS(t)+ BN(t) ≤ Bcap ∗C ∀t (37) 

RB(t)+ HB(t) ≤ Bcap ∗C ∀t (38) 

To ensure that the system did not produce more hydrogen than it was capable of an upper bound 
for both the electrolyzer and hydrogen storage was set, equation 39 and 40. The maximum output 
capacity of the fuel cell was also set to fnd the required fuel cell capacity, see equation 41. The 
capacities of the technologies was decided on the same principle as the batteries. 

RL(t)+ HL(t) ≤ Lcap ∀t (39) 
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SS(t) ≤ Scap ∀t (40) 

SF(t) ≤ Fcap ∀t (41) 

Much like the battery storage the hydrogen storage level was directly dependant on the previous 
periods storage level and amount added and extracted from the system. This together with amount of 
hydrogen used for heating that was replaced by excess heat from the electrolyzer and fuel cell forms 
the balance condition that determines the next periods hydrogen storage level. 

Le f f ∗ (RL(t)+ HL(t)) + SS(t − 1)+ LW (t)+ FW (t) − Hd(t) − SF(t) = SS(t) ∀t (42) 

There needs to be a balance condition that sets the amount of electric energy produced by the fuel cell 
equal to the amount sent from the fuel cell to the system. 

SF(t) ∗ Fe f f = FH(t)+ FS(t)+ FN(t) ∀t (43) 

Since a fraction of the hydrogen demand was derived from the heating demand some of this could 
be replaced by the waste heat produced from the electrolyzer and fuel cell. The produced waste heat 
from the electrolyzer was dependant on the amount of renewable energy it received, see equation 44. 
Fuel cell waste heat was directly dependant on the amount of hydrogen converted to electricity, see 
equation 45. Total waste heat utilized could not exceed the demand of heat required by the system, 
see equation 46. 

LW (t) ≤ RL(t) ∗ Lheat ∀t (44) 

FW (t) ≤ SF(t) ∗ Fheat ∀t (45) 

LW (t)+ FW (t) ≤ Dheat (t) ∀t (46) 

Since there was no quick backup for shortages in the hydrogen storage, like the electricity from the 
grid for the battery system. The hydrogen storage needs to consider a safety stock to be able to 
fulfll the needs of the fuel cell vehicles in the system. The variance was based on the average daily 
hydrogen demand every month since hydrogen consumption patterns was assumed to peak on a daily 
basis when the hydrogen fueled agricultural vehicles refuel. The safety stock was based on service 
level S1 since the agricultural vehicles was assumed to sustain a stock cycle with low fraction of 
demand fulflled. 

′ SS(t) ≥ k ∗ σh(m + 1) ∀m \{M}, t (47) 

Much like the batteries there needs to be an initial value for the hydrogen storage for period 0. Hy-
drogen demand can only be sourced through renewable energy sent to the electrolyzer. In case of 
low renewable energy production during the frst day hydrogen demand would not be met if initial 
storage volumes would be 0. Thus the initial hydrogen storage was set to fulfll one week of hydrogen 
demand plus the safety stock. 

168 
′ SS(0) = k ∗ σh(1)+ ∑ Hd(t) (48) 

t=1 

5.2.3 Linear Optimization Model 

With the above objective function and constraints the following model was formed: 
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Objective function: 

TREmax ∗Cc f 1
∑ ∑min z Ci ∗ icap ∗ (COi + (CEH (t)+ Tc) ∗ (EH(t)+ ES(t)+ )+ = +

Bli f e ili f e t=1i={B,L,S,F} 

EN(t)) + Ts ∗ (RB(t)+ RH(t)+ RS(t)+ RN(t)+ RL(t)) −CRE(t) ∗ (RE(t)+ HE(t)) 
M 

+ ∑ CP ∗ Emax(m) 
m=1 

Subject to: 
SB(0) = Bcap ∗ (1 − DoD) 

SB(t) ≤ Bcap ∀t 

Be f f ∗ (RB(t)+ HB(t)) + Dis ∗ SB(t − 1) − BH(t) − BS(t) − BN(t) = SB(t) ∀t 

RH(t)+ BH(t) ∗ Be f f + EH(t)+ FH(t) − HE(t) − HB(t) − HL(t) = Dh(t) ∀t 

RS(t)+ BS(t) ∗ Be f f + ES(t)+ FS(t) = Ds(t) ∀t 

RN(t)+ BN(t) ∗ Be f f + EN(t)+ FN(t) = Dn(t) ∀t 

RB(t)+ RH(t)+ RS(t)+ RN(t)+ RE(t)+ RL(t) = PR(t) ∀t 

SB(t) ≥ Bcap ∗ (1 − DoD) ∀t 

RE(t) ≤ REmax ∀t 

EH(t)+ ES(t)+ EN(t) ≤ Emax(m + 1) ∀m \{M}, t ∈ [tm + 1, tm+1] 

0 ≤ Dh(t) ∗ (1 − y(t)) ∀t 

HE(t)+ HB(t)+ HL(t) = −Dh(t) ∗ y(t) ∀t 

BH(t)+ BS(t)+ BN(t) ≤ Bcap ∗C ∀t 

RB(t)+ HB(t) ≤ Bcap ∗C ∀t 

SS(t) ≤ Scap ∀t 

RL(t)+ HL(t) ≤ Lcap ∀t 

Le f f ∗ (RL(t)+ HL(t)) + SS(t − 1)+ LW (t)+ FW (t) − Hd(t) − SF(t) = SS(t) ∀t 

SF(t) ∗ Fe f f = FH(t)+ FS(t)+ FN(t) ∀t 

SF(t) ≤ Fcap ∀t 

LW (t) ≤ RL(t) ∗ Lheat ∀t 

FW (t) ≤ SF(t) ∗ Fheat ∀t 

LW (t)+ FW (t) ≤ Dheat (t) ∀t 
′ SS(t) ≥ k ∗ σh(m + 1) ∀m\{M}, t 

168 
′ SS(0) = k ∗ σh(1)+ ∑ Hd(t) 

t=1 

0 ≤ REmax,Bcap,Lcap,Scap,Fcap 

0 ≤ EH(t),ES(t),EN(t),RE(t),RH(t),RS(t),RN(t),HE(t) ∀t 

0 ≤ SB(t0),RB(t),BH(t),BS(t),BN(t),HB(t) ∀t 
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0 ≤ SS(t0),RL(t),SF(t),FH(t),FS(t),FN(t),LW (t),FW (t),HL(t) ∀t 

0 ≤ Emax(m) ∀m 

y(t) ∈ {0,1} ∀t 

5.3 Deterministic Analysis Results 
By applying the deterministic model to the data given from Austerland Skags the best possible mix, 
from a cost perspective, of hydrogen and battery storage was derived. Two scenarios was created with 
the model, one without recovery of waste heat and one with, see table 4 for results. 

Table 4: No waste heat vs waste heat collection 

No waste heat Waste heat recovered 
Total Cost 2 812 487 SEK Total Cost 2 658 173 SEK 
Battery capacity 35 kWh Battery Capacity 45 kWh 
Electrolyzer Capacity 827 kW Electrolyzer Capacity 777 kW 
Hydrogen Storage 37 775 kWh Hydrogen Storage 32 095 kWh 
Fuel Cell Capacity 0 kW Fuel Cell Capacity 70 kW 
Self-suffciency 55.8% Self-suffciency 59.7% 
Self-consumption 67.5% Self-consumption 68.2% 

Since producing hydrogen through renewable energy was the only way the system could fulfll the 
hydrogen demand a relatively large hydrogen tank was formed. This was mainly due to the high 
hydrogen demand and low hydrogen production potential in October. Without waste heat recovery all 
produced hydrogen was used to meet the hydrogen demand resulting in no fuel cell being used. With 
waste heat recovery a fuel cell was built due to the increased effciency of the fuel cell and already 
existing infrastructure of electrolyzer and hydrogen storage. Both the electrolyzer and hydrogen 
storage saw an decrease in capacity due to some of the hydrogen demand for heating being replaced 
by waste heat. The system also saw an increase in both self-consumption and self-suffciency when 
waste heat was recovered. 

Since the cost of expanding the grid was relatively low compared to selling excess electricity only a 
small battery and fuel cell was built in both cases. The reason for this was mainly due to the large 
hydrogen storage used to fulfll hydrogen demand. The hydrogen storage was used to shave peaks in 
renewable energy production hence lowering the peak exported electricity. If the hydrogen demand 
was removed the battery capacity increased to 388 kWh. This result supports the argument from Goop 
et al. (2021) that a battery storage becomes proftable when including surrounding grid fees. This was 
because the battery shave peaks in electricity input to the system, since the electricity grid needed to 
expand based on peak exported electricity the cost became sensitive to peak electricity export. When 
excluding grid fees, Cc f = 0, there was no need to avoid export peaks which resulted in no battery 
storage being the most proftable option. Which goes in line with the literature, battery costs need to 
drop for battery storage to become economically viable as an energy balancing medium. 

By changing the objective function to maximize self-suffciency the highest possible degree of self-
suffciency was found. The new objective function is presented in equation 49. Results from the 
self-suffciency optimization is presented in table 5. 

T 
max z = ∑ RH(t)+ RS(t)+ RN(t)+ BH(t)+ BS(t)+ BN(t)+ FH(t)+ FS(t)+ FN(t) (49) 

t=1 
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Table 5: Maximum self-suffciency optimization 

Variable Value Unit 
Total Cost 18 386 711 SEK 
Batteries 19 072 kWh 
Electrolyzer 2 275 kW 
Hydrogen Tank 545 060 kWh 
Fuel Cell 201 kW 
Self-suffciency 86.1 percentage 
Self-consumption 100 percentage 

The new objective function payed no regard to costs hence the high total cost for the system. A fuel 
cell was used even though the worse round trip effciency compared to the batteries. Meaning that 
the self discharge ratio of the batteries was high enough to motivate seasonal storage in the form of 
hydrogen. In the case of no heat recovery the effciency of the fuel cell would not be high enough 
to motivate a fuel cell resulting in a signifcantly larger battery size. The self-suffciency of 86.1% 
was unreasonable since it needed an hydrogen storage of 545 MWh, ≈ 16 tonnes of hydrogen, which 
would result in a 3923 m3 hydrogen tank assuming 50 bar of pressure and 20◦C. 

By gradually increasing self-suffciency with equation 50, from economic optimum to maximum self-
suffciency, the cost and capacity patterns could be analysed. 

T 

∑(RH(t)+ RS(t)+ RN(t)+ BH(t)+ BS(t)+ BN(t)+ FH(t)+ FS(t)+ FN(t)+ LW (t)+ FW (t)) 
t=1 

T 
− Ss(0) ≥ Sel f Su f f iciency ∗∑ Dh(t)+ Ds(t)+ Dn(t)+ Hd(t) ∗ (Sel f Su f f iciency − 1) 

t=1 
(50) 

The relation between self-suffciency and costs follows a piece wise linear pattern where the costs 
increases relatively slow until 73% self-suffciency. Between 73%-85% the cost increase fast and 
above 85% it increases exponentially, see fgure 7. The increase after 73% can primarily be explained 
by the increase in hydrogen storage volume. Since the hydrogen demand peaks in October when there 
was low solar electricity production the hydrogen storage gets oversized the rest of the year. As the 
self-suffciency rises this excess capacity was utilized during the rest of the year by implementing a 
larger electrolyzer and fuel cell. This continued until 71% self-suffciency, after 71% the conversion 
losses from the fuel cell was too big to achieve higher self-suffciency so the system replaces fuel 
cell capacity with bigger batteries. When the system reached 73% self-suffciency the focus switched 
from meeting electricity demand to stock hydrogen and make better use of high peaks in electricity 
production. In this stage both battery, electrolyzer, and fuel cell capacities somewhat stagnate and 
hydrogen storage capacity rapidly increased. This behaviour then continues until 84% where the fuel 
cell starts to be completely phased out due the better effciency of the battery technology. During the 
last percentage the battery capacity exponentially increases and the electrolyzer and fuel cell sees one 
last peak on 86% where the losses from self-discharge of the battery exceeded the effciency losses of 
the fuel cell. For illustrations of technology behaviours see fgure 8. 
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Figure 7: Cost of increased self-suffciency 

(a) Battery (b) Electrolyzer 

(d) Fuel Cell (c) Hydrogen Storage 

Figure 8: Relations between capacities and self-suffciency 

The results from fgure 7 and 8 was partly in agreement with Puranen et al. (2021b) result regarding the 
stagnating effect of increased storage beyond a certain point. The same goes for Nyholm et al. (2016) 
connection between annual PV production and battery capacity. The results are however hard to 
compare since this thesis system included both wind power production and hydrogen supply/demand 
which neither of the previous mentioned studies considered. 
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5.4 Stochastic Optimization Model 
New Indices: 

• k = {1, ....,N} : Sample size 

• j = {1, ....,J} : Amount of samples 

Changes in parameters for the stochastic version: 

Grid: 

• CEH (t)k : Costs of electricity from the grid to households in time period t for sample k 

• CRE(t)k : Selling price of renewable electricity to the grid in time period t for sample k 

• Dh(t)k : Electricity demand from households in time period t for sample k 

• Ds(t)k : Electricity demand from Skags in time period t for sample k 

• Dn(t)k : Electricity demand from Nyhagen in time period t for sample k 

• PR(t)k : Produced renewable electricity in time period t for sample k 

Changes in variables for the stochastic version: 

Grid: 

• EH(t)k : Amount of electricity from electricity grid to households in time period t for sample k 

• ES(t)k : Amount of electricity from electricity grid to Skags in time period t for sample k 

• EN(t)k : Amount of electricity from electricity grid to Nyhagen in time period t for sample k 

• RE(t)k : Amount of renewable electricity to the electricity grid in time period t for sample k 

• RH(t)k : Amount of renewable electricity directly to households in time period t for sample k 

• RS(t)k : Amount of renewable electricity to Skags in time period t for sample k 

• RN(t)k : Amount of renewable electricity to Nyhagen in time period t for sample k 

• HE(t)k : Amount of electricity from the Houses to the Electricity grid in period t for sample k 

• y(t)k : Binary indicator if the house demand is negative for period t for sample k 

Batteries: 

• SB(t0)k : Amount of electricity stored in batteries in time period t for sample k 

• RB(t)k : Amount of renewable electricity to batteries in time period t for sample k 

• BH(t)k : Amount of electricity from batteries to households in time period t for sample k 

• BS(t)k : Amount of electricity from batteries to Skags in time period t for sample k 

• BN(t)k : Amount of electricity from batteries to Nyhagen in time period t for sample k 

• HB(t)k : Amount of electricity from the Houses to the Batteries for sample k 
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Hydrogen: 

• RL(t)k : Amount of renewable electricity to the electrolyzer in time period t for sample k 

• SF(t)k : Amount of hydrogen from the hydrogen storage to the fuel cell in time period t for 
sample k 

• FH(t)k : Amount of electricity from the fuel cell to households in time period t for sample k 

• SS(t0)k : Amount of hydrogen stored in time period t for sample k 

• FS(t)k : Amount of electricity from the fuel cell to Skags in time period t for sample k 

• FN(t)k : Amount of electricity from the fuel cell to Nyhagen in time period t for sample k 

• HL(t)k : Amount of electricity from households to fuel cell in time period t for sample k 

5.4.1 Explanation of Stochastic Model 

Aside from changed variables and parameters the stochastic model does not differ from the determin-
istic other than averaging over the samples in the objective function and the inclusion of ∀k for most 
constraints. The samples, k, represented possible outcomes of how the conditions could look for a 
year. In other words k represents the random event ω from table 1, hence with every k comes the 
second stage objective vector, q(ω), and the decision vector, y(ω). These vectors was the presented 
changed parameters and variables in section 5.4. The deterministic decision variable vector, x, was 
set as [REmax, Bcap, Lcap, Scap, Fcap]. 

5.4.2 Linear Optimization Model 

Objective function: 

M N TREmax ∗Cc f 1 1
∑ ∑ ∑∑min z Ci ∗ icap ∗ (COi + CP ∗ Emax(m)+ (CEH(t)k+)+ = +

Bli f e ili f e Nm=1 k=1 t=1i={B,L,S,F} 

Tc) ∗ (ES(t)k + EN(t)k + EH(t)k)+ Ts ∗ (RB(t)k + RH(t)k + RS(t)k + RN(t)k + RL(t)k) 

−CRE (t)k ∗ (RE(t)k + HE(t)k) 

Subject to: 
SB(0) = Bcap ∗ (1 − DoD) 

SB(t)k ≤ Bcap ∀t,k 

Be f f ∗ (RB(t)k + HB(t)k)+ Dis ∗ SB(t − 1)k − BH(t)k − BS(t)k − BN(t)k = SB(t)k ∀t,k 

RH(t)k + BH(t)k ∗ Be f f + EH(t)k + FH(t)k − HE(t)k − HB(t)k − HL(t)k = Dh(t)k ∀t,k 

RS(t)k + BS(t)k ∗ Be f f + ES(t)k + FS(t)k = Ds(t)k ∀t,k 

RN(t)k + BN(t)k ∗ Be f f + EN(t)k + FN(t)k = Dn(t)k ∀t,k 

RB(t)k + RH(t)k + RS(t)k + RN(t)k + RE(t)k + RL(t)k = PR(t)k ∀t,k 

SB(t)k ≥ Bcap ∗ (1 − DoD) ∀t,k 

RE(t)k ≤ REmax ∀t,k 

EH(t)k + ES(t)k + EN(t)k ≤ Emax(m+ 1) ∀m \{M}, t ∈ [tm + 1, tm+1],k 
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0 ≤ Dh(t)k ∗ (1 − y(t)k) ∀t,k 

HE(t)k + HB(t)k + HL(t)k = −Dh(t)k ∗ y(t) ∀t,k 

BH(t)k + BS(t)k + BN(t)k ≤ Bcap ∗C ∀t,k 

RB(t)k + HB(t)k ≤ Bcap ∗C ∀t,k 

SS(t)k ≤ Scap ∀t,k 

RL(t)k + HL(t)k ≤ Lcap ∀t,k 

Le f f ∗ (RL(t)k + HL(t)k)+ SS(t − 1)k + LW (t)k + FW (t)k − Hd(t) − SF(t)k = SS(t)k ∀t,k 

SF(t)k ∗ Fe f f = FH(t)k + FS(t)k + FN(t)k ∀t,k 

SF(t)k ≤ Fcap ∀t,k 

LW (t)k ≤ RL(t)k ∗ Lheat ∀t,k 

FW (t)k ≤ SF(t)k ∗ Fheat ∀t,k 

LW (t)k + FW (t)k ≤ Dheat(t) ∀t,k 
′ SS(t)k ≥ k ∗ σh(m + 1) ∀m \{M}, t 

168 
′ SS(0) = k ∗ σh(1)+ ∑ Hd(t) 

t=1 

0 ≤ REmax,Bcap,Lcap,Scap,Fcap 

0 ≤ EH(t)k,ES(tk),EN(t)k,RE(t)k,RH(t)k,RS(t)k,RN(t)k,HE(t)k ∀t,k 

0 ≤ SB(t0)k,RB(t)k,BH(t)k,BS(t)k,BN(t)k,HB(t)k ∀t,k 

0 ≤ SS(t0)k,RL(t)k,SF(t)k,FH(t)k,FS(t)k,FN(t)k,HL(t)k ∀t,k 

0 ≤ Emax(m) ∀m 

y(t)k ∈ {0,1} ∀t,k 

5.5 Stochastic Analysis Results 
Due to the system only being able to produce hydrogen from renewable energy sources a problem 
in the model occurred during stage 2.2 of the SAA. Since the amount of renewable energy varied 
between samples some suffered from low energy production in October resulting in the predetermined 
hydrogen storage capacity not being suffcient to supply the hydrogen demand. The reverse problem 
also occurred since the maximum amount of renewable energy that could be sent to the electricity 
grid, batteries, and electrolyzer was predetermined. This resulted in cases where the renewable energy 
production spiked and was too high for the system to handle. This problem was fxed by allowing 
the model to add electrolyzer and hydrogen tank capacity during stage 2.2, the safety stock restriction 
was also relaxed in stage 2.2 to open up more storage capacity to help balance production and demand 
peaks. 

Another problem that happened during the stochastic optimization was that the computer ran out 
of RAM for a relatively small size of N’, N’ = 13. To reduce the complexity of the model Skags, 
Nyhagen, and the households where grouped to one unit. This simplifed model also created a more 
general model, for the simplifed model see appendix C. To get a comparison of the complexity and 
results of the normal and simplifed model the deterministic case was used, see table 6 for the results 
of the deterministic runs. 
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Table 6: Normal vs Simplifed 

Normal 
Solution Method: Primal and dual simplex 

Simplifed 
Solution Method: Dual simplex and barrier 

Continuous Variables 202 052 Continuous Variables 105 428 
Binary Variables 8 784 Binary Variables 0 
Simplex Iterations 106 277 Barrier Iterations 87 
Run Time 251 Seconds Run Time 19 Seconds 

Results Results 
Total Cost 2 658 173 SEK Total Cost 2 658 418 SEK 
Battery Capacity 45 kWh Battery Capacity 45 kWh 
Electrolyzer Capacity 777 kW Electrolyzer Capacity 777 kW 
Hydrogen Storage 32 095 kWh Hydrogen Storage 32 095 kWh 
Fuel Cell Capacity 70 kW Fuel Cell Capacity 70 kW 
Max Grid Load 1 476 kW Max Grid Load 1 476 kW 

No differences in capacities where seen between the simplifed and normal version, only slight differ-
ences in when it sold, stored, and bought electricity. The differences in results where deemed small 
enough to motivate the reduced complexity of the simplifed model, allowing for larger sample sizes 
in the SAA algorithm. The fnal settings used for the SAA and the results from running the algorithm 
are presented in table 7. 

Table 7: SAA Algorithm Results 

Settings Results 
M 10 Total Cost 2 449 960 SEK 
N 10 Battery capacity 319 kWh 
N’ 25 Electrolyzer Capacity 917 kW 

Performance Hydrogen Storage 16 606 kWh 
Run Time Gurobi 8 435 Seconds Fuel Cell Capacity 100 kWh 
Run Time Sampling 5 725 Seconds Grid Capacity 1 348 kW 
Run Time Total 14 160 Seconds Gap 2 067 

Continuous Variables Variance N’ 11 890 497 
N 1 054 120 Variance ZN,M 11 564 356 
N’ 2 635 265 Variance gap 23 454 853 

The gap and variance was deemed small enough to give an accurate solution. The solution differed 
quite a bit from the original simplifed solution. The main differences was seen in battery and hydro-
gen storage capacity. The reason for the decreased hydrogen storage capacity was because the more 
evenly spread solar power production. From the data gathered by SMHI there was no dip in solar 
irradiation during October for any of the examined years. This resulted in a smaller hydrogen storage 
capacity since the model did not need to compensate as much for the lower solar irradiation during 
October when there was high hydrogen demand. The increased battery capacity was mainly due to 
the highly fuctuating electricity prices. By letting the EL-spot price follow a normal distribution for 
every hour there was a higher discrepancy between the daily/hourly peaks and lows in price. The 
model thus capitalised on this by increasing the battery capacity allowing for more electricity to be 
sourced in-house during high electricity prices. 
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Since the samples deviated signifcantly from the original data provided by Austerland Skags the N’ 
sample batch was used to create an average sample corresponding to ξ . ξ was then used to create the 
EV solution, the results from the EV can be found in table 8. 

Table 8: The expected value solution 

Variable Value Unit 
Total Cost 2 309 746 SEK 
Batteries 0 kWh 
Electrolyzer 746 kW 
Hydrogen Tank 14 570 kWh 
Fuel Cell 30 kW 
Grid Capacity 1 396 kW 

By taking the average of the N’ samples the volatility in the data disappears and the model does not 
need a battery, resulting in 0 kWh of battery capacity. Both the electrolyzer and hydrogen storage 
capacity was smaller in the SAA solution since the electricity production was more evenly spread. 
A couple of samples where used to test the EEV compared to the SAA solution and the SAA con-
tinuously outperformed the EEV, as expected according to Birge and Louveaux (2011). The EEV 
also often struggled to fnd a feasible solution for some samples since the hydrogen storage and elec-
trolyzer was too small to fulfll hydrogen demand. 
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6 Discussion 
This chapter presents a discussion on the method, assumptions, and potential practical problems of 
the study. 

One of the major points that were not considered in this thesis was demand load shifting. If the 
demand could be evenly spread across the day or even shifted to peak in the middle of the day when 
solar power production was at its highest the need for energy storage would drastically reduce. Such 
demand load shifts might be possible in the future when electric vehicles and smart devices are more 
common so charging vehicle batteries and daily chores can be done during peak solar hours. 

During the optimization hydrogen demand was assumed to be evenly distributed across the day and 
constant throughout the month. A more accurate sample of hydrogen demand would affect hydrogen 
storage capacity and electrolyzer profles, it would also give the possibility to calculate a variation. In 
the optimization, hydrogen demand was assumed to follow a normal distribution with 15% standard 
deviation from the mean. This assumption could be inaccurate and signifcantly affect the calculated 
safety stock. Another factor that can increase the accuracy of the model was the distribution of waste 
heat. The current distribution of waste heat was assumed to be continuous throughout the day, if more 
accurate profles of heating demand were present then different patterns of electrolyzer and fuel cell 
activity might have occurred and affected the self-suffciency factor. Another problem was that no 
real heat infrastructure was modeled, the cost savings from including waste heat might be misleading 
since no costs for the infrastructure of utilizing waste heat were included. 

The annual hydrogen demand of the system amounted to over 38 tons. If this hydrogen were to be 
produced solely from electrolysis of water then, by using the chemical reaction of electrolysis and 
molar masses of water and hydrogen, it can be derived that the system would need approximately 
345 000 liters of water every year. Worth mentioning is that the electrolyzer is sensitive to impurities 
meaning that not just any water can be used to produce the hydrogen. With freshwater scarcity being 
a climate debate, this might constrain hydrogen production. If the hydrogen’s only purpose were 
energy balancing, this would not be a problem since the water produced from the fuel cell would be 
pure enough for the electrolyzer, meaning that it could be recycled to the electrolyzer in a closed-loop 
system. Oxygen produced from the electrolyzer could also be part of this closed-loop system. The 
oxygen could potentially be stored in a separate oxygen tank and used internally by the fuel cell, 
excess oxygen could also be sold. This alternative proft could have affected electrolyzer capacity 
which in turn could affect hydrogen tank and fuel cell capacities. Another variable that could have 
been included was the selling price of hydrogen. By allowing the system to sell excess hydrogen it 
might have utilized the electrolyzer to produce hydrogen instead of selling the electricity to the grid 
further increasing self-consumption of the prosumption system. 

The results from the stochastic and deterministic versions differed signifcantly. This was likely a 
result of the sample creation. When creating the samples the data became more volatile, sometimes 
one hour could have high solar irradiation and the next hour almost none. Where in reality one hour of 
low solar irradiation was usually followed by another with low, so instead of creating cloudy days the 
samples had cloudy hours. This higher volatility in production, demand, and price caused the battery 
capacity to increase signifcantly to capitalize on the volatility in price and production. Since we are 
moving towards a more intermittent electricity market this might be more accurate than the original 
sample provided by the Austerland Skags case, and since the solar production dictates such a large 
portion of the result this also gives a more accurate picture of the energy spread throughout the year. 

The fnal run of the applied SAA algorithm took about 4 hours to complete. There exist methods to 
speed up the process, like the L-shaped decomposition algorithm mentioned by Birge and Louveaux 
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(2011). By doing an approximation of the optimal solution less time is spent on each sample. But 
since the optimization was only to be used one time to decide an optimal capacity for future use 
optimization time was not considered a critical factor, hence no approximations were used in the 
SAA. There also existed other methods of fnding the optimal energy storage capacity in the literature, 
the most prominent of those where the Newsvendor approach. This method was however, as stated 
in section 5.1, deemed too inexact to motivate. There are other methods than optimization to fnd the 
capacities, one commonly used method in energy systems is HOMER simulations. The purpose of 
the thesis was however not a simulation but an optimization which was why the HOMER was not 
considered. 

Another thing not considered in the model was partial loads and its effect on effciencies and safety 
for the electrolyzer and fuel cell. In reality the effciency of both the fuel cell and electrolyzer was 
affected by the current load, higher loads lead to higher effciencies, for more details see Puranen et al. 
(2021a). To be able to model such a behavior a nonlinear constraint would need to be formed which 
in this case was not possible. Another way to consider this was to not allow the system to operate 
with lower loads, hence creating a lower allowed limit of production. By doing this the problem with 
hydrogen crossover would also be solved, the problem with this was that always running the systems 
on max capacity was not realistic due to the uncertainties of renewable energy production. Having 
the system always running max loads will also affect the utilized waste heat, since every hour has a 
maximum capacity of utilizable waste heat this would be flled and the rest would be wasted which 
would produce inaccurate results of how waste heat could be utilized. If heat storage would be present 
then this would not have been a problem but since it was not then this could cause inaccurate results. 

The problems with the SAA where it could not fnd feasible solutions in stage 2.2 were fxed by 
allowing the system to ”overload” the electrolyzer and hydrogen storage, as stated in section 5.5. 
For the fnal run of the SAA the system overloaded the electrolyzer with 13.6 kW and never needed 
to overload the hydrogen storage. In reality it might be better to spread this overload between the 
different technologies, batteries, grid, and electrolyzer but by giving the model too much freedom 
to add slack it might fnd other cheaper solutions that were not intended hence only allowing for 
increased electrolyzer and hydrogen tank capacity. 

The fnal model used in this thesis had some wrong assumptions about how the system Austerland 
Skags was planned. One of these wrong assumptions was regarding waste heat, hydrogen was not 
used for heating and waste heat can thus not be used to replace a part of the hydrogen demand. In 
reality wood chips are used to heat the farm and in the fnal model proposed to Austerland Skags waste 
heat was used to replace these wood chips instead, resulting in an added cost in the objective function. 
Another thing that was not in the thesis model was the opportunity to buy hydrogen externally. The 
changes in waste heat and the opportunity to buy hydrogen can be seen in the model in appendix D. 
With these changes the SAA showed a 10-25% decrease in electrolyzer, hydrogen tank, and fuel cell 
capacity. With the most signifcant decrease being in hydrogen tank capacity. The battery capacity 
saw an slight increase in capacity and the total cost dropped by almost 5%. 
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7 Conclusion 
This chapter presents the answers to the research questions proposed in section 1.3. 

The purpose of this thesis has been to ”Design and implement a linear optimization model which cal-
culates the optimal storage capacity of different storage mediums, with stochastic demand and supply, 
in an energy prosumption system.”. This purpose has been fulflled by answering the research ques-
tions. The frst question: ”What are relevant storage mediums for energy storage in a prosumption 
system?” was answered by the literature review and analysis where it was derived that battery, hydro-
gen, and thermal energy storage are relevant storage technologies for energy prosumption systems. 
The capacities of these different technologies are dependant on the climate of the place investigated. 
Hydrogen and thermal are more relevant for Northern climates where winters are characterised of low 
solar irradiation and high heating energy demand, such as the Austerland Skags case, and batteries 
are more prominent in places with high volatility in electricity prices. 

The answer to the second research question: ”What found variables and parameters are relevant to an 
energy prosumption system?” can be found in section 5.2 which presented the applied variables and 
parameters. An interesting fnding was that retrieving waste heat from an electrolyzer without thermal 
storage, which is often not benefcial since the electrolyzer usually produces during renewable energy 
production peaks, had a signifcant impact on both cost and self-suffciency. So for a prosumption 
system with external hydrogen demand retrieving waste heat from both the electrolyzer and fuel cell 
can be of importance. 

The third research question was: ”How does different degrees of self-suffciency affect the model?”. 
By increasing self-suffciency the cost increase in a piece-wise linear pattern. The system favoured to 
increase electrolyzer and fuel cell capacities to begin with until it fully utilized the hydrogen capacity. 
Then it increased battery capacity because of its better effciency to later linearly increase hydrogen 
storage capacity to make better use of electricity peaks. For the last percent of possible self-suffciency 
the cost increases exponentially together with battery capacity, the fuel cell falls off until the very end 
where it comes back a bit due to the self-discharge of the battery storage. 

The fourth and last research question was: ”How will the stochastic demand and supply affect the 
model?”. The stochastic demand and supply increased the complexity of the model and signifcantly 
increased run time depending on how accurate the result sought to be. The stochastic electricity price 
turned out to be a major factor regarding battery capacity, the more volatile electricity price the higher 
the battery capacity. A more even spread of hydrogen demand also turned out to affect hydrogen stor-
age and electrolyzer capacity. Using averages and the EV does not capture the intermittent nature of 
electricity prices and renewable energy production resulting in an on average more expensive solution 
than a solution that treats every sample individually. 
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8 Future Studies 
This chapter presents potential future advancements of this thesis. 

Something that this thesis did not include was the optimal capacities of renewable energy generation. 
Future studies could expand the model to include optimal capacities of PV solar panels and wind 
turbines. Another thing to investigate is how to create more accurate samples that can be applied to 
the SAA. Currently the samples are derived from distributions resulting in about the same average as 
the original data but more volatile. Hence an interest exist to create more accurate samples following 
a more natural pattern to see how the results from the SAA would respond. 

One of the major fndings from the literature was that the inclusion of a heat storage combined with 
utilizing the excess electrolyzer/fuel cell heat could signifcantly increase self-suffciency. By includ-
ing this in the model a more effcient system might be achievable. The inclusion of a thermal storage 
will however further increase the complexity of the model, which might require approximations such 
as the benders algorithm. 
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citizens in the energy transition. iöw, germany (tech. rep.). Deliverable. 

Kamiya, G., Hassid, S., & Gonzalez, P. (2021). Iea tracking report - energy storage. Retrieved Febru-
ary 28, 2022, from https://www.iea.org/reports/energy-storage 

Mimer. (2022). Mimer förbrukningsprofler. Retrieved March 21, 2022, from https://mimer.svk.se/ 
ConsumptionProfle/ConsumptionProfleIndex 

Nordpool. (2022). System price curve data. Retrieved March 15, 2022, from www.nordpoolgroup. 
com/elspot-price-curves/ 

Nygarn Utveckling AB. (2022). Austerland skags – ny teknik och lokal samverkan för smart ener-
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A Deterministic Python Model 

1 # -*- coding: utf -8 -*-

2 """ 
3 Created on Wed Feb 9 08:33:54 2022 
4 

5 @author: karlj 
6 """ 
7 import math 
8 import os 
9 import xlrd 
import xlwt 

11 from gurobipy import * 
12 from scipy .stats import norm 
13 

14 book = xlrd .open_workbook(os. path .join("DataFinal .xlsx ")) 
15 T = 8789 #Time horizon for the model (197 = one week) 
16 M = T//720 #Months that the model will run for 
17 Start = 5 
18 tm = [0 ,744 ,1440 ,2184 ,2904 ,3648 ,4368 ,5112 ,5856 ,6576 ,7320 ,8040 ,8784] 
19 #Cumulative hours per month 

DistH 
=[0.124 ,0.133 ,0.107 ,0.082 ,0.057 ,0.05 ,0.044 ,0.037 ,0.06 ,0.084 ,0.107 ,0.115] 

21 sh = book .sheet_by_name("Electricity ") 
22 sh2 = book .sheet_by_name("Hydrogen ") 
23 Dates = [] 
24 DateTime = [] 
25 Months = [] 
26 i = 0 
27 while i <= M: 
28 Months .append(i) 
29 i+=1 

Ds = {} #Electricity demand for skags 
31 Dh = {} #Electricity demand households 
32 Dn = {} #Electricity demand Nyhagen 
33 Dheat = {} #Heat demand for the system 
34 Hd = {} #Total hydrogen demand 
35 PR = {} 
36 CEH = {} #Electricity price + usage fee 
37 CRE = {} #Electricity sell price (same as electricity price in data file) 
38 HydrogenDemand = [0] #Daily hydrogen demand every month 
39 TotHeat = sh2 .cell_value (0, 3) *0.261307 

i = Start 
41 j = Start 
42 DateTimeExtended = [i -5] 
43 while i<=T: 
44 try : 
45 Dates .append(sh. cell_value(i,1)) 
46 

47 DateTime .append(sh. cell_value(i,0)) 
48 DateTimeExtended . append (sh. cell_value (i ,0) ) 
49 

c = sh. cell_value(i, 3) 
51 Ds[ sh. cell_value (i ,0) ]= c 
52 

53 c = sh. cell_value(i, 4) 
54 Dn[ sh. cell_value (i ,0) ]= c 
55 

56 c = sh. cell_value(i, 5) 
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57 Dh [ sh . cell_value (i ,0) ]= c 
58 

59 c = sh . cell_value (i , 6) 
d = sh . cell_value (i , 7) 

61 PR [ sh . cell_value (i ,0) ]= c+d 
62 

63 c = sh . cell_value (i , 8) 
64 d = sh . cell_value (i , 9) 

CRE [ sh . cell_value (i ,0) ]= c /1000 
66 CEH [ sh . cell_value (i ,0) ]= d+c /1000 
67 

68 # The following code is to ensure that the hydrogen demand occurs once a day 
69 if i > tm [j -Start +1]+ Start : # Swaps months 

j +=1 
71 c = sh2 . cell_value (j , 11) # 11 is in kg 14 in kWh 
72 Hd [ sh . cell_value (i ,0) ]= c *33.6/24 
73 

74 Dheat [ sh . cell_value (i ,0) ]= TotHeat * DistH [j -Start ]/( tm [j -Start +1] -tm [j 
-Start ]) 

i +=1 
76 

77 except IndexError : 
78 break 
79 

DisDay = 0.002 # Daily self -discharge of batteries 
81 Blife = 15 # Life time of batteries 
82 CB = 5500 # Investment costs of batteries per kWh 
83 Dis = 10**( math . log (1 -DisDay ,10) /24) # Self discharge rate for lithium ion 

batteries per hour 
84 Beff = 0.94 # Charge / discharge efficiencies of lithium ion batteries 

COB = 0.001 # Annual operation costs for batteries 
86 Tc = 0.36 # Electricity taxes for companies 
87 Ts = 0 # Electricity taxes for self consumed electricity 
88 DoD = 0.8 # Depth of discharge 
89 Ccf = 1450/15 # Connection fee for scaling the electricity grid 

CP = 35 # Power fee 
91 C = 0.5 # Charge / discharge rate of the battery 
92 

93 Llife = 15 # Life time of electrolysis 
94 Slife = 15 # Life time of hydrogen storage 

Flife = 15 # Life time of fuel cell 
96 CL = 5000 # Investment costs of electrolyzer per kW 
97 CS = 240 # Investment costs of hydrogen storage per kWh 
98 CF = 5000 # Investment costs of fuel cell per kW 
99 COL = 0.005 # Annual operation costs for electrolyzer 

COS = 0.005 # Annual operation costs for the hydrogen storage 
101 COF = 0.005 # Annual operation costs for the fuel cell 
102 Leff = 0.85 # Electrolyser efficiency 
103 Feff = 0.5 # Fuel cell efficiency 
104 Lheat =0.06 # Waste heat from electrolyzer 

Fheat = 0.2 # Waste heat from fuel cell 
106 ServiceLevel = 0.95 
107 k = norm . ppf ( ServiceLevel ) # Safety factor for safety stock 
108 totCost = 0 
109 HydrogenVar = 0.15 

111 selfSuff = 0.65 
112 

113 # Total demand / supply used to calculate self sufficiency and self 
consumption 
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114 TotDemandHSN = sh . cell_value (0 ,3) + sh . cell_value (0 ,4) + sh . cell_value (0 ,5) 
TotDemandHydrogen = sum ( Hd . values () ) 

116 TotProduced = sum ( PR . values () ) 
117 

118 try : 
119 # Create a new model 

m = Model (" StorageOptimization ") 
121 

122 # Create variables 
123 # Bcap is total battery capacity 
124 Bcap = m. addVar ( lb =0 , name =" Bcap ") 

126 # Maximum amount of renewable energy sent to the electricity grid 
127 REmax = m. addVar ( lb =0 , name =" REmax ") 
128 

129 # Emax is the maximum amount of electricity from the grid a specific 
month 
Emax = m. addVars ( Months , lb =0 , name =" Emax ") 

131 

132 # EH is the amount of electricity from the Grid to Houses 
133 EH = m. addVars ( DateTime ,lb =0 , name =" EH ") 
134 

# ES is the amount of electricity from the Grid to Skags 
136 ES = m. addVars ( DateTime , lb =0 , name =" ES ") 
137 

138 # EN is the amount of electricity from the Grid to Nyhagen 
139 EN = m. addVars ( DateTime , lb =0 , name =" EN ") 

141 # RE is the amount of electricity from the Renewables to Grid 
142 RE = m. addVars ( DateTime , lb =0 , name =" RE ") 
143 

144 # RH is the amount of electricity from the Renewables to Households 
RH = m. addVars ( DateTime , lb =0 , name =" RH ") 

146 

147 # RS is the amount of electricity from the Renewables to Skags 
148 RS = m. addVars ( DateTime , lb =0 , name =" RS ") 
149 

# RN is the amount of electricity from the Renewables to Nyhagen 
151 RN = m. addVars ( DateTime , lb =0 , name =" RN ") 
152 

153 # RB is the amount of electricity from the Renewables to Batteries 
154 RB = m. addVars ( DateTime , lb =0 , name =" RB ") 

156 # BH is the amount of electricity from the Batteries to Houses 
157 BH = m. addVars ( DateTime , lb =0 , name =" BH ") 
158 

159 # BS is the amount of electricity from the Batteries to Skags 
BS = m. addVars ( DateTime , lb =0 , name =" BS ") 

161 

162 # BN is the amount of electricity from the Batteries to Nyhagen 
163 BN = m. addVars ( DateTime , lb =0 , name =" BN ") 
164 

# SB is the amount of electricity stored in the batteries 
166 SB = m. addVars ( DateTimeExtended , lb =0 , name =" SB ") 
167 

168 # y is an indicator if the house demand is negativ 
169 y = m. addVars ( DateTime , vtype = GRB . BINARY , name ="y") 

171 # HE is the amount of electricity from the Houses to the Grid 
172 HE = m. addVars ( DateTime ,lb =0 , name =" HE ") 
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173 

174 # HB is the amount of electricity from the Houses to the Batteries 
HB = m. addVars ( DateTime ,lb =0 , name =" HB ") 

176 

177 

178 # Lcap is total electrolyzer capacity 
179 Lcap = m. addVar ( lb =0 , name =" Lcap ") 

181 # Scap is total hydrogen storage capacity 
182 Scap = m. addVar ( lb =0 , name =" Scap ") 
183 

184 # Fcap is total fuel cell capacity 
Fcap = m. addVar ( lb =0 , name =" Fcap ") 

186 

187 # SS is the amount of hydrogen stored in the hydrogen tank 
188 SS = m. addVars ( DateTimeExtended , lb =0 , name =" SS ") 
189 

# RL is the amount of renewable electricity to the electrolyzer 
191 RL = m. addVars ( DateTime , lb =0 , name =" RL ") 
192 

193 # SF is the amount of hydrogen sent to the fuel cell 
194 SF = m. addVars ( DateTime , lb =0 , name =" SF ") 

196 # FH is the amount of electricity sent from the fuel cell to households 
197 FH = m. addVars ( DateTime , lb =0 , name =" FH ") 
198 

199 # FS is the amount of electricity sent from the fuel cell to Skags 
FS = m. addVars ( DateTime , lb =0 , name =" FS ") 

201 

202 # FN is the amount of electricity sent from the fuel cell to Nyhagen 
203 FN = m. addVars ( DateTime , lb =0 , name =" FN ") 
204 

# HL is the amount of electricity sent from households to the 
electrolyzer 

206 HL = m. addVars ( DateTime , lb =0 , name =" HL ") 
207 

208 

209 # Added from Heat inclusion 
# LW is the amount of utilized waste heat from the electrolyzer 

211 LW = m. addVars ( DateTime , lb =0 , name =" LW ") 
212 # FW is the amount of utilized waste heat from the fuel cell 
213 FW = m. addVars ( DateTime , lb =0 , name =" FW ") 
214 

216 # Objective : Minimize costs 
217 m. setObjective ( REmax * Ccf + CB * Bcap *( COB +(1/ Blife ))+ CL * Lcap *( COL +(1/ Llife )) 
218 + CS * Scap *( COS +(1/ Slife ))+ CF * Fcap *( COF +(1/ Flife ))+ 
219 sum (( Tc + CEH [t ]) *( ES [t ]+ EN [t ]+ EH [t ]) + Ts *( RH [t ]+ RS [t ]+ RN [t] 

+ RB [t ]+ RL [t ]) -CRE [t ]*( RE [t ]+ HE [t ]) for t in DateTime ) 
221 + CP * sum ( Emax [m] for m in Months ) , GRB . MINIMIZE ) 
222 

223 # Constraints 
224 # # c -1 Selfsufficiency restraint 

# m. addConstr ( sum ( RH [t ]+ RS [t ]+ RN [t ]+ BH [t ]+ BS [t ]+ BN [t ]+ FH [t ]+ FS [t ]+ FN [t] 
226 # for t in DateTime ) >= selfSuff * TotDemandHSN + 
227 # TotDemandHydrogen *( selfSuff -1) ) 
228 

229 # # c0 initial value of battery storage 
m. addConstr ( SB [ DateTimeExtended [0]] == Bcap *(1 -DoD ) , " c0 ") 

231 # 
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# c1 ensures that the total battery capacity is sufficient 
m. addConstrs ((SB[t] <= Bcap) for t in DateTime) 

# c2 Sets this periods battery stock level based on previous periods 
m. addConstrs ((Beff *(RB[t]+HB[t])+Dis*SB[t -1] -BH[t]-BS[t]-BN[t] == SB[t]) 

for t in DateTime) 

# c3 Matches demand of households with output 
m. addConstrs (( RH[t]+ BH[t]* Beff +EH[t]+ FH[t]-HE[t]-HB [t]-HL[t ]== Dh[t ]) 

for t in DateTime) 

# c4 Matches demand of skags with output 
m. addConstrs ((RS[t]+BS[t]* Beff+ES[t]+FS[t]==Ds[t]) for t in DateTime) 

# c5 Matches demand of Nyhagen with output 
m. addConstrs ((RN[t]+BN[t]* Beff+EN[t]+FN[t]==Dn[t]) for t in DateTime) 

# c6 Matches produced renewable energy with outputs 
m. addConstrs ((RB[t]+RH[t]+RS[t]+RN[t]+RE[t]+RL[t] == PR[t]) 

for t in DateTime) 

# c7 Ensures that depth of discharge is not exceeded 
m. addConstrs ((SB[t]>= Bcap *(1 -DoD)) for t in DateTime) 

# c8 checks the maximum electricity grid output 
m. addConstrs ((RE[t] <= REmax) for t in DateTime) 

# c9 finds the maximum electricity output from the grid per month 
for mnt in Months [:M]: 

for t in DateTime[tm[mnt]:tm[mnt +1]]: 
m. addConstr(EH[t]+ES[t]+EN[t] <= Emax[mnt +1]) 

# c10 incase the demand is negative 
m. addConstrs (0<=Dh[t]*(1 -y[t]) for t in DateTime) 
m. addConstrs(HE[t]+HB[t]+HL[t]==-Dh[t]*y[t] for t in DateTime) 

# c11 maximum output and input from the battery system 
m. addConstrs(BH[t]+BS[t]+BN[t] <= Bcap*C for t in DateTime) 
m. addConstrs(RB[t]+HB[t] <= Bcap*C for t in DateTime) 

# c12 ensures that the total hydrogen storage capacity is sufficient 
m. addConstrs ((SS[t] <= Scap) for t in DateTime) 

# c13 ensures that the total electrolyzer capacity is sufficient 
m. addConstrs ((RL[t]+HL[t] <= Lcap) for t in DateTime) 

# c14 Sets this periods hydrogen stock level based on previous periods 
m. addConstrs (( Leff *( RL [t]+ HL [t ])+ SS[t -1]+ FW[t]+ LW[t]-Hd[t]-SF [t ]== SS[t]) 

for t in DateTime) 

# c15 Matches fuel cell output with electricity input 
m. addConstrs ((SF[t]* Feff == FH[t]+FS[t]+FN[t]) for t in DateTime) 

# c16 ensures that the total fuel cell capacity is sufficient 
m. addConstrs ((SF[t] <= Fcap) for t in DateTime) 

# c17 sets initial storage level of hydrogen tank Scap *(1 -DoD) 
m. addConstr(SS[DateTimeExtended [0]] == Hd [9]*24*7+k*HydrogenVar*Hd 
[9]*24) 
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# c18 sets the safety stock for the hydrogen tank 
for mnt in Months [:M]: 

for t in DateTime[tm[mnt]:tm[mnt +1]]: 
m. addConstr(SS[t] >= k*HydrogenVar *Hd[tm[mnt ]+9]*24) 

# c19 sets waste heat 
m. addConstrs(FW[t] <= SF[t]* Fheat for t in DateTime) 

# c20 Matches heat demand with heat output 
m. addConstrs(FW[t]+LW[t] <= Dheat[t] for t in DateTime) 

# c21 sets waste heat 
m. addConstrs(LW[t] <= RL[t]* Lheat for t in DateTime) 

m. optimize () 

#This is where the writing to excel occurs 
workbook = xlwt .Workbook () 
sheet = workbook .add_sheet("Summary ") 
sheet1 = workbook .add_sheet("BatteryCapacity ") 
sheet2 = workbook .add_sheet("Hydrogen ") 
# Specifying style 
style = xlwt .easyxf( ’font: bold 1’) 
totCost =( REmax .x*Ccf+CB*Bcap .x*(COB +(1/ Blife))+CL*Lcap .x*(COL +(1/ Llife)) 
+CS*Scap .x*(COS +(1/ Slife))+CF*Fcap .x*(COF +(1/ Flife))+ sum ((Tc+CEH[t])* 
(ES[t].x+EN[t]. x+EH[t].x) -CRE[t]*(RE[t].x+HE[t]. x) for t in DateTime)+ 
sum (CP*Emax[m]. x for m in Months)) 
#Summary sheet 
sheet .write(0, 0, "TotalCost ", style) 
sheet .write(1, 0, totCost , style) 
sheet .write(0, 1, "BatteryCapacity ", style) 
sheet .write(1, 1, Bcap .x, style) 
sheet .write(0, 2, "ElectrolyzerCapacity ", style) 
sheet .write(1, 2, Lcap .x, style) 
sheet .write(0, 3, "HydrogenTankCapacity ", style) 
sheet .write(1, 3, Scap .x, style) 
sheet .write(0, 4, "FuelCellCapacity ", style) 
sheet .write(1, 4, Fcap .x, style) 

#Sheet 1 
sheet1 .write(0, 0, ’Period ’, style) 
sheet1 .write(0, 1, ’BatteryLevel ’, style) 
sheet1 .write(0, 2, ’HydrogenLevel ’, style) 

sheet1 .write(0, 4, "Renewable_House ", style) 
sheet1 .write(0, 5, "Renewable_Skags ", style) 
sheet1 .write(0, 6, "Renewable_Nyhagen ", style) 
sheet1 .write(0, 7, "Renewable_Batteries ", style) 
sheet1 .write(0, 8, "Renewable_Grid ", style) 
sheet1 .write(0, 9, "Renewable_Electrolyzer ", style) 
sheet1 .write(0, 10, "Renewable_Prod ", style) 
sheet1 .write(0, 11, "Grid_House ", style) 
sheet1 .write(0, 12, "Battery_House ", style) 
sheet1 .write(0, 13, "Battery_Skags ", style) 
sheet1 .write(0, 14, "Battery_Nyhagen ", style) 
sheet1 .write(0, 15, "Demand_House ", style) 
sheet1 .write(0, 16, "Demand_Skags ", style) 
sheet1 .write(0, 17, "Demand_Nyhagen ", style) 
sheet1 .write(0, 18, "Emax ", style) 
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sheet1 .write(0, 19, "Grid_total ", style) 

sheet1 .write(0, 20, "Heat_demand ", style) 
sheet1 .write(0, 21, "GridToHeat ", style) 
sheet1 .write(0, 22, "RenewToHeat ", style) 
sheet1 .write(0, 23, "BatteryToHeat ", style) 
sheet1 .write(0, 24, "FuelCellToHeat ", style) 
sheet1 .write(0, 25, "WasteToHeat ", style) 
sheet1 .write(0, 26, "HouseToHeat ", style) 

#Sheet 2 
sheet2 .write(0, 0, ’Period ’, style) 
sheet2 .write(0, 1, ’Renewable_Electrolyzer ’, style) 
sheet2 .write(0, 2, ’FuelCell_Households ’, style) 
sheet2 .write(0, 3, ’FuelCell_Skags ’, style) 
sheet2 .write(0, 4, ’FuelCell_Nyhagen ’, style) 
sheet2 .write(0, 5, ’Storage_FuelCell ’, style) 
sheet2 .write(0, 6, ’Household_Electrolyzer ’, style) 
sheet2 .write(0, 7, ’HydrogenDemand ’, style) 
sheet2 .write(0, 8, ’HydrogenLevel ’, style) 

RenewHSN = 0 
BatteryHSN = 0 
FuelCellHSN = 0 
ToBatterySum = 0 
ToElectrolyzerSum = 0 
ToHeatSum = 0 
j = 1 
for v in DateTime: 

sheet1 .write(j, 0, Dates[j -1]) 
sheet1 .write(j, 1, SB[v].x) 
sheet1 .write(j, 2, SS[v].x) 
sheet1 .write(j, 4, RH[v].x) 
sheet1 .write(j, 5, RS[v].x) 
sheet1 .write(j, 6, RN[v].x) 
sheet1 .write(j, 7, RB[v].x) 
sheet1 .write(j, 8, RE[v].x) 
sheet1 .write(j, 9, RL[v].x) 
sheet1 .write(j, 10, PR[j]) 
sheet1 .write(j, 11, EH[v].x) 
sheet1 .write(j, 12, BH[v].x) 
sheet1 .write(j, 13, BS[v].x) 
sheet1 .write(j, 14, BN[v].x) 
sheet1 .write(j, 15, Dh[j]) 
sheet1 .write(j, 16, Ds[j]) 
sheet1 .write(j, 17, Dn[j]) 
sheet1 .write(j, 19, EH[v].x+ES[v]. x+EN[v].x) 

sheet1 .write(j, 20, Dheat[j]) 
sheet1 .write(j, 25, FW[v].x) 
sheet1 .write(j, 26, LW[v].x) 

sheet2 .write(j, 0, Dates[j -1]) 
sheet2 .write(j, 1, RL[v].x) 
sheet2 .write(j, 2, FH[v].x) 
sheet2 .write(j, 3, FS[v].x) 
sheet2 .write(j, 4, FN[v].x) 
sheet2 .write(j, 5, SF[v].x) 
sheet2 .write(j, 6, HL[v].x) 
sheet2 .write(j, 7, Hd[j]) 
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sheet2 .write(j, 8, SS[v].x) 

RenewHSN += RH[v].x+RS[v].x+RN[v]. x 
BatteryHSN += BH[v].x+BS[v].x+BN[v].x 
FuelCellHSN += FH[v]. x+FS[v].x+FN[v].x+FW[v].x 
ToBatterySum += RB[v].x 
ToElectrolyzerSum += RL[v].x 
ToHeatSum += FW[v].x+LW[v].x 
j += 1 

j = 1 
for v in Months: 

sheet1 .write(j, 18, Emax[v].x) 
j += 1 

#Writing to excel occurs here because of previous calculated sums 
SelfSuff = (( RenewHSN+BatteryHSN+FuelCellHSN+ToHeatSum+TotDemandHydrogen 

-(SS [0]. x))/( TotDemandHydrogen + TotDemandHSN )) 
SelfCons = (RenewHSN+ToBatterySum+ToElectrolyzerSum)/( TotProduced) 
sheet .write(0, 5, "SelfSufficiency ", style) 
sheet .write(1, 5, SelfSuff , style) 
sheet .write(0, 6, "SelfCounsumption ", style) 
sheet .write(1, 6, SelfCons , style) 
workbook .save("HeatTestElectro .xls ") 

except GurobiError as e: 
print (’Error code ’ + str (e. errno) + ’: ’ + str (e)) 
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B Stochastic Python Model 

1 # -*- coding: utf -8 -*-

2 """ 
3 Created on Sat Mar 19 14:21:26 2022 
4 

5 @author: karlj 
6 """ 
7 import os 
8 import xlrd 
9 import xlwt 
import numpy 

11 import math 
12 import gc 
13 import random 
14 from gurobipy import * 
15 from scipy .stats import norm 
16 

17 def main(N, its , prim): 
18 book = xlrd .open_workbook(os .path .join("DataFinal .xlsx ")) 
19 T = 8789 #Time horizon for the model (197 = one week) 

M = T//720 #Months that the model will run for 
21 Start = 5 
22 #Cumulative hours per month 
23 tm = [0 ,744 ,1440 ,2184 ,2904 ,3648 ,4368 ,5112 ,5856 ,6576 ,7320 ,8040 ,8784] 
24 DistH 

=[0.124 ,0.133 ,0.107 ,0.082 ,0.057 ,0.05 ,0.044 ,0.037 ,0.06 ,0.084 ,0.107 ,0.115] 
25 sh = book .sheet_by_name("Electricity ") 
26 sh2 = book .sheet_by_name("Hydrogen ") 
27 DateTime = [] 
28 Months = [] 
29 i = 0 

while i <= M: 
31 Months .append(i) 
32 i+=1 
33 Ds = {} #Electricity demand for skags 
34 Dh = {} #Electricity demand households 
35 Dn = {} #Electricity demand Nyhagen 
36 Hd = {} #Total hydrogen demand 
37 PS = {} #Produced solar pwoer 
38 PW = {} #Produced wind power 
39 CRE = {} #Electricity sell price 

CEH = {} #Additional electricity fee 
41 Dheat = {} #Heat demand for the system 
42 TotHeat = sh2 .cell_value (0, 3) *0.261307 
43 

44 i = Start 
45 j = Start 
46 

47 while i<=T: 
48 try : 
49 DateTime .append(sh. cell_value(i,0)) 

51 c = sh. cell_value(i, 3) 
52 d = sh. cell_value(i, 4) 
53 e = sh. cell_value(i, 5) 
54 Ds[sh. cell_value(i,0)]=c+d+e 
55 

56 
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57 Dn [ sh . cell_value (i ,0) ]= c 
58 

59 

Dh [ sh . cell_value (i ,0) ]= c 
61 

62 c = sh . cell_value (i , 6) 
63 d = sh . cell_value (i , 7) 
64 PS [ sh . cell_value (i ,0) ]= c 

PW [ sh . cell_value (i ,0) ]= d 
66 

67 c = sh . cell_value (i , 8) 
68 d = sh . cell_value (i , 9) 
69 CRE [ sh . cell_value (i ,0) ]= c 

CEH [ sh . cell_value (i ,0) ]= d 
71 

72 # Following is because hydrogen demand shifts depending on month 
73 if i > tm [j -Start +1]+ Start : # Swaps months 
74 j +=1 #j points to current motnh 

76 c = sh2 . cell_value (j , 11) # 11 is in kg 14 in kWh 
77 Hd [ sh . cell_value (i ,0) ]= c *33.6/24 
78 Dheat [ sh . cell_value (i ,0) ]= TotHeat * DistH [j -Start ]/( tm [j -Start +1] -

tm [j -Start ]) 
79 i +=1 

81 except IndexError : 
82 break 
83 

84 xlData = [Dh , Ds , Dn , PS , PW , CRE , CEH ] 
Data = [ DateTime , Months , Hd , Dheat ] 

86 SAA ( xlData , Data , N , its , prim ) 
87 

88 # SAA is the sample average approximation algoritm 
89 def SAA ( xlData , Data , N , M , prim ): 

runs = [] # Saves the optimization objects 
91 xOpt = 0 # The best found objective function value thus far 
92 OptSol = [] 
93 opts = [] 
94 primSample = caseData (N+ prim , xlData ) 

indexOpt = 0 
96 for i in range (M): 
97 Samples = caseData (N , xlData ) 
98 runs . append ( OPT ( Samples , Data )) 
99 runs [i ]. optimize (0) 

runs [i ]. updateSamples ( primSample ) 
101 runs [i ]. optimize (1) 
102 opts . append ( runs [i ]. getOptimum () ) 
103 if len ( runs ) == 1: 
104 xOpt = runs [i ]. getOptimumPrim () 

OptSol = runs [i ]. getSolution () 
106 elif runs [i ]. getOptimumPrim () < xOpt : 
107 xOpt = runs [i ]. getOptimumPrim () 
108 OptSol = runs [i ]. getSolution () 
109 indexOpt = i 

write ( primSample ) 
111 Znm = sum ( runs [i ]. getOptimum () for i in range (M))/M 
112 gap = runs [ indexOpt ]. getOptimumPrim () -Znm 
113 var = runs [ indexOpt ]. getVariance () 
114 del Samples , primSample 

gc . collect () 
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varN = sum ((var[i]**2 for i in range (N+prim)))/((N+prim)*(N+prim -1)) 
varZnm = sum ((opts[i]-Znm)**2 for i in range (M))/(M*(M -1)) 
varGap = varN + varZnm 

workbook = xlwt .Workbook () 
sheet = workbook .add_sheet("Summary ") 
# Specifying style 
style = xlwt .easyxf( ’font: bold 1’) 

#Summary sheet 
sheet .write(0, 0, "TotalCost ", style) 
sheet .write(1, 0, xOpt , style) 
sheet .write(0, 1, "BatteryCapacity ", style) 
sheet .write(1, 1, OptSol [0], style) 
sheet .write(0, 2, "ElectrolyzerCapacity ", style) 
sheet .write(1, 2, OptSol [2], style) 
sheet .write(0, 3, "HydrogenTankCapacity ", style) 
sheet .write(1, 3, OptSol [3], style) 
sheet .write(0, 4, "FuelCellCapacity ", style) 
sheet .write(1, 4, OptSol [4], style) 
sheet .write(0, 5, "Gap ", style) 
sheet .write(1, 5, gap , style) 
sheet .write(0, 6, "VariancesN ", style) 
sheet .write(1, 6, varN , style) 
sheet .write(0, 7, "VariancesZnm ", style) 
sheet .write(1, 7, varZnm , style) 
sheet .write(0, 8, "Variances ", style) 
sheet .write(1, 8, varGap , style) 
workbook .save("StochasticTest .xls ") 

def caseData(N, xlData): 
Samples = [] 
j = 0 
while j < N: 

j +=1 
SDs = {} #New demand dictionary for the sample 
SPS = {} #New solar production dictionary for the sample 
SPW = {} #New wind production dictionary for the sample 
SPR = {} #New total renewable production dictionary for the sample 
SCRE = {} #New el spot dictionary for the sample 
SCEH = {} #Electricity price + usage fee 

SDs = normalInsert(xlData [1], SDs , 14,0) #Demand sample 0 
SPS = normalInsert(xlData [3], SPS , 6, 2) #Solar power sample 2 
SPW = normalInsert(xlData [4], SPW , 2, 1) #Wind power sample 1 
SCRE = normalInsert(xlData [5], SCRE , 10,0) #Elspot sample 0 
for k in xlData [0]. keys(): 

try : 
d = xlData [6][k] 
c = SCRE[k] 
SCRE[k] = c/1000 
SCEH [k]= d+c /1000 

a = SPW[k] 
b = SPS[k] 
SPR[k]=a+b 

except IndexError: 
break 

samp =[SDs , SPR , SCRE , SCEH] 
Samples .append(samp) 
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return Samples 

def normalInsert(mean , samp , start , dist): 
#dist = 0 Normal , 1 = Lognormal , 2 = Uniform , 3 = Normal 
j = 2 #Excel dokument data starts at 3rd row 
book = xlrd .open_workbook(os .path .join("Data_AVE_STD .xlsx ")) 
sh = book .sheet_by_name("Sheet1 ") 
sh2 = book .sheet_by_name("Sheet2 ") 
for i in mean .keys(): 

std = sh .cell_value(j,start) 
if dist == 0: 

data = numpy .random .normal(mean[i], abs (mean[i]*std), size =None) 
elif dist == 1: 

data = mean[i]* numpy .random .lognormal(0, std/10, size =None) 
elif dist == 2: 

if j < 8041: 
data = random .choice(sh2 .row_values(j -2,0,14))*2.62 

else : 
data = random .choice(sh2 .row_values(j -2,0,13))*2.62 

if data < 0 and mean[i] > 0: 
data = 0 

samp[i] = data 
j +=1 

return samp 

class OPT: 
def __init__(self , Samples , Data): 

self .Samples = Samples 
self .Data = Data 
self .Optimum = 0 
self .OptimumPrim = 0 
self .variance = 0 
self .Solution = [] 

def optimize(self , mode): 
N = len (self .Samples) 
DateTime = self .Data [0] 
###### General data for the optimization ##### 
DisDay = 0.002 #Daily self -discharge of li -ion batteries 
Blife = 15 #Life time of batteries 
CB = 5500 #Investment costs of batteries per kWh 
Dis = 10**( math .log(1 -DisDay ,10) /24) #Self -discharge rate per hour 
Beff = 0.94 # Charge/discharge efficiencies of lithium ion batteries 
COB = 0.001 #Annual operation costs for batteries 
Tc = 0.36 #Electricity taxes for companies 
Ts = 0 #Electricity taxes for self consumed electricity 
DoD = 0.8 #Depth of discharge 
Ccf = 1450/15 #Connection fee for scaling the electricity grid 
CP = 35 #Power fee 
C = 0.5 #Charge/discharge rate of the battery 

Llife = 15 #Life time of electrolysis 
Slife = 15 #Life time of hydrogen storage 
Flife = 15 #Life time of fuel cell 
CL = 5000 #Investment costs of electrolyzer per kW 
CS = 240 #Investment costs of hydrogen storage per kWh 
CF = 5000 #Investment costs of fuel cell per kW 
COL = 0.005 #Annual operation costs for electrolyzer 
COS = 0.005 #Annual operation costs for the hydrogen storage 
COF = 0.005 #Annual operation costs for the fuel cell 
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Leff = 0.85 #Electrolyser efficiency 
Feff = 0.5 #Fuel cell efficiency 
Lheat =0.06 #Waste heat from electrolyzer 
Fheat = 0.2 #Waste heat from fuel cell 
ServiceLevel = 0.95 
K = norm .ppf(ServiceLevel) #Safety factor for safety stock 
HydrogenVar = 0.15 #Assumed standard deviation of hydrogen demand 
#Accumulated hours for each month 
tm = [0 ,744 ,1440 ,2184 ,2904 ,3648 ,4368 ,5112 ,5856 ,6576 ,7320 ,8040 ,8784] 
DateTimeExtended = [0] + self .Data [0] 
###### General data for the optimization ##### 

try : 
# Create a new model 

m = Model("StorageOptimization ") 
# Create variables 

if mode == 1: 
# Bcap is total battery capacity 
Bcap = self .Solution [0] 

# Max amount of renewable energy sent to electricity grid 
REmax = self .Solution [1] 

# Lcap: total electrolyzer capacity 
Lcap = self .Solution [2] 

# Scap: total hydrogen storage capacity 
Scap = self .Solution [3] 

# Fcap: total fuel cell capacity 
Fcap = self .Solution [4] 

else : 
# Bcap is total battery capacity 
Bcap = m. addVar(lb =0, name ="Bcap ") 

# Lcap: total electrolyzer capacity 
Lcap = m. addVar(lb =0, name ="Lcap ") 

# Scap: total hydrogen storage capacity 
Scap = m. addVar(lb =0, name ="Scap ") 

# Fcap: total fuel cell capacity 
Fcap = m. addVar(lb =0, name ="Fcap ") 

# Max amount of renewable energy sent to electricity grid 
REmax = m. addVar(lb =0, name ="REmax ") 

# Emax: max electricity output from the grid a specific month 
Emax = m. addVars(self .Data[1], lb =0, name ="Emax ") 

# ES: amount of electricity from the Grid to Skags 
ES = m. addVars(DateTime , N, lb =0, name ="ES ") 

# RE: amount of electricity from the Renewables to Grid 
RE = m. addVars(DateTime , N, lb =0, name ="RE ") 

# RS: amount of electricity from the Renewables to Skags 
RS = m. addVars(DateTime , N, lb =0, name ="RS ") 
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# RB: amount of electricity from the Renewables to Batteries 
RB = m. addVars(DateTime , N, lb =0, name ="RB ") 

# BS: amount of electricity from the Batteries to Skags 
BS = m. addVars(DateTime , N, lb =0, name ="BS ") 

# SB: amount of electricity stored in the batteries 
SB = m. addVars(DateTimeExtended , N, lb =0, name ="SB ") 

# SS: amount of hydrogen stored in the hydrogen tank 
SS = m. addVars(DateTimeExtended , N, lb =0, name ="SS ") 

# RL: amount of renewable electricity to the electrolyzer 
RL = m. addVars(DateTime , N, lb =0, name ="RL ") 

# SF: amount of hydrogen sent to the fuel cell 
SF = m. addVars(DateTime , N, lb =0, name ="SF ") 

# FS: amount of electricity sent from the fuel cell to Skags 
FS = m. addVars(DateTime , N, lb =0, name ="FS ") 

# LW is the amount of utilized waste heat from the electrolyzer 
LW = m. addVars(DateTime , N, lb =0, name ="LW ") 
# FW is the amount of utilized waste heat from the fuel cell 
FW = m. addVars(DateTime , N, lb =0, name ="FW ") 

# Slack variables for hydrogen storage and electrolyzer 
slack = m. addVar(lb =0, name ="slack ") 
slack2 = m. addVar(lb =0, name ="slack2 ") 

# Objective: Minimize costs 
m. setObjective(REmax*Ccf+CB*Bcap *(COB+1/ Blife)+CL*(Lcap+slack2) 

*( COL +1/ Llife )+CS *( Scap + slack ) *( COS +1/ Slife )+ 
CF*Fcap *(COF +1/ Flife)+ sum (CP*Emax[m] 
for m in self .Data [1]) +(1/N)* sum ((Tc+ 
self . Samples [k ][3][ t ]) *( ES[t ,k ])+Ts *( RS[t,k ]+ 
RB[t,k]+RL[t,k]) -self .Samples[k][2][t]* 
RE[t,k] for t in DateTime 
for k in range (N)), GRB .MINIMIZE) 

#Constraints 
# c0 initial value of battery storage 
m. addConstrs ((SB[DateTimeExtended [0],k] == Bcap *(1 -DoD)) 

for k in range (N)) 

# c1 ensures that the total battery capacity is sufficient 
m. addConstrs ((SB[t,k] <= Bcap) for t in DateTime 

for k in range (N)) 

# c2 Sets this periods battery level based on previous period 
m. addConstrs ((Beff*(RB[t,k])+Dis*SB[t -1,k]-BS[t,k] == SB[t,k]) 

for t in DateTime for k in range (N)) 

# c4 Matches demand of skags with output 
m. addConstrs ((RS[t,k]+BS[t,k]* Beff+ES[t,k]+FS[t,k] == 

self .Samples[k][0][t]) for t in DateTime 
for k in range (N)) 

# c6 Matches produced renewable energy with outputs 
m. addConstrs ((RB[t,k]+RS[t,k]+RE[t,k]+RL[t,k] == 
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self .Samples[k][1][t]) for t in DateTime 
for k in range (N)) 

# c7 Ensures that depth of discharge is not exceeded 
m. addConstrs ((SB[t,k]>= Bcap *(1 -DoD)) for t in DateTime 

for k in range (N)) 

# c8 checks the maximum electricity grid input 
m. addConstrs ((RE[t,k] <= REmax) for t in DateTime 

for k in range (N)) 

# c9 finds maximum electricity output from the grid per month 
for mnt in self .Data [1][: len (self .Data [1]) -1]: 

for t in DateTime[tm[mnt]:tm[mnt +1]]: 
m. addConstrs(ES[t,k] <= Emax[mnt+1] for k in range (N)) 

# c11 maximum output and input from the battery system 
m. addConstrs(BS[t,k] <= Bcap*C for t in DateTime 

for k in range (N)) 
m. addConstrs(RB[t,k] <= Bcap*C for t in DateTime 

for k in range (N)) 

if mode == 1: #Allows slack variables for step 2.2 
# c12 ensures total hydrogen storage capacity is sufficient 
m. addConstrs ((SS[t,k] <= Scap+slack) for t in DateTime 

for k in range (N)) 

# c13 ensures that total electrolyzer capacity is sufficient 
m. addConstrs ((RL[t,k] <= Lcap+slack2) for t in DateTime 

for k in range (N)) 

else : #Normal case 
# c12 ensures total hydrogen storage capacity is sufficient 
m. addConstrs ((SS[t,k] <= Scap) for t in DateTime 

for k in range (N)) 

# c13 ensures that total electrolyzer capacity is sufficient 
m. addConstrs ((RL[t,k] <= Lcap) for t in DateTime 

for k in range (N)) 

# c14 Sets this periods hydrogen level based on previous periods 
m. addConstrs (( Leff *( RL[t,k])+SS[t -1,k]+ LW[t,k ]+ FW[t,k]-

self .Data [2][t]-SF[t,k] == SS[t,k]) 
for t in DateTime for k in range (N)) 

# c15 Matches fuel cell output with electricity input 
m. addConstrs ((SF[t,k]* Feff == FS[t,k]) for t in DateTime 

for k in range (N)) 

# c16 ensures that the total fuel cell capacity is sufficient 
m. addConstrs ((SF[t,k] <= Fcap) for t in DateTime 

for k in range (N)) 

# c17 sets initial storage level of hydrogen tank 
m. addConstrs ((SS[DateTimeExtended [0],k] == self .Data [2][9]*24*7+ 

24*K*HydrogenVar*self .Data [2][9]) for k in range (N)) 

if mode == 0: #Relaxes the safety stock constraint for stage 2.2 
# c18 sets the safety stock for the hydrogen tank 
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for mnt in self .Data [1][: len (self .Data [1]) -1]: 
for t in DateTime[tm[mnt]:tm[mnt +1]]: 

m. addConstrs(SS[t,k] >= K* HydrogenVar* 
self .Data [2][tm[mnt ]+9]*24 
for k in range (N)) 

# c19 sets waste heat for electrolyzer 
m. addConstrs(LW[t,k] <= RL[t,k]* Lheat for t in DateTime 

for k in range (N)) 

# c20 sets waste heat for fuel cell 
m. addConstrs(FW[t,k] <= SF[t,k]* Fheat for t in DateTime 

for k in range (N)) 

# c21 Makes sure that utilized waste heat does not exceed demand 
m. addConstrs(FW[t,k]+LW[t,k] <= self .Data [3][t] 

for t in DateTime for k in range (N)) 

m. optimize () 

if mode == 0: #Stage 2.1 
self .Optimum = m. objVal 
self .Solution = [Bcap .x, REmax .x, Lcap .x, Scap .x, Fcap .x] 
del (Bcap ,REmax ,Lcap , Scap ,Fcap ,ES ,RE ,RS ,RB ,BS ,SB ,SS ,RL ,SF , 

FS ,FW ,LW ) 
gc. collect () 

else : #Stage 2.2 
self .OptimumPrim = m. objVal 
cTx =(( REmax)*Ccf+CB*Bcap*(COB +(1/ Blife))+CL*(Lcap+slack2 .x) 
*(COL +(1/ Llife))+CS*(Scap+slack .x)*(COS +(1/ Slife))+CF*Fcap* 
(COF +(1/ Flife))+ sum (CP*Emax[m].x for m in self .Data [1])) 
var = [] 
for k in range (N): 

diff = 0 
for t in DateTime: 

diff += ((Tc+self .Samples[k][3][t])*(ES[t,k].x)+ 
Ts *( RS[t,k].x+RB[t,k].x+RL[t,k].x) -
self .Samples[k][2][t]*(RE[t,k].x)) 

var .append(cTx + diff -m. objVal) 
self .variance = var 

workbook = xlwt .Workbook () 
sheet = workbook .add_sheet("Summary ") 
sheets = [] 
for itr in range (N): 

sheets .append(workbook .add_sheet("Sheet "+str (itr))) 
# Specifying style 
style = xlwt .easyxf( ’font: bold 1’) 

#Summary sheet 
sheet .write(0, 0, "TotalCost ", style) 
sheet .write(1, 0, m. ObjVal , style) 
sheet .write(0, 1, "BatteryCapacity ", style) 
sheet .write(1, 1, Bcap , style) 
sheet .write(0, 2, "ElectrolyzerCapacity ", style) 
sheet .write(1, 2, Lcap , style) 
sheet .write(0, 3, "HydrogenTankCapacity ", style) 
sheet .write(1, 3, Scap , style) 
sheet .write(0, 4, "FuelCellCapacity ", style) 
sheet .write(1, 4, Fcap , style) 
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k = 
for 

0 
sheet in sheets: 
sheet .write(0, 0, ’Period ’, style) 
#Battery section 
sheet .write(0, 1, ’BatteryLevel ’, style) 
sheet .write(0, 2, "Renewable_Batteries ", style) 
sheet .write(0, 3, "Households_Batteries ", style) 
sheet .write(0, 4, "Battery_House ", style) 
sheet .write(0, 5, "Battery_Skags ", style) 
sheet .write(0, 6, "Battery_Nyhagen ", style) 
#Renewable section 
sheet .write(0, 8, "Renewable_Prod ", style) 
sheet .write(0, 9, "Renewable_Grid ", style) 
sheet .write(0, 10, "Renewable_Electrolyzer ", style) 
sheet .write(0, 11, "Renewable_House ", style) 
sheet .write(0, 12, "Renewable_Skags ", style) 
sheet .write(0, 13, "Renewable_Nyhagen ", style) 
#Grid/demand section 
sheet .write(0, 15, "Grid_House ", style) 
sheet .write(0, 16, "Grid_Skags ", style) 
sheet .write(0, 17, "Grid_Nyhagen ", style) 
sheet .write(0, 18, "Demand_House ", style) 
sheet .write(0, 19, "Demand_Skags ", style) 
sheet .write(0, 20, "Demand_Nyhagen ", style) 
sheet .write(0, 21, "Grid_total ", style) 
#Hydrogen section 
sheet .write(0, 23, ’Renewable_Electrolyzer ’, style) 
sheet .write(0, 24, ’FuelCell_Households ’, style) 
sheet .write(0, 25, ’FuelCell_Skags ’, style) 
sheet .write(0, 26, ’FuelCell_Nyhagen ’, style) 
sheet .write(0, 27, ’Storage_FuelCell ’, style) 
sheet .write(0, 28, ’Household_Electrolyzer ’, style) 
sheet .write(0, 29, ’HydrogenDemand ’, style) 
sheet .write(0, 30, ’HydrogenLevel ’, style) 
sheet .write(0, 31, ’Slack ’, style) 
sheet .write(0, 32, ’Slack2 ’, style) 
sheet .write(1, 31, slack .x) 
sheet .write(1, 32, slack2 .x) 
sheet .write(0,33, "WasteHeat ") 

j = 1 
for v in DateTime: 

sheet .write(j, 0, j) 
#Battery section 
sheet .write(j, 1, SB[v,k].x) 
sheet .write(j, 2, RB[v,k].x) 

sheet .write(j, 5, BS[v,k].x) 

#Renewable section 
sheet .write(j, 8, self .Samples[k][1][j]) 
sheet .write(j, 9, RE[v,k].x) 
sheet .write(j, 10, RL[v,k].x) 

sheet .write(j, 12, RS[v,k].x) 

#Grid/demand section 

sheet .write(j, 16, ES[v,k].x) 
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sheet .write(j, 19, self .Samples[k][0][j]) 

sheet .write(j, 21, ES[v,k].x) 
#Hydrogen section 
sheet .write(j, 23, RL[v,k].x) 

sheet .write(j, 25, FS[v,k].x) 

sheet .write(j, 27, SF[v,k].x) 

sheet .write(j, 29, self .Data [2][j]) 
sheet .write(j, 30, SS[v,k].x) 

sheet . write (j ,33 , FW[v,k ].x+LW[v,k ].x) 
j += 1 

k += 1 
workbook .save("logNormTest .xls ") 
del (ES ,RE ,RS ,RB ,RL ,self .Samples ,self .Data ,Bcap ,REmax ,Lcap , 

Scap ,Fcap ,SF,SS,FS ,BS ,SB ,FW ,LW) 
gc. collect () 

except GurobiError as e: 
print (’Error code ’ + str (e. errno) + ’: ’ + str (e)) 

def updateSamples(self , Samples2): 
self .Samples = Samples2 

def getOptimum(self): 
return self .Optimum 

def getOptimumPrim(self): 
return self .OptimumPrim 

def getSolution(self): 
return self .Solution 

def getVariance(self): 
return self .variance 

def write(Samples): 
workbook = xlwt .Workbook () 
sheet = workbook .add_sheet("Samples ") 
# Specifying style 
style = xlwt .easyxf( ’font: bold 1’) 
k = 0 
for v in Samples: 

sheet .write(0, k, "Demand ", style) 
sheet .write(0, k+1, "Renewable ", style) 
sheet .write(0, k+2, "Elspot ", style) 
sheet .write(0, k+3, "Elspot+fee ", style) 
sheet .write(0, k+4, "", style) 
for l in v: 

j = 1 
for m in l. keys(): 

sheet .write(j, k, l[m]) 
j += 1 

k +=1 
k +=1 

workbook .save("logNormTestData .xls ") 

#N is the size of each sample 
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N = 10 
#M is the number of sample batches 
M = 10 
#prim is how much larger the Nprim sample should be than N 
prim = 15 

main(N, M, prim) 
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C Simplifed Model 
Simplifed variables 

• ET (t)k: Total amount of electricity sent form the electricity grid 

• RT (t)k: Total amount of renewable energy sent to the system 

• BT (t)k: Total amount of electricity sent from the batteries to the system 

• FT (t)k: Total amount of electricity sent from the fuel cell to the system 

Objective function: 

M N T1 1
∑ ∑ 

1m= 
CP ∗ Emax(m)+ ∑∑min z = REmax ∗Cc f + Ci ∗ icap ∗ (COi + (CEH(t)k+)+ 

ili f e Ni={B,L,S,F} k=1 t=1 

Tc) ∗ ET (t)k + Ts ∗ (RB(t)k + RT (t)k + RL(t)k) −CRE (t)k ∗ RE(t)k 

Subject to: 
SB(0) = Bcap ∗ (1 − DoD) 

SB(t)k ≤ Bcap ∀t,k 

Be f f ∗ RB(t)k + Dis ∗ SB(t − 1)k − BT (t)k = SB(t)k ∀t,k 

RT (t)k + BT (t)k ∗ Be f f + ET (t)k + FT (t)k = Ds(t)k ∀t,k 

RB(t)k + RT (t)k + RE(t)k + RL(t)k = PR(t)k ∀t,k 

SB(t)k ≥ Bcap ∗ (1 − DoD) ∀t,k 

RE(t)k ≤ REmax ∀t,k 

ET (t)k ≤ Emax(m+ 1) ∀m \{M}, t ∈ [tm + 1, tm+1],k 

BT (t)k ≤ Bcap ∗C ∀t,k 

RB(t)k ≤ Bcap ∗C ∀t,k 

SS(t)k ≤ Scap ∀t,k 

RL(t)k ≤ Lcap ∀t,k 

Le f f ∗ (RL(t)k + SS(t − 1)k + LW (t)k + FW (t)k − Hd(t)k − SF(t)k = SS(t)k ∀t,k 

SF(t)k ∗ Fe f f = FT (t)k ∀t,k 

SF(t)k ≤ Fcap ∀t,k 

LW (t)k ≤ RL(t)k ∗ Lheat ∀t,k 

FW (t)k ≤ SF(t)k ∗ Fheat ∀t,k 

LW (t)k + FW (t)k ≤ Dheat(t) ∀t,k 
′ SS(t)k ≥ k ∗ σh(m + 1) ∀m \{M}, t 

168 
′ SS(0) = k ∗ σh(1)+ ∑ Hd(t) 

t=1 

0 ≤ REmax,Bcap,Lcap,Scap,Fcap 

0 ≤ ET (tk),RE(t)k,RT (t)k ∀t 
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0 ≤ SB(t0)k,RB(t)k,BT (t)k ∀t,k 

0 ≤ SS(t0)k,RL(t)k,SF(t)k,FT (t)k,LW (t)k,FW (t)k ∀t,k 

0 ≤ Emax(m) ∀m 
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D Austerland Skags Final Deterministic Model 
New parameters 

• CW : Price of wood chips used for heating of Skags farm 

• CH : Price of hydrogen that can be bought externally 

New variables 

• Hbuy(t): Amount of hydrogen bought into the system in time period t 

Objective function: 

T1
∑ ∑min z = REmax ∗Cc f + Ci ∗ icap ∗ (COi + (CEH (t)+ Tc) ∗ (EH(t)+ ES(t)+ )+ 

ili f e i={B,L,S,F} t=1 

EN(t)) + Ts ∗ (RB(t)+ RH(t)+ RS(t)+ RN(t)+ RL(t)) −CRE(t) ∗ (RE(t)+ HE(t))+ 
M 

Hbuy(t) ∗CH −CW ∗ (LW (t)+ FW (t)) + ∑ 
1m= 
CP ∗ Emax(m) 

Subject to: 
SB(0) = Bcap ∗ (1 − DoD) 

SB(t) ≤ Bcap ∀t 

Be f f ∗ (RB(t)+ HB(t)) + Dis ∗ SB(t − 1) − BH(t) − BS(t) − BN(t) = SB(t) ∀t 

RH(t)+ BH(t) ∗ Be f f + EH(t)+ FH(t) − HE(t) − HB(t) − HL(t) = Dh(t) ∀t 

RS(t)+ BS(t) ∗ Be f f + ES(t)+ FS(t) = Ds(t) ∀t 

RN(t)+ BN(t) ∗ Be f f + EN(t)+ FN(t) = Dn(t) ∀t 

RB(t)+ RH(t)+ RS(t)+ RN(t)+ RE(t)+ RL(t) = PR(t) ∀t 

SB(t) ≥ Bcap ∗ (1 − DoD) ∀t 

RE(t) ≤ REmax ∀t 

EH(t)+ ES(t)+ EN(t) ≤ Emax(m + 1) ∀m \{M}, t ∈ [tm + 1, tm+1] 

0 ≤ Dh(t) ∗ (1 − y(t)) ∀t 

HE(t)+ HB(t)+ HL(t) = −Dh(t) ∗ y(t) ∀t 

BH(t)+ BS(t)+ BN(t) ≤ Bcap ∗C ∀t 

RB(t)+ HB(t) ≤ Bcap ∗C ∀t 

SS(t) ≤ Scap ∀t 

RL(t)+ HL(t) ≤ Lcap ∀t 

Le f f ∗ (RL(t)+ HL(t)) + SS(t − 1)+ Hbuy(t) − Hd(t) − SF(t) = SS(t) ∀t 

SF(t) ∗ Fe f f = FH(t)+ FS(t)+ FN(t) ∀t 

SF(t) ≤ Fcap ∀t 

LW (t) ≤ RL(t) ∗ Lheat ∀t 

FW (t) ≤ SF(t) ∗ Fheat ∀t 
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LW (t)+ FW (t) ≤ Dheat (t) ∀t 
′ SS(t) ≥ k ∗ σh(m + 1) ∀m\{M}, t 

168 
′ SS(0) = k ∗ σh(1)+ ∑ Hd(t) 

t=1 

0 ≤ REmax,Bcap,Lcap,Scap,Fcap 

0 ≤ EH(t),ES(t),EN(t),RE(t),RH(t),RS(t),RN(t),HE(t) ∀t 

0 ≤ SB(t0),RB(t),BH(t),BS(t),BN(t),HB(t) ∀t 

0 ≤ SS(t0),RL(t),SF(t),FH(t),FS(t),FN(t),LW (t),FW (t),HL(t) ∀t 

0 ≤ Emax(m) ∀m 

y(t) ∈ {0,1} ∀t 
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