Development of *In Vitro* and *Ex Vivo* Positron-Emitting Tracer Techniques and Their Application to Neurotrauma

BY

SVEN SIHVER
Dissertation for the Degree of Doctor of Medical Science in Pharmacology presented at Uppsala University in 2000

ABSTRACT

The use of positron-emitting tracers has been extended beyond tomographic facilities in the last few years, giving rise to a general positron-emitting tracing technique. The methodological part of the present thesis involved the evaluation of the performance of storage phosphor (SP) plates, with tracers labeled with high-energy, short-lived, positron-emitting radionuclides, using homogenized tissue specimens and autoradiography with frozen brain sections. The SP plates showed superior sensitivity and a linear response over a wide radioactivity range. Autoradiography provided reliable results due to (a) adequate sensitivity for low radioactivity concentration, (b) an excellent linear range, and (c) satisfactory resolution. Though equilibration time of receptor-ligand interaction was dependent upon section thickness, quantification was possible with thinner sections.

An initial finding using frozen section autoradiography of rat brain and spinal cord showed preferential binding of $[^{11}C]$4-NMPB, a muscarinic acetylcholine (mACH) receptor antagonist, to the M4 subtype of mACH receptors. Further work to ascertain this specificity, by use of binding studies on cell membranes from CHO-K1 cells expressing individual subtypes of human mACH receptors, suggested lack of subtype selectivity. With respect to the possible clinical use in glutamatergic neuropathology, $[^{11}C]$cyano-dizocilpine, as a potential PET tracer for the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors, was studied. The in vivo visualization of specific binding could not be achieved, though in vitro binding demonstrated good specificity and preferential binding to the activated form of the NMDA receptors.

The use of the glucose analogue $[^{18}F]$fluorodeoxyglucose (FDG) to study glucose utilization was evaluated in experimental traumatic brain injury (TBI). A trauma-induced increased uptake of FDG was seen, whereas the uptake of $[^{1-14}C]$glucose remained unchanged. This discrepancy might be due to the increased postraumatic affinity of FDG for the endothelial glucose transporter proteins and/or to the hexokinase enzyme. $[^{11}C]$Cyano-dizocilpine, $[^{11}C]$4-NMPB, and $[^{11}C]$flumazenil were utilized in autoradiography to evaluate changes in NMDA, mACH, and GABAA receptors, respectively, in experimental TBI. Observations showed a global decrease in the binding potential (BP) of (i) $[^{11}C]$cyano-dizocilpine acutely and 12 hrs after TBI, and (ii) of $[^{11}C]$4-NMPB at 12 hrs after TBI, and (iii) a decrease in the BP of $[^{11}C]$flumazenil in the cortex and hippocampus ipsilateral to the site of injury. The demonstrated changes in receptor binding after TBI are indicative of a widely dissipated effect of TBI on the particular neurotransmitter receptor systems as compared with what would be expected from FDG studies after TBI, i.e., a local disturbed neurotransmission.

Key words: Short-lived radionuclides, in vitro receptor binding, in vitro and ex vivo autoradiography, positron emission tomography, benzodiazepine, muscarinic acetylcholine, and NMDA receptors in CNS, experimental neurotrauma.

Sven Sihver, Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, SE-751 24 Uppsala, Sweden

© Sven Sihver 2000

ISSN 0282-7476
ISBN 91-554-4771-6

Printed in Sweden by University Printers, Uppsala 2000
PAPERS DISCUSSED

This thesis is based on the following papers, which will be referred to in the text by their Roman numerals:

Paper I was reprinted with permission from Elsevier Science, Copyright 1997.
Paper II was reproduced with permission of the American Society for Pharmacology and Experimental Therapeutics. All rights reserved 1999.
Paper III was reprinted with permission from Springer-Verlag, Copyright 1998.

sven_sihver@hotmail.com
CONTENTS

ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION

Positron-emitting tracers
Detection of positrons
Detection of γ-rays
Positron emission tomography (PET)
Receptor binding in general
Tracers and their targets in the present work
Traumatic brain injury
The brain trauma model and glucose metabolism
PET in traumatic brain injury
Glutamate-, ACh-, and GABAergic neurotransmission in brain trauma

2. AIMS OF THE THESIS

3. MATERIALS AND METHODS

Radiation detection systems (used in all papers)
Radiotracers and other chemicals (in all papers)
Animals (in all papers)
Homogenates of transfected cells (IV)
Receptor binding in homogenates (I, III, IV)
Frozen-section autoradiography (in all papers excl. I)
In vivo PET (in paper III)
Parasagittal fluid-percussion brain injury (in paper V, VI)
Double-tracer studies (in paper V)
Data handling

4. RESULTS AND DISCUSSION

Establishing in vitro receptor binding with PET tracers
Receptor binding in homogenates
Receptor binding autoradiography, qualitative vs. quantitative
Subtype specificity of [11C]4-NMPB
[11C]cyano-dizocilpine, tracer only for in vitro use?
Applying in vitro tracer studies in neurotrauma
Glucose vs. fluorodeoxyglucose
NMDA -, mACH -, and GABA_A receptors after traumatic brain injury

5. SUMMARY

6. ACKNOWLEDGEMENTS

REFERENCES

APPENDIX Papers I to VI
ABBREVIATIONS AND SYMBOLS

ANOVA analysis of variance
BBB blood-brain barrier
B_{max} total number of receptors
BP binding potential
CHO chinese hamster ovary (- cells)
CNS central nervous system
DG 2-deoxy-D-glucose
FDG 2-[18F]fluoro-2-deoxy-D-glucose
FPI fluid-percussion (brain) injury
FWHM full width of half maximum
GABA_A gamma-aminobutyric acid A (- receptors)
HMPAO hexamethylpropylene amine oxime
IC$_{50}$ concentration of unlabeled drug that blocks 50% of the binding of the tracer
K_0 equilibrium dissociation constant
K_i equilibrium dissociation constant for binding of the unlabeled drug
K_{obs} observed rate constant
K_{off} dissociation rate constant
K_{on} association rate constant
LC lumped constant
LCMRG local cerebral metabolic rate of glucose
M_{1} – M_{5} pharmacologically identified mACh receptor subtypes
m_{1} – m_{5} molecularly identified mACh receptor subtypes
mACh - muscarinic acetylcholine (- receptors)
NMDA N-methyl-D-aspartic acid
4-NMPB N-methyl-4-piperidyl benzilate
(+)-3-NMPB (+)N-methyl-3-piperidyl benzilate
NMS N-methyl scopolamine
P_{(2)} (second) pellet (after centrifugation)
PBS phosphate-buffered saline
PET positron emission tomography
rCBF regional cerebral blood flow
ROI region of interest
SD standard deviation
SEM standard error of the mean
SP storage phosphor
SUV standardized uptake value
t_{\text{1/2ass}} half-life for association
t_{\text{1/2diss}} half-life for dissociation
TBI traumatic brain injury
1. INTRODUCTION

1.1 Positron-emitting tracers

In the past few years, the use of positron-emitting tracers has been extended beyond tomographic facilities. They are now used on a regular basis in laboratory experiments to explore ligand-receptor interactions in tissue homogenates, 1,III,IV,228,227 in frozen section autoradiographyII,III,V,VI,80,13,119 and in viable tissue section autoradiography.178,179,196,267,181,180,182 Careful \textit{in vitro} validation of properties of the candidate ligand increases the chances for its successful application14 in \textit{in vivo} experiments in larger research animals or in humans. Therefore, PET can also be an acronym for Positron- Emitting Tracing – a general radiotracer technique using positron emitters both \textit{in vivo} and \textit{in vitro}, utilizing their dualistic decay properties. The positron (β^+) is a particle with a positive charge, that eventually interacts with an electron leading to the annihilation and the emission of two high-energy (511 keV) gamma rays at precisely 180° from one another. The positron originates from an extra proton that is incorporated into the nuclei of nitrogen, oxygen, carbon or fluorine, and which thereafter become unstable isotopes. In order to regain the stability and balance between protons and neutrons, the proton is cleared into a positron and a neutron, with the neutron remaining within the nucleus. Incorporation of the extra proton is made in a cyclotron, where a target element is bombarded with accelerated protons or deuterons.

An example is shown in the simplified diagram 1.1. For the generation of carbon-11 ($11C$), the target element is nitrogen gas. Irradiation of nitrogen with high-energy protons results in the generation of $11C$ and helium. The decay of $11C$ occurs via emission of a positron, leaving a boron atom (diagram 1.2):

\begin{equation}
\text{14N + p } \rightarrow \text{11C + 4He}
\end{equation}

\begin{equation}
\text{11C } \rightarrow \text{11B + \beta^+ + energy}
\end{equation}

\textbf{Detection of positrons}

Storage phosphor (SP) imaging plates are used for capturing the energy from high-energy beta particles for visualizing and quantifying radioactivity patterns. Figure 1-1 A illustrates an SP plate wrapped in a plastic foil. The wrapping is essential in order to avoid contamination and damage by liquid from the sample. The samples are pressed tightly against the SP plates by use of an exposure cassette. Storage phosphors capture nearly every beta particle that reaches the plates, thus making the phosphor plate a highly

<table>
<thead>
<tr>
<th>Panel 1-1: The advantages of storage phosphor technology over film autoradiography.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rapid and simple sample exposure</td>
</tr>
<tr>
<td>• Better sensitivity and greater dynamic range</td>
</tr>
<tr>
<td>• Lower cost per image</td>
</tr>
<tr>
<td>• More accurate quantification</td>
</tr>
<tr>
<td>• Isotope versatility (e.g. $14C$, $3H$, $125I$, $131I$, $32P$, $33P$, $35S$)</td>
</tr>
<tr>
<td>• Linear response</td>
</tr>
<tr>
<td>• Ready to analyse publication-quality digital images</td>
</tr>
<tr>
<td>• Ideal for large user groups and shared facilities</td>
</tr>
</tbody>
</table>

* more information at: http://www.mdyn.com/products/
sensitive tool. **Figure 1-1, B** demonstrates that the dissipated energy excites electrons to a higher energy state at which they remain until deexcited by laser photons. The laser beam releases the stored image as blue luminescent light, which is collected and stored in digital form. In **Figure 1-1, C**, the screen is prepared for reuse by exposing it to erasing light that erases any remaining residual latent image and background due to natural radiation. In **Panel 1-1**, the advantages of phosphor plates over traditional X-ray films are listed. The SP plates are reusable, and if handled with care, can be used indefinitely.

Detection of γ-rays

The γ-counter used in this work was a well-type scintillation counter made from tallium-activated sodium iodide (NaI) crystals, which absorb γ-rays efficiently. Light photons that originate in the crystal are detected by a photomultiplier and recorded. Detectors are shielded from background radiation with 6-cm-thick lead.

Positron emission tomography (PET)

Positron emission tomography (PET) provides a technology where multiple rings of gamma ray detectors are lined around the body. They enable recording of the distribution of an injected or inhaled radioisotope in the tissues (**Figure 1-2**). The two gamma rays emitted by the annihilation of a positron and electron ultimately reach a pair of detectors in a tomograph ring. An event is recorded only when two simultaneous detections are made. That enables localization of a line of gamma emission. After the acquisition of multiples of such emission lines, an image reconstruction program generates images that depict the spatial distribution of radioactivity with a resolution of about 5 mm.

1.2 Receptor binding in general.

Receptor binding as used in the *in vitro* investigation of receptors (R) is mostly analyzed according to a bimolecular reaction model (**Diagram 1.3**):
Assuming that all receptors are equally accessible to ligand (L), the binding occurs when L and R collide. The number of binding events per unit of time (rate of association) equals \([L][R]K_{on}\), where \(K_{on}\) is the association rate constant (on-rate). Once binding has occurred, the L and R will remain bound together for a random amount of time. The rate of dissociation (off-rate) equals \([L•R]K_{off}\), where \(K_{off}\) is the dissociation rate constant. At equilibrium, ligand-receptor complexes form at the same rate that they dissociate:

\[[L][R]K_{on} = [L•R]K_{off} \]

The equation 1.4 has been rearranged to define the equilibrium dissociation constant (\(K_D\)):

\[K_D = \frac{[L][R]}{[L•R]} = \frac{K_{off}}{K_{on}} \]

The concentration of the (radio)ligand-receptor complex \([L-R]\) is frequently referred to as the amount bound \([B]\). If binding follows the law of mass action (equation 1.3), the \(K_D\) calculated in equation 1.5 should be the same as the \(K_D\) calculated from a saturation binding curve. For calculating the \(K_D\) from saturation binding curve, the non-linear regression is usually transformed to a linear regression by plotting the amount bound on the X axis and the ratio of bound to concentration of free radioligand on the Y axis. The negative reciprocal of the slope of such a plot (Scatchard or Rosenthal plot) is \(K_D\), and the X intercept is the total receptor number (\(B_{max}\)).

1.3 Tracers and their targets in the present work.

In PET the following radionuclides \(^{15}\text{O}, ^{13}\text{N}, ^{11}\text{C}\) and \(^{18}\text{F}\) with half-lives of 2, 10, 20, and 110 min, respectively, are most interesting. They are produced by nuclear reactions in a cyclotron. The tracers used in the present work are grouped in Panel 1-2.

- \([^{11}\text{C}]\text{flumazenil}\) and GABA_A receptor complex. Flumazenil (previously Ro 15-1788) is a selective benzodiazepine receptor antagonist\(^{185,184,73}\) that binds rapidly and reversibly to its receptors, and shows saturation, and has a low fraction of non-specific binding.\(^{212}\) The benzodiazepine receptor is a part of the \(\gamma\)-amino butyric acid A (GABA_A) receptor-Cl⁻ channel complex. GABA is a major inhibitory neurotransmitter in the central nervous system (CNS). The substances used for displacement of \(^{11}\text{C}\)-flumazenil in the first paper, zolpidem, triazolam and diazepam, are agonistic modulators at the benzodiazepine site and enhance the effects of GABA. Benzodiazepine receptors have been characterized in
by use of 3H-labeled ligands, and their regional distribution in the brain and their pharmacological properties have been well described. As a PET tracer, 11C-labeled flumazenil has been successfully used in live animals and human brain. NMPB (N-methyl-4-piperidylbenzilate) is a muscarinic acetylcholine (mACh) receptor antagonist. The mACh receptors belong in turn to the family of receptors that are coupled to GTP-binding protein (G-protein), and it has an important role in memory and cognitive functions as well as in cortical processing of sensory information, and in control of regional cerebral blood flow. NMPB has previously been used in vitro in rodent brains and has been recently labeled with carbon-11 for use as an in vivo PET imaging agent. Since the cloning of five muscarinic receptor subtypes, the direct characterization of individual muscarinic receptor subtype-ligand interactions has become feasible, thus facilitating the search for specific ligands for possible treatment, pharmacological investigations, or tracing purposes.

$[^11]C(cyano)dizocilpine and NMDA-subtype glutamate receptors. $[^{11}]C(cyano)dizocilpine is a PET tracer developed on the basis of dizocilpine (previously MK-801), a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor, and it shows reversible and saturable binding. Dizocilpine blocks NMDA responses in a voltage-dependent manner, and the blockade of the binding sites is use-dependent, suggesting close association between the binding sites and the ion channel in such a manner that when the opening of the channel occurs these binding sites are uncovered. To allow the influx of calcium and sodium into the cell as a consequence of the binding of the excitatory amino acid glutamate, an internal voltage-dependent blockade of the channel by magnesium ion must be overcome. The opening of the ionophore is facilitated by the binding of glycine and modulated by the binding of polyamines and zinc. The presence of an agonist increases the binding of radioligands to a phencyclidine (PCP) recognition site, which is identical or closely related to the binding site for dizocilpine. L-Glutamate and glycine alone, or even more in combination, increase by several fold the affinity of $[^3]H$dizocilpine for the NMDA receptor. The widely distributed NMDA receptors have been well mapped previously by tritiated dizocilpine binding to rat brain membrane preparations and by autoradiography. The later discoveries about the neurobiology of the NMDA receptor and the earlier studies by Olney and colleagues that led to the concept of excitotoxicity stimulated a search for tracers that could be used for studying the pharmacology of glutamate toxicity in vivo. $[^3]H$dizocilpine uptake in ischemic tissue in a rat model of focal cerebral ischemia is eventually increased after waiting long enough for the nonspecific fraction to decrease. At early times after dizocilpine administration, the majority (> 80%) of the label is not associated with the dizocilpine recognition site, and that disturbs the noninvasive in vivo visualization of the specific binding to NMDA receptor. In the development of potential PET tracers for NMDA receptor activation, (±)$[^{18}]F$fluoro-methyl-dizocilpine was synthesized, but specific binding could not be visualized because of the type of anesthesia used during animal PET investigations, and because of the racemic nature of the particular tracer. The (–)-isomer of dizocilpine is about 5-6 times less potent than the (+)-isomer. The activation of NMDA receptors was shown with (±)-3-$[^{125}]I$iodo-dizocilpine in rat focal ischemia by ex vivo autoradiography and with (±)-3-$[^{123}]I$iodo-dizocilpine in patients with cerebral haemorrhages or Alzheimer’s disease examined by single photon emission tomography (SPET). Besides cerebral ischemia and haemorrhage, the excitotoxic mechanisms are thought to contribute to the neuronal loss that occurs after...
cerebral trauma, status epilepticus, and hypoglycemic brain damage. Another tracer, (S)-[N-methyl-11C]ketamine, for activated NMDA receptors has been synthesised and used successfully in human volunteers for studying receptor occupancy in relation to several central nervous system effects caused by subdissociative doses of (S)-ketamine. However, in patients with medial temporal lobe epilepsy, no neurochemical activation of the NMDA receptor channels could be identified. Only decreased binding was observed in epileptic tissue, with many possible explanations. Besides its involvement in Alzheimer’s disease, NMDA receptor activation-induced neurotoxicity is proposed to play a role in the pathogenesis of other chronic neurodegenerative disorders.

C15O2. For measuring regional cerebral blood flow (rCBF) in vivo with PET, a method that involves the continuous inhalation of cyclotron-produced 15O-labeled carbon dioxide (C15O2) has been used. C15O2 is converted in the lungs to H215O; and after 6 to 8 minutes of inhalation, an equilibrium is achieved in the brain, wherein delivery of H215O to the brain is counterbalanced by tracer washout and physical decay of the radionuclide (t1/2=123 seconds). The regional tracer concentration at equilibrium is dependent on the rate of blood flow in the region, the arterial activity function, and the blood-brain partition coefficient of the tracer. The continuous (equilibrium) inhalation of C15O2 is suitable in subjects with intubated airways, though it imposes a higher radiation dose to lungs and total body, in comparison to the alternative, widely applied tomographic method for assessing rCBF, namely, the in vivo autoradiographic method after a bolus injection of H215O.

[^99mTc]Hexamethylpropylene amine oxime (HMPAO). A lipophilic compound, HMPAO can be labeled with 99mTc and used as a tool for determination of rCBF in vivo by single photon emission computed tomography (SPECT). Because of its lipophilicity, it crosses the blood-brain barrier freely, becoming thereafter less lipophilic and is trapped in the tissue for some hours. The distribution of [^99mTc]HMPAO, reflecting the rCBF, correlates well with the distribution of microspheres and iodoantipyrine.

2-deoxy-2-[18F]fluoro-D-glucose (FDG) and D-[1-14C]-glucose. An analogue of glucose that is used in the DG method, i.e., 2-deoxy-D-glucose, and glucose itself are competitive substrates for two initial steps of glucose utilization in the brain. The first step involves the bidirectional blood-brain barrier transport; and the second, the hexokinase-catalyzed phosphorylation of hexoses in the cerebral tissues. Deoxyglucose-6-phosphate (DG-6-P), once formed by hexokinase, is only minimally metabolized further, and is essentially trapped in the cerebral tissues (Figure 1-3). After a certain experimental time period, the brain and plasma precursor concentrations of DG drop to a low value, relative to the total radioactivity concentration in the brain; and the autoradiograms made at this time-point are the net result images of the relative rates of glucose utilization under the experimental time period in the structural components of the brain. The DG method has been adapted for humans by the use of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and PET. To calculate the rate of glucose metabolism, an operational equation created by Sokoloff and co-workers (1977) is used. In general, it is an equation (Equation 1.6) for the measurement of rates of enzyme-catalyzed reactions with tracers:

\[
R_{CMRG} = \frac{(C_t - C_e)}{LC \left(I_p - K \right)}
\]

In this equation the numerator represents the tracer metabolite concentration made up of \(C_t - C_e\), where \(C_t\) is the measured total radioactivity concentration, and \(C_e\), the brain precursor
Figure 1-3. Glucose and deoxyglucose in brain tissue. Neuron (yellow), bloodvessel (red) and astrocyte (gray). C_p^* and C_p, represent the concentrations of FDG and glucose in the arterial plasma, respectively; C_E^* and C_E, represent their respective concentrations in the tissue pools that serve as substrates for hexokinase. C_M^*, represents the concentration of FDG-6-phosphate in the tissue. The constants k_1^*, k_2^*, and k_3^*, represent the rate constants for carrier-mediated transport of FDG from plasma to tissue, for carrier-mediated transport from tissue back to plasma, and for phosphorylation by hexokinase, respectively. The constants k_1, k_2, and k_3, are the equivalent rate constants for glucose. CAC, citric acid cycle; G1 and G3, are the predominant facilitative glucose transport proteins in the brain; MCT, the monocarboxylate transporters.
concentration. The denominator represents the integral of brain precursor specific activity multiplied by a factor, the lumped constant (LC). The integrated specific activity of the precursor is made up of \(I_p - K \), where \(I_p \) is the integral of plasma precursor specific activity, and \(K \) is the correction factor for the difference between the integrals of brain and plasma precursor concentrations. The experimental time period is recommended so that the impact from \(C_e \) and \(K \) is minimal. The LC and metabolic rate of glucose are inversely proportional to each other, and LC is necessary for relating the cerebral total radioactivity concentration to glucose metabolism. The LC does vary with the species of animal and according to the pathological state. It is, therefore, necessary to determine the LC in the pathological state investigated. Since the LC is not easily measured, one typically uses a value for normal whole brain and assumes that this value is valid in individual cases for the tissue of interest and speculates on theoretical grounds as to how improbable it is that the LC would change in any particular experimental setup.

Methods have been developed for measuring glucose utilization with labeled glucose itself, in which case no LC correction is necessary, as the kinetics for transport and phosphorylation are the same for the tracer and the natural substrate. The label passes through the glycolytic pathway and enters the citric acid cycle, where it is effectively trapped in intermediary metabolites associated with the cycle. The pentose shunt can remove the 1 carbon but its activity is thought to be low in the brain. Though the labeled glucose method produces results that are similar to the values obtained with the deoxyglucose method, the labeled glucose is not very popular. In Panel 1-3, most important pros and cons of labeled deoxyglycose and glucose methods are listed. In order to study the behavior of FDG in experimental TBI, the present study compared the uptake of position-1 \(^{14}\)C-labeled glucose with the uptake of FDG and the relative rCBF. Glucose and FDG have different kinetic characteristics for their respective passage across the blood-brain barrier (BBB) and for the enzyme, hexokinase.

1.4 Traumatic brain injury

Head injuries are present in more than half of trauma-related deaths, and accidental injury is the leading cause of morbidity and mortality among children and young adults in the developed world. Two accepted concepts on which modern treatment of head injury is based are that not all neurological damage occurs at the time of impact and that the injured brain is much more sensitive than the non-injured brain to alterations in}

Panel 1-3: Characteristics of methods for determination of glucose utilization

<table>
<thead>
<tr>
<th>Deoxyglucose method</th>
<th>Labeled glucose method</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Long duration (30-45 min) needed for a favorable metabolite*/DG* ratio during which a steady state is necessary for correct results</td>
<td>• Only short times (5-10 min) are possible for a favorable metabolite*/Glucose* ratio</td>
</tr>
<tr>
<td>• Results are needed to transform to true values of glucose utilization with the aid of lumped constant</td>
<td>• Loss of label via CO2, lactate or pentose shunt</td>
</tr>
<tr>
<td>• Minimal loss of DG-6-P</td>
<td>• Identical kinetics of the tracer to the substrate of interest</td>
</tr>
</tbody>
</table>

* radioactively labeled

<table>
<thead>
<tr>
<th>Panel 1-4: Traumatic brain injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary injuries</td>
</tr>
<tr>
<td>• Rapid acceleration or deceleration</td>
</tr>
<tr>
<td>• Contusions, bruises</td>
</tr>
<tr>
<td>• Shearing/tearing and rupture of tissues</td>
</tr>
<tr>
<td>• Hematomas and blood clots</td>
</tr>
<tr>
<td>Delayed secondary injury</td>
</tr>
<tr>
<td>• Increased intracranial pressure</td>
</tr>
<tr>
<td>• Physiological, biochemical and vascular abnormalities</td>
</tr>
</tbody>
</table>
In other words, much of the ultimate neuronal loss may be caused not by the injury itself, but by an uncontrolled vicious cycle of biochemical events set in motion by the trauma (Panel 1-4). The control of this complex cascade remains one of the most important challenges in the acute management of brain injury. Procedures that minimize this damage can improve the prognosis of the patient who has sustained a traumatic brain injury.

The brain trauma model and glucose metabolism

Experimental models of traumatic brain injury (TBI) try to recreate reproducible, graded and quantifiable brain injury for the evaluation of potential and clinically relevant neurochemical correlates coupled with the monitoring of the response to pharmacologic interventions. Among the diversity of experimental TBI's (including cerebral cortical contusion, head acceleration, and fluid-percussion injury (FPI), the method of injecting physiological saline into a closed cranium is one of the most widely used and well characterized models, one that reproduces some aspects of the biomechanical, physiological, neurological, and pathomorphological responses observed in human closed head injury. The FPI method enables the reproducibility of a mild, moderate, or severe level of brain damage, assessed in terms of neurological outcome and dependent on the magnitude of the impact (>1, 1.5-2.0, and 2.5-3.6 atm, respectively). The immediate transient hypertensive response was more significant and prolonged at higher levels of injury and was followed (only in case of high-grade injury) by a significant decrease in mean arterial pressure. The post-injury suppression of electroencephalographic amplitude correlated with the degree of injury and could be observed in both injured and uninjured hemispheres. Neurological dysfunction after FPI is related to the level of injury, the highest degree of neurological impairment being demonstrated by the animals injured at the highest levels of impact. The presence of neuronal injury, as identified by alterations in morphology and affinity for acid fuchsin and silver stain, was demonstrated from as early as 10 min for up to 7 days after a moderate level (2.2 atm) of lateral FPI. The frequency of injured neurons was greatest in the ipsilateral cortex, hippocampus, and thalamus. A loss of Nissl-stained neurons was observed in these regions beginning at 12 hrs after the FPI. Highly selective and irreversible neuronal injury was seen in ultrastructural analysis of the hippocampus 15 min after moderate FPI. There is evidence of initial global, with persistent regional, decreased blood flow at the site of moderate-level FPI. Although these reductions in cerebral blood flow alone do not appear to be sufficient to explain the neuronal injury in corresponding brain areas within the context of brain trauma, some neurons exhibited increased sensitivity to secondary ischemia. Disruption of the blood-brain barrier (BBB) was dependent on the injury level. At a low level (< 1 atm) the BBB is reestablished in most brain regions at 60 min postinjury, whereas at a moderate level of FPI, the BBB breakdown was most prominent at 6 hrs postinjury, and mechanical damage to vessel walls was seen by ultrastructural observation of the trauma-site cortex. After high-grade (~ 5 atm) FPI, the BBB breakdown was bilateral up to 24 hrs after the trauma, at which time the abnormal permeability became restricted to the impact site. The local cerebral metabolic rate of glucose (LCMRG) after experimental traumatic brain injury (TBI) was previously measured with [14C]deoxyglucose (DG) by using the method involving rate constants, and lumped constant developed for normal animals. The assumption has routinely been made that the use of the DG method following TBI yields results that are both valid and reliable. Previously, the uptake of DG administered 10 or 20 min before experimental concussion, which produced immediate transient loss of consciousness associated with transient apnea, was similar to that of the
control animals. Decreased DG utilization has been measured in cats 1 hour after FPI and in rats 4 and 24 hrs after moderate FPI. On administration of DG 15 min after moderate FPI in rats, the LCMRG was significantly elevated bilaterally beyond the values from sham-controls in a variety of cortical and subcortical sites in a study performed by Ginsberg and colleagues (1997). A phenomenon of decreased LCMRG at the injury site and a significantly increased LCMRG in other surrounding ipsilateral sites or bilateral regions of rat brain after FPI has been observed. In studies by Hovda et al. (1990) and Kawamata et al. (1992), a remarkably higher LCMRG was observed in the entire cerebral cortex and hippocampus, with the greatest increase in the hemisphere ipsilateral to the percussion site, in rats subjected to FPI than in sham-operated rats. Yoshino et al. (1991) followed the changes in LCMRG with time and found marked increases in LCMRG immediately after FPI and a subsequent return toward control values by 6 hrs, followed by a decrease in LCMRG and spontaneous recovery over the course of 10 days. The changes were seen primarily within the hemisphere ipsilateral to the site of the FPI. In another study, LCMRG was shown to be continuously decreased at 6 and 24 hrs and 2 weeks after the injury. The oxidative metabolism following lateral FPI was shown to be increased acutely and later after the injury, to be depressed for several days, primarily within the cerebral cortex and hippocampus ipsilateral to the site of injury. FPI produces also expression of neuronal stress proteins and immediate-early genes, and, as demonstrated in cats, a reduction in cerebrovascular responsiveness to changes in pCO₂, loss of pressure autoregulation, and increases in intracranial pressure and oedema.

PET in traumatic brain injury

Although the usefulness of PET in quantifying in vivo hemodynamics and metabolism is generally recognized, there have been only a few PET studies on head injury. One can expect an increasing use of functional imaging by PET in modern rehabilitation and treatment research on traumatic brain injury. PET using FDG has identified a decreased glucose utilization within 4 – 20 days postinjury in patients having recovered consciousness. Similarly, decreased regional glucose utilization as measured with FDG was seen in children at a median period of 53 days after severe brain injury and in adults 3 – 12 months after mild-moderate head injury. The PET results were not better predictors of clinical outcome than other methods used. In the acute phase (within 10 days) of traumatic brain injury a discordance between FDG uptake and cerebral blood flow (CBF) has been shown: The CBF was reduced in all patients, but in one patient with severe traumatic brain injury [the Glasgow Coma Scale (GCS) score 4 under PET FDG investigation] the cerebral metabolic rate for glucose was elevated, whereas in another patient with mild traumatic brain injury the FDG uptake was normal. Higher initial cerebral FDG uptake as compared with a subsequent decreased uptake has been measured acutely (2-4 days) by FDG PET after severe head injury in patients with GCS scores of 4 – 7. Acutely after severe traumatic brain injury, the cerebral metabolic rates for oxygen (CMRO₂) were normal, with a subsequent significant fall between the first and third days after injury (GCS ≤ 8, not a PET study). Decreased regional CMRO₂ was also measured by PET 10 days after severe brain trauma, and the metabolic ratio (CMRO₂ / CMRG) in the same study was decreased, suggesting anaerobic glycolysis. In a recent study different techniques were mixed in comparing global values from arteriojugular measurements of cerebral oxygen consumption with cortical values of glucose consumption measured by FDG PET; and a decreased metabolic ratio was found in 56% of the patients studied within
the 1st week of severe traumatic brain injury. The authors called this shift between metabolic rates of oxygen and glucose “cerebral hyperglycolysis”. There are no studies available in which an in vivo PET investigation on neurotransmission after traumatic brain injury has been conducted.

Glutamate-, ACh-, and GABAergic neurotransmission in brain trauma

The pathological changes associated with traumatic brain injury may be due, in part, to alterations in endogenous neurochemical systems, including those involved in normal neurotransmission. These events may include alterations in neurotransmitter synthesis, release, or re-uptake mechanisms or changes in pre- or postsynaptic receptor activity (for excellent reviews, see McIntosh and co-workers). It is often difficult to determine what is the cause and what is the effect of a neurological malfunction. PET could be one of the few methods that would enable the assessment of the functional state of neurotransmission in vivo.

Both experimental and human traumatic brain injuries induce an acute and potentially neurotoxic increase in extracellular glutamate. Clinical data contradictory to most of the data on experimental traumatic brain injury show that glutamate concentrations may be elevated for a long time period. Pretreatment with noncompetitive NMDA antagonists attenuates neurological motor deficits, enhances the recovery of memory performance and cognitive outcome, improves brain metabolic status and postinjury decline in magnesium concentrations, and decreases contusion volume and hemispheric swelling following experimental TBI. Also, postinjury treatment with magnesium salts as indicated by decreased magnesium concentrations has been shown to cause an improvement in neurological motor and cognitive deficits and decreased regional cerebral edema formation after TBI. Beneficial effects on behavioral dysfunction and on cortical lesion volume have also been obtained with modulation of glycine and polyamine binding sites in NMDA receptor-ionophore complexes. A more recent approach to reverse glutamate-induced neurotoxicity following traumatic brain injury is the use of presynaptic glutamate release inhibitors. Only Miller and coworkers have so far investigated the fate of NMDA subtype glutamate receptors after experimental traumatic brain injury. They found an acute decrease in NMDA receptor binding in both cortex and hippocampus.

Research data suggest an immediate cholinergic hyperfunction in the acute posttraumatic period followed by a hypofunctional cholinergic state later after injury. Early anticholinergic treatment with scopolamine attenuated motor deficits. Postinjury administration of cholinergic agonists improved cognitive function, whereas blockade of the cholinergic system resulted in cognitive impairment in rats following traumatic brain injury. A prolonged reduction in the evoked release of hippocampal and cortical acetylcholine (ACh) and reduced immunohistochemical staining of ChAT neurons have been shown after traumatic brain injury. FPI induced a prolonged increase in the maximum number of mACH binding sites in the hippocampus and cerebral cortex. Loss of cholinergic neurons was seen in the rat brain following TBI. Also, cholinergic agonists attenuated the decrease in forebrain choline acetyltransferase (ChAT) immunoreactivity following FPI.

The GABAergic neurotransmission, which might be a major counterbalance to the excitotoxic mechanisms, has been only minimally investigated in experimental traumatic brain injury. A reversible increase in extracellular GABA concentration was shown by microdialysis in ischemia in both rat brains as well as in concussive brain
injury in rats. The depressant diazepam was able to protect against ischemic damage. Recently, improved effects on mortality and cognitive outcome were observed in rats subjected to moderate-level FPI when the animals were pretreated with diazepam. Postinjury treatment did not enhance the survival but induced significantly better recovery of cognitive function.

2. AIMS OF THE THESIS

The principal goal of this thesis was to develop and validate methods for \textit{in vitro} evaluation of positron emission tomography tracers, with application to experimental neurotrauma. Studies toward this goal included:

- Investigation of the suitability of the storage phosphor imaging system for working with high-energy positron emitters, for example for receptor binding in tissue homogenates and quantitative frozen section autoradiography (I, II).

- The development of methods usable for characterizing newly labeled receptor ligands with potential for application in positron emission tomography investigations on research animals or on humans (III, IV).

- The characterization of PET tracers in a biological model, i.e., experimental neurotrauma by using established \textit{in vitro} and \textit{ex vivo} methodology (V, VI).
3. MATERIALS AND METHODS

3.1 Radiation detection systems

Storage Phosphor (SP) plates. (Molecular Dynamics, USA; 20 x 25 cm) were used as one means of measuring radioactivity. Radioactive contamination of the plates was removed by using Intensifying Screen Cleaner (Kodak, New York, USA). Before and after use, background noise and remaining signals were erased by exposing the SP plates to an Image Eraser (Molecular Dynamics) for at least 6 min. For exposure the samples were placed on an SP plate (which was covered with a plastic foil) and pressed against it by means of a Molecular Dynamics Exposure Cassette. After exposure of the plate at room temperature for the desired time, a Phosphor Imager (Molecular Dynamics) was used to scan the plate with a laser beam. Pixel sizes from 50 µm and upwards were chosen depending on conditions of the experiment. The scanning operations, as well as data display and analysis, were performed by using the software ImageQuant (Molecular Dynamics). For quantitative analysis, after volume integration of the regions of interest (ROI), the radioactivity was expressed as the sum of all pixel (picture element) values minus the local background level close to each object. In other applications, the average pixel value after background subtraction was used. The individual calibration standard was composed of a dried drop of 20 µl of tracer-solution on thin absorbent paper. The standards were prepared for each SP plate. The γ-counter system consisted of four scintillation counters (NaI(Tl), diameter and height = 75 × 75 mm) of the well type (diameter and depth 28 × 55 mm) in a 6-cm-thick lead shield. The amplified pulses were analyzed by a low level discriminator and counted by computer interfaced scalers. Each sample was measured usually for 30 sec, unless stated otherwise; and results were decay corrected. Radioactivity from 3H and 14C was counted in a liquid scintillation system (LS 6000 series) using Ready Organic™ liquid scintillation cocktail (Beckman Instruments Inc. Fullerton, CA, USA).

3.2 Radiotracers and other chemicals

All tracers (excl. D-[1-14C]-glucose, [3H]NMS and [99mTc]HMPAO) were produced by the staff chemists at the Uppsala University PET Centre and were used either for the present work or shared in parallel with use in other projects. 11CO2 was produced by the 14N(p,α)11C nuclear reaction using a cyclotron Scanditronix MC-17. [N-Methyl-11C]flumazenil was synthesized according to standard procedures. 159 The synthesis of (+)-3-[11C]cyano-dizocilpine was achieved by reaction of (+)-3-iodo-dizocilpine with hydrogen [11C]cyanide in the presence of tetrakis-(triphenylphosphine)-palladium(0) [Pd(PPh3)4].5 The [11C](+)-3- and [11C]4-NMPB’s were obtained after conversion of [11C]carbon dioxide to [11C]methyl iodide, which was then used in an N-alkylation reaction of the corresponding N-desmethyl compounds.177 The concentrations of 11C-labeled tracers were calculated from calibration curves by simultaneous monitoring of radioactivity, UV absorbance, and mass (HPLC), with authentic substances used as standards. The mean (± SEM) specific radioactivities at the start of sample exposure were 721 ± 120, 60 ± 18, and 28 ± 4 MBq/µmol for [11C]cyano-dizocilpine, [11C]flumazenil, and [11C]4-NMPB, respectively. 18F was produced by the 18O (p,n) 18F nuclear reaction, and [18F]Fluorodeoxyglucose (FDG) was prepared by routine procedures (FDG MicroLab unit, GE Medical Systems, Milwaukee, WI, USA). [99mTc]Hexamethylenepropylene amine oxime ([99mTc]HMPAO) was...
prepared by mixing a vial of HMPAO (Ceretec™, Nycomed Amersham plc, UK) with 5 ml (30 MBq/ml) of pertechnetate (99mTcO₄⁻) kindly provided by the members of the Department of Nuclear Medicine at Uppsala University Hospital. D-[1-14C]-glucose was bought from NEN™ Life Science Products, Inc. (Boston, Massachusetts, U.S.A.), and L-[N-methyl-3H]Scopolamine methyl chloride ([3H]NMS) was purchased from Amersham Pharmacia Biotech AB (Sweden).

Flumazenil was kindly provided by La Roche (Switzerland). Zolpidem, triazolam, (+)- and (–)-dizocilpine, atropine sulphate, and pirenzepine were obtained from Research Biochemicals International (USA); and diazepam, L-glutamate, and glycine, from Sigma, (USA). Green mamba (Dendroaspis angusticeps) venom (0.5 g) was purchased freeze-dried from Miami Serpentarium Laboratories (USA); and ketamine, from Parke-Davis (Spain).

3.3 Animals

Male Sprague-Dawley rats and rhesus monkeys were used. The rats, weighing 200 to 450 g, were habituated to the housing conditions for at least seven days after arrival. They were housed at a constant temperature (20°C) and humidity (50%) and maintained under a 12-h light/12-h dark cycle, with lights on from 7:00 a.m. to 7:00 p.m. and given free access to laboratory animal chow and water. The rats were sacrificed by decapitation after a short exposure to diethyl ether I or CO₂. Rhesus monkeys (Macaca mulatta), weighing 7.0 - 11.2 kg, were used from the Primate Laboratory of Uppsala University PET-Centre. All studies with research animals were approved by the Animal Ethics Committee of Uppsala University.

3.4 Homogenates of transfected cells

Human mACh receptors (m1-m5), transfected in CHO-K1 cells were obtained from Receptor Biology, Inc. (Beltsville, USA). For the experiments the membranes were thawed and diluted in phosphate-buffered saline, pH 7.4 (PBS), and homogenized in a glass vessel with the aid of a Teflon pestle. The final concentration of receptors in the assay was in the range of 5.0 - 10.0 × 10⁻¹¹ M.

3.5 Receptor binding in homogenates

For preparation of rat brain P₂-fraction, the forebrains were rapidly removed and homogenized in 10 tissue volumes of 0.32 M sucrose at 4°C with a Polytron homogenizer PT 3000 (Kinematica, Littau, Switzerland) twice for 30 sec at setting 20. After centrifugation of the homogenate at 1240 g for 10 min at 4°C (J2-MC-Centrifuge, Beckman, USA), the pellet (P₁) was discarded; and the supernatant (S₁) was further centrifuged at 19800 g for 20 min at 4°C. The pellet P₂ was resuspended with a vortex mixer (Mistral, LAB-Line Instruments, Plaza) in 10 volumes of 50 mM Tris-HCl (pH 7.4) and kept on ice until used. For the saturation studies in paper III, the P₂-fraction was prepared by resuspending the P₂-fraction in 10 volumes of 50 mM Tris-HCl buffer (pH 7.4) without additional glutamate and glycine, and was further centrifuged at 39800 g for 20 min. The pellet (P₃) was resuspended and homogenized in 10 volumes of 50 mM Tris-HCl with the Polytron homogenizer for 30 sec at setting 20. This last washing step was repeated four times, and the final pellet (P₆) was stored at −70°C for not more than 2 weeks before use. On
the day of assay, the P6-pellet was resuspended and homogenized again as described above in 50 mM Tris-HCl, pH 7.4. The protein concentrationsI,II,III were determined by the bicinchoninic acid protein assay (Pierce, Rockford, USA) with bovine serum albumin as a standard.232 Ligand depletion experimentsI were performed as centrifugation assays to measure the free ligand concentration. Duplicates of P2-fractions with different protein concentrations were incubated with [11C]flumazenil. For termination of the binding reaction, the samples were centrifuged; and aliquots (1.0 ml) of the supernatants were measured in a γ-counter and compared with the sample without P2-fractions. For the Phosphor Imager measurement, 20-µl aliquots of the supernatant on a BenchGuard sheet were used. For the association study,I,III,IV homogenates were incubated with [11C]flumazenil. For termination of the binding reaction, the samples were centrifuged; and aliquots (1.0 ml) of the supernatants were measured in a γ-counter and compared with the sample without P2-fractions. For the Phosphor Imager measurement, 20-µl aliquots of the supernatant on a BenchGuard sheet were used. For the association study,I,III,IV homogenates were incubated with tracer at 22ºCI,IV or at 37ºC.III The binding was started at different time points in reverse order and terminated simultaneously in all samples at time zero. In all binding studies (excl. depletion studies), the incubation was terminated by rapid filtration through Whatman GF/B glass fiber filters (FPB-148, fired, Gaithersburg, USA). For the dissociation study, the association of samples was terminated after 30,I 50,IV or 60III min; and dissociation was started by adding unlabeled competitor in excess at different time points, and the reactions were terminated simultaneously in all samples at time zero (of the dissociation reaction). In ligand saturation experiments,I,III the homogenates were incubated with increasing concentrations of tracers (0.3 to 50 nMI, or 0.3 to 153 nMIII) at 22ºCI or 37ºCIII for 30I or 40III min. Nonspecific binding was obtained by incubation of adjacent samples with an excess of unlabeled competitor. In paper III saturation was studied under two conditions: first, 50 mM Tris-HCl, pH 7.4; and second, 50 mM Tris-HCl containing 1 mM L-glutamate and 30 µM glycine, pH 7.4. After termination of the incubation the filters were rinsed four times with 2 ml of ice-cold incubation buffer each time. Thereafter, the filter rings were collected from the cell-harvester (48 samples, Brandel, Gaithersburg, USA) and were transferred into vials for counting in a γ-counterI,III,IV and thereafter exposed to an SP plate in a cassette.I For assessment of the specificity of [11C]flumazenilI and [11C]cyano-dizocilpineIII binding, the homogenates were incubated with a single concentration of the tracer and increasing concentrations of competitors. The incubations were performed at 22ºCI or 37ºCIII for 30I or 40III min and terminated as described above.

3.6 Frozen-section autoradiography

In general, frozen sections were cut with a cryostat microtome and mounted on gelatin-coated glass slides. For qualitative imaging,III,IV the sections were preincubated in the incubation buffer at 37ºC and thereafter incubated with single concentrations of tracers for 50III or 40IV min at 37ºC. The nonspecific binding was measured in the presence of excess blocker ((+)-dizocilpineIII or atropineIV). Thereafter the sections were washed twice for 5 min each time with the incubation buffer and dried under a stream of warm air (40ºC). The sections were exposed for at least 40 min to SP plates. The rat brain anatomical structures in autoradiographic images were visually identified according to the atlas of Paxinos and Watson (1982),200 and for monkey brain according to that of Riche and colleagues (1988).213 Quantitative autoradiographyIII,IV was performed in general as discussed earlier.139 Coronal or sagittal sections of various thicknessesII or with a defined thickness of 10 (for [11C]4-NMPB) or 20 µm (for [11C]cyano-dizocilpine and [11C]flumazenil)VI were mounted on gelatin-coated glass slides, dried at room temperature, and stored at –20ºC until used for experiments within two to three weeks. For the treatment of the sections in paper II, the conditions described by Kloog and co-workers135 were used with minor modifications. The
sections were incubated in modified Krebs-Henseleit buffer (pH 7.4). In paper VI, 50 mM Tris-HCl, (pH 7.4) served as the incubation buffer. Sections were preincubated for 15 min. No preincubation was applied to sections used for $[^{11}C]$cyano-dizocilpine studies in paper VI. To define the total binding, the sections were incubated at different concentrations of tracers ranging from 0.05-60 nM in the incubation buffer at 24°C VI or 37°C II for 40 ($[^{11}C]$cyano-dizocilpine and $[^{11}C]$flumazenil) or 50 min ($[^{11}C]$4-NMPB). Non-specific binding was determined in adjacent sections incubated in the presence of 1 µM (+)dizocilpine (for $[^{11}C]$cyano-dizocilpine), 1 µM flumazenil (for $[^{11}C]$flumazenil), or 10 µM atropine (for $[^{11}C]$4-NMPB). After the incubation, the sections were washed twice for 5 min ($[^{11}C]$cyano-dizocilpine and $[^{11}C]$4-NMPB) or 1 min ($[^{11}C]$flumazenil) each time with the incubation buffer and dried under a stream of warm air. For quantification, individual calibration standards were prepared for each set of brain sections and exposed to the same imaging plate. The standard was a 20-µl drop of tracer solution of known concentration placed on a thin absorbent paper (BenchGuard, Bibby Sterlin Ltd, UK), and exposed simultaneously with the brain sections. Knowing the concentration and volume of the standard sample, the amount of substance expressed in fmol was calculated. The total counts over the standard, measured by the SP imaging system, allowed the calculation of a calibration factor in counts/fmol. The signal measured for a region of interest (ROI) in a structure of a brain slice was given as an average count/pixel. Knowing the pixel size, the value was recalculated to counts/mm2; and using the calibration factor, it was further converted to fmol/mm2 (and fmol/mm3 to get a value independent of section thickness). Before this calculation, the average count/pixel of the background area close to the brain slices was subtracted from the average count of the ROI. For ex vivo frozen section autoradiography, the brains were quickly frozen after decapitation of the rats, and coronal sections of 40-µm thickness were cut with a cryostat microtome and mounted on gelatin-coated glass slides. They were next dried at room temperature and exposed for 4 or 12 hrs (FDG or $[^{99m}Tc]$HMPAO, respectively) to SP plates. A simplified quantification model was used without integrating brain or plasma precursor specific activity and without determining the metabolic rate or blood flow in absolute values, but still providing values that can be used as a basis for conclusions. The FDG uptake and blood flow were quantified by normalizing the uptake pixel-value in the ROI to the administered volume of the tracer and the body weight of the animal (uptake × ml⁻¹ × kg⁻¹). The following working equation was used: $C_R \times 10^6/[C_S \times IV/wt]$, where C_R is the average pixel value for ROI; C_S, the total sum of the pixel values in the standard; IV, the volume of administered tracer; and wt, the weight.
of the animal. Each set of brain sections from one animal was matched with a calibration standard prepared as follows: from the same tracer solution injected into the animal, a drop of 20 µl was pipetted onto a thin absorbent paper and dried. Each standard was then exposed simultaneously to the same imaging plate as the brain sections of the single animal. The ROI’s were delineated in the cerebral cortex through all layers at the trauma site (a, in Figure 3-1) and in the corresponding contralateral region (b), and over the trauma-side hippocampus (c) and corresponding contralateral hippocampus (d).

3.7 In vivo PET

After an overnight fast, and before transport to the PET centre, the monkeys were anesthetized with an intramuscular injection of ketamine (100 mg). At the PET centre, inhalation anesthesia with a gas mixture of isoflurane, N₂O, and O₂ (0.4, 70, and 30%, respectively), was used combined with intravenous atracurium (0.5 mg/kg/h) for muscle relaxation. Electrocardiography and central body temperature were monitored throughout the study. The first study with [11C]cyano-dizocilpine on the day of the experiment was conducted at least 4 hrs after the induction of anesthesia with ketamine. Radioactive doses for each administration were around 50 MBq, with specific radioactivity of about 100 GBq/µmol. Studies were performed in PC 2048-15B and PC 4096-15WB positron emission tomographs (Scanditronix, Sweden) equipped with eight detector rings, giving fifteen transaxial slices interspaced at about 6.8 mm and affording a spatial resolution of about 4-5 mm. Attenuation correction was based on 10-min transmission scans using a rotating 68Ge pin source. One 60-min study consisted of 22 consecutive measurements (time frames). Images were reconstructed for each time frame, and ROI’s were delineated in frontal cortex, right caudate, thalamic nuclei, cerebellar cortex, and white matter according to a monkey brain atlas. Radiotracer binding kinetics were estimated after standardization of radioactivity uptake for its physical decay and normalization to the body weight of the monkey and injected radioactivity. Attempts for blocking were performed by intravenous injection of a single dose of (+)-dizocilpine or ketamine (0.1 and 2.5 mg/kg, respectively) before a bolus injection of [11C]cyano-dizocilpine.

In three monkeys the regional cerebral blood flow (rCBF) was also measured before every [11C]cyano-dizocilpine study. rCBF was measured by steady-state inhalation of C15O\textsubscript{2}. Regional CBF values were correlated to [11C]cyano-dizocilpine uptake values in order to assess the rCBF component in the [11C]cyano-dizocilpine uptake.

3.8 Parasagittal fluid-percussion brain injury

Rats were anesthetized with an intraperitoneal injection of sodium pentobarbital 60 mg/kg; and following insertion of a venous catheter for tracer injection into the left external jugular vein, they were placed in a stereotaxic frame. The rectal temperature was kept between 37.0 and 38.0°C. Parasagittal fluid-percussion injury was performed as previously described. A female plastic Luer-Lok connector-cylinder was fixed with dental cement (Germany) into the craniotomy hole over the right frontoparietal cortex. For avoidance of changes in brain temperature, a heating lamp was kept at a predetermined distance over the head. For administration of moderate-level fluid-percussion (2.4 to 2.6 atm) the rats were connected with the Luer-Lok cylinder via a short rigid tube to an injury device (USA). Subsequently, the Luer-Lok cylinder and securing dental cement were rapidly removed, the bone plate was
replaced, and the wound was closed. Sham-operated animals were equally anesthetized and surgically prepared but not injured.

3.9 Double-tracer studies

For double tracer studies, around 15 MBq of FDG was mixed in a 1-ml syringe with 0.2 MBq of [1-14C]glucose and injected in an average volume of 0.8 ml into the venous catheter 3 min prior to FPI. The animals were decapitated 10 or 20 min after the injection of the tracer (A, in Table 4-4). In three animals the tracer-mixture was injected 1 hr and 50 min after the FPI and the animals were decapitated 10 min after the injection of the tracer-mixture (B, in Table 4-4). After decapitation, the brains were cooled down on ice; and regions of the FPI in the cortex, corresponding contralateral region, and both hippocampi were dissected. γ-Radiation of 18F in the dissected samples (about 0.03 g) was measured with a γ-counter; and, thereafter, the samples were completely dissolved (about 48 hours) in 0.5 ml of tissue solubiliser (Biolute-S, Zinsser Analytic, Berkshire, UK) and radioactivity from 14C was counted in a liquid scintillation system (LS 6000 series) using Ready Organic™ liquid scintillation cocktail (Beckman Instruments Inc. Fullerton, CA, USA). The radioactivity concentration in the samples was calculated as the standardized uptake value (SUV) by using the equation SUV=(BqS/wtS)/(BqTot/wtB), where BqS, is the radioactivity of dissected sample, wtS, the weight of the sample, BqTot, the total radioactivity given, and wtB, the body weight of the rat. This standardization compares the organ radioactivity concentration to an assumed equal total body concentration.

3.10 Data handling

Receptor binding studies were analysed, and curves fitted using the weighted nonlinear curve-fitting program LIGAND (Radlig 4.0, Biosoft, McPherson168). Raw decay corrected data sets were computed first to obtain binding data in molar concentrations. The t test was used for calculations of statistical significance. The t test for independent samples was used for comparison of the binding constants and uptake values at the trauma site to corresponding values in sham-operated animals. For comparison to the contralateral side in the same animal, the paired t test was used; and differences were considered statistically significant when P < 0.05. A one-way ANOVA with the Tukey post test was used to calculate the significance of differences between the data obtained for the different mACh receptor subtypes. The data were presented as mean ± standard error of the mean (SEM), if not stated otherwise.

4. RESULTS AND DISCUSSION

4.1 Establishing *in vitro* receptor binding with PET tracers

For characterization of the biochemical parameters of new pharmaceuticals with potentials for diagnosis and therapy, it is essential to perform studies under conditions simpler than those encountered *in vivo*. In the present study, the *in vitro* characterization of 11C-labeled receptor ligands designed for use in *in vivo* positron emission tomography has been demonstrated. Both, the Phosphor Image technique and γ-radiation counting were used, and
the data obtained were compared with each other and with the data in the literature. The characterization of the SP plates, originally designed for computed (X-ray) radiography, is a prerequisite for the application of the Phosphor Image system for \textit{in vitro} receptor binding experiments with the short-lived, high-energy β^+-emitting radionuclides. Basic requirements for the application of imaging plates are the uniformity of the phosphor-complex layer, \textbf{uniform detection of radiation} over the entire plate, linearity of the dynamic range, spatial resolution, and sensitivity. For 7 plates tested, 30 drops with radioactivity of 30 cps were distributed over each individual plate. The difference between the highest and the lowest signal in areas over each plate was less than 10\%. Reasons for differences within one plate may be unevenness of the storage phosphor particle layer or of the filters used for exposure of the radioactive spots. The latter can be minimized by drying the drops on the filter before exposure. The deviation among the plates was found to be 9.4 ± 1.7 \%. For investigation of the linearity of detection of β^+-emitters by the SP plates, 20-µl spots with increasing radioactivity (1-850 cps) of a 11C-tracer were exposed for 60 min. A \textbf{strict linearity} was kept in the major part of the curve. At very low radioactivity levels (less than 7 cps, see inset in \textbf{Figure 4-1}), the linearity was disturbed by environmental background radiation. Considering the linearity, an accurate quantification of radioactivity is possible. The wide linearity range excludes the problem of overexposure. The excellent linearity, previously documented for low-energy γ- and β^--radiation, is now also validated for β^+-particles. For \textbf{sensitivity} measurement a signal/noise-ratio (S/N-ratio) was defined as the quotient of the mean counts of radioactivity and the corresponding standard deviation for four different levels of radioactivity. For the highest radioactivity, the S/N-ratio of the γ-counter was 25 \% higher, compared with SP plates, indicating that the γ-counter measurement technique is more suitable. After around one half-life of 11C, both γ-counter and SP plates had the same S/N-ratios, and in further lower radioactivity range, (after 60 and 90 min from the initial, high radioactivity measurement), the S/N-ratio for the SP plates became twice the value of that of the γ-counter; thus providing one benefit for SP plates, i.e. higher sensitivity in the lower radioactivity range. The higher sensitivity of SP plates may be attributable to the high capture efficiency of SP plates and the formation of multiple active centers on the storage phosphor crystals (Molecular Dynamics). In the γ-counter, the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4_1.png}
\caption{Linear dynamic range of the Storage Phosphor (SP) plates measured by integrating the volumes of radioactive spots from the exposure to 20 µl of 11C-labeled tracer. Radioactivity was estimated with the γ-counter at the beginning of the exposure. The graph shows average values of 7 SP-plates with the standard errors of the mean (S.E.M). Inlet: Magnified view of low-level range.}
\end{figure}
iodine in the NaI(Tl)-crystal gives a high probability to obtain photoabsorption of the arriving γ-photons. For an increase in the efficiency of this type of detector, the crystal should be built thicker: but, thereby, the contribution of the background noise increases.11 The \textbf{spatial resolution} gives information about the ability of the SP plates to distinguish between adjacent energy sources. Expressed as the full width of half maximum (FWHM), which is a suitable criterion for autoradiography,125 the resolution appeared to be dependent on the orientation of the capillary pairs. The FWHM of capillaries mounted parallel or perpendicular to the long axis of a SP plate was found to be 566 μm and 650 μm, respectively. With exposure of 11C to a film sensitive to high β-energy radiation, the FWHM is 180 μm.36 The 11C-nuclide emits a β^+-particle with a maximal energy of 1 MeV. The high energy involves a radiation length of several hundreds of micrometers in the phosphor-complex layer. β^+-particles from all directions make phosphor crystals active and are captured at nearly hundred percent, causing a larger area of latent image. There was no significant difference in resolution when the SP plates were scanned with different pixel sizes. The difference in the resolution depending on the axis of exposure might be caused by the laser beam reading the latent images in two directions, namely perpendicular (“fast”) and parallel (“slow”) to the long axis of the SP plate. In the direction of “fast “ scanning, a delay occurs from reading to the transformation operation. The recorded pixels appear to be wider in the direction perpendicular to the long axis of the SP plate.257

In light of the above described properties of the SP plates, binding studies with the 11C-labeled benzodiazepine ligand flumazenil were performed utilizing both SP plates and γ-counter system. Advantages and disadvantages of SP plates for quantitative autoradiography with short-lived PET tracers were explored by utilizing the muscarinic antagonist [11C]4-NMPB. The \textit{in vitro} validation of newly synthetized PET tracers by use of SP technology is becoming routine in PET or other imaging research facilities connected to PET.226,120,118 Also other systems using SP technology have been validated for that purpose.119 Instant imaging66 or exposure to β-sensitive film83 are other currently used alternatives to produce an image of 11C radioactivity.

Receptor binding in homogenates

Flumazenil is a highly selective tool for studies of neuronal BZ receptors.185,184,73 As a PET tracer, 11C-labeled flumazenil has been successfully used in living animal and human brains.86,201,38 Benzodiazepine receptors are well characterized; and their regional distribution in the brain and their pharmacological properties are well known,183,20,238,245 making the comparison of obtained results with the literature data a valuable evaluation method. \textit{In vitro} binding studies on benzodiazepine receptors have been done mainly with 3H-labeled ligands and membrane fractions of different species.20,136,211

At the first step of the binding study, the \textbf{depletion} of the tracer ligand from the incubation medium was controlled. Within 10 % depletion, both the analysis of the binding curve and the model of nonspecific binding for use in non-linear, least-squares fitting of binding (as a function of the total ligand concentration) are valid.114 The 10% depletion limit after incubation of 0.3 nM [11C]flumazenil was similar for both measurement systems (0.11 ± 0.02 and 0.09 ± 0.01 mg of protein per ml assay medium as measured with SP plates and γ-counter, respectively). In the following binding studies, a protein concentration of less than 0.1 mg per ml assay medium was chosen. For better understanding of \textit{in vivo} PET investigations and for characterization of receptor-ligand binding, the knowledge of \textbf{association and dissociation} kinetics are of high value. The [11C]flumazenil binding
equilibrium of rat forebrain membrane fractions was reached within 5 min. The association half-time (t½) was 9.0 ± 1.4 sec and 9.6 ± 1.8 sec, when measured with SP plate and γ-counter, respectively. A similar association constant (Kₐ), 1.72 ± 0.26 and 1.50 ± 0.31 nM⁻¹ min⁻¹, and observed association rate constant (Kₜobs), 6.57 ± 0.98 and 5.78 ± 0.95, were obtained for both measurement systems (Phosphor Imager and γ-counter, respectively). In earlier studies, an equilibrium of the binding was obtained after 40 min of incubation of [³H]flumazenil with P₂-fractions of rat cerebral cortex and after 14 min in rat cerebellar membranes. In both studies, the incubation temperature was 0º C, which might have slowed down the association rate. In frozen sections of mouse brain at both 4ºC and 37ºC, the equilibrium for [³H]flumazenil was reached in less than 30 min. For a determination that the specific binding of [¹¹C]flumazenil was fully reversible, dissociation was induced by adding unlabeled flumazenil. The time for 50 % dissociation was 31.2 ± 3.0 sec and 34.2 ± 4.2 sec, (SP plates and γ-counter, respectively). The dissociation rate yielded 1.34 ± 0.11 min⁻¹ and 1.25 ± 0.16 min⁻¹ (SP plates and γ-counter, respectively). Brown and Martin showed a dissociation rate of 0.118 min⁻¹, which is 10 times lower than in the present study. In in vivo studies, [¹¹C] and [³H]-labeled flumazenil displayed both association and dissociation within 5 to 10 min. The specific binding was saturable and amounted to 97 % of the total binding. Saturation data was best fitted to a single binding site model. SP plates and γ-counter gave similar results for the dissociation constant (K₀): 2.0 ± 0.5 and 2.1 ± 0.2 nM, respectively, and for a total number of binding sites (Bₘₐₓ): 1.3 ± 0.2 and 1.7 ± 0.1 fmol/mg of protein, respectively. Looking at previous studies in which the K₀ was found to be in the low nanomolar range and Bₘₐₓ to be a few picomoles per milligram of protein with the tritiated compound, the validity of both types of measurements can be confirmed. Larger variations in results can be introduced because for each experiment, a new batch of tracer is synthesized and an individual concentration with its inherent measurement error is obtained. By use of a tracer labeled with a long-lived radionuclide, a single batch or a few batches can be used throughout a whole series of experiments. Competition experiments were performed using several BZ receptor ligands. The most potent displacer of [¹¹C]flumazenil was triazolam, with an IC₅₀ value of 0.13 ± 0.01 nM. Unlabeled flumazenil, diazepam, and zolpidem were also potent displacers, showing IC₅₀ values of 4.03 ± 0.75 nM, 26.4 ± 4.0 nM, and 36.9 ± 5.1 nM, respectively. Similar potency for flumazenil and diazepam in displacing [³H]flumazenil in rat cerebral cortex and human cerebral cortex and for diazepam in rat cerebral cortex has been shown previously. For zolpidem, an average IC₅₀ value of 37 nM was obtained in different forebrain structures of mice. In an in vivo study by Sanger and Benavides (1993), the most potent displacer of [³H]flumazenil binding in rat brain was triazolam, followed by diazepam and zolpidem, and this hierarchy corresponds with the ranking order of potency for these substances in the present study.
N-Methyl-4-piperidyl benzilate is a high-affinity muscarinic receptor antagonist. The influence of the cryosection thickness on the strength of the phosphor imager signal was investigated at a thickness ranging from 10 to 125 µm. The slice thickness at which the signal reached its maximum was dependent on the concentration of the tracer. In the case of 0.5 nM $[^{11}C]4$-NMPB, the signal increased linearly until it reached a plateau at 25 µm; with 5 nM $[^{11}C]4$-NMPB, the plateau was reached at 50 µm. The maximal signal level differed 10-fold between these two concentrations, and also images with stronger signals were obtained with thicker cryosections. A linear relation between the thickness of sections from 5 to 14 µm has previously been demonstrated for a 125I-labeled tracer. This relationship shows that in frozen section autoradiography with PET tracers, it is possible to achieve a better signal and hence a better image by increasing the thickness of the slice in the range of 10 to 50 µm. This is not the case with 3H-labeled tracers, where the very small penetration depth of the β^--particles constitutes a limitation. The association and concentration dependence of specific $[^{11}C]4$-NMPB binding were studied in the cerebral cortex and caudate putamen (striatum) in 10-, 25-, and 50-µm thick sections. Inspection of the time-association curve showed that equilibrium was reached only in the case of 10-µm-thick sections. In 25- and 50-µm-thick ones, the association and uptake process continued up to the end of the follow-up time, which, due to the fast physical decay of the 11C radioactivity to a level close to the background radiation, was limited to 50 min. In 200-µm-thick living brain slices incubated with 2 nM $[^{11}C]4$-NMPB, the binding equilibrium was reached after 100 and 130 min in rat cortex and striatum, respectively. To evaluate binding at equilibrium in thicker slices and to determine the dissociation kinetics is thus practically difficult. The association would perhaps be faster, and hence the time for the tracer binding to reach the apparent steady state would be shorter, if a higher concentration of $[^{11}C]4$-NMPB had been used. Since lower concentrations of a radioligand take a longer time to equilibrate, a low concentration of radioligand was used for measuring how long it takes the incubation to reach equilibrium. The nonequilibrium effect of premature termination of the incubation is more prominent in low but not in high concentrations; therefore a shift appears from off-rate-limited to on-rate-limited kinetics in the low concentration range. Performing a Scatchard analysis of such data leads to overestimation of both K_D and B_{max}. However, there is the reason to believe that also such possible factors as tracer diffusion within the tissue, local tracer concentration, and possible local depletion and modification by local

Panel 4-1: Successive steps in the quantification of receptor binding in quantitative frozen-section autoradiography with 11C-labeled tracers

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Production of 11C-labeled radiotracer and evaluation of its concentration (µg / ml)</td>
</tr>
<tr>
<td>2</td>
<td>Standard dilution of the 11C-labeled tracer with known concentration (nM)</td>
</tr>
<tr>
<td>3</td>
<td>Preincubation, incubation, washing, and drying of the sections</td>
</tr>
<tr>
<td>4</td>
<td>Preparation of the standard: a 20 µl drop of the standard dilution on a thin absorbent paper on the non-slip coated side (e.g., BenchGuard)</td>
</tr>
<tr>
<td>5</td>
<td>Exposing the cryosections together with the standard to a phosphor imaging plate. (One standard is necessary for each plate)</td>
</tr>
<tr>
<td>6</td>
<td>Drawing a circular ROI over the image of the standard drop and computing the sum of all pixel values in this ROI. Calculation of the calibration factor in counts / fmol of 11C-labelled tracer</td>
</tr>
<tr>
<td>7</td>
<td>Converting the average counts / pixel in ROIs delineated in the images of the cryosections to fmoles / area (mm2) or volume (mm3) using the calibration factor and pixel size</td>
</tr>
</tbody>
</table>
nonspecific binding have their role to play in differences in ligand binding kinetics. This reasoning is supported by the observations of an eight-fold higher K_D for $[^3H]QNB$ and a twenty-fold higher K_D for $[^{11}C]4$-NMPB for native brain slices than for homogenates; or the three to ten-fold difference in K_D for raclopride when comparing binding between human brain homogenates and human brain in vivo by use of the PET technique.

Because the SP plates have superior sensitivity and a linear response over a wide radioactivity range, the quantification of receptor binding in fmoles/mm2 (or per volume, that is, independent of section thickness) is a straightforward procedure. It is sufficient to include one concentration as a standard for calibration that should be exposed at the same time and to the same SP plate as the tissue sections. The specific binding in cortex and striatum in present work, appeared to be saturable over a concentration range of 0.05 to 12.8 nM of $[^{11}C]4$-NMPB. The Scatchard plots of the saturation data for 10-µm-thick sections were linear, suggesting a homogeneous population of binding sites in both regions examined. Table 4-1 shows that the binding constants (K_D and B_{max}) in the two investigated brain regions depended on the thickness of the sections. B_{max} expressed in fmol/mm3 was slightly higher in the striatum than in the cortex, but the increase with increasing section thickness was not statistically significant. The dissociation constant (K_D) was higher in thicker sections, indicating that factors other than ligand receptor interactions are involved. The K_D for $[^3H]4$-NMPB in cortex and striatum homogenates of mouse brain was 0.41 ± 0.03 and 0.38 ± 0.01 nM, respectively; and there appeared to be more binding sites in the striatum than in the cortex, which is in good agreement with our results with 10-µm sections. There was a loss in tracer affinity in thicker sections. The average ratio between the binding capacity in cortex and striatum in sections of the three different thicknesses was 0.66 (with SEM ± 0.08), which means that the relative pattern of binding site distribution (i.e., qualitative imaging) was retained even if equilibrium was not reached in the thicker sections. The evaluation of quantitative binding parameters in this type of frozen-section autoradiography must be interpreted with caution, because the results might be influenced by experimental variables such as the thickness of the cryosections. The general binding pattern of the $[^{11}C]4$-NMPB autoradiograms in rat and monkey brains is in good agreement with the binding distribution of $[^3H]4$-NMPB in mouse brain homogenate preparations and corresponds to previous reports of the distribution of muscarinic cholinergic receptors in human and rat brains. The binding pattern of $[^{11}C]4$-NMPB and the newly labeled $[^{11}C](+)$3-NMPB in frozen-section autoradiography of monkey and rat brains was very similar.

Subtype specificity of $[^{11}C]4$-NMPB

Mulholland and co-workers developed 11C-labeled N-methyl-4-piperidyl benzilate

<table>
<thead>
<tr>
<th>Table 4-1</th>
<th>Scatchard plot analysis of saturation binding data of $[^{11}C]4$-NMPB by the use of autoradiography of frozen sections at different thicknesses. The data represented below are the mean (± SEM) of at least four independent experiments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortex</td>
<td>Striatum</td>
</tr>
<tr>
<td>K_D [nM]</td>
<td>0.49 ± 0.10</td>
</tr>
<tr>
<td>B_{max} [fmol/mm3]</td>
<td>1.01 ± 0.18</td>
</tr>
<tr>
<td>B_{max} [fmol/ mm3]</td>
<td>101 ± 18</td>
</tr>
</tbody>
</table>
([11C]4-NMPB) for use in PET; and with it, favorable kinetic properties in animals23 and in human studies271 have been demonstrated thus far. As, five distinct muscarinic receptors have been cloned, our interest in the subtype selectivity of [11C]4-NMPB was evoked, especially in view of the principal importance of the availability of mACH receptor subtype-specific ligands for the characterization of the (patho)physiological roles of individual subtypes, how these can contribute to pharmacotherapies, and, last but not least, the discrete anatomical location of the subtypes. In connection with the quantitative autoradiography work,11 a competition study was performed to investigate the subtype specificity of [11C]4-NMPB. In five displacement experiments, pirenzepine and crude venom of the green mamba were used. Pirenzepine at 30, 300, and 3000 nM displaced the total binding of [11C]4-NMPB by 15, 40, 60 %, respectively, in cortex and striatum, and by 0, 16, and 40 %, respectively, in the spinal cord in 10-µm-thick sections. When calculation was made from the displacement of ligand from muscarinic acetylcholine receptors by pirenzepine, it was found that 30 nM pirenzepine displaced a major part of the available M₁ subtype (83%) and that 300 nM pirenzepine displaced M₁ (98%) and M₄ (68%) muscarinic receptor subtypes.116 The fact that 30 nM pirenzepine did not displace the [11C]4-NMPB binding in the spinal cord but displaced about 15% of total [11C]4-NMPB binding in the cortex and striatum suggested that the M₁ subtype is not present in the spinal cord, which is consistent with previous findings.116 Only 15% of the total [11C]4-NMPB binding in the cortex and striatum appeared to be accounted for by the M₁ subtype, which is abundant in these regions.60 Pirenzepine at 300 nM displaced on average 16% of the total [11C]4-NMPB binding in the spinal cord, apparently due to a block of a majority of the M₄ subtype. This suggestion is strengthened by the observation that 30 µg of protein/ml of crude green mamba venom, which is known at this concentration to block M₁ and M₄ subtypes,60,126 displaced 13% of the total [11C]4-NMPB binding in the spinal cord. The crude venom of the green mamba (30 µg of protein/ml) displaced the total binding of the [11C]4-NMPB by 53, 60, and 13 % in cortex, striatum and spinal cord, respectively, in 10-µm-thick...

Table 4-2. A) Properties of (+)3- and 4-NMPB binding to human m1-m5 subtypes of mACh receptors expressed in CHO-K1 cells. Kᵦ, the equilibrium dissociation constant of unlabeled substances from competition binding experiments using [3H]-N-methyl scopolamine as tracer; Kₒ, the equilibrium dissociation constant of corresponding ¹¹C-labeled tracers calculated from kinetic binding studies. B) Affinity profiles of (+)3- and 4-NMPB and corresponding ¹¹C-labeled tracers. > Denotes statistically significant difference with P<0.05 calculated by one-way ANOVA with the TUKEY post test. ≥ Denotes no significant difference.

<table>
<thead>
<tr>
<th>mAChR subtype</th>
<th>Substance</th>
<th>Kᵦ [nM]</th>
<th>Kₒ [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>4-NMPB</td>
<td>0.26 ± 0.003</td>
<td>1.16 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>(+)3-NMPB</td>
<td>0.67 ± 0.09</td>
<td>0.67 ± 0.32</td>
</tr>
<tr>
<td>m2</td>
<td>4-NMPB</td>
<td>0.60 ± 0.02</td>
<td>0.25 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>(+)3-NMPB</td>
<td>1.40 ± 0.06</td>
<td>0.65 ± 0.44</td>
</tr>
<tr>
<td>m3</td>
<td>4-NMPB</td>
<td>0.35 ± 0.06</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>(+)3-NMPB</td>
<td>1.32 ± 0.21</td>
<td>0.11 ± 0.04</td>
</tr>
<tr>
<td>m4</td>
<td>4-NMPB</td>
<td>0.06 ± 0.004</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>(+)3-NMPB</td>
<td>0.27 ± 0.02</td>
<td>0.18 ± 0.03</td>
</tr>
<tr>
<td>m5</td>
<td>4-NMPB</td>
<td>0.36 ± 0.01</td>
<td>49.5 ± 16.6</td>
</tr>
<tr>
<td></td>
<td>(+)3-NMPB</td>
<td>2.81 ± 0.20</td>
<td>1.09 ± 0.40</td>
</tr>
</tbody>
</table>

B) The affinity profiles

\[
\begin{align*}
[11C]4-NMPB: & \text{m4} \geq \text{m3} \geq \text{m2} \geq \text{m1} > \text{m5} \\
4-NMPB: & \text{m4} > \text{m1} \geq \text{m3} \geq \text{m5} > \text{m2} \\
[11C](+)3-NMPB: & \text{m3} \geq \text{m4} \geq \text{m2} \geq \text{m1} \geq \text{m5} \\
(+)(+)3-NMPB: & \text{m4} > \text{m1} > \text{m3} > \text{m2} > \text{m5}
\end{align*}
\]
sections. Since the mamba venom displaced approximately half of the \([^{11}C]4\)-NMPB binding in the cortex and striatum and the effect of 300 nM pirenzepine was in the same range, \([^{11}C]4\)-NMPB was concluded to bind preferentially to the M4 subtype of muscarinic acetylcholine receptor. A concentration of 3 µM pirenzepine further displaced the \([^{11}C]4\)-NMPB binding, indicating an additional binding of \([^{11}C]4\)-NMPB to M2, M3, and M5 subtypes of the muscarinic acetylcholine receptor. The non-specific binding measured in the presence of 10 µM atropine ranged from 5 to 10 % of the total binding in all experiments. As shown later IV by the use of the five cloned human mACh receptors, the lowest equilibrium dissociation constant was obtained for the m4 subtype in kinetic studies \([K_D, (K_{off}/K_{on})] 0.07 \pm 0.01 nM\), as well as in competitive binding studies \([K_i, (IC_{50}/(1 + [NMS]/K_D^*))] 0.06 \pm 0.004 nM\). The results from the kinetic binding data are presented in Table 4-2. The affinity profile for \([^{11}C]4\)-NMPB (starting with the subtype for which \([^{11}C]4\)-NMPB showed highest affinity) was: m4≥m3≥m2≥m1>m5 (> sign indicates significant difference with P<0.05, F(4,10)=8.7). A binding profile for 4-NMPB from competition studies was m4>m1≥m3≥m5>m2 (F(4,10)=49.9, results presented in Table 4-2). The K_D’s for \([^{11}C](+)^3\)-NMPB did not differ significantly, thus exhibiting no selectivity for any subtype, whereas the binding profile of K_i’s for (+)3-NMPB was m4≥m1≥m3≥m5>m2 (F(4,8)=37.8). The kinetic binding data of \([^{11}C](+)^3\) and \([^{11}C]4\)-NMPB and competition binding data of (+)3- and 4-NMPB showed that neither of these substances has an affinity profile that makes them suitable for subtype-specific assays. The largest difference in affinity was about 10 times (between m4 and m5 for 3-NMPB and between m2 and m4 for 4-NMPB). \([^{11}C](+)^3\)-NMPB similarly showed a low selectivity for the mACh receptors. \([^{11}C]4\)-NMPB had slower kinetics than \([^{11}C](+)^3\)-NMPB, which influenced the possibility to obtain precise data to calculate K_D values for \([^{11}C]4\)-NMPB. This phenomenon is particularly true for the association with and dissociation from the m5 subtype. In this respect \([^{11}C]4\)-NMPB is similar to \([^3H]\)-N-methylscopolamine. 60,59 Either \([^{11}C](+)^3\)- or \([^{11}C]4\)-NMPB is suitable for PET studies of mACh receptors. Differential labeling of mACh receptors cannot, however, be anticipated.

\(\text{[^{11}C]cyano-dizocilpine, a tracer only for in vitro use?}\)

The association of 10 nM \([^{11}C]\)MKC with its recognition site progressed at 37°C with a T½ass of 2.8 ± 0.3 min, and more than 95% of maximum specific binding was reached after about 20 min. The time for half dissociation t½diss was 9.0 ± 1.3 min, and about 65 % became dissociated during a 30-min period of observation. A longer time analysis of dissociation was practically difficult because of the fast decay of \(^{11}C\) and the considerable decrease in specific activity in this type of experiment. Specific binding of \([^{11}C]cyano\)-dizocilpine was saturable and best fitted to a single binding site model. The crude synaptosomal fraction was washed a total of four times in order to decrease the amount of endogenous glutamate and glycine and thereby lower the \([^{11}C]cyano\)-dizocilpine binding. The affinity in extensively washed synaptosome fraction was increased in the presence of 1 mM L-glutamate and 30 µM glycine, from 10.1 ± 0.3 to 8.2 ± 0.4, without significant changes in B_max (about 1.7 pmol/mg protein), suggesting that the tracer bound preferentially to the activated form of the NMDA receptors. The binding of \([^{11}C]cyano\)-dizocilpine was, however, less increased than shown previously for \([^3H]dizocilpine\), \([^3H]TCP\), or \([^3H]FTCP\). As expected for the ranking order of potency, \(^{11}C\) most potent inhibitor of \([^{11}C]cyano\)-dizocilpine binding was (+)-dizocilpine, followed by cyano-dizocilpine and (−)-dizocilpine with half-inhibition concentrations (IC50) of 37.3 ± 7.1, 65.8 ± 8.8, and 445 ±
Ketamine was about 100 times less potent, with an IC$_{50}$ of 3.91 ± 0.3 µM. The highest distribution of specific binding of $[^{11}C]$cyano-dizocilpine in rat brain frozen-section autoradiography was observed predominantly in telencephalic regions, i.e., in the hippocampus and cerebral cortex. A moderate density of binding sites was found in the striatum and thalamus and a low density in the cerebellum, midbrain, pons, and brainstem. This pattern corresponds to that found in the autoradiographic studies on the distribution of $[^{3}H]$dizocilpine17,217 and L-$[^{3}H]$glutamate binding sites175 in the rat brain. At a 10 nM concentration, the specifically bound fraction amounted on average to 78 ± 4.5 % of the total binding.

In vivo PET with $[^{11}C]$cyano-dizocilpine showed a considerably high brain uptake. Intravenous pretreatment with (+)-dizocilpine, 0.1 mg/kg, or with ketamine, 2.5 mg/kg of body weight, prior to the bolus injection of $[^{11}C]$cyano-dizocilpine did not cause any change in the radiotracer retention kinetics. Obviously, a large proportion of the $[^{11}C]$cyano-dizocilpine that entered the brain was not associated with the specific recognition site during the investigation period. In mouse brain after intravenous injection of $[^{3}H]$dizocilpine, the maximum levels in brain tissue were reached within 10 min; but the specifically bound fraction constituted barely 4 % of the total brain radioactivity207 A rapid metabolic degradation of $[^{11}C]$cyano-dizocilpine, as well as the contribution of labeled metabolites during the 60-min study period, is very unlikely to have occurred; since the maximal plasma levels of unmetabolized dizocilpine in monkeys was observed at 2 hrs after administration, and the major metabolites should not enter the CNS.111 $[^{11}C]$Cyano-dizocilpine showed high uptake in the kidney cortex, heart muscle, liver, and adrenals, which may have been modified by displacing agents such that the whole-body balance was shifted, resulting in increased availability of the radiotracer in the brain in the displaced condition. This would explain the increased uptake of $[^{11}C]$cyano-dizocilpine under displacement conditions. The activation of NMDA receptors could be minimized further by isoflurane (the general anesthetic used in the present study) diminishing the chances of visualizing the active receptors. It has been shown that isoflurane antagonizes noncompetitively the concentration-dependent depolarizing effect of NMDA in preparations of mouse cortical wedges,26 probably due to an interaction between the anesthetic drug and the allosteric glycine site or other multiple
allosteric sites that influence the activation of the ion channel. Nevertheless, it has been shown that the pathological activation of the NMDA receptor causes an elevation in the uptake of labeled dizocilpine derivatives. However, this occurs at the late time points after tracer administration, showing the suitability of the use of these tracers under in vivo conditions. Previously, a low specificity of racemic dizocilpine was considered as a drawback for visualizing the activation of NMDA receptors with that compound. An active stereoisomer was used in the present study. Plotting the average peak uptake of \([11C] \)cyano-dizocilpine or average value from the last three time frames against rCBF values from the preceding \(C^{15}O_2 \) study for a selection of ROIs showed a rCBF-dependence of \([11C] \)cyano-dizocilpine uptake. Distribution of values from different \([11C] \)cyano-dizocilpine studies did not differ with 95% confidence. The rCBF dependence might explain also the variability in baseline uptake of \([11C] \)cyano-dizocilpine. Perhaps the dominating rCBF component would dissipate after a longer observation time.

4.2 Applying in vitro tracer studies in neurotrauma

A wide range of tracers available in modern PET centres in connection with clinics, calls for methods to explore the properties of the tracers in disease models that correlate with human pathology as closely as possible before maximally meaningful projects can be planned in patients.

Glucose vs. fluorodeoxyglucose

Table 4-3 summarizes the uptake of FDG and \([99mTc] \)HMPAO, in the ex vivo frozen section autoradiography standardized to the injected volume of tracer and body weight of the rat. In the present study, the regional cerebral FDG uptake acutely after FPI was significantly increased in the cortex ipsilateral to the site of injury as compared with that in the corresponding ROI in sham operated-animals or with that in the contralateral side. Also, it was significantly increased in the ipsilateral hippocampus, as compared with the contralateral hippocampus at the same level. By intention, the metabolic rate of glucose was not calculated, and the uptake of FDG was quantified by normalizing the values from autoradiograms to the injected amount of radioactivity and to the body weight of the animal.

<table>
<thead>
<tr>
<th>Time after Trauma</th>
<th>Sham</th>
<th>Injured</th>
<th>Sham</th>
<th>Injured</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>49 ± 5</td>
<td>46 ± 8</td>
<td>46 ± 5</td>
<td>46 ± 5</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>12 hrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>76 ± 16</td>
<td>69 ± 8</td>
<td>58 ± 17</td>
<td>49 ± 7</td>
</tr>
<tr>
<td>n</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

\([11C] \)HMPAO uptake per injected volume and body weight

<table>
<thead>
<tr>
<th>Time after Trauma</th>
<th>Sham</th>
<th>Injured</th>
<th>Sham</th>
<th>Injured</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>47 ± 3</td>
<td>21 ± 3</td>
<td>25 ± 2</td>
<td>24 ± 5</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>12 hrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>47 ± 2</td>
<td>17 ± 1</td>
<td>37 ± 2</td>
<td>21 ± 6</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
An accepted explanation for the immediate reversible increase in posttraumatic LCMRG is that the cells have to meet an increased energy demand in their efforts to restore normal ionic balance disrupted by ionic shifts through transmitter-gated ion channels. Increased rates of oxidative phosphorylation and mitochondrial synthesis of ATP have been detected after moderate lateral FPI in rats. Although a constant level of ATP was found, the ADP and AMP levels were increased during the first four hours after the FPI, providing a stimulus for increased glycolysis for maintenance of a metabolic steady state. Although some acidosis and a transient increase in lactate concentration have been observed after TBI, there are other studies showing that moderate FPI does not result in uncontrolled glycolysis and lactic acidosis. It seems possible that the increase in energy demand is well covered by uncompromised oxidative metabolism paralleled by independently stimulated glycolysis. With regard to substrate supply, there are studies showing increased oxygen consumption immediately after TBI. The key point in glycolysis is the essentially irreversible phosphorylation of glucose by hexokinase. As Sokoloff et al. recognized, DG exhibits a lower affinity for hexokinase than glucose in the normal brain, where most of the neural hexokinase exists in soluble form in the cytosol. Due to the difference in kinetics between DG and glucose, the operational equation for calculating LCMRG by the DG method from autoradiographic images uses a lumped constant (LC) to correct for the lower rate of DG phosphorylation as compared with the rate for glucose. The LC has been measured to be around 0.5 with DG and around 0.6 with FDG. Conditions in which energy utilization exceeds the glucose supply shift the solubilization equilibrium of hexokinase to the bound mitochondria form, which is more active and has higher affinity for the substrate, as a fine tuning of the activity of the initial enzyme in glycolysis in response to changes in the cellular environment. The LC as well as the mitochondrial binding of cortical hexokinase are both increased during ischemia. Using the DG method with a uniform LC throughout all brain structures would, in such case, cause an overestimation of LCMRG in “hot spots” of the autoradiogram. In the transplantable rat glioma, more than 2-fold higher LC has been shown in comparison with the constant for normal brain tissue, and this is in agreement with the view that the mitochondrial-bound form of hexokinase plays a key role in the high aerobic glycolysis of tumor cells.

Deoxyglucose has a higher affinity for endothelial transport than glucose. A significant correlation exists in the adult SpD rat brain between endothelial transporter densities and local cerebral glucose utilization measured by the DG method. Nearly half of the endothelial (blood-brain barrier, BBB) glucose transporter protein (Glut1) is normally contained within the cytoplasmic space, which provides a mechanism for rapid up-regulation of the transporter on the luminal membrane of the capillary endothelial wall, as was shown to occur in human seizures. Later studies by Cornford et al. demonstrated an increased activity of Glut1 in human brain areas of severe injury with a concomitant compromised function of the BBB and suggested that the regulation of the membrane transporter activity was controlled ultimately by individual brain capillary cells.

Table 4-4 summarizes the SUVs of FDG and [1-14C]glucose from double-tracer studies performed at 7 or 17 min after trauma (10 or 20 min after injection of the tracers, respectively). The SUV of FDG at the trauma site cortex was significantly higher than that in the corresponding region on the contralateral side. In the hippocampi a significantly higher SUV of FDG appeared only at the later time point (17 min from TBI, 20 min after the injection). The average ipsilateral to contralateral ratios of SUVs of FDG in the cortex were 1.3 and 1.5, and those in the hippocampi, 1.1 and 1.2 (10 and 20 min after tracer
injection, respectively); whereas the ipsilateral to contralateral ratios of [1-14C]glucose SUVs were 1.0 ± 0.1 on the average.

The present study failed to confirm an increased focal uptake of [1-14C]glucose in the frontoparietal cortex and in the hippocampus immediately after moderate FPI. The differently changed kinetics of glucose and FDG for BBB transport and subsequent phosphorylation might be the cause behind it; particularly, the increased affinity of FDG in comparison to glucose in either of the above described processes. The rationale of measuring glucose turnover with labeled glucose lies in the fact that the substrate of interest and tracer are identical. Metabolic rates of glucose can be measured with 14C-labeled glucose despite the rather rapid loss of the radiolabel as 14CO2 and [14C]lactate. In fact, the ability to complete measurements in a short time period can be a significant benefit. It could be of advantage to use 11C-labeled glucose and PET16 to visualize the glucose utilization in such conditions as acute experimental TBI, where the rate of glucose turnover is dynamic and the conditions contained within the lumped constant might vary from what are currently known. Previously, nearly identical values for LCMRG were obtained from [6-14C]glucose data from an experiment of 5-min duration and from FDG data from one of 45-min duration in normal rats.92 The loss of 14C via 14CO2 in the case of [2-14C]glucose has been estimated to be 8% at 10 min.90 On the other hand, at 6 and 12 min postinjection of [6-14C]glucose, 10% and 18%, respectively, of the radiolabel was lost as 14CO2. In the case of [1-14C]glucose additional loss due to small activity of the nonenergy-yielding pentose phosphate pathway should be expected.142 The pentose shunt that removes 1-carbon has a low activity in the normal brain;91 but it might be activated by oxidative stress demands on the glutathione pathway, causing a larger fraction of glucose to enter the pentose phosphate pathway.10 The underestimation of LCMRG using position-6 labeled [14C]glucose was shown to be metabolic rate dependent.142 Hawkins et al.93 (1994) proposed a 7 to 14 % underestimation of LCMRG at rates from 60 to 90 µmol/100 g/min with [6-14C]glucose and a 10-min experimental time period as used in the present study. About 60 and 90 µmol/100 g/min were the highest acute increases in LCMRG at the trauma-site cortex in the studies by Ginsberg et al.70 (1997) and Yoshino et al.268 (1991), respectively. Much lower maximum values can be imagined in the present study because of the use of pentobarbital anesthesia.

Table 4-4. Standardized uptake of FDG and D-[1-14C]-glucose in brain tissue pieces. Tracers were injected 3 min prior to TBI. The animals were decapitated 10 or 20 min after the injection of the tracer. I-ipsilateral, C-contralateral. A. 7 and 17 min after brain trauma, B. 11 hrs and 45 min after TBI. Values are means ± StdDev. The paired t test was performed for statistical significance of the difference between IL and CL, * indicates P value smaller than 0.05.

<table>
<thead>
<tr>
<th></th>
<th>Time after injection of tracer</th>
<th>10 min</th>
<th></th>
<th>20 min</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>C</td>
<td>I / C</td>
<td>I</td>
</tr>
<tr>
<td>Cortex, FDG</td>
<td></td>
<td>4.2 ± 1.2 *</td>
<td>3.1 ± 0.6</td>
<td>1.3 ± 0.2</td>
<td>4.7 ± 0.3 *</td>
</tr>
<tr>
<td>Cortex, [14C]Glucose</td>
<td></td>
<td>4.2 ± 1.8</td>
<td>4.2 ± 1.7</td>
<td>1.0 ± 0.1</td>
<td>4.7 ± 1.2</td>
</tr>
<tr>
<td>Hippocampus, FDG</td>
<td></td>
<td>3.5 ± 0.9</td>
<td>3.3 ± 0.8</td>
<td>1.1 ± 0.1</td>
<td>4.1 ± 0.3 *</td>
</tr>
<tr>
<td>Hippocampus, [14C]Glucose</td>
<td></td>
<td>3.6 ± 1.5</td>
<td>3.5 ± 1.5</td>
<td>1.0 ± 0.1</td>
<td>4.3 ± 1.3</td>
</tr>
<tr>
<td>Cortex, FDG</td>
<td></td>
<td>2.3 ± 0.4 *</td>
<td>3.9 ± 0.5</td>
<td>0.6 ± 0.11</td>
<td></td>
</tr>
<tr>
<td>Cortex, [14C]Glucose</td>
<td></td>
<td>3.7 ± 0.4 *</td>
<td>5.3 ± 0.8</td>
<td>0.7 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>Hippocampus, FDG</td>
<td></td>
<td>2.1 ± 0.2 *</td>
<td>2.7 ± 0.4</td>
<td>0.8 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>Hippocampus, [14C]Glucose</td>
<td></td>
<td>3.1 ± 0.3 *</td>
<td>3.9 ± 0.4</td>
<td>0.8 ± 0.04</td>
<td></td>
</tr>
</tbody>
</table>
whereas enflurane and halothane, respectively, were used with a mixture of nitrous oxide and oxygen in the two studies mentioned above. In the case of a substantial increase in energy demand, the additional ATP production would be covered by glycolysis, resulting in lactate production. If a significant quantity of lactate would have been produced from [1-14C]glucose during the first 15 min after FPI, as shown by Kawamata et al. (1995), then the risk of loss of the radiolabel via lactate exit from the brain would be minimal. Measurement of the tissue radioactivity was performed before the lactate concentrations would be expected to return to baseline levels. In such a situation, the measured [1-14C]glucose metabolites reflect the oxidative component of metabolism contaminated by labeled lactate. Moreover, only a negligible amount of the [6-14C]glucose that was taken up by the brain during a 10-min period following the injection was then released to the blood as [15C]lactate in normal adult rats or in rats with seizures.

At 12 hrs after the trauma, the FDG uptake was decreased significantly, both in the trauma-site cortex and in the underlying hippocampus. At the trauma-site frontoparietal cortex, a decrease of 50% was seen in frozen-section autoradiography. This finding corresponds well with previous results obtained by the DG method. The metabolic depression was demonstrated with [1-14C]glucose as well in the frontoparietal cortex and hippocampus ipsilateral to the site of the injury as compared with the uptake in the corresponding contralateral regions, at 10 min after the injection of the tracers. The acute uptake of FDG in the frontoparietal cortex of sham-operated animals was lower, being, on the average, 63% of the corresponding uptake value at 12 hrs after the sham-operation. That the controls showed an average of 37% lower uptake of FDG acutely after the sham-operation as compared with that at 12 hrs after the sham-operation might be explained by the inhibitory effect of pentobarbital on oxidative metabolism and the solubilization of mitochondria-bound hexokinase, which might lower the affinity of FDG for hexokinase.

Regional cerebral blood flow (rCBF), as indicated by the trapping of [99mTc]HMPAO, was decreased at the trauma site cortex by 42 min after FPI in comparison with that on the contralateral side, but not when compared with the corresponding ROI in sham-operated animals. The blood flow in the hippocampi did not appear to change acutely after the injury (Table 4-3). At 12 hrs after FPI, the rCBF was bilaterally decreased in the injured animals in all investigated regions in comparison with that in the sham-operated animals. Moreover, the trauma-site cortex and underlying hippocampus exhibited significantly lower rCBF than their contralateral counterparts. The acute rCBF in the frontoparietal cortex of sham-operated animals was on the average, 53% of the rCBF at 12 hrs after the sham operation.

Severely disturbed blood flow could be detected with [99mTc]HMPAO autoradiography at 12 hrs from FPI in the present study. Although absolute values were not measured, a blood flow above the ischemic threshold could be expected after moderate FPI. As in the case of FDG uptake, the regional cerebral blood flow (rCBF) was also estimated as tracer uptake normalized to total administered radioactivity and body weight of the animal. Identical flow distribution was shown in the double-tracer autoradiographic images of [99mTc]HMPAO and [125I]iodoamphetamine (IMP) in the same animals. The relationship between [99mTc]HMPAO uptake and rCBF measured with [14C]iodoantipyrine ([14C]IAP) was linear at lower rCBF levels (up to 200 ml/100 g/min), and an excellent correlation followed thereafter up to 700 ml/100 g/min. Yamakami and McIntosh (1991) showed an average of 45% decrease bilaterally in rCBF 30 min after moderate FPI in isoflurane-anesthetized rats, with only a 10% difference between ipsi- and contralateral sides, with the rCBF in the contralateral side being higher. The ipsilateral rCBF was shown
to remain decreased during the first days after lateral FPI. Pentobarbital, which was used in the present study, was shown to cause a 40-50% decrease in rCBF in normal rats. An already low rCBF could then explain why only about 20% additional decrease in $[^{99m}\text{Tc}]$HMPAO uptake was observed acutely at the trauma-site cortex. Platelet accumulation and edema formation could serve as probable causes of this perfusion deficit.

NMbDA -, mACh -, and GABA$_{	ext{A}}$ receptors after traumatic brain injury

In $[^{11}\text{C}]$cyano-dizocilpine autoradiography, the general binding pattern showed the highest specific binding in the hippocampus and cerebral cortex. A moderate density of binding sites appeared in the striatum and thalamus and a low density in the midbrain, pons, and brainstem. Two hours after FPI, there was a tendency for decreased binding site number (B_{max}) and affinity; and the binding potential ($BP = B_{\text{max}}/K_D$, Table 4-5) showed a significant decrease bilaterally for the frontoparietal cortex and hippocampus in comparison with that of the sham-operated animals. At 12 hrs from trauma the affinity (Figure 4-3) was bilaterally decreased in the cortex and hippocampus as compared with that of the sham-operated animals. Additionally, a significant decrease in B_{max} (Figure 4-4) was seen at the trauma-site cortex, which was 60% of the value for the sham-operated animals or for the contralateral side. A total (in frontoparietal cortex and hippocampi, bilaterally) decrease in BP of $[^{11}\text{C}]$cyano-dizocilpine was seen at 12

Figure 4-3. Dissociation constant (K_D) of $[^{11}\text{C}]$cyano-dizocilpine, $4-N[^{11}\text{C}]$methylpiperidylbenzilate, and $[^{11}\text{C}]$flumazenil in rat brain after moderate lateral fluid-percussion injury (FPI). Values are means ± SEM. For comparison of the binding constants with the corresponding ROI in sham-operated animals, the t test for independent samples was used; and P values are expressed as *P<0.05, **P<0.01, ***P<0.001. For comparison with the contralateral side, the paired t test was used; and results are marked †P<0.05, ††P<0.01, †††P<0.001. “a” Indicates significant difference (P<0.005) between sham-operated animals at 12 and 2 hrs after FPI.
Figure 4-4. Maximum number of binding sites (B_{max}) of $[^{11}C]$cyano-dizocilpine, 4-N-$[^{11}C]$methylpiperidylbenzilate, and $[^{11}C]$flumazenil in rat brain after moderate lateral fluid-percussion injury (FPI). Values are means ± SEM. For comparison of the binding constants with the corresponding ROI in sham-operated animals, the t test for independent samples was used; and P values are expressed as *P<0.05, **P<0.01, ***P<0.001. For comparison with the contralateral side, the paired t test was used; and results are marked †P<0.05, ††P<0.01, †††P<0.001.

Figure 4-4 shows the maximum number of binding sites (B_{max}) of $[^{11}C]$cyano-dizocilpine, 4-N-$[^{11}C]$methylpiperidylbenzilate, and $[^{11}C]$flumazenil in rat brain after moderate lateral fluid-percussion injury (FPI). Values are means ± SEM. For comparison of the binding constants with the corresponding ROI in sham-operated animals, the t test for independent samples was used; and P values are expressed as *P<0.05, **P<0.01, ***P<0.001. For comparison with the contralateral side, the paired t test was used; and results are marked †P<0.05, ††P<0.01, †††P<0.001.

Miller and co-workers (1990) showed lowered binding of $[^3H]$glutamate to NMDA receptors at 3 and 24 hrs after TBI in cortex and hippocampus. A 5-min time point investigated by them showed statistically non-significant changes in $[^3H]$glutamate binding in all investigated regions excluding the inner cortex, where it was significantly lower. The preincubation procedure used for removing endogenous ligands in their autoradiography was omitted by the use of $[^{11}C]$cyano-dizocilpine in the present work. Regardless of that, no increased affinity was seen as it would be expected from in vitro studies with tracers that bind to a site inside the ion-channels of NMDA receptors. It is probable that overactivation of NMDA receptors in experimental TBI lasts only a short time after the impact. Increased extracellular glutamate concentrations, after experimental TBI, were detected during the first minutes to an hour after TBI. There are other studies supporting the suggestion that the excessive excitation of NMDA and also of mACH receptors is brief (less than 15 min) and that the antagonism of particular receptor systems after that time has no positive effect on the recovery of cognitive function following TBI in the rat.

The highest $[^{11}C]$4-NMPB binding density was found in the striatum, followed by hippocampus and cerebral cortex; and the density was much lower in the other structures of the brain. At 2 hrs after FPI there was a bilaterally significant 2-fold decrease in
affinity in the hippocampus. There were no significant changes in binding site number in the traumatized rats in comparison with the corresponding investigated regions in the sham-operated animals. Only a significantly lower value for B_{max} was found in the hippocampus underlying the trauma site in comparison with the value for the contralateral corresponding region. At 12 hrs from FPI the affinity of $[^{11}\text{C}]4$-NMPB for mACh receptors was decreased in all investigated regions, and B_{max} was significantly decreased in the trauma-side hippocampus as compared with that in the contralateral side. The BP was significantly decreased at 2 hrs from FPI for the trauma-side hippocampus; and at 12 hrs from FPI, it was decreased for all investigated regions excluding the contralateral cortex. Similar to the findings of previous studies, a decreased affinity of antagonist for mACh receptors was seen in the present study. An early anticholinergic treatment was shown to attenuate motor deficits, and to improve impaired cognitive function following FPI in rats. At a longer time (15 days) after TBI, a significant upregulation of binding sites for $[^{3}\text{H}]$QNB was demonstrated, and long-lasting changes in the function of the central cholinergic system after TBI in rats was shown. The initial decrease in affinity of mACh receptor antagonists for their binding sites may reflect the inactivation of cholinergic receptors in response to massive acetylcholine release immediately after the FPI. The prominent decrease in BP of $[^{11}\text{C}]$cyano-dizocilpine and $[^{11}\text{C}]4$-NMPB including the bilateral decrease in the affinity of these tracers reflects the damage to the NMDA and mACh receptor systems due to FPI.

The highest density of $[^{11}\text{C}]$flumazenil binding sites in investigated rat forebrains was noted in the cerebral cortex, followed by hippocampus and thalamic nuclei and then the rest of the regions. $[^{11}\text{C}]$Flumazenil exhibited a statistically significant increase in affinity for its binding site due to the pentobarbital anesthesia, as shown by comparing the binding in anesthetized sham animals at 2 hrs after the sham operation to the binding in conscious sham-operated animals at 12 hrs after the operation (significance $p<0.05$, labeled by “a” in Figure 4-3). This contributed to the significant increase in BP in acute sham-operated animals. Such an acute, reversible, and dose-dependent effect of barbiturates on benzodiazepine binding was demonstrated in earlier studies in vivo. Acutely after FPI the tendency toward decreases in affinity and binding site number was obvious, this forming the basis for the significantly decreased BP of the trauma-site cortex and underlying hippocampus. At 12 hrs after FPI, the number of binding sites was significantly decreased in the trauma-site cortex and in the underlying hippocampus. At that time point the BP was significantly decreased only for the trauma-site cortex. The BP of other investigated tracers at 12 hrs after FPI was decreased in all investigated regions (excluding the contralateral cortex with $[^{11}\text{C}]4$-NMPB). This finding demonstrates the potential capability of $[^{11}\text{C}]$flumazenil to selectively depict the regions with neuronal damage, leading to visible loss of thionin-stained neurons, which begins by 12 hrs after moderate-level FPI. $[^{11}\text{C}]$Flumazenil was shown to demonstrate the extent of neuronal damage and predict the possible recovery after focal ischemia in animals and also in patients with acute stroke or in an acute vegetative state. The GABAergic neurotransmission, which is a major counterbalance to the excitotoxic mechanisms in vivo, has only minimally been investigated in experimental TBI. A reversible increase in the extracellular GABA concentration was shown by microdialysis in Concussive brain injury in rats. Recently, improved effects on mortality and cognitive outcome were observed in rats subjected to moderate level FPI after pretreatment with diazepam. Postinjury treatment did not enhance the survival but induced significantly better recovery of cognitive function.
Table 4-5. Binding potential: B_{max}/K_D. Values are means ± SEM. For comparison of the binding potential between traumatized and sham-operated animals, the t test for independent samples was used; and P values are expressed as *P<0.05, **P<0.01, ***P<0.001. For comparison with the contralateral side in the same animal, the paired t test was used; and results are marked †P<0.05, ††P<0.01, †††P<0.001. For comparing values from sham-operated animals at 12 hrs with those at 2 hrs, the t test for independent samples was used; and P values are expressed as aP < 0.05.

<table>
<thead>
<tr>
<th></th>
<th>Cortex</th>
<th></th>
<th>Hippocampus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trauma site</td>
<td>Contralateral</td>
<td>Trauma site</td>
<td>Contralateral</td>
</tr>
<tr>
<td>[^11C]dizocilpine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 hrs, sham</td>
<td>8.8 ± 0.4</td>
<td>8.8 ± 0.4</td>
<td>13.4 ± 1.1</td>
<td>13.6 ± 0.9</td>
</tr>
<tr>
<td>2 hrs, trauma</td>
<td>3.9 ± 0.4***</td>
<td>5.4 ± 0.2**</td>
<td>8.1 ± 0.2**</td>
<td>8.6 ± 0.2**</td>
</tr>
<tr>
<td>12 hrs, sham</td>
<td>8.9 ± 0.4</td>
<td>8.1 ± 0.3</td>
<td>14.0 ± 0.4</td>
<td>13.3 ± 0.2</td>
</tr>
<tr>
<td>12 hrs, trauma</td>
<td>3.1 ± 0.5***†</td>
<td>5.6 ± 0.5*</td>
<td>6.9 ± 0.6***†</td>
<td>7.7 ± 0.5***</td>
</tr>
<tr>
<td>[^11C]4-N-methylpiperidylbenzilate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 hrs, sham</td>
<td>347.0 ± 56.0</td>
<td>316.3 ± 59.2</td>
<td>327.0 ± 52.4</td>
<td>354.9 ± 90.4</td>
</tr>
<tr>
<td>2 hrs, trauma</td>
<td>196.0 ± 50.8</td>
<td>193.6 ± 31.3</td>
<td>175.5 ± 10.3*</td>
<td>182.8 ± 18.7</td>
</tr>
<tr>
<td>12 hrs, sham</td>
<td>311.8 ± 33.6</td>
<td>318.9 ± 61.6</td>
<td>309.5 ± 78.6</td>
<td>290.9 ± 34.1</td>
</tr>
<tr>
<td>12 hrs, trauma</td>
<td>159.0 ± 6.1*</td>
<td>174.5 ± 2.3</td>
<td>170.1 ± 16.6*</td>
<td>167.6 ± 5.0*</td>
</tr>
<tr>
<td>[^11C]flumazenil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 hrs, sham</td>
<td>117.0 ± 7.2 a</td>
<td>104.3 ± 7.8 a</td>
<td>103.7 ± 11.0</td>
<td>102.9 ± 9.9 a</td>
</tr>
<tr>
<td>2 hrs, trauma</td>
<td>45.8 ± 17.7*</td>
<td>55.8 ± 25.0</td>
<td>41.5 ± 18.0*</td>
<td>47.0 ± 22.7</td>
</tr>
<tr>
<td>12 hrs, sham</td>
<td>81.0 ± 6.3</td>
<td>75.0 ± 6.0</td>
<td>71.8 ± 8.2</td>
<td>67.1 ± 4.5</td>
</tr>
<tr>
<td>12 hrs, trauma</td>
<td>42.5 ± 11.1*</td>
<td>50.5 ± 13.8</td>
<td>43.5 ± 12.4</td>
<td>47.8 ± 14.3</td>
</tr>
</tbody>
</table>
5. SUMMARY

Positron-emitting radiotracer substances can with benefit be used for in vitro assessment of receptor kinetic parameters. Conventional assay methods can be applied with some minor modifications to account for factors such as a short half-life and emission of β^+-particles. Some of the properties of positron-emitting radiotracers create extra advantages for in vitro work; for example, potentially super high specific activity, rapidity of experiments, and the potential to readily apply the methods in vivo. The SP plate system is a very attractive measuring device with good physical performance for this type of work. For the application of PET tracers to autoradiography, different properties of the tracers, and the phosphor imaging measurement system must be considered. Quantitative autoradiography can be performed with short-lived PET tracers, but, it is necessary to consider that the time to reach equilibrium is dependent on the section thickness. The use of thicker sections gives a better signal and thus better resolved images but, perhaps at the expense of deteriorated quantification. Because of the short half-life of the label, the equilibrium conditions might not be met. The SP plate is an ideal tool for generation of 11C images because of its high sensitivity and linear response over a wide concentration range.

$[^{11}\text{C}](+)^{3-}$ and $[^{11}\text{C}]4\text{-NMPB}$ are non-selective with respect to subtypes of muscarinic ACh receptors. Depending on the experimental conditions in frozen-section autoradiography, different subtypes may be accentuated. Either $[^{11}\text{C}](+)^{3-}$ or $[^{11}\text{C}]4\text{-NMPB}$ is suitable for PET studies of mACh receptors. Differential labeling of mACh receptors cannot, however, be anticipated. A newly developed labeled analogue of dizocilpine, $[^{11}\text{C}]\text{cyano-dizocilpine}$ binds specifically to the NMDA type of glutamate receptors in vitro. Under the tested conditions, a specific binding of $[^{11}\text{C}]\text{cyano-dizocilpine}$ in vivo could, however, not be visualized by PET, due probably to the high fraction of nonspecific binding. The present work suggests that future attempts at visualizing the activity of the NMDA-receptor-channel complex in vivo by PET should utilize unanesthetized research animals. Synthesis of tracers with lower lipophilicity but with high affinity for the receptor retained should also be tried.

The increased uptake of $[^{18}\text{F}]\text{fluorodeoxyglucose}$ after experimental brain trauma could not be confirmed with $[^{1}\text{H}]\text{glucose}$. The lack of increase in $[^{1}\text{H}]\text{glucose}$ uptake in contrast to the increased FDG uptake immediately after moderate FPI could be explained by the increased postrumatic affinity of FDG for the endothelial glucose transporter proteins and/or for hexokinase. Postrumatic differences in the kinetics of FDG entry to the brain and phosphorylation can cause erroneous results of local cerebral glucose utilization as measured with FDG (or deoxyglucose), when a uniform and fixed lumped constant derived from normal subjects is used. The fulfillment of the assumptions underlying the deoxyglucose method (incl. lumped constant) is a necessary precaution when the deoxyglucose method is used in pathologic conditions, as has been suggested already by the authors of the method. The present work demonstrated that a moderate level of lateral FPI caused general as well as localized changes in neurotransmitter receptor systems that could be measured by in vitro quantitative autoradiography. Diffusely spread decreased affinity of NMDA - and mACh receptor ligands is an indicator of not only local disturbed neurotransmission as could be expected from locally increased glucose turnover as measured by FDG primarily at the trauma site, but of widely dissipated disturbance of neurotransmission. Localized changes in $[^{11}\text{C}]\text{flumazenil}$ binding to GABAA receptors may indicate the potential capability of $[^{11}\text{C}]\text{flumazenil}$ to selectively depict the regions with neuronal damage that leads to loss of neurons.
6. ACKNOWLEDGMENTS

This study was carried out at the preclinical laboratory of Uppsala University PET Centre in collaboration with the Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, Uppsala University.

I am grateful for the help I have received from colleagues and friends in preparing this thesis. In particular:

Assoc. Prof. Mats Bergström, Profs. Yasuyoshi Watanabe, Bengt Långström, and Lars Oreland, for being a nice team of supervisors, for providing their facilities and innovative ideas, and for sharing their knowledge, experience, and support;

Drs. Yvonne Andersson, Karl-Johan Fast, Matthias Ögren, Gunilla Jacobson, Gunnar Antoni, and Margareta Björkman, and Misses Anna Bergman and Pernilla Sjöberg, for their excellent tracer labeling all these years, for not forgetting me waiting for a tracer, and for a second chance in the event of technical problems;

Dr. Niklas Marklund, for teaching me the trauma models and for sharing his never failing optimism, and **Assoc. Prof. Urban Höglund**, for sharing his scientific knowledge;

Mrs. Elisabeth Petterman-Bergström and Dr. Feng Wu for assistance and help in the lab, and **Dr. Li Lu** for teaching me the skill of hitting a rat tail vein with the injection needle and for her nature of not saying “No” when I asked for help;

Messrs. Harald Schneider and Tomas Nyberg, for taking excellent care of the computers; **Nurses Karin Lidström, Lars Lindsjö, Eva-Lise Lundberg, Rita Öhrstedt, and Mimmi Lidholm**, for taking excellent care of the experimental monkeys and PET cameras, and for creating a relaxed working atmosphere; **Mr. Leif Ormegard**, for his exquisite handling and care of the experimental monkeys and for being the person who managed with friendly chats to open up my Swedish language;

Dr. Daniel Laryea, for revising the English in the thesis and for interesting and encouraging discussions.

My Japanese friends, **Drs. Kiyoshi Matsumura, Tetsuhito Murata, Hirotaka Onoe, and Kazuyuki Imamura**, for interesting discussions, help, advice, and kind hospitality;

Giussi and Tom, Roberta and Björn, for friendship and very valuable recreational times;

My friends in Tartu, for making me feel at home during my continuous medical education at Tartu University; and **Dr. Kai Saks and Prof. Helgi Silm**, former Assistant Deans at the Faculty of Medicine, Tartu University for supporting my individual study schedule during the research work at Uppsala University;

Dr. Wiebke Sihver, for having a direct and great impact on this work by placing her scientific knowledge and experience at my disposal whenever I asked for it, for pertinacious and kind support during those times I felt like changing “business”, and for indirect impact via the numerous stimulating adventures we have shared together as a family, and above all, for her warmth and love.

Finally, I am also grateful to my children, **Gertu and Ragnar**, for being so sweet, for teaching me the art of waking up early during weekends, and for giving me yet another chance to visit amusement parks!

This work was financially supported by the Subfemtomole Biorecognition Project, Uppsala University PET Centre, and Japan Science and Technology Corporation.
REFERENCES

28. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem Pharmacol 22:3099-3108.
34. Costa DC Jones BE, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem Pharmacol 22:3099-3108.

deoxyglucose and glucose phosphorylation ratio and the lumped constant in rat brain and a transplantable rat glioma. J Neurochem 53:37-44.

230. Smith DH, Okiyama K, Gennarelli TA, McIntosh TK (1993) Magnesium and ketamine attenuate cognitive...

266. Yeh GC, Bonhaus DW, McNamara JO (1990) Evidence that zinc inhibits N-methyl-D-aspartate receptor-gated ion channel activation by noncompetitive antagonism of glycine binding. Mol Pharmacol 38:14-19.

