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Detecting State Transitions of a Markov Source:
Sampling Frequency and Age Trade-off

Jaya Prakash Champati, Member, IEEE, Mikael Skoglund, Fellow, IEEE, Magnus Jansson, Senior Member, IEEE,
and James Gross Senior Member, IEEE,

Abstract—We consider a finite-state Discrete-Time Markov Chain
(DTMC) source that can be sampled for detecting the events when
the DTMC transits to a new state. Our goal is to study the trade-off
between sampling frequency and staleness in detecting the events. We
argue that, for the problem at hand, using Age of Information (AoI) for
quantifying the staleness of a sample is conservative and therefore, study
another freshness metric age penalty, which is defined as the time elapsed
since the first transition out of the most recently observed state. We
study two optimization problems: minimize average age penalty subject
to an average sampling frequency constraint, and minimize average
sampling frequency subject to an average age penalty constraint; both
are Constrained Markov Decision Problems. We solve them using the
Lagrangian MDP approach, where we also provide structural results
that reduce the search space. Our numerical results demonstrate that the
computed Markov policies not only outperform optimal periodic sampling
policies, but also achieve sampling frequencies close to or lower than that
of an optimal clairvoyant (non-causal) sampling policy, if a small age
penalty is allowed.

Index Terms—Age of information; age penalty; sampling;
DTMC source; CMDP;

I. INTRODUCTION

Detecting the occurrence of an event when monitoring an
information source or a process of interest is essential to
applications from varied domains that include control and
information systems. In a control system, for instance, a sensor
samples a process for detecting an event where the state of
the process exceeds a certain threshold value. In the World
Wide Web, a web crawling application is equipped with the
task of downloading remote web pages to a local database
(for page ranking/indexing etc.), and is required to detect the
events when the remote web page gets updated.

In practice, it is impossible to know the exact time instant
of occurrence of an event unless the source is sampled in-
finitely often (or in every time slot for discrete-time systems).
However, sampling at a higher frequency incurs costs to a
system in terms of the energy consumption of a sensor, or the
bandwidth usage of the network for transmitting the samples.
On the other hand, sampling at a lower frequency results in
staleness in detecting an event. Therefore, we are interested in
the question: given that the source is sampled in time slot n,
how to choose the next sampling instant n + τ such that the
conflicting objectives average sampling frequency and average
staleness in the event detection are optimized? In this work,
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we address this question for an information source modelled
using a finite-state DTMC and the events we want to detect
are transitions of the DTMC to new states. Our motivation for
studying the DTMC source is that it can serve as an abstract
model to describe the states of a plant or a process of interest.
For example, we may classify the states of a plant into “good”
and “bad” and study a 2-state DTMC by deriving the transition
probabilities from the history of observations made on the
plant. Another important application domain is maintaining
fresh copies of remote sources in a local database [Cho2003].
For example, a web crawler application maintains a local
database about web pages on the internet and regularly updates
the local database in order to have the information about the
latest web pages. It is used, for example, by search engines for
page ranking. Here, the time instances of changes of a web
page can potentially be modeled using the state transitions
in a DTMC. Another merit of studying a DTMC source is
that, it allows for tractable analysis for new freshness metrics
that take into consideration the source characteristics. This is
evident from its use in several related works; for example, see
[1]–[4].

The first step in studying the trade-off between sampling
frequency and staleness is to choose an appropriate metric for
quantifying the staleness of a sample. For this purpose, one
may choose Age of Information (AoI), which has emerged
as a relevant performance metric for quantifying staleness of
updates at a destination in a communication system. It is
defined as the time elapsed since the generation of the freshest
update available at the destination [5]. However, using the
example that follows, we argue that using AoI is conservative
for the problem at hand. Consider a two-state DTMC source
with states {1, 2}. The transition probability from state 1 to
state 2 is 0.05 and the transition probability from state 2 to
state 1 is 0.95. The stationary probabilities for states 1 and
2 are 0.95 and 0.05, respectively. Note that, for a sampling
policy to satisfy a unit constraint on AoI, it has to sample
the DTMC every two slots, because AoI increases linearly
irrespective of the DTMC state that was observed. However,
when in state 1, a transition occurs every twenty slots, on
average. Thus, sampling every two slots results in redundant
samples as each of those samples most likely contain state
1. Thus, in this work we study another staleness metric age
penalty, which is defined as the time elapsed since the first
transition out of the most recently observed state. Note that
the age penalty takes into account the current state of the
source. As we will see later in Example 2 in Section V, for
the above two-state DTMC, using a unit constraint on the age
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penalty results in a sampling policy that samples the DTMC
in the next time slot if the observed state in the current time
slot is 2, but if the observed state is 1, the policy samples
after 7.36 slots, on average. The average sampling frequency
of this policy is 0.14. Note the stark contrast to the policy,
with sampling frequency 0.5, resulting from using AoI; this
signifies the importance of using age penalty. It is worth noting
that age penalty is an instantiation of a general metric Age of
Incorrect Information (AoII) proposed in [4].

We formulate two problems: minimize average age penalty
subject to an average sampling frequency constraint, and
minimize average sampling frequency subject to an average
age penalty constraint. Both the problems are Constrained
Markov Decision Problems (CMDPs). We then formulate the
Lagrangian MDP with parameter λ for which we prove two
structural results: 1) the optimal λ belongs to the interval
(0, 1), and 2) given a state i is observed at a sampling instant,
the optimal sampling interval for the next sample is upper
bounded by (1−λ)/ log pii+1, where pii is the self-state tran-
sition probability in state i. These two structural results reduce
the search space significantly and we use the Relative Value
Iteration (RVI) algorithm (cf. [6]) to compute the optimal
deterministic policies for the Lagrangian MDP. To compute
an optimal policy for the CMDP, we use a classical result that
the optimal Markov policy for a single constraint CMDP can
be obtained by randomizing between two deterministic optimal
policies for the Lagrangian MDPs [7].

In our numerical analysis, we find that the optimal policy al-
ways provides lower sampling frequency than the best periodic
sampling policy and the gap increases with lower probability
of transitions to other states. We also present a comparison of
the sampling frequency achieved by the optimal policy with
that of the sampling frequency of an optimal clairvoyant (non-
causal) sampling policy. Interestingly, if the system can allow a
small age penalty equal to one slot, then one can achieve much
lower sampling frequencies than that of the optimal clairvoyant
sampling policy in some scenarios.

The rest of the paper is organized as follows. Related work
is presented in Section II. In Section III, we present the
system model and the CMDPs. The Lagrangian MDP solution
approach and the structural results are presented in Section IV.
Numerical results are presented in Section V, and we conclude
in Section VI.

II. RELATED WORKS

In the AoI literature, the works [1]–[3], [8]–[11] considered
remote monitoring/estimation of the states of a Markov source.
The authors in [8] proposed a freshness metric based on the
mutual information between the current state of the source and
the received states at a remote monitor, and solved an optimal
sampling problem for maximizing the mutual information.
In [9], the authors analysed freshness by proposing a closely
related metric to age penalty based on conditional entropy,
where the current state and the states in the past till the gener-
ation time of the freshest sample at the monitor are conditioned
with respect to this freshest sample. The authors also studied
the detection delay of each state change and focused on the

analysis of these metrics, but focused on studying periodic
sampling and zero-wait policies using simulation. We note that
in contrast to the detection delay, age penalty only considers
the first state change since the last sampling instant that allows
tractability while capturing the staleness.

Displaying the state of a continuous-time Markov chain
source at a remote monitor was studied in [10]. The authors
analysed the probability of error in displaying the correct state
of the source. In our system model, we consider staleness
only at the sampler. In [4], the authors proposed the AoII
metric, which is defined as a product of two functions: one
is any increasing function of time until the time the next
update is received, and the other function is a general penalty
function for mismatch in the states at the source and the
receiver. The authors studied an instance of the AoII metric
that is a linearly increasing function with time whenever the
freshest state at the receiver and the DTMC are unequal.
They study a parameterized symmetric N -state DTMC, where
the transition probability from a state to itself is pt and the
probability of transition from a state to any other state is
pR. As a consequence, for the , these values has to satisfy
pR + (N − 1)pt = 1. In [1], the authors considered remote
monitoring of a two-state Markov Chain with geometrically
distributed communication delays and assumed that the sam-
pler knows the state in each slot. They computed the average
AoI and the estimation error for two sampling policies: 1)
zero-wait policy, which sends the latest sample when the
channel is idle, and 2) sample-at-change policy, which sends
the latest sample when the channel is idle and a transition to
a state different from the previous sample occurs. Further, for
this system, the authors computed optimal sampling policies
for three different performance metrics, namely, the estimation
error, AoI, and AoII [2]. In [3], the authors considered an N -
state DTMC where transitions occur only between adjacent
states, and geometrically distributed communication delays.
They minimize an instantiation of AoII – the absolute differ-
ence between the states at the receiver and the Markov source
multiplied by the current time – subject to a constraint on the
power associated with the transmission attempts. In contrast to
the above works, we do not consider communication delay, but
study the general N -state ergodic DTMC without any further
assumptions on the structure of the state transition probability
matrix. Furthermore, we consider that the sampler only knows
the state of the DTMC when it samples. In [11], the authors
considered multiple Markov sources and their metric is an
instantiation of AoII called Mean Age of Incorrect Information
(MAoII), which penalizes linearly all the time slots where the
freshest state at the receiver and the DTMC are unequal. They
also studied the structured transition probability considered
in [4], and proposed a Whittle-Index policy to solve the
minimization of the sum of MAoII for the sources subject to a
communication constraint. Finally, several works studied AoI
optimization under a constraint for different system settings,
for example cf. [12]–[16], and formulated CMDPs and used
the Lagrangian method to solve it. For the CMDP at hand,
we provide novel structural results that reduce the runtime
complexity of solving for the optimal policy and also prove
the tightness of the constraint under the optimal policy.
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The problem of when to sample next has been studied
for many years in control theory, see for example [17]–[20].
In [17], [18], the authors considered the off-line (on-line)
problem of choosing the time instants to sample sensor mea-
surements to minimize a Linear Quadratic Gaussian (LQG)
cost in a Linear Time Invariant (LTI) system. In [19], the
authors considered minimizing squared error distortion for
state estimation of a Markov source under a constraint on the
maximum number of transmitted samples. We note however
that, in this work the sensor is assumed to sample the process
continuously but only transmits certain samples based on a
criterion (event-triggering). In [20], the authors studied the
design of sampling intervals such that the stability of a non-
linear stochastic dynamical system is ensured. In all the above
works, the objective is either to minimize estimation error or
control cost or ensure stability of the system.

Perhaps the most relevant application for the problem we
have studied is maintaining fresh local database of remote
sources which is essential in systems like web crawling [21],
[22]. The authors in [21] proposed the following age metric: at
any given time, the age of a webpage is the time elapsed since
the webpage was first modified since last synchronization.
Note that the age penalty metric we study is similar to the
age metric proposed in [21] with a subtle difference that the
latter metric is a function of time, whereas the age penalty is
assigned only when there is a sample. A static optimization
problem was solved in [21] by modeling the webpage modi-
fications with a Poisson process and optimal periodic policies
were computed for minimizing the age metric. However, we
note that dynamic policies that use the state of the system have
not been studied in this line of work; see [22] for a survey.
In contrast, we considered the general set of causal sampling
policies and studied the trade-off between sampling frequency
and age penalty for detecting state transitions in a finite-state
DTMC.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Markov Source

We consider an information source/process that is modelled
by an N -state DTMC {Xn, n ≥ 0} where N <∞. We assume
that the DTMC is ergodic, i.e., it is irreducible [23]. Let S =
{1, 2, . . . , N} denote the set of states. Let P = [pij ], i, j ∈ S
denote the transition probability matrix. Here, pij is the one-
step probability of the state transitioning from state j to state
i. Further, let p(n)

ij denote the n-step transition probabilities.
We have

p
(n)
ij = P(Xn = i|X0 = j), ∀i, j ∈ S.

Let ξ = [ξ1, ξ2, . . . , ξN ] denote the steady-state vector, where
ξj denotes the steady-state probability of finding the DTMC
in state j. Since the DTMC is ergodic, ξj > 0, for all j.

A time slot in the system represents one unit of time of
the DTMC and the state transitions occur at the start of a
time slot. The state of the DTMC can only be observed by
sampling the source; see Figure 1. Let T0 = 0, T1, T2, . . .
denote the time instants of new-state transitions of the DTMC.
We are interested in detecting these transitions at the earliest

Fig. 1: Sampling an information source/process modelled
using a DTMC.

time possible. This problem has relevance to applications from
different domains:
• In a control system, where monitor/controller is co-

located with the sampler, the source is a process of
interest, and a state transition could represent an event
that the process signal exceeds a certain threshold.

• Another application domain is information systems which
maintain fresh copies of remote sources in a local
database [Olsten2010]. For example, a web crawler ap-
plication maintains a local database about web pages on
the internet and regularly updates the database in order
to have the information about the latest web pages. The
database is used, for example, by search engines for
page ranking. In this example, the download time of the
updates of a webpage is relatively negligible compared
with the frequency of polling and the changes in the
webpages are the state transitions.

Clearly, sampling the source at the start of every slot allows
us to detect each and every transition of the DTMC. Instead,
our aim here is to use a lower sampling frequency. This
translates to energy1 savings for a sensor and/or bandwidth
savings for transmitting lower number samples to a con-
troller/monitor. In the case of a web crawling application, this
translates to a lower frequency of downloads of the remote web
page. However, using lower sampling frequency will result in
staleness in detecting a transition and may also lead to missing
several transitions. We are thus interested in studying the trade-
off between sampling frequency and staleness. Next, we define
sampling policies and the age penalty for quantifying staleness.

B. Sampling Policy and Age Penalty

Assume that X0 is given. A sampling policy π specifies
the set of sampling instants {Gk, k ≥ 1}, where Gk is the
sampling instant of the kth sample. Define τk = Gk −Gk−1

for all k ≥ 1, and G0 = 0, then the policy π can be
equivalently specified by {τk, k ≥ 1}. We assume that
τ ∈ Q = {1, 2, . . . ,M}, where M is the maximum inter-
sampling time allowed in the system. We will see later that the
proposed solution approach can accommodate the case where
Q is countably infinite. Let Π denote the set of all causal
policies, where a causal policy considers the current and all
past observed states and past actions for choosing the current
action. In the sequel, we study the following policies.

1Explicit modeling of energy consumption in the system could involve more
system design choices apart from sampling frequency and we do not pursue
it in this work as it complicates analyses and obfuscates key insights into the
problem.
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1) Markov policies: A Markov policy maps each state to an
action with a fixed probability. To be precise, let j be the
observed state in the kth decision epoch, then, under a
Markov policy, τk is assigned a value τ ∈ Q according
to a fixed probability distribution Pπ(τk = τ |j). Let
ΠMR denote the set of Markov policies.

2) Deterministic policies: A deterministic policy is a
Markov policy that maps each state to some action with
probability 1. Let ΠD denote the set of deterministic
policies.

3) Periodic sampling policies: Under these policies, sam-
ples are taken at fixed time intervals τ . With a slight
abuse in notation we use π(τ) to denote such a policy.
Note that periodic sampling policies are a subclass of
Markov policies.

4) Optimal clairvoyant sampling policy: Under this policy,
the next transition to a new state is assumed to be known
a priori, and thus the source is sampled exactly at the
instants when transitions between states occur. Let π† =
{G†k, k ≥ 1} denote this policy and ν† denote its average
sampling frequency. Note that π† is a non-causal policy
and we study it for theoretical bench-marking.

As stated before, sampling the source at the start of every
slot allows us to identify each and every transition of the
DTMC to a new state and thus staleness of each sample is
zero. However, quantifying the staleness of a sample in general
is not entirely obvious. This is because, when the sampler
samples the source it may find that the DTMC is in the same
state or a different state from the previous sample, and even in
the former case multiple transitions might have occurred. One
may consider AoI, denoted by ∆(t), at the sampler as the
staleness metric. It increases linearly between two sampling
instants and resets to zero at the sampling instants. However,
using this staleness metric is conservative in this context. To
illustrate this, in Figure 2 we plot the sample-path of a 3-
state DTMC and the resulting AoI. Note that in the duration
between the instants G1 and G2, the DTMC stays in state 2
for 3 time-slots after it was observed by the sampler at G1.
Ideally, this should not be accounted for the staleness of the
sample at G2, but AoI adds a linear penalty for this duration.

Using the above insight, we quantify the staleness of a
sample k by introducing age penalty Ak, which is defined
as the time elapsed since the first transition out of the state in
the k− 1 sample2. Under policy π the age penalty for the kth
sample is given by

Ak(π) = max{0, Gk −min
n
{Tn : Tn ≥ Gk−1}}.

This metric is illustrated and contrasted with AoI in Figure 2.
Note that, as the sampling period increases the sampling in-
stant Gk increases and by definition the age penalty increases.
Under a policy π, the average age penalty, denoted by E[A(π)],
is given by,

E[A(π)] = lim sup
K→∞

E[
∑K
k=1Ak(π)]

K
,

2One may also consider including the number of missed transitions in the
age penalty and with some effort solve the problem using the same approach
as in this paper.

Fig. 2: A sample path of a 3-state Markov chain. AoI and age
penalties are depicted for the first three sampling instants of
a policy with G1 = 2, G2 = 6, and G3 = 7.

and the average sampling-interval is given by
lim supK→∞

E[
∑K
k=1 τk]

K , where the expectation is with
respect to the probability distribution induced by π on the
observed states and the actions.

C. Optimization problems P1 and P2

We are interested in the following two problems. In problem
P1, we minimize the average age penalty for a given upper
bound ν ∈ (0, 1) on the average sampling frequency:

P1 : minimize
π∈Π

E[A(π)]

s.t. lim sup
K→∞

Eπ[
∑K
k=1 τk]

K
≥ 1

ν
.

(1)

In problem P2, we maximize the average sampling-interval
for a given upper bound d ≥ 0 on the average age penalty:

P2 : maximize
π∈Π

lim sup
K→∞

Eπ[
∑K
k=1 τk]

K

s.t. E[A(π)] ≤ d .
(2)

Let π∗1 and π∗2 denote optimal policies for P1 and P2,
respectively.

Remark 1: For P1, an optimal periodic sampling policy
chooses τ = d1/νe, where d·e is the ceiling function. To see
this, under the periodic sampling policy with sampling period
one time slot, the age penalty will be zero in each slot, because
in this case the sampler will know the exact state of the DTMC
in all time slots. As the sampling period increases, the average
age penalty increases monotonically. Therefore, d1/νe is the
minimum period for a periodic sampler that has the least age
penalty while satisfying the lower bound constraint 1/ν. For
P2, an optimal periodic sampling policy chooses τ = d + 1.
To see this, a periodic sampler with sampling period a has a
the average age penalty at most a− 1. Therefore, the periodic
sampling policy with sampling period d+1 has the maximum
sampling period among all periodic sampling policies that
satisfy the average age penalty constraint d.

Finally, we define τ † = d1/ν†e, where ν† is the average
clairvoyant sampling frequency.
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IV. SOLUTION APPROACH

Both P1 and P2 are Constrained Markov Decision Problems
(CMDP) with finite state and action sets and therefore, an
optimal policy exists and it belongs to the set of Markov
policies [cf. Theorem 2.1 [7]]. Thus, in the following we only
need to consider the set of Markov policies. Under Markov
policies the induced stochastic process {XGk , k ≥ 1}, i.e., the
sequence of observed states, is also a DTMC; in the sequel
we refer to it as the induced DTMC.

Two main approaches to solve a CMDP with finite-state and
finite-action sets are: 1) using Linear Programming (LP) [24],
and 2) using Lagrangian MDP [25], [26]. In [27], we used the
LP approach and solved the resulting linear programs using
MATLAB. However, we note that these linear programs – the
formulations are given in Appendix B – have MN number of
variables, and the computational complexity cmp(LP ) of the
practical state-of-the art algorithms3 is a function of (MN)2.8.
Therefore, the run-time of the LP approach does not scale
well if M and N are large. In the following, we use the
Lagrangian MDP approach to solve the CMDP and also
provide a justification for a reduction in the computational
complexity of the proposed method. The steps in this approach
are summarized below:

1) We formulate the CMDP and the corresponding La-
grangian MDP with parameter λ ≥ 0. Since the La-
grangian MDP is an unconstrained MDP, an optimal de-
terministic policy can be computed by solving Bellman’s
equations.

2) We prove structural results for the Lagrangian MDP
that reduce the search space (making it independent of
M ), and use them to propose an efficient algorithm for
computing the optimal policies.

3) Given two optimal policies, corresponding to two chosen
λ values, for the Lagrangian MDP, we compute the
optimal Markov policy using randomization [25], [26].

In the sequel, we describe the solution approach for P1 and
the same procedure applies to P2.

A. Elements of the CMDP

The decision epochs in the CMDP are indexed by k.
• State space: S = {1, 2, . . . , N}.
• Action space: At decision epoch k, the next inter-

sampling time τk+1 is chosen from the set Q =
{1, 2, . . . ,M}.

• Transition probabilities: The next state j ∈ S of
the induced DTMC only depends on the current ob-
served/sampled state i and the sampling interval τ . To
be precise, let i be the state observed in decision epoch
k, i.e., in time slot Gk, then the transition probability of
the induced DTMC to state j for any sampling interval
τ is given by

qiτj = P(XGk+τ = j|XGk = i)

= P(Xτ = j|X0 = i) = p
(τ)
ij , ∀i, j ∈ S and τ ∈ Q.

3Considering that a recent algorithm from [28] is used for solving the linear
programs, while Strassen’s algorithm is used for matrix multiplications.

Further, given π ∈ ΠMR, the steady-state probabilities
Pπ(XGk = j) for the induced DTMC can be computed
from the following transition probabilities:

P(XGk+1
= j|XGk = i) = E[qiτj ]

=

M∑
τ=1

qiτjPπ(τ |i), ∀i, j ∈ S. (3)

• Costs: In decision epoch k, if the observed state XGk =
j, then choosing the next sampling interval τk+1 = τ ∈ Q
results in a cost contributing to the average age-penalty,
given by ck(XGk = j, τk+1 = τ). Note that the first
transition of the DTMC to a new state from state XGk =
j could occur in any of the τ slots with probability pjj .
Consider that this first transition occurred in the nth slot
from Gk, then the age penalty incurred in epoch k is equal
to τ − n; this event happens with geometric probability
(1− pjj)pn−1

jj . Thus, we obtain

ck(XGk = j, τk+1 = τ) =

τ−1∑
n=1

(τ − n)(1− pjj)pn−1
jj

=

τ−1∑
n=1

τ(1− pjj)pn−1
jj −

τ−1∑
n=1

n(1− pjj)pn−1
jj

= τ(1− pτ−1
jj )−

(1− τpτ−1
jj )(1− pjj) + pjj − pτjj

1− pjj

= τ −
1− pτjj
1− pjj

, (4)

and the cost contributing to the average sampling-interval
is τ . It is easy to see that

E[A(π)] = lim
K→∞

1

K
Eπ
[
K−1∑
k=0

ck(XGk , τk+1)

]
,

where the expectation Eπ is with respect to the induced
probability distribution under π.
The CMDP for P1 is:

min
π∈ΠMR

lim
K→∞

1

K
Eπ
[
K−1∑
k=0

ck(XGk , τk+1)

]

s.t. lim sup
K→∞

E[
∑K
k=1 τk]

K
≥ 1

ν
.

(5)

B. Lagrangian MDP

Since P1 has one constraint, an optimal Markov policy
can be obtained by randomizing between two deterministic
policies, which can be computed using a Lagrangian MDP
formulation of (5). In the following, we formulate this
Lagrangian MDP, with parameter λ, and compute the deter-
ministic policies and the randomization factor to obtain an
optimal Markov policy.

In decision epoch k, if the observed state XGk = j, then
choosing the next sampling interval τk+1 = τ ∈ Q results in
a Lagrangian per-stage cost given by

cλk(XGk = j, τk+1 = τ) = ck(j, τ)− λτ.
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Let

Φ(λ, π) = lim
K→∞

1

K
Eπ
[
K−1∑
k=0

cλk(XGk , τk+1)

]
.

For λ ≥ 0, the Lagrangian MDP for P1 is:

min
π∈ΠD

Φ(λ, π). (6)

Note that in (6), we consider minimization over ΠD because
the Lagrangian MDP is an unconstrained MDP with finite
states and finite action sets, for which an optimal policy
belongs to the set of deterministic policies ΠD. Also, note
that we left out the term λ

ν in (6) as it is a constant and does
not affect the solution of the Lagrangian MDP. Let π∗λ denote
an optimal policy for (6). Define

φ(λ) = Φ(λ, π∗λ) +
λ

ν
,

then from the Lagrangian duality result [7], we have

E[A(π∗)] = max
λ≥0

φ(λ). (7)

Also, from Lagrangian duality theory we have that φ(λ) is
concave in λ [29].

Lemma 1. Let λ∗ maximize φ(λ), then 0 < λ∗ < 1.

Proof. From (4), we infer that ck(XGk , τk+1) < τk+1 for all
k. This implies, for all k,

cλk(XGk , τk+1) = (1− λ)τk+1 −
1− pτk+1

jj

1− pjj
< 0, if λ ≥ 1.

(8)

From (8), we conclude that if λ ≥ 1, then by choosing τ1 =∞
results in Φ(λ, {∞}) = −∞, i.e., a trivial policy which does
not sample minimizes Φ(λ, π). In other words, for all λ ≥ 1,
we have π∗λ = {∞} and φ(λ) = −∞. However, from (7),
we infer that λ∗ cannot be greater than 1 since the optimal
expected age penalty in the LHS is positive (since the average
frequency constraint ν < 1). On the other hand, if λ = 0, then
choosing τk = 1, for all k, results in cλk(XGk , τk+1) = 0. This
implies Φ(0, π = {1, 1, . . .}) = 0 and we obtain φ(0) = 0.
Again, from (7), φ(λ∗) cannot be 0 since the optimal expected
age penalty in the LHS is positive, and hence λ∗ 6= 0.

Let π(i) ∈ Q denote the action taken by the policy π when
in state i.

Lemma 2. Given λ ∈ (0, 1), under the optimal policy π∗λ, we
have π∗λ(i) < log(1− λ)/ log pii + 1.

Proof. To prove the result, we first present an equivalent
formulation of the CMDP (for P1) using a binary action space
and redefining the state space. We formulate the corresponding
Lagrangian MDP with parameter λ and then prove the result
using Bellman’s optimality equations for the Lagrangian MDP
and the value iteration steps. In particular, we show that, in the
first step of the value iteration algorithm if we set the inter-
sampling interval less than the value log(1 − λ)/ log pii + 1,
then in all the subsequent iterations of the algorithm, the inter-
sampling times will be less than log(1− λ)/ log pii + 1. The
detailed proof is deferred to Appendix A.

Using Lemma 2, we reduce the search space by defining
action sets Q̂i corresponding to each state i as follows: Q̂i =
{1, 2, . . . dlog(1− λ)/ log piie}.

Algorithmic steps: We now describe three steps in which we
compute the optimal Markov policy. First, given λ, we com-
pute the optimal deterministic policy for the Lagrangian MDP
using the Relative Value Iteration (RVI) algorithm (cf. [6]). It
solves the following Bellman’s equations:

h(i) = min
τ∈Q̂i

{
cλk(i, τ) +

∑
j

qiτjh(j)
}
− γ, ∀i > 1

γ = min
τ∈Q̂1

{
cλk(1, τ) +

∑
j

q1τjh(j)
}
.

Note that we only search over the reduced action sets Q̂i
due to Lemma 2. Given λ, RVI outputs π∗λ and φ(λ). Using
the fact that φ(λ) is concave in λ, in the second step, we use
bisection search for λ in the interval (0, 1) and compute two
optimal deterministic policies corresponding to two λ values,
namely, λ1 and λ2, which belong to the left and right ε-
neighborhoods of the optimal λ, for some positive ε close to
zero. The bisection search is presented in Algorithm 1. In line
5 of Algorithm 1, we check the condition for the derivative of
φ(λ) given below:

φ′(λ) = lim
K→∞

1

K
Eπλ∗

[
K−1∑
k=0

(−τk+1)

]
+

1

ν
.

Note that φ′(λ) > 0 implies that the sampling interval
constraint is violated by πλ∗ .

Algorithm 1: Bisection Search
1: Initialize ε > 0 and δ > 0 (close to zero).
2: λ1 = δ, and λ2 = 1− δ
3: while λ2 − λ1 > ε do
4: λ = (λ1 + λ2)/2
5: Use RVI to compute φ(λ)
6: If φ′(λ) > 0, then λ1 = λ, else λ2 = λ.
7: end while
8: Output π∗λ1

and π∗λ2
.

In the third step, we compute the randomization factor α.
Given the deterministic optimal policies π∗λ1

and π∗λ2
output

by Algorithm 1, an optimal Markov policy for the CMDP can
be computed by randomizing between those two policies [26].
However, to compute the randomization factor, we require that
the constraint of the CMDP is tight under an optimal Markov
policy. This is indeed true for the CMDP at hand and is stated
in the following lemma.

Lemma 3. Under an optimal Markov policy π∗1 that solves
P1, the constraint is tight, i.e.,

lim sup
K→∞

Eπ∗ [
∑K
k=1 τk]

K
=

1

ν
.

Proof. For this proof, we use the approach of formulating
the CMDP as a linear program (cf. [7]) and show that the
constraint in the linear program is tight by using contradiction.
The details of the proof are deferred to Appendix B.



7

Given π∗λ1
and π∗λ2

, and the tightness result, we compute

τ1 = lim sup
K→∞

Eπ
∗
λ1 [
∑K
k=1 τk]

K
,

τ2 = lim sup
K→∞

Eπ
∗
λ2 [
∑K
k=1 τk]

K
,

and randomization factor

α = (1/ν − τ2)/(τ1 − τ1). (9)

Theorem 1. There exists ε0 > 0 such that for all ε ≤ ε0, the
following Markov policy is optimal for P1: at the start of the
experiment, choose π∗λ1

with probability α, and choose π∗λ2

with probability 1− α .

Proof. The result directly follows from the construction of
the Lagrangian MDP [7], the Lemmas 1, 2 and 3, and the
randomization method in [26].

In Theorem 1, ε0 refers to the maximum difference between
λ1 and λ2 below which randomizing between the two optimal
deterministic policies for the respective Lagrangian MDPs
results in an optimal Markov policy for P1.

Remark 2: The computational complexity of Algorithm 1
is given by O(cmp(RV I) log 1

ε ), where cmp(RV I) is the
computational complexity of RVI. Note that the computational
complexity is independent of M as the search space in RVI
iterations is over the sets Q̂i = {1, 2, . . . dlog(1−λ)/ log piie}.
We observed from simulations that Algorithm 1 is much faster,
by a factor of 0.25, than using an LP even for small value
M = 20, and that the run time of LP exponentially increases,
as M increases, resulting in orders of magnitude higher run
time compared to Algorithm 1.

In Figure 3, we compare the runtimes of Algorithm 1
(including the computation of randomization factor α) and the
LP solution used in our workshop paper [27]. The runtimes are
computed using the MATLAB function timeit on a system with
2.70 GHz CPU and 16 GB RAM. For N = 10 and N = 50,
we use the parameterized transition probability matrix defined
in Section IV.B, with parameter p = 0.9. Observe that the
runtime of Algorithm 1 is lower by a factor of 4 compared
to the runtime of the LP solution even for a small value of
M = 50. Thanks to Lemma 2, the runtime of Algorithm 1 does
not depend on M . In contrast, as M increases, the runtime of
the LP solution increases exponentially, making its runtimes
higher by more than two orders of magnitude at M = 1000.

Remark 3: We note that P2 can be solved using the
Lagrangian MDP approach. In the following, we present a
method to solve P2 by leveraging the solutions of P1. From
Lemma 3, we have that the constraint of P1 is tight. Therefore,
the inter-sampling time constraint 1/ν∗ and the corresponding
minimum average age penalty, say d∗, form a Pareto-optimal
pair. In other words, if d∗ is the age limit in P2, then
the maximum inter-sampling time will be 1/ν∗. Using this
observation, we propose to solve P2 using a bisection search
and the solution method for P1. Given age limit d in P2, we
start with the upper bound a := 1 and lower bound b := 0 and
set ν := (a + b)/2 and solve P1 using Algorithm 1 and the
randomization factor α. If the minimum age penalty is less
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Fig. 3: Runtimes of the solution approaches with varying M ,
different values of N , and p = 0.9.
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Fig. 4: Sampling frequency under π† for a two-state Markov
chain.

than d, then we set b := (a+ν)/2, else we set b := (ν+ b)/2,
and we repeat the steps with ν := (a + b)/2. Note that, this
algorithm is guaranteed to converge because there exists a
maximum inter-sampling interval that can be achieved for a
given age limit d and the existence of a Markov policy for P2

is guaranteed as it is a CMDP with finite-state and finite-action
sets.

C. Computing ν†

Note that, in P1 the value of ν in the constraint can be
chosen in the interval (0, 1]. We are particularly interested in
setting ν = ν†, because this will give us the minimum achiev-
able average age-penalty for the same sampling frequency
achieved by the optimal clairvoyant sampling policy π†. We
note that ν† can be obtained by subtracting the percentage of
the total frequency of transitions in the DTMC contributed due
to self transitions, i.e., transitions from a state to itself, from
the total frequency of transitions in the DTMC. The state this
result in the following proposition.

Proposition 1. Under the optimal clairvoyant sampling policy
π†, with probability one, the average sampling frequency ν†

is given by

ν† = 1−
N∑
j=1

ξjpjj .

Proof. Let Zj(K) denote a random variable that counts the
number of self transitions from state j to itself from time
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slot zero to time slot K. Let Yk denote a random variable
that equals one if the state of the DTMC is j in slots k − 1
and k, and equals zero, otherwise. Formally, Yk = 1{Xk =
j,Xk−1 = j}, where 1{·} is an indicator random variable. By
definition, we have

Zj(K) =

K∑
k=1

Yk

=⇒ lim
K→∞

Zj(K)

K
= lim
K→∞

∑K
k=1 Yk
K

. (10)

Note that the LHS of the last step above denotes the fraction
of slots in which self transitions occur in state j in the steady
state. We simplify the RHS as follows. Note that the random
variables Yk and Yk−1 are dependent random variables, but
Yk and Yk−2 are independent for all k > 1. Therefore, we
apply the strong law of large numbers (cf. Lemma 2 [30]) and
obtain, with probability one,

lim
K→∞

∑K
k=1 Yk
K

= E[1{Xk = j,Xk−1 = j}]

= E[1{Xk = j|Xk−1 = j}1{Xk = j}]
= E[1{Xk = j|Xk−1 = j}]E[1{Xk = j}] = pjjξj . (11)

Let Z̄(K) denote a random variable that counts number of
transitions between distinct states from time slot zero to time
slot K. Note that this can be computed by subtracting all self
transitions in any state from K. Therefore, we have

Z̄(K) = K −
N∑
j=1

Zj(K)

=⇒ lim
K→∞

∑K
k=1 Z̄k
K

= 1−
N∑
j=1

pjjξj .

In the last equation, we have used (10) and (11). The LHS in
the equation is equal to ν†.

For a two-state Markov chain, the steady-state probabilities
are given by ξ1 = p21

p12+p21
, ξ2 = p12

p12+p21
, and ν† = ξ1p12 +

ξ2p21 = 2p12p21
p12+p21

. Figure 4 shows ν† versus p21 for different
p12 values.

D. Unit Communication Delay

We note that the age penalty metric and the solution
approach can be extended to monitoring systems where a
sample can be delivered to the monitor within a unit slot time.
Toward this end the age penalty at the monitor can be obtained
by adding a unit delay in the difference function as given
below:

Ak(π) = max{0, Gk −min
n
{Tn : Tn ≥ Gk−1}+ 1}.

Given the above metric and keeping the definition of the
sampling policy same as before, in the CMDP formulation
for minimizing the age penalty at the monitor the per-stage
cost is given by

ck(XGk = j, τk+1 = τ) = τ + 1−
1− pτ+1

jj

1− pjj
.

Subsequently, with the above per-stage cost, the CMDP can
be solved similarly using the Lagrangian approach. For this
CMDP, the optimal sampling interval in state i is upper
bounded by log(1−λ)/ log pii, which is one slot smaller than
the upper bound given in Lemma 2.

V. NUMERICAL RESULTS

In this section, we first present numerical results for a
DTMC with two-states. We then present the results for
DTMCs with more than two states. The results include sam-
pling frequency and age penalty trade-off, and a performance
comparison between optimal and the best periodic sampling
policies. We have implemented Algorithm 1 in MATLAB. In
the following, we present two numerical examples to examine
the structure of the optimal Markov policies for P1 and P2.

Example 1: In this example, we solve P1 for transition
probabilities p12 = 0.1 and p21 = 0.6, and the constraint on
the expected sampling interval is equal to 1/ν† = 5.83. The
computation of the optimal policy π∗1 results in the following
stationary probabilities,

Pπ
∗
1 (τ = 6|j = 1) = 0.465 and Pπ

∗
1 (τ = 7|j = 1) = 0.535,

Pπ
∗
1 (τ = 2|j = 2) = 1.

The transition probability out of state 2 is higher and thus
the policy sets τ = 2 when the observed state is 2. The
minimum expected age penalty is computed to be 1.416. The
best periodic sampling policy chooses τ = τ † = d1/ν†e = 6.

Example 2: In this example, we solve P2 by referring to
the two-state DTMC in the introduction section where p12 =
0.05, p21 = 0.95, and the unit constraint for the expected age
penalty implies d = 1. The computation of the optimal policy
π∗2 results in the following stationary probabilities:

Pπ
∗
2 (τ = 7|j = 1) = 0.64 and Pπ

∗
1 (τ = 8|j = 1) = 0.36,

Pπ
∗
2 (τ = 2|j = 2) = 1.

The minimum expected sampling frequency is 0.14. In con-
trast, using AoI as the staleness metric results in a periodic
sampling policy with period 2 or sampling frequency 0.5.

A. Two-State DTMC

In Figure 5, we compare the average age penalties achieved
by the best periodic sampler and the optimal policy π∗1
obtained by solving P1 under the constraint ν = ν†. Recall
that for this case, the best periodic sampler sets the sampling
interval equal to τ † = d1/ν†e. From the figure, we observe that
for lower transition probabilities between the states, i.e., lower
p12 and p21 values, the periodic sampler achieves age penalties
only slightly higher than that of the optimal policy, because
in this case the optimal policy is also choosing sampling
intervals close to that of the periodic sampler. The gap between
them, however, increases significantly for higher transition
probabilities. The zigzag pattern of the periodic sampler can
be attributed to the ceiling function used in computing the
sampling interval.

In Figures 6, and 7 we compare average sampling frequen-
cies achieved by the best periodic sampler and the optimal



9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p21

10
-1

10
0

10
1

A
v
er
a
g
e
a
g
e
p
en

a
lt
y

Average sampling interval lower bounded by 1/ν†

π
∗

1 , p12 = 0.1
π
∗

1 , p12 = 0.5
π
∗

1 , p12 = 0.9

Periodic sampling π(τ †), p12 = 0.1

Periodic sampling π(τ †), p12 = 0.5

Periodic sampling π(τ †), p12 = 0.9

Fig. 5: Average age penalties achieved by π∗1 and the best
periodic sampler for different p12 and p21 values.

0 1 2 3 4 5

Average age penalty d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er
a
g
e
sa
m
p
li
n
g
fr
eq
u
en

cy

π
∗

2 , p12 = 0.1, p21 = 0.1
π
∗

2 , p12 = 0.5, p21 = 0.5
π
∗

2 , p12 = 0.5, p21 = 0.75
π
∗

2 , p12 = 0.9, p21 = 0.9
Periodic sampler π(d + 1)
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policy π∗2 by solving P2. From Figure 6, we observe the
trade-off between achievable sampling frequencies and age
penalties. As expected, for an age penalty constraint of one
time slot, i.e. d = 1, the achievable sampling frequency is
lower than 0.5 for both policies. However, π∗2 results in much
lower sampling frequencies for lower transition probabilities.
In Figure 7, we set d = 1 and thus the best periodic sampler
samples every 2 time slots with sampling frequency 0.5. On
the other hand, π∗2 provides much lower sampling frequencies
when either of the transition probabilities are small.

Finally, in Figure 8, we present the ratio between the
expected sampling frequency achieved by π∗2 and ν†, under
average age penalty constraint d = 1. We note that under
π† the age penalty is always zero. This cannot be achieved
by any causal policy with a sampling frequency strictly less
than one. Nonetheless, an interesting observation from the
figure is that by allowing a small age penalty d = 1, the
optimal policy π∗2 can achieve lower sampling frequency than
ν† when transition probabilities are higher, say p12 = 0.9 and
p21 = 0.9. For lower transition probabilities p12 = 0.1 and
p21 = 0.1, the ratio is always greater than 1, i.e., the optimal
policy π∗2 could not achieve the sampling frequency ν† and
may require more relaxation in the age penalty constraint. In
conclusion, for lower transition probabilities, i.e., if the events
become rare, the optimal policy performs worse with respect
to the optimal clairvoyant sampling policy.
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B. N -State DTMC

For the N -state DTMC, with N > 2, it would be a tedious
task to present the results by varying different transition
probabilities independently. Instead, we choose a transition
probability matrix, parameterized by N and a probability p,
with pij defined as:

pij =

{
p
i if i = j
1−p/i
N−1 otherwise.

Note that, for the two-state DTMC, we have p12 = 1 − p
and p21 = 1 − p

2 . Also, by increasing p, we decrease the
probability of transitions to the other states, which implies ν†

increases. However, the relation between ν† and N is not easy
to infer from the above transition probabilities, because the
transition probabilities to other states decrease as N increases,
but also the self-state transition probabilities of states with
larger index decreases. However, from Figure 9 we observe
that ν† increases as N increases.

In Figure 10, we present the average age penalty achieved
by π∗1 and the best periodic policy by varying p. We observe
that the optimal age penalty decreases as N increases. This is
because ν† increases as N increases, and since 1

ν†
is the lower-

bound constraint on the average sampling interval, the optimal
age penalty decreases. Similarly, as p increases the optimal
age penalty increases as ν† decreases. Also, observe that the
optimal policy π∗1 provides a lower age penalty by at least half
that of the age penalty under the best periodic sampling policy.
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Similar reduction in average sampling frequency achieved by
π∗2 is observed from Figure 11, where we set the age limit
equal to 1.

In Figure 12, we present the trade-off between the minimum
sampling frequency and the age penalty for N = 6. We
observe similar trends as in the case of N = 2 in Figure 6
where π∗2 results in a reduction of more than 70% by allowing
an age limit 1 for higher values for p, i.e., lower transition
probabilities to other states. Finally, in Figure 13, we present
the ratio between the minimum sampling frequency achieved
by π∗2 and ν† by varying N . Note that, by allowing age
limit 1, we not only achieve lower sampling frequency than
ν†, but also the reduction factor in the ratio increases as
N increases. We conclude that, for the given parameterized
transition probabilities, the results for N > 2 follow similar
trends as in the case of N = 2, and also in several cases the
reductions are higher for larger N .

VI. CONCLUSION

We have studied the trade-off between sampling frequency
and staleness for detecting transitions of a DTMC to new
states. The staleness of the kth sample is quantified using
age penalty, which is defined as the time elapsed since the
first transition out of the state in the k − 1 sample. The
formulated problems P1 and P2 are CMDPs and were solved
by a method where we randomize between two deterministic
policies, which are obtained by solving the Lagrangian MDPs
using RVI. The proven structural property of the solution has
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Fig. 11: Avg. sampling frequency achieved by π∗2 and the best
periodic sampler for varying p and for different values of N .
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been exploited to reduce the computational complexity of the
proposed method. We have provided a closed-form expression
for ν†, the sampling frequency under the optimal clairvoyant
sampling policy. Apart from the superior performance of the
computed optimal policy over the best periodic sampling
policy, we found that by allowing a small age penalty the
optimal policy achieves a sampling frequency lower than ν† in
some scenarios. In future work, we plan to study the trade-off
by considering age-penalty at the remote monitor and under
different communication models.
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APPENDIX

A. Proof of Lemma 2

1) Binary-Decision CMDP Formulation:
• State space: In time slot k, the state of the binary

decision CMDP is given by Yk = (X̄k, Zk), where
X̄k ∈ S = {1, 2, . . . , N} is the most recent state of the
DTMC that was observed and Zk ∈ Q = {1, 2, . . . ,M}
is the number of slots elapsed since X̄k was observed
until the current slot k. The state space for Yk is given
by S ×Q.

• Action space: In time slot k, a binary action uk ∈ {0, 1}
is taken, where uk = 0 represents no-sampling, and uk =
1 represents sampling in slot k.

• Transition probabilities: In time slot k+1, the next state
Yk+1 = (X̄k+1, Zk+1) only depends on the current state
Yk = (X̄k, Zk) and action uk. If Yk = (i, z) and uk =
0, then X̄k+1 = i, since no new sample is taken, and
Zk+1 = z + 1. Therefore, in this case, we have Yk+1 =
(i, z+1). On the other hand, if uk = 1, then X̄k+1 = Xk,
the state of the DTMC observed from the sample in slot
k, and Zk+1 = 1. As a result, we arrive at the following
transition probabilities:

P(Yk+1=(j,z̄) |Yk=(i,z), uk=0)=

{
1 if j= i, z̄=z + 1,

0 otherwise.

P(Yk+1 =(j, z̄) |Yk=(i,z), uk=1)=

{
p

(z)
ij if z̄=1,

0 otherwise.

• Costs: In slot k, if Yk = (i, z), then the per-stage cost,
denoted by γk((i, z), uk), contributing to the average age-
penalty is given by

γk((i, z), uk) = (1− uk)(1− pz−1
ii ).

and the cost contributing to the average sampling-interval
is given by uk.

For u ∈ {0, 1}, a Markov policy πb specifies the conditional
distribution Pπb(u|(i, z)) for all states (i, z). Note that we use
the subscript b to differentiate the policy of binary-decision
CMDP from that of the policy π defined in Section III that
maps states to sampling intervals. Let ΠMR

b denote the set of
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Markov policies constituting all feasible πb. We now state the
following problem:

minimize
πb∈ΠMR

b

lim
K→∞

1

K
Eπb

[
K∑
k=1

γk(Yk, uk)

]

s.t. lim
K→∞

1

K
Eπb

[
K∑
k=1

uk

]
≤ ν,

(12)

where the expectations above are taken with respect to the
induced probability distribution under πb. We claim that P1

and (12) are equivalent. To prove this, we proceed as follows.
Any policy π̂b ∈ ΠMR

b can be converted to an equivalent policy
π̂ ∈ ΠMR and vice-versa. Given π̂b, π̂ is constructed as follows.
For all (i, z),

Pπ̂(τ = z|i) =
Pπ̂b(u = 1|(i, z))∑M
z̄=1 Pπ̂b(u = 1|(i, z̄))

. (13)

However, for constructing a π̂b for a given π, we do not need
a normalization constant used in the denominator of the above
equation.

Pπ̂b(u = 1|(i, z)) = Pπ̂(τ = z|i) (14)

From (13) and (14) any feasible solution to P1 results in a
feasible solution to (12) and vice-versa.

Given state i is observed in the current slot, π̂ chooses a
sampling interval equal to z (with probability Pπ̂(τ = z|i)),
then it incurs an age penalty equal to z− 1−pτii

1−pii (cf. (4)) and the
sampling cost is z. Similarly, under π̂b, if state i is observed
in the current slot, and a sample is taken in z-th slot from
the current time slot (with probability Pπ̂b(u = 1|(i, z))), it
also incurs a sampling cost z and cumulative penalty equals∑z
k=1(1− pk−1

ii ), which is equal to z − 1−pτii
1−pii . Thus, the ex-

pected age penalty and the expected frequency achieved under
π̂b and π̂ are equal. Therefore, P1 and (12) are equivalent.
Given this, we prove the result for the Lagrangian MDP for
the binary-decision CMDP, which is given by

minimize
πb∈ΠMR

b ,λ≥0
lim
K→∞

1

K
Eπb

[
K∑
k=1

{γk(Yk, uk) + λ(uk − ν)}

]
.

(15)

The per-stage cost of the Lagrangian MDP, denoted by
γλk ((i, z), uk), is given by

γλk ((i, z), uk) = (1− uk)(1− pz−1
ii ) + ukλ. (16)

Note that 1 − pz−1
ii < 1, for all i and z < ∞. Therefore, if

λ ≥ 1, then from (16), we infer that the optimal decision is to
set uk = 0, and this is true for any k. Since λ ≥ 1 results in
a trivial policy, it is sufficient to restrict the search space for
λ in (15) to 0 < λ < 1.

Given λ ≥ 0, there exists an optimal deterministic policy
for the Lagrangian MDP. Further, it is known for a finite-state
finite-action space CMDP with a single constraint, there exists
two distinct values for λ, say λ1 and λ2, such that an optimal
Markov policy for binary-decision CMDP can be obtained by
randomizing between the optimal deterministic policies for the
two Lagrangian MDPs corresponding to λ1 and λ2.

Lemma 4. Let z∗i denote the optimal inter-sampling time in
state (i, 1) for the Lagrangian MDP with parameter λ, then
we have z∗i < log(1− λ)/ log pii + 1.

We use Value Iteration (VI) algorithm [31] to prove that
z∗i < log(1 − λ)/ log pii + 1 or 1 − pz

∗
i−1
ii > λ. Let Jl(i, z)

denote the l-stage cost in the VI algorithm for state (i, z). If
the decision in (l + 1)th-stage is ul = 0, then the new state
will be (i, z + 1), and the l-th stage cost will be Jl(i, z + 1).
If ul = 1, then the new state (i′, 1), for some i′ ∈ Q, and
the l-th stage cost will be

∑
i′∈Q p

(τ)
ii′ Jk(i′, 1). Therefore, we

have

Jl+1(i, z) = min
u∈{0,1}

[
γλl ((i, z), u) + (1− u)Jl(i, z + 1)

+ u
∑
i′∈Q

p
(z)
ii′ Jk(i′, 1)

]
, (17)

where γλl (·) is given in (16). Let u∗l (i, z) denote the optimum
solution to (17).

Since VI algorithm converges to the optimal solution start-
ing with any terminal cost J0(i, z), we set J0(i, z) = 0 for all
(i, z). Now, for all z such that 1−pz−1

ii > λ, we show that the
VI algorithm results in u∗l (i, z) = 1, for all l ≥ 0. For l = 0,
we have

J1(i, z) = min
u∈{0,1}

[
γλ0 ((i, z), u)

]
= min
u∈{0,1}

(1− u)(1− pz−1
ii ) + uλ = λ.

The last step above is true for any z such that 1 − pz−1
ii >

λ, and we have u∗0(i, z) = 1. For l > 0, we use proof by
induction. Assume that, for all z such that 1 − pz−1

ii > λ,
u∗l (i, z) = 1 is true for some l > 0 and, then we have

Jl(i, z) = γλl ((i, z), 1) +
∑
i′∈Q

p
(z)
ii′ Jk−1(i′, 1) (18)

If u∗l+1(i, z) = 1 were to be true, then from (17) it should be
true that

γλl ((i, z), 1) +
∑
i′∈Q

p
(z)
ii′ Jl(i

′, 1) ≤ γλl ((i, z), 0) + Jl(i, z + 1).

(19)

Note that (18) is valid for z+ 1 since 1− pzii > λ. Therefore,
we have

Jl(i, z + 1) = γλl ((i, z + 1), 1) +
∑
i′∈Q

p
(z+1)
ii′ Jl−1(i′, 1)

= λ+
∑
i′∈Q

p
(z+1)
ii′ Jl−1(i′, 1). (20)

Furthermore, using u = 1 for Jl(i′, 1), we obtain

Jl(i
′, 1) ≤ λ+

∑
j

p
(z)
i′j Jl−1(j, 1). (21)

Substituting γλl ((i, z), 1) = λ and (21) in the LHS of (19), we
obtain

γλl ((i, z), 1) +
∑
i′∈Q

p
(z)
ii′ Jl(i

′, 1) ≤ 2λ+
∑
j

p
(z+1)
ij Jl−1(j, 1)

(22)
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Substituting γλl ((i, z), 0) = 1 − pz−1
ii and (20) in the RHS

of (19), we obtain

γλl ((i, z), 0) + Jl(i, z + 1)

= 1− pz−1
ii + λ+

∑
i′∈Q

p
(z+1)
ii′ Jl−1(i′, 1) (23)

The RHS in (23) is greater than the RHS in (22). Therefore,
the inequality in (19) is true.
B. Proof of Lemma 3

For this proof, we formulate the CMDP as a linear program
(cf. [7]) and show that the constraint in the linear program is
tight.

LP formulation of P1: We define cjτ =
∑τ−1
n=1(τ − n)(1−

pjj)p
n−1
jj . Further, we define zπjτ = P(XGk = j, τk = τ),

the steady-state probability of observing the state-action pair
(j, τ) under a policy π ∈ ΠMR. Then, we obtain

E[A(π)] =

N∑
j=1

M∑
τ=1

cjτz
π
jτ

lim sup
K→∞

E[
∑K
k=1 τk]

K
=

N∑
j=1

M∑
τ=1

τzπjτ .

In the LP formulations of P1 and P2, we solve for zπjτ with
the following constraints,

N∑
j=1

M∑
τ=1

zπjτ = 1, (24)

M∑
τ=1

zπiτ =

N∑
j=1

M∑
τ=1

qjτiz
π
jτ , i ∈ S, (25)

zπjτ ≥ 0, j ∈ S and τ ∈ A. (26)

The constraint (25) is a consequence of the equilibrium
equations for the induced DTMC in the steady state. In the
following, we present an equivalent LP formulation of P1,

minimize
{zπjτ}

N∑
j=1

M∑
τ=1

cjτz
π
jτ

s.t.
N∑
j=1

M∑
τ=1

τzπjτ ≥
1

ν
,

(24), (25), (26).

(27)

Let z∗ denote the optimal solution for (27), then the stationary
probabilities under π∗1 are computed as follows. For τ ∈ A,

Pπ
∗
1 (τ |j) =

z∗jτ∑M
τ=1 z

∗
jτ

, j ∈ S.

We prove the lemma by proving that
N∑
j=1

M∑
τ=1

τz∗jτ =
1

ν
. (28)

Towards this end, we use proof by contradiction. Assume
that (28) is not true and for some 0 < ν∗ < ν we have

N∑
j=1

M∑
τ=1

τz∗jτ =
1

ν∗
>

1

ν
.

We construct another solution z̄ = {z̄jτ} using z∗ such
that it has lower expected age penalty and lower expected
inter-sampling time. Let τ̂ denote the maximum value of τ
for which z∗jτ is non-zero for some j, i.e., τ̂ = max{τ :
∃j such that z∗jτ > 0}. The key to our proof is the following
construction. Recall that, ζj is the steady-state probability of
finding the DTMC in state j. Let ε = [ε1, ε2, . . . , εN ]> and
ε′ = [ε′1, ε

′
2, . . . ε

′
N ]> denote two non-negative column vectors,

then z̄jτ are constructed as follows:

z̄jτ := z∗jτ , ∀j, τ /∈ {τ̂ − 1, τ̂}
z̄jτ̂ := z∗jτ̂ − ξjεj , ∀j

z̄jτ̂−1 := z∗jτ̂−1 + ξjε
′
j , ∀j.

(29)

We next focus on the set of conditions ε and ε′ should satisfy
such that the constraints (24), (25), and (26) are satisfied by
z̄.

Satisfying Constraint (24): Since z∗ is a solution to (27),
it satisfies (24). Using this, we have

N∑
j=1

M∑
τ=1

z̄jτ =

N∑
j=1

M∑
τ=1

z∗jτ −
N∑
j=1

ξjεj +

N∑
j=1

ξjε
′
j

= 1−
N∑
j=1

ξjεj +

N∑
j=1

ξjε
′
j .

Therefore, for z̄ to satisfy (24), we should have

ξε′ = ξε. (30)

Satisfying Constraint (26): Since z∗jτ ≥ 0, for all j and
for all τ , it is sufficient to choose ε appropriately such that
z̄jτ̂ ≥ 0, for all j. To this end, we describe a procedure in
Algorithm 2. We define η, used in line 4 of Algorithm 2, as
follows.

η = min

 1

ν∗
− 1

ν
,

N∑
j=1

z∗jτ̂

 .

Since ν∗ < ν, and z∗jτ̂ > 0 for some j, we have η > 0.
In Algorithm 2, we describe a procedure for assigning ε. It

Algorithm 2: Procedure for choosing ε

1: If 1
ν∗ −

1
ν >

∑N
j=1 z

∗
jτ̂ then εj =

zjτ̂
ξj

for all j, otherwise
do the following.

2: h← η
3: for j ← 1 to N do
4: If z∗jτ̂ = 0, then εj = 0, otherwise do the following.
5: If z∗jτ̂ ≤ h, then εj =

zjτ̂
ξj

and h← h− z∗jτ̂ , else
εj = z∗jτ̂ − h.

6: end for

is easy to verify that Algorithm 2 assigns values to εj such
that εj ≤ z∗jτ̂ , for all j. Using this in (29), we infer that
z̄jτ ≥ 0, for all j and for all τ . Also, it can be verified that
ξε = η. Therefore, from (30), we should have ξε′ = η. By the
definition of τ̂ , we have z∗jτ = 0 for all τ > τ̂ and therefore,
z̄jτ = 0 for all τ > τ̂ . Using this, we have
N∑
j=1

M∑
τ=1

τ z̄jτ =

N∑
j=1

τ̂∑
τ=1

τ z̄jτ
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=

N∑
j=1

τ̂−2∑
τ=1

τz∗jτ+(τ̂ − 1)

N∑
j=1

(z∗jτ̂−1+ξjε
′
j)+τ̂

N∑
j=1

(z∗jτ̂−ξjεj)

=

N∑
j=1

τ̂∑
τ=1

τz∗jτ + (τ̂ − 1)η − τ̂ η =
1

ν∗
− η > 1

ν
.

Therefore, z̄ has strictly lower expected inter-sampling time
than that of z∗.

Satisfying Constraint (25): Given that ε is obtained using
Algorithm 2, we now obtain a set of equations to be satisfied
by ε′, so that {z̄iτ} satisfies (25). For all i ∈ S,

M∑
τ=1

z̄iτ =

N∑
j=1

M∑
τ=1

p
(τ)
ji z̄jτ

=⇒
τ̂∑
τ=1

z∗iτ + ξiε
′
i − ξiεi

=
N∑
j=1

τ̂∑
τ=1

p
(τ)
ji z

∗
jτ +

N∑
j=1

p
(τ̂−1)
ji ξjε

′
j −

N∑
j=1

p
(τ̂)
ji ξjεj

=⇒
N∑

j=1,j 6=i

p
(τ̂−1)
ji ξjε

′
j + (p

(τ̂−1)
ii − 1)ξiε

′
i

=

N∑
j=1,j 6=i

p
(τ̂)
ji ξjεj + (p

(τ̂)
ii − 1)ξiεi, ∀i ∈ S. (31)

Unique solution: We show that there exists a unique
solution for the systems of N + 1 linear equations which
constitute (30) and (31). The system matrix H = {hij} is
of dimension (N + 1)×N , and its ij-th element hij is given
by

hij = p
(τ̂−1)
ji ξj , i 6= j, j ≤ N, i ≤ N

hii = (p
(τ̂−1)
ii − 1)ξi, i ≤ N

h(N+1)j = ξj , j ≤ N.

Let r denote a vector of dimension N+1×1 with i-th element
ri given by

ri =

N∑
j=1,j 6=i

p
(τ̂)
ji ξjεj + (p

(τ̂)
ii − 1)ξiεi, ∀i ≤ N, rN+1 = ξε.

The system of linear equations can then be written in the
following form: Hε′ = r.

Recall that p(τ̂−1)
ji is the ji-th element of P (τ̂−1). Let Qτ̂ =

(P (τ̂−1))>, Dξ = diag(ξ), and I denote identity matrix, then
H can be written as

H =

[
Dξ(Qτ̂ − I)

ξ

]
.

Since P is the transition probability matrix of an ergodic
DTMC, Q>τ̂ will also be a transition probability matrix of
an ergodic DTMC. To see this, a DTMC is ergodic if and
only if its transition probability matrix P when multiplied by
itself repeatedly converges to a positive matrix with identical
rows [32]. Since Pn converges to a matrix with rows equal to
ξ as n goes to infinity, so does (Q>τ̂ )n. This further implies

that, ξ is a unique solution that satisfies ξ = ξQ>τ̂ , which is
stated in the following lemma.

Lemma 5. ξ> is the unique normalized solution x to the
system of equations (Qτ̂ − I)x = 0.

In the following lemma, we present a result on the rank of
the matrix H .

Lemma 6. The matrix H has rank N .

Proof. Let Null(B) denote the null space of matrix B. We
first prove Null(Dξ(Qτ̂ − I)) has only one basis vector. To
see this, consider the solution set of

Dξ(Qτ̂ − I)x = 0 ⇐⇒ (Qτ̂ − I)x = 0.

In the second step above, we have used the fact that the diag-
onal elements of Dξ are strictly positive and it is invertible.
Therefore, from Lemma 5 we conclude that ξ> is the unique
non-zero solution for Dξ(Qτ̂ − I)x = 0. This implies that
ξ> is the only basis for Null(Dξ(Qτ̂ − I)). Since the row
space and the null space of Dξ(Qτ̂ − I) spans RN , the N
dimensional real space, the row vectors of Dξ(Qτ̂ −I) and ξ
form a basis for RN . In other words, H , whose rows consist
of ξ and the rows of Dξ(Qτ̂ − I), has row space equal to
RN ; thus, its rank is N .

From Lemma 6, we infer that the columns of H are
independent which implies thatH>H is invertible. Therefore,
we obtain a unique solution ε′ = (H>H)−1H>r. This
implies that z̄ can be constructed such that it is a feasible
solution to the CMDP and also has lower expected age penalty
than z∗, which proves the contradiction.


