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Geological and geophysical models are essential for developing reliable mine designs and
mineral processing flowsheets. For mineral resource assessment, mine planning, and mineral
processing, a deeper understanding of the orebody’s features, geology, mineralogy, and
variability is required. We investigated the gold-bearing Black Reef Formation in the West
Rand and Carletonville goldfields of South Africa using approaches that are components of a
transitional framework toward fully digitized mining: (1) high-resolution 3D reflection
seismic data to model the orebody; (2) petrography to characterize Au and associated ore
constituents (e.g., pyrite); and (3) 3D micro-X-ray computed tomography (uCT) and ma-
chine learning to determine mineral association and composition. Reflection seismic reveals
that the Black Reef Formation is a planar horizon that dips < 10° and has a well-preserved
and uneven paleotopography. Several large-scale faults and dikes (most dipping between 65°
and 90°) crosscut the Black Reef Formation. Petrography reveals that gold is commonly
associated with pyrite, implying that pCT can be used to assess gold grades using pyrite as a
proxy. Moreover, we demonstrate that machine learning can be used to discriminate be-
tween pyrite and gold based on physical characteristics. The approaches in this study are
intended to supplement rather than replace traditional methodologies. In this study, we
demonstrated that they permit novel integration of micro-scale observations into macro-
scale modeling, thus permitting better orebody assessment for exploration, resource esti-
mation, mining, and metallurgical purposes. We envision that such integrated approaches
will become a key component of future geometallurgical frameworks.
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INTRODUCTION

Historically, Witwatersrand-type gold deposits
of South Africa ranked at the pinnacle of world gold
production (Hartnady, 2009; Frimmel, 2019). In
1970, South Africa produced roughly 1000 metric
tons of gold (Frimmel & Nwaila, 2020). This amount
has steadily decreased over the years to only about
82 metric tons in 2021 (USGS, 2021). Nonetheless,
there may be potential for sustaining and perhaps
even increasing future production, thereby con-
tributing to South Africa’s economic prosperity. The
Witwatersrand-type ‘mega-deposits’ are the result of
spectacularly fortuitous preservation of a significant
proportion of gold that was recycled into cratonic
sedimentary basins of that age (Robb & Robb, 1998;
Frimmel, 2005) and skew models of the crustal gold
endowment to an early period in Earth’s history
(Frimmel, 2014).

Most active mines that extract gold from the
Witwatersrand Basin suffer from high operational
costs linked to the ever-increasing depths of the
remaining resources, structural complexities or er-
ratic deposit (also called ‘reef’) distribution at shal-
lower depths (Frimmel & Nwaila, 2020). Although
perennial issues of fluctuating metal prices, marginal
ore grades, uncertainties in global supply and de-
mand, capital expenditure, workforce skills, socio-
political ideologies, environmental degradation, and
investment incentives affect the entire South Afri-
can mining industry, the relatively high production
cost of gold from the Witwatersrand Basin remains
to be addressed adequately. Cost reductions are re-
quired throughout the resource extraction process,
whether through reduced expenditures or increased
operational efficiency. In the exploration and mining
industry, the assay of gold in ore samples presents
unique challenges, compounded by complex and
multiscale natural distribution patterns (e.g., log-
normality, nugget effect), all of which influence
strongly data replicability, accuracy and pre-
dictability of any resource being assessed. Questions
concerning where, how and what to sample, coupled
with strategic decisions about why and when, all
demand utmost diligence and dedication (Minnitt,
2014). Even the most “perfect”” sample suite can be
limited by problems unique to laboratory analytical
procedures (e.g., fire assay) required to determine
accurately and precisely gold contents, especially
under time and money constraints that pervade the
industry (Williams, 2020). Improvements upon the
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traditional assay process could conceivably come
from machine learning and data repurposing.

The century-long mining history of Witwater-
srand-type ore has produced a legacy of readily
available datasets about (1) resource location, (2)
resource estimation and (3) resource extraction, all
of which can be used for 3D visualization and data-
driven analytics (Ghorbani et al., 2020; Nwalila,
et al., 2020c; Zhang et al., 2021). These latter pub-
lished studies have targeted ore deposits hosted by
the Central Rand Group of the Witwatersrand Ba-
sin. These legacy datasets provide a natural dry
laboratory to test geological hypotheses, as well as
‘ground truth’ that is necessary to evaluate quanti-
tative models. In contrast, this study focused on the
geologically younger (Neoarchean to Paleoprotero-
zoic) Black Reef Formation in the West Rand and
Carletonville goldfields (South Africa). Despite
being discovered in the 1880s, the Black Reef For-
mation remains the least explored and exploited
gold-bearing formation in South Africa. In this
study, we used seismic attributes, and 3D micro-X-
ray computed tomography (LCT) data to explore the
subsurface distribution of the Black Reef Formation
and its associated geological structures. We
demonstrate that such information can be used in an
integrated manner to perform rapid resource
assessment, which may improve grade control and
resource estimation models.

GEOLOGICAL SETTING

Witwatersrand-type gold deposits and associ-
ated lithologies occur within the central portion of
South Africa (Fig. 1). Four significant periods of
Witwatersrand-type gold deposition have been rec-
ognized, spanning roughly 500 My. The oldest is the
Dominion Reef Group, followed by the Witwater-
srand Supergroup (West Rand and Central Rand
Groups), the Ventersdorp Supergroup (Ventersdorp
contact reef) and finally, the Transvaal Supergroup
(Black Reef Formation). In certain parts of the
Witwatersrand Basin (e.g., West Rand, Carletonville
and Klerksdorp goldfields), these three stratigraphic
sequences are vertically stacked (e.g., 5000-7000 m
of combined thickness) and have been exploited
simultaneously depending on grade or mining
strategy (Fig. 2). Historical reports of gold in the
Black Reef Formation in 1885 (Penning, 1891) may
have just preceded the proclamation of those in the
Witwatersrand Basin in 1886 (Antrobus et al., 1986).
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Figure 1. Simplified geological map of the Kaapvaal Craton in southern Africa showing the distribution of the three great
basins (Witwatersrand, Ventersdorp and Transvaal) that host Witwatersrand-type gold deposits (modified after Frimmel,
2014). The outline of the Black Reef Formation is shown by the pink line rimming the Transvaal Supergroup.

Gold in the higher grade Ventersdorp contact reef
and Central Rand Group was mined preferentially
since their discovery, often to great depths. How-
ever, gold in the Black Reef Formation was only
mined at the surface or near-surface, leaving deeper
resources unexploited. Mounting problems of ultra-
deep mining has led to a renewed focus on shal-
lower, albeit lower-grade resources.

The Black Reef Formation occurs at the base of
the 2.65-2.05 Ga Neoarchean—Paleoproterozoic
Transvaal Supergroup (Transvaal Basin) and over-
lies an erosion surface developed on the older Wit-

watersrand and Ventersdorp strata in the
Witwatersrand goldfields area (Els et al., 1995;
Fig. 2). Elsewhere, the Transvaal Supergroup se-
quences overstep onto an older Archean granite-
greenstone basement (Fig. 1), where isolated lenses
of a pre-Black Reef Formation protobasinal clastic
sequences, the Wolkberg and Gondwana Groups,
are preserved (Button, 1973; Eriksson et al., 2006).
Succeeding the Black Reef Formation are shallow
marine carbonates and iron formations (Chu-
niespoort Group), followed by another largely clas-
tic sequence (Pretoria Group). The Black Reef
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Figure 2. Reconstruction of South African Witwatersrand-type gold deposits (Nwaila et al., 2020a). Periodic reworking of
the alluvial fans led to three distinct stratigraphic horizons (also referred to as ‘reefs’) of gold concentration. Here,
A = Witwatersrand Supergroup reefs (2902 Ma), B = Ventersdorp reef (2785 Ma) and C = Black Reef Formation
(2640 Ma). Scale approximation: 350 km long, 200 km wide, and each orebody (reef) horizon is 0.2 to 2 m.

Formation resembles Witwatersrand-type gold de-
posits in terms of economic concentration of its gold,
mineralogy and depositional environment (Barton
& Hallbauer, 1996; Fuchs et al., 2016).

Detrital zircon U-Pb dates support a maximum
depositional age of 2618 + 11 Ma (Zeh et al., 2020)
for the Black Reef Formation, which is composed of
massive to cross-bedded, weakly metamorphosed
quartz arenites, clay- and siltstones, carbon-rich
shales, and small conglomerates with variable
auriferous deposits. Economic gold concentrations
are found in the East Rand, Carletonville and West
Rand goldfields where N-S trending paleochannels
deeply eroded the underlying auriferous Venters-
dorp and Witwatersrand strata (Barton & Hall-
bauer, 1996). There, grades can reach 54.5 g/t gold
and 600 g/t uranium. Elsewhere, concentrations are
low (< 1 g/t Au and 10 g/t U; Fuchs et al., 2016), and
thus far, limited gold has been found in locations
where the Black Reef Formation overlies Wolkberg
protobasin clastics or Archean granite-greenstone
basement (Fig. 1).

Three distinct Black Reef facies are found in
the East Rand, namely the (progressing up-section):
(1) channel facies, which may be locally absent and
is variably gold-bearing; (2) blanket facies—a basal

unit that is widespread and poorly mineralized; and
(3) pyritic facies—a pyrite-bearing unit that is typi-
cally well-mineralized (Henry & Master, 2008; Fuchs
et al., 2016). Similar facies were recognized by
Nwaila et al. (2020a, 2020b) in the Carletonville
goldfield. The gold-bearing quartz-pebble conglom-
erates of the Black Reef Formation are dominantly
composed of quartz, pyrite, phengitic white mica,
clay minerals, carbonates, chromite, zircon, rutile,
pyrrhotite, sphalerite, galena, uraninite and native
gold (Fuchs, 2015). As with all other gold-bearing
conglomerates found in the Witwatersrand Basin,
pyrite, the most abundant ore mineral in the Black
Reef ore deposit, can be classified into three main
classes (da Costa et al., 2020): (1) detrital (or allo-
genic) pyrite; (2) diagenetic (or authigenic) pyrite
that formed in situ after deposition; and (3)
hydrothermal (or epigenetic) pyrite related to post-
depositional alteration. Detrital pyrite appears
rounded and can be massive or inclusion-bearing
(< 10 vol % of Au, Ag, Ni, and other metals). Iso-
topic analyses (6°*S and §°°S) of detrital pyrite re-
veal contrasting formation processes and thus
different provenances for detrital pyrite (Hofmann
et al., 2009; Guy et al., 2014; Agangi et al., 2015; da
Costa et al., 2020). Authigenic pyrite is characteris-
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tically large and subhedral, while hydrothermal
pyrite is euhedral to subhedral in shape. Most pyrite
grains are massive, although some contain gold and
other metals (Hofmann et al., 2009; Agangi et al.,
2015). Most authigenic pyrite grains formed after
sedimentation, diagenetic, hydrothermal or meta-
morphic processes (da Costa et al., 2020). Gold in
the Black Reef Formation occurs either as isolated
native grains or inclusions in pyrite and pyrobitumen
nodules (Fuchs et al., 2016). In certain areas, gold is
found within fractured quartz grains and, to a lesser
degree, in adjacent footwall lithology.

SAMPLES AND METHODS

3D Reflection Seismic Post-Processing
and Extraction of Point Cloud

Modeling of the structurally complex Black
Reef Formation involved: (1) 3D seismic imaging;
(2) identification of the horizon and faults in 3D
(inline, crossline and depth slices); (3) data filtering;
(4) evaluation of seismic data using seismic attri-
butes to enhance geological structures; (5) fault-
horizon projection; and (6) 3D seismic data inte-
gration with borehole.

The seismic data were first processed to remove
spikes/outliers. Next, the Black Reef Formation
horizon and associated geological structures (i.e.,
faults and dikes) were identified and tracked in 3D.
Artefacts were smoothed using various Afilters,
including the bi-harmonic smoothing technique to
enhance structural interpretation. The edge detec-
tion attribute analysis improved fault-horizon pro-
jection (Manzi et al., 2012a, 2012b). Using these
techniques, faults and dikes could be identified and
located with maximum accuracy, and errors associ-
ated with false complex geometries are minimized.
The point clouds generated from the fault-horizon
network were then used to model fault surfaces,
resulting in close correlations with the seismically
defined Black Reef Formation horizon breaks. The
point cloud for the entire seismic volume consists
of > 1 million data points.

Samples

The study area lies between 26° 25" 46” S, 27°
37 20” E and 26° 21’ 29” S, 27° 23’ 53" E, encom-
passing the West Rand and Carletonville goldfields

(Fig. 1). A portion of the data for this study origi-
nated from a legacy database, which contains 23
borehole lithologic logs. Samples from the lithologic
logs were scanned using micro-X-ray computed
tomography (nCT). The lithologic logs consist of
sample descriptions and spatial positions (latitude,
longitude and depth). Where necessary, the histori-
cal boreholes were re-logged to ensure consistency
of data recording.

In addition to the legacy database, five bore-
holes were drilled and sampled between 2015 and
2020. To improve the classification of pyrite and gold
morphology, 100 samples from the five boreholes
(20 samples per borehole) were separated into
mineral grains. Care was taken to prepare coarsely
crushed samples > 1 mm to avoid destroying pyrite
grains. The usable fraction (> 500 um) was first
separated using manual panning. Both dense and
light particles were separated and washed with ace-
tone and deionized water, and subsequently placed
in an oven to dry. Further, pyrite concentration
utilized bromoform with a density of 2.89 g/cm?.
Stirring of the high-density grain fraction released
finer, less dense grains entrained during initial sep-
aration in the bromoform. The cleaned grain sepa-
rate was collected from the funnel onto filter paper,
washed in acetone, then deionized water, and then
left to dry overnight in a fume hood. A magnet was
used to separate ferromagnetic minerals and any
iron filings that may have been introduced during
crushing and milling, followed by a rare earth ele-
ment magnet to separate paramagnetic minerals.
The remaining material underwent further separa-
tion of pyrite using a Frantz Isodynamic Magnetic
Separator set with a 25° forward slope, a 10° side-
ways tilt and 1.2A current. Final handpicking en-
abled visual classification of pyrite grains into three
different morphologies—detrital, diagenetic and
hydrothermal.

X-Ray Computed Tomography (pCT)

Most automated mineralogical tools currently
used are based on two-dimensional (2D) microscopy
analysis, bound by stereological error when analyz-
ing a three-dimensional (3D) object such as ore
particles. The latest advancements in puCT have
shown the great potential of such a system to be the
following automated mineralogical tool ( Ketcham,
2005; Kyle & Ketcham, 2015; Hanna & Ketcham,
2017; Withers et al., 2021; da Costa et al., 2022). An



essential benefit of pCT lies in its capability to map
the 3D internal structure of the ore at resolutions
down to the technique’s resolution limit—a few mi-
crons, for removing stereological errors (Kyle et al.,
2008; Ketcham & Hildebrandt, 2014; Ketcham &
Mote, 2019). Due to the constant improvement in
the computing capacity of large datasets, pCT sys-
tems have become a popular tool for automated
quantitative mineralogical characterization (Ghor-
bani et al., 2011; Evans et al., 2015; Sayab et al.,
2016; Guntoro et al., 2019a, 2019b; 2020, 2021;
Warlo et al., 2021). This study evaluated the appli-
cability of pCT (using its typical processed output)
as a tool for ore characterization. Specifically, data
used in this study were obtained from auriferous
conglomerates and a subset of pyrite and gold
grains. High-quality images were obtained by scan-
ning the samples at 130 kV, 51 pA, yielding 2000
projections at 4-8 um resolution. The X-ray instru-
ment used to acquire the data was the Nikon XTH
225 ST system situated at the MIXRAD facility at
NECSA (South African Nuclear Energy Corpora-
tion; Hofmann, 2012). The sample information or
parameters were obtained using VG Studio Max
3.4.0 version.

RESULTS
Resource Location Using 3D Reflection Seismics

The Black Reef Formation is one of the few
remaining Witwatersrand-type gold resources lo-
cated at shallow depths (< 300 m below surface).
Exploration by surface borehole drilling has so far
provided limited inferred resources, but, although
wide gaps in the subsurface record still exist, there
has been little incentive to follow-up. Only after 3D
reflection seismic surveys were carried out between
the 1980s and 2000s did the opportunity arise to
delineate the extent of the Black Reef Formation in
the West Rand and Carletonville goldfields, includ-
ing areas missed by earlier drilling and mining.

The re-processed and re-interpreted legacy 3D
seismic survey data demonstrate that quartzites and
conglomerates of the Black Reef Formation produce
a prominent and laterally extensive acoustic im-
pedance contrast between the overlying dolomites of
the Chuniespoort Group (roughly 6700 m/s seismic
velocities [Vp] and 3.00 g/em® density) and the
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underlying lower-velocity, less dense Ventersdorp
meta-basalts (roughly 6400 m/s seismic velocities
[Vp] and 2.90 g/lem® density; Manzi et al., 2013,
2014). This acoustic impedance contrast gives strong
reflections within the seismic volume (Fig. 3). The
edge detection (Fig. 3a) and dip-azimuth (Fig. 3b)
attributes computed for the Black Reef Formation
horizon suggest that the formation is characterized
by a series of steeply dipping (65°-90°) complex
normal faults and dikes.

In addition to revealing Black Reef Formation
in 3D, the seismic data also assisted in assembling
and assessing structural information pertinent to
mining. Mining is severely affected by fault distri-
bution patterns, position, continuity, strike, dip, dip
direction, pitch and hade, fault length, fault spacing
(compartmentalization), fault offset (throws) and
fault heave. The complexity of faults and dikes can
be evaluated by using seismic attributes to reveal:
(1) multiple segments that bind discrete orebody
blocks; (2) multiple bifurcations from a single plane
to form a branching fault/dike array; and (3) cross-
cutting fault/dike systems, which may be offset by
older faults (Fig. 3b). In order to arrive at an accu-
rate assessment of the orebody’s financial value,
mine design and life of mine planning, fault/dike
arrays, and sections of the mine that may be con-
sidered risky for fault/dikes are crucial (Stevenson
et al., 2003; Manzi et al., 2014). Several faults and
dikes are present in the formation horizon, which
may influence mining and misrepresent the distri-
bution of gold ore within the horizon. We evaluated
the effect on mining that faults and dikes could have
on the horizon. The latest modeling techniques
make it easier to create models that can incorporate
the complexity of structural architectures, therefore
optimizing evaluations of ore resources and pro-
duction rates. An improved gold resource model and
potential geohazards such as water conduits, seismic
zones, and planes of weakness are provided. Mining-
induced seismic events, rock falls, rock bursts and
other hazards can be mitigated by using a horizon/
deposit-scale model to identify lateral and vertical
heterogeneities that require attention during mine
planning (Stevenson et al., 2003). It is worth noting
that the Black Reef Formation lies above several
auriferous conglomerates horizons of the Venters-
dorp and Witwatersrand Supergroups (Fig. 4). The
model in Figure 4 shows that some of the geological
structures (as gaps in horizon planes) that affect the
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Black Reef Formation can be traced downward into
the underlying older auriferous horizons.

Resource Assessment

Petrographic studies target mineral assemblages
and textural domains that may serve as proxies for
gold distribution, thereby offering an initial screen
to reduce (or even remove) the need for expensive,
time-consuming laboratory fire assays. This miner-
alogical and textural approach could provide a
means to smoothen the extreme variability in gold
grain size and spatial distribution. In particular, we
focus on the association between nano- to micron-
scale gold grains and their host gangue minerals,
which in turn occurs in textural domains at the dm to
m scale.

Petrographic Characterization of Pyrite Grains

The Black Reef Formation is characterized by
quartz-pebble conglomerates of varying thickness.
The footwall is quartz-arenite whereas the hanging
wall is carbonaceous shale (Fuchs et al., 2016;
Nwaila et al., 2020a, 2020c). Minerals present in
minor or trace amounts but of significant interest in
the Black Reef Formation include pyrite, chromite,
zircon, rutile, chalcopyrite, arsenopyrite, gersdorf-

fite, cobaltite, pyrrhotite, galena, sphalerite, ur-
aninite, brannerite, monazite and xenotime (Fig. 5;
Fuchs et al., 2016). Gold occurs as electrum with 5-
15% Ag (Gauert et al., 2011; McLoughlin, 2014).
Uraninite is associated with pyrobitumen.

Detrital pyrite is the most abundant mineral
found in minor amounts within the Black Reef
Formation, with grains being commonly sub-roun-
ded to rounded with abraded edges and very few
(< 5 vol %) inclusions of chalcopyrite or pyrrhotite
(Fig. 6; Fuchs, 2015; Fuchs et al., 2016; da Costa
et al., 2020). Diagenetic pyrite grains are large (0.5—
10 mm) and appear rounded, concretionary and
highly porous (> 10 vol %). The morphology of
diagenetic grains varies from being relatively com-
pact and massive, some with internal lamellar
structures (i.e., pyrite sand-dollar), to highly porous.
Pores can be filled with muscovite, quartz, and
pyrobitumen, with numerous inclusions of spha-
lerite, chalcopyrite and native gold. Hydrothermal
pyrite occurs either as individual euhedral to sub-
hedral inclusion-free grains or as narrow over-
growths (< 15 pm) on pre-existing pyrite.

Mineralogical Characterization Using pCT
Grains are distinguishable by their linear

attenuation coefficients under X-ray radiation.
Attenuation coefficients are determined by the
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Figure 5. (a) Microphotographs of the Black Reef Formation gold ore in reflected light. (b—-d) SEM images. Py = pyrite,
Ccp = chalcopyrite, Rt = rutile, Zrn = zircon and Qtz = quartz.

average atomic number of chemical elements within
minerals (Ghorbani et al., 2011; Guntoro, et al.,
2019a; Bam et al., 2020). Witwatersrand gold-bear-
ing ores are particularly conducive to analytical
segmentation due to the high attenuation contrast of
gold (very high), pyrite (medium) and quartz (low).
Scanning solid ore specimens and reconstruction
into a 3D digital volume (computed tomography)
renders the sample available for visual analysis and
quantitative measurement at the micron scale
(LCT). Gold, electrum, pyrite and silicates are easily
segmented based on their attenuation coefficients,
while other minerals such as rutile, uraninite, and
zircon tend to have impurities that preclude them
from being isolated unless the scanning parameters
are calibrated to identify them. In our case, the
identification of phases that overlap significantly in
terms of their attenuation coefficients was per-
formed using SEM imaging as shown in Figure 5b—d.

To demonstrate the importance of nCT, a select
suite of pyrite grains from the Black Reef Formation
was investigated. The operating conditions of the CT

scanner were such that the resolution of the volume
was 4.6 um; consequently, natural grains smaller
than this voxel size (voxel = 3D pixel) cannot be
unambiguously distinguished. In practice, this voxel
size limitation dictates the smallest resolvable gold
grain and the definition of grain boundaries between
minerals of differing attenuation, but 4.6 pm is a
practical optimization of analysis time and accurate
gold detection. The distinct gray values between
gold and associated minerals result in clear grain
boundaries (Figure 7a), which can be enhanced by
assigning a false color to the respective gray ranges
for pyrite and gold (Figures 7b, c, d). The relation-
ship between gold and other minerals such as pyrite
is visualized and quantified in Figure 7c. It is clear
that gold occurs as either free native grains or en-
closed in pyrite. Figure 7b shows the distribution of
gold grains which permits textural and size quan-
tification. The dataset acquired in Figure 7b was
used to plot a gold and uraninite distribution curve
in Figure 8. Grain size distributions curves are an
essential factor for all mineral processing stages.
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Figure 6. Petrographic classification of pyrite grains liberated from their host rock by selective acid leaching. (a, b) contain
rounded detrital pyrite. (¢, d) contain sub-rounded diagenetic pyrites—these pyrite grains still show crystal shapes but with
slightly rounded corners/edges. (e, f) contain hydrothermal crystalline pyrite with sharp corners and striations.
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Machine Learning Characterization of Gold
and Pyrite from pCT Data

Machine learning as a sub-discipline of artificial
intelligence is concerned with the ability of machines
to leverage algorithms to perform deductive and
inductive reasoning, often in an automated manner.
Like humans, machine learning algorithms allow a
machine to perform various deductive tasks, such as
classifying and modeling natural relationships in the
data through training. Once a machine learning
algorithm is trained, it can perform classification and
regression tasks through inductive reasoning.
Therefore, it is possible to use machine learning to
discriminate between gold and pyrite and among
various types of pyrite using pCT data (Figs. 7 and
9). This study made use of pCT data from whole-
rock samples. A quality control was performed by
assessing the validity of the results with individual
pyrite and gold grains as described in the previous
section and verified by SEM imaging results in Fig-
ure 5.

Spatial calibration of the 3D volume allows
quantitative dimensional measurements to be made,
from which many useful textural properties (albeit
within individual grains) can be derived. Grain
analyses in the search for internal structure and
relationships with enclosed gold particles led to the
creation of a comprehensive spatial characteristics
database, which also contains relative particle X-ray
attenuation information in the form of grayscale

values and particularly for the coarser pyrite
(Fig. 9). All grains labelled either pyrite (and sub-
types of pyrite) or gold were used as input for ma-
chine learning algorithms. Grain characteristics
(e.g., sphericity, X-ray attenuation values, volume)
were used as machine learning features. Feature
selection was performed to determine the best
combination of features (Hastie et al., 2009). Using
these features, it is possible to identify critical dif-
ferences between gold—pyrite—uraninite and other
ore constituents and leverage these relationships for
inference. In this manner, pnCT data are readily
usable for the discrimination of the desirability of
gold grains. This is a supervised machine learning
task, for which there are many algorithms available.
In this study, we did not perform an exhaustive
comparison of all machine learning algorithms but
rather demonstrate the feasibility of this approach
using the support vector machine (SVM) algorithm
(Cristianini & Ricci, 2008).

Inspection of Figure 9 indicates that uCT gray
values (which were mapped to a range of attenua-
tion coefficients per sample) can be used to dis-
criminate gold from gangue minerals such as pyrite.
Using these features (Figure 10), we trained an
SVM, and the algorithm’s performance was assessed.
Results showed that the F1 and accuracy scores
using the trained SVM to perform a fivefold cross-
validation, randomized and shuffled 100 times over
the entire database was exactly 1.00 for the dis-
crimination between pyrite and gold, and between
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Figure 9. Automated classification of gold using the support vector machine (SVM) algorithm. (a) 16-bit grayscale image
(X-ray attenuation quantized to roughly 65,000 shades of gray) with sparse gold appearing bright white against darker gray
pyrite grains. Note that the occasional darkening of gray pyrite is an artefact to simulate shading for 3D visualization. (b)
Acrtificial color segmentation to better visualize pyrite (yellow) and gold (red).

various types of pyrite. However, because gray val-
ues (and therefore X-ray attenuation) were used as
features, it is unclear whether different types of
pyrite can be distinguished if they are within the
same sample volume, unless they are substantially
different compositionally (e.g., they are likely to be
mapped to similar gray values). We attempted to
discriminate between pyrite and gold, as well as
between various types of pyrite using solely physical
characteristics of minerals (projected area along the
xy-, xz- and yz-planes [mm?], surface [mm?], gap
[mm] and sphericity). However, this was unsuccess-
ful, because it was impossible to distinguish between
pyrite and gold using these features and while it was
possible to distinguish between the various types of
pyrite, the F1 and accuracy scores were low (0.51
and 0.61, respectively). Therefore, the prediction of
mineral composition is far more practical than the
discrimination of pyrite and gold using grain mor-
phology for similar types of uCT data. However, the
ability to rapidly assess sample mineral composition
is useful for assaying and geometallurgy. Other types
of nCT data that describe other physical character-
istics of particles, as well as raw images of particles
may offer more useful characteristics for the differ-
entiation of subtypes of minerals.

DISCUSSION
Geometry and Extent of the Black Reef Formation

Seismic data enhanced by seismic attributes
show clear stratigraphic continuity and shallow dip
(< 10°) of the Black Reef Formation (Figs. 3 and 4).
The shallow dip of the Black Reef Formation is
substantially different compared to the older gold-
bearing horizons of the Ventersdorp and Witwater-
srand Supergroups (Fig. 4). Localized dip variations
were linked to structural interferences, especially
major faults and dikes that cut across the Black Reef
Formation and older volcano-sedimentary succes-
sions. Compared to most Witwatersrand Supergroup
gold-bearing horizons, the Black Reef Formation
seems to have been affected by post-depositional
fracturing and faulting (Fig. 11). The Black Reef
Formation’s lithological composition and geological
setting are identical to those in, and thus considered
to be the result of, rift-type tectonic settings formed
by stretching or thinning the continental lithosphere
(Allen et al., 2015). Such rift-type basins were
common during the Meso- to Neoarchean and these
have been documented extensively by Kinsman
(1975) and Veevers (1981). In the early stages of
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Figure 10. Scatter correlation matrix of machine learning input parameters obtained from 3D pCT (n = 19,620). The kernel
density estimates (a, f, k and p) depict how each pnCT numeric variable is distributed using a Gaussian kernel density
estimation (the bandwidth is determined using the rule of Scott (1992)).

forming Archean and Paleoproterozoic rift-type
basins, intra-continental sags (cratonic basins) and
continental rim basins are present, lacking brittle
stretching but containing extensional fault systems
with influences related to topography. This inter-
pretation seems plausible based on the distribution
of faults in the Black Reef Formation, especially
those within its gold-bearing horizon.

Older faults affecting the Black Reef Formation
generally showed displacements of > 50 m, while

younger faults formed during the thermal sag phase
are limited to the Black Reef Formation and have
displacements of < 50 m. The most common feature
observed from the 3D seismics was the undulation of
the Black Reef Formation, likely related to the
paleotopographic surface on which the Black Reef
Formation was deposited. The results derived from
the interpreted 3D seismic data constrain the struc-
tural pattern and geometry of the Black Reef ore-
body (Fig. 11).
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Figure 11. Model of the gold-bearing Black Reef Formation horizon and geological structures in the study area.
Gray = faults, green = dike, and purple = Black Reef Formation horizon.

Prevention of Hazards Using Deposit-Scale
Structural Models

One of the most significant uncertainties in
underground operations is the potential for a mine
to encounter unexpected geological structures such
as faults and dikes (Stevenson et al., 2003; Fig. 11).
The presence of faults, in particular, has several
detrimental effects on underground mining. They
may cause (a) physical displacement of the reef
horizon, which may make mining impractical, (b)
loss of stability in hanging wall, and (c¢) migration of
water and methane gas into underground workings.
This study was able to effectively delineate major
and small-scale faults in the seismic data using seis-
mic attributes to determine their dips, orientation,
and throws.

Individual faults were digitized to determine
their dips and strikes, from which 3D point clouds
were produced. Initially, a linear or quadratic poly-
nomial surface was fitted to each cloud, which was
satisfactory if a fault was near-planar but performed
poorly if the fault shape was more complex (which is
the case for majority of the faults in our study area).

Therefore, each fault was modeled with multiple
planes, and the median value was used to charac-
terize the fault. Once the median surface was
established, each sub-fault’s dip and dip direction
was calculated. In general, the data showed that the
faults could be classified easily into different strike-
and dip-specific classes. The strike classes were (1)
0-30°, (2) 30-70°, (3) 70-100°, (4) 100-140°, and (5)
140-180°. The dip classes were (1) 20-40°, (2) 40-60,
and (3) 60-90°. A major consideration in orebody/
horizon modeling is fault geometric attributes,
especially dip. It was considered more unstable to
have the hanging wall of an orebody/horizon block
bound by shallow-dipping (0 45°) faults than blocks
bound by steeply dipping (60-80°) faults.

Integration of Machine Learning for Mineral
Classification

The ability to assess 3D mineral texture rapidly
and classify minerals automatically has enormous
potential in the mineral extraction and processing
industry (Hanna & Ketcham, 2017). Many tasks in
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the resource extraction and processing cycle are ei-
ther critical or are becoming critical to the industry’s
success. These include resource estimation and
modeling, material pre-concentration and sorting;
leveraging geometallurgy to optimize extraction and
processing; and automation (Lishchuk et al., 2020;
Nwaila et al., 2020c). In all these tasks, leveraging
online sensors, data and machine learning will be-
come a critical differentiator between resource
extraction success and failure in the era of digitiza-
tion. During the resource estimation and modeling
process, an accurate resource model is becoming
increasingly important to mitigate against the dele-
terious effects of low-grade, high variability, and less
desirable ores.

To increase the accuracy of resource models, it
is crucial to increase sampling density and opera-
tional feedback in the form of rapid in situ assess-
ment to fine-tune the models during operation.
Without online sensors, data and machine learning,
this is a difficult task as the turnaround time for
sampling and assaying samples after a stope has
been made available for extraction can be prolonged
(up to 14 days) and vastly increasing sample density
is not financially desirable. Instead, a modern ap-
proach should focus on a large reduction in cost per
sample analyzed and in a manner that can be rapidly
performed, such as with pCT-based analytical
methods. For grade estimation, the pCT assays need
not reach the level of accuracy of chemical assays, as
substantially more data can be generated with min-
imal cost (da Costa et al., 2022). In this manner,
resource models can be more granular and at a
quantization that is directly utilizable by extraction.
This creates higher-resolution models that, at the
block level, may exceed the capabilities of those
derived from the comparatively sparser-sampled
traditional resource estimation approach by gaining
spatial resolution at the expense of per-sample
analytical accuracy (Lishchuk et al., 2019).

Material pre-concentration and sorting are
important, probably critically so with low-grade ores
and secondary metallurgical streams. In all cases, the
ability to concentrate the resource rapidly for pro-
cessing preparation increases the financial viability
of resources that may otherwise be financially
unviable for extraction. The material characteriza-
tion information derived from the online sensors,
such as X-ray spectrometers can be leveraged to

understand the geometallurgy of a stream of
incoming material to the processing plant. Such
information is highly valuable for the processing
plant to optimize its processing parameters by acting
on the characteristics of resource-bearing material
that can be derived from the pre-concentration stage
(Jardine et al., 2018; Guntoro et al., 2019a, 2019b).
This allows more selective and higher efficiency
processing methods that maximize processing effi-
ciency. Because these tasks all rely on sensors, data
and machine learning, they can all be partially or
wholly automated to improve throughput, efficiency
and financial viability.

Importance of Relationship Between Gold
and Pyrite

Gold deportment in the mineable reserve can
firmly control final recovery. This highlights the rise
of the modern geometallurgical approach to mineral
processing and plant flowsheet design. While gold
tends to form metallic grains in nature, a large
proportion could be enclosed in durable host min-
erals such as quartz and pyrite or soft and easily
smeared hydrocarbons, such as pyrobitumen.
Therefore, the successful liberation of tiny particle
sizes is a key factor in any recovery strategy, espe-
cially where the grades are marginally profitable.
The auriferous conglomerate samples of the Black
Reef Formation contain substantial pyrite-hosted
gold. The relationship between gold and pyrite in
the Witwatersrand-type gold deposits provides a
qualitative assessment of gold association and lib-
eration characteristics (Fig. 12). Not all pyrite grains
in the Witwatersrand-type gold deposits are associ-
ated with gold. When compared to other pyrite
grains, previous studies have shown that detrital
pyrite grains have high trace element contents,
including very high gold contents (Agangi et al.,
2015). However, for the gold-bearing Black Reef
Formation, hydrothermal pyrite is also associated
with gold (Fuchs et al., 2016). Distinguishing be-
tween gold and pyrite, as well as between various
types of pyrite, may be feasible in many cases using
pCT data and machine learning. Gold in the Black
Reef Formation was introduced via multiple pro-
cesses, including: (a) recycling of gold-rich Witwa-
tersrand lithologies (or reefs) in the underlying
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Figure 12. Modeling the relationship between pyrite and gold using outputs from pCT. Dataset is presented in

Supplementary Data S1.

strata which means that gold could have been
incorporated during pyrite abrasion or adsorbed
during diagenesis (Nwaila et al., 2020a); and (b)
reworking during successive stages of the Bushveld
Igneous Complex magmatism and the Vredefort
meteorite impact (Frimmel, 2014; Fuchs et al., 2016;
Frimmel & Nwaila, 2020). Meteorite-induced seis-
mic activity likely led to the reactivation of dormant
faults, clearly imaged in the seismic data (Fig. 11;
Manzi et al., 2013; Nwaila et al., 2020a). Movement
along faults inevitably resulted in the creation of
numerous microfractures. Fault movement and
microfractures promoted concomitant fluid infiltra-
tion and circulation. This also explains the associa-
tion of gold in various pyrite generations in the
Black Reef Formation and associated ore con-
stituents, crack-filled gold in quartz and pyrobitu-
men. The lithological, sedimentological and
mineralogical characteristics indicate that the gold-

enriched Black Reef Formation is a member of the
Witwatersrand-type deposit class.

Implication for Mineral Processing

Modeling of the Black Reef Formation horizon
and structural features (Figs. 3, 4, 11), mineral grain
size distributions (Fig. 8), and prediction of the
spatial distribution of gold using sparse data from
drill holes and underground samples can be consid-
ered groundwork for more efficient mining and
mineral processing stages. Geometallurgy is a mul-
tidisciplinary approach that establishes a spatial
prediction model for production management by
connecting the three main pillars of the mining value
chain: (1) geology and geophysics; (2) mining
methods; and (3) mineral processing and extractive
metallurgy. The purpose of a geometallurgical
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model is to provide a quantitative prediction of
metallurgical performance, i.e., concentration qual-
ity, recovery rate, throughput, environmental im-
pacts, and overall economic fluctuations (Ghorbani
et al., 2013a, 2013b; Hilden and Powell, 2017; Koch
et al., 2019; Guntoro et al., 2020, 2021). While the
concept is not new, recent advancements in geo-
physical approaches, chemical characterization
methods, automated mineralogy (in 2D and 3D),
data processing, and metallurgical testing have made
it more practical in practice. This has resulted in a
new characterization workflow that includes multi-
scale (e.g., meso-, micro- or nanoscale) characteri-
zation techniques (da Costa et al., 2022). With the
rapid advancement of ore characterization tools and
techniques in the 2D and 3D environments, such as
X-ray fluorescence computed tomography for
quantitative chemical, mineralogical and textural
characterization of ores (Chen et al., 2020), it is of
utmost necessity to move toward dry laboratories
(data-centric and computation-heavy laboratories)
and modernized data management practices. This
type of environment will provide the ideal technol-
ogy and expertise to analyze both old and new data
to extract multi-timescale information. Short-term
information can be utilized to provide just-in-time
feedback to existing processing plants, while long-
term knowledge can guide the design and refinement
of new mineral processing and extractive metallurgy
units (see Ghorbani et al., 2020 for a detailed dis-
cussion).

CONCLUSIONS

Deposit-scale geophysical and geological mod-
els can help minimize uncertainty in a mineral de-
posit. At the same time, rapid reporting of mineral
textures and distributions can help with the decision-
making process on prioritization of minable blocks/
horizons and prediction of ore variability at the
metallurgical plant. This can be best addressed by
utilizing 3D reflection seismic data enhanced by
seismic attributes, geological modeling, and the use
of cost-effective machine learning workflows, some
of which may even rely on legacy-types of data.
Deposit-scale modeling using seismic reflection data
to map structures that control the gold-bearing
Black Reef Formation combined with 3D pCT to
determine ore grades rapidly and accurately are
steps that could help bridge the existing gap between

exploration in-mine geological modeling and
uncertainty quantification. The use of larger-scaled
models, such as those resulting from seismic imaging
and geological modeling, and the use of higher res-
olution resource models, such as those resulting
from pCT-based assays form a formidable frame-
work that may well enable more efficient and sus-
tainable resource extraction. Where applied, such a
framework would likely improve our understanding
of orebody geometry, uncertainty in modeling,
safety in mining, and the development of efficient
methods for metallurgical treatment of ores. These
framework components are transitional toward a
fully digitized mining environment, where online
sensor networks would generate modernized data
streams. Future research that could assist with
adaptation of the proposed framework in the mining
industry could include:

1. Integrating geophysical and geological data as a
routine workflow for implicit modeling and mine
planning.

2. Investigation and comparison between deposit-

scale geological structures and mining-induced
seismic activity on a mine scale.

3. Further research in various geological settings

using methods outlined in this paper to provide
guidance and improve workflows on quantitative
uncertainty assessments of model interpreta-
tions.
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