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(Larus spp.) inhabiting Alaska (USA), Chile, Spain, Turkey, and Ukraine and from black kites (Milvus migrans) sampled
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Hypervirulent find strong evidence for dissemination among Alaska, Spain, and Turkey. We also found strong evidence for temporal
Gull dissemination among samples collected in Alaska and Pakistan, though the majority of CRE clones were transitory and
Kite

were not repeatedly detected among locations where samples were collected longitudinally. Carbapenemase-

producing hypervirulent K. pneumoniae was isolated from gulls in Spain and Ukraine and some isolates harbored anti-
microbial resistance genes conferring resistance to up to 10 different antibiotic classes, including colistin. Our results
are consistent with local acquisition of CRE by wild birds with spatial dissemination influenced by intermediary
transmission routes, likely involving humans. Furthermore, our results support the premise that anthropogenically-
associated wild birds may be good sentinels for understanding the burden of clinically-relevant antimicrobial
resistance in the local human population.

1. Introduction

Carbapenems are considered antibiotics of last resort that are reserved
for treating multidrug resistant (MDR) infections in humans. Until recently,
carbapenem resistant infections were generally limited to healthcare
settings and nosocomial spread; however, community onset carbapenem
resistant Enterobacteriaceae (CRE) infections may now be more prevalent
than hospital onset (Jernigan et al., 2020; Kelly et al., 2017). Carbapenem
resistance has also recently been reported in environmental sources glob-
ally (Kock et al., 2018; Mills and Lee, 2019), including in wild birds
inhabiting all continents except Antarctica, sometimes at high prevalence
(Ahlstrom et al., 2019; Bouaziz et al., 2018; Bueno et al., 2020; Dolejska
et al., 2015; Fischer et al., 2013; Vittecoq et al., 2017; Wang et al., 2017).

The impact of CRE maintained in wildlife and the environment to
human health is not well understood, though it is possible that these bacte-
ria could lead to infections in humans, especially in lower-income countries
(Dolejska and Literak, 2019; Hasan et al., 2016; Van Boeckel et al., 2015).
For example, interspecies transmission of clinically important antimicrobial
resistant (AMR) bacterial clones has been demonstrated among humans, do-
mestic animals, and wildlife (Schaufler et al., 2016; Wang et al., 2017)
through mechanisms such as backyard production of agricultural animals
(Li etal., 2019). Similarly, wild birds appear to acquire clinically important
bacteria through exposure to anthropogenic sources that they may subse-
quently maintain and disperse (Ramey and Ahlstrom, 2020), though the oc-
currence and frequency of zoonotic transmission remains enigmatic. More
specifically, urbanization has affected feeding and breeding habits of certain
birds, including some gull and raptor species, promoting associations be-
tween these birds and humans. Therefore, there may be increasing risk of
interspecies transmission of antimicrobial resistance and certain pathogens
(Duhem et al., 2008; Plaza and Lambertucci, 2017). Furthermore, despite
evidence that birds are capable of dispersing clinically important bacteria
long distances through their migratory movements (Ahlstrom et al.,
2021), there is limited direct evidence to support that such long-distance
dispersal events are common (Guenther et al., 2012). As such, there are con-
siderable data gaps pertaining to the pathways through which wild birds
may disseminate clinically important AMR bacteria, including CRE.

As CRE in wild birds has increasingly been reported, a spatiotemporal
comparison of isolates from different regions and timepoints may be useful
for elucidating potentially important epidemiological information such as
the extent to which CRE in wild birds is limited to particular clones, geo-
graphic areas, and/or sampling periods. The objective of this study was
therefore to characterize the diversity of CRE from opportunistically col-
lected wild bird samples and to assess evidence for spatiotemporal patterns
of dissemination. We focused on birds that have a propensity to utilize land-
fills and other anthropogenically modified habitats for forage (i.e. plausible
environmental pathways for exposure to CRE), including gulls (Larus spp.)
inhabiting Alaska (USA), Chile, Spain, Turkey, and Ukraine and from black
kites (Milvus migrans) sampled in Pakistan.

2. Materials and methods
2.1. CRE isolates

CRE was isolated from the feces of gulls and black kites from six coun-
tries sampled as part of existing research programs (Fig. 1). In Pakistan,

two sampling sites were visited once every two weeks and fresh feces
from black kites were collected for a period of 9 months starting from
May 2019 to January 2020. Six samples were collected at each site at
each visit. Charcoal swabs were used for sample collection and after collec-
tion swabs were streaked directly on ChromAgar supplemented with
1 pg/mL meropenem. Pink Escherichia coli colonies were confirmed using
API 20E biochemical strips (bioMérieux, Marcy 1'Etoile, France) and sub-
jected to DNA extraction using conventional Phenol-Chloroform method.
PCR was used to confirm the presence of the blaypy gene using the primers
NDM F and NDM R (Pfeifer et al., 2011).

In Turkey, a total of 200 fecal samples from yellow-legged gulls
(Larus michahellis) were collected during January 2015 in the Kadikoy
(n = 100) and Kumkapi (n = 100) district of Istanbul, Turkey. Fecal
samples were collected by swirling a sterile cotton swab in freshly de-
posited fecal matter from the ground. The swabs were then inserted
into tubes with freeze medium (Luria-Bertani broth, BD Sparks, USA,
and phosphate buffered saline containing 0.45% sodium citrate, 0.1%
MgS04, 1% (NH4)2 SO4 and 4.4% glycerol). After collection in the
field, samples were kept on ice and shipped to Kalmar, Sweden for anal-
ysis. At arrival, they were stored at —80 °C until analyzed. Each fecal
sample was cultured in tryptic soy broth (Sigma-Aldrich, USA) supple-
mented with meropenem (0.125 mg/L) and vancomycin (6 mg/L) for
18 h at 37 °C. The broth was thereafter inoculated onto chromID®-
CARBA SMART plates (bioMérieux, Marcy L'Etoile, France) and
cultured overnight at 37 °C. Putative Enterobacteriaceae colonies were
sub-cultured on chromID®CARBA SMART plates for confirmation,
before the bacteria were identified to the species level with API20E
biochemical strips (bioMérieux SA, Marcy-1Etoile, France) and matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry
(Bruker Daltronics Scandinavia AB, Solna, Sweden). Phenotypic
carbapenamase production and its type were determined, using
MBL&KPC&OXA-48 discs kit (Liofilchem, Italy) according to the manu-
facturer's instruction.

In Chile, freshly deposited feces from 100 Franklin's gulls (Larus
pipixcan) were sampled in February 2020 near the Aconcagua River
Delta, Concon, Chile. All samples were inoculated in 2 mL brain heart infu-
sion (BHI) broth (Becton Dickinson, Sparks,USA), supplemented with van-
comycin (16 mg/L; ICN Biomedicals Inc., Santa Ana, USA) for selection of
gram-negative bacteria, and incubated for 18-24 h at 36 °C. Following incu-
bation, 10 pL of BHI broth was streaked onto Supercarba plates
(CHROMagar, Paris,France), a selective medium that supports growth of
bacteria with reduced susceptibility to carbapenems. Plates were incubated
in aerobic conditions for 18-24 h at 36 °C. Putative E. coli and Klebsiella spp.
isolates were confirmed by matrix-assisted laser desorption ionization time-
of-flight mass spectrometry.

In Spain, fresh feces were collected from yellow-legged gulls and lesser
black-backed gulls (Larus fuscus) at a beach front in Estepona, Spain. Sam-
ples were collected in February 2018 (n = 100), November 2018 (n =
93), January 2019 (n = 100), May 2019 (n = 100), and September 2019
(n = 100). Samples were processed the same as in Chile.

In the Azov-Black Sea region of Ukraine, fresh fecal material from
Caspian gulls (Larus cachinnans), were collected in, Kherson June 2019
(n = 52), August 2019 (n = 7), September 2019 (n = 10), January
2020 (n = 3) and Odesa June 2019 (n = 6). Samples were processed
the same as in Chile.
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Fig. 1. Map displaying locations of CRE-positive samples collected from wild birds, displaying bacterial genera (Citrobacter spp. = C; E. coli = E; K. pneumoniae = K),
multilocus sequence type (NF indicates not found), and carbapenemase genes identified at each location. Shaded colors represent strains with identical sequence type
(yellow), carbapenemase gene (orange), and immediate genetic context of the carbapenemase gene (red) isolated from separate locations or sampling events.

In Alaska, fresh fecal material from glaucous gulls (Larus hyperboreus),
glaucous-winged gulls (Larus glaucescens), herring gulls (Larus argentatus),
and hybrids was collected from seven locations in Alaska, May—August
2016: Samples were collected by inserting a sterile swab into recently de-
posited gull fecal material and subsequently placing it into a vial with
chilled Luria broth (LB) (Sigma-Aldrich, Stockholm, Sweden). Complete in-
formation and the initial characterization of isolates is reported in Ahlstrom
etal. (2019).

Antimicrobial susceptibility testing (AST) was performed on all isolates
using disk diffusion for ampicillin (10 pg), cefadroxil (30 pg), chloramphen-
icol (30 pg), ciprofloxacin (5 pg), gentamicin (10 pg), mecillinam (10 pg),
nalidixic acid (30 pg), nitrofurantoin (100 pg), piperacillin/tazobactam
(30/6 pg), tetracycline (30 pg), trimethoprim (5 pg), trimethoprim/sulfa-
methoxazole (1.25/23.75 pg) and meropenem (10 pg) (Thermo Fisher Sci-
entific Oxoid Ltd., UK). Minimum inhibitory concentration testing was
performed using E-tests (0.002-32 mg/L) for doripenem, ertapenem,
imipenem and meropenem (Biomerieux, France), and micro broth dilution
for colistin (0.0625-64 mg/L) (Merlin Diagnostika GmbH, Germany). All
AST was performed and interpreted according to the European Committee
on Antimicrobial Susceptibility Testing (EUCAST, 2013), except for tetracy-
cline as this antimicrobial has no defined clinical breakpoint (Kronvall and
Smith, 2016).

Conjugation experiments were performed for select isolates from Alaska
and Turkey by growing donor (A1_180, A1_181, A1_136, Elec200xaOxa,
E2ec2oxaOxa, E3ec260xa0Oxa, E4ec350xa0Oxa, E5ec360xaOxa) and recipi-
ent (E. coli MG1655) cultures overnight in LB broth supplemented with
ertapenem 1 mg/L (Sigma-Aldrich, Stockholm, Sweden) or chlorampheni-
col 12.5 mg/L (Sigma-Aldrich, Stockholm, Sweden) and rifampicin
100 mg/L (Sigma-Aldrich, Stockholm, Sweden), respectively. Donor and
recipient cultures were washed in LB broth, mixed 1:1 (totally 200 pL),
pelleted and resuspended in 20 pL LB broth, which was filtered on
0.45 pm filter 22 mm ¢ (Whatman, Sigma-Aldrich, Stockholm, Sweden).

Filters were incubated on blood agar plates at 35 °C overnight and then
transferred to 2 mL LB broth. Transconjugants were selected by plating
mating mixture onto LB plates with ertapenem 1 mg/L, chloramphenicol
12.5 mg/L and rifampicin 100 mg/L. Transconjugants were verified by
qPCR for blagpc, as previously described (Singh et al., 2016).

2.2. Whole genome sequencing and bioinformatic analysis

DNA was extracted from CRE isolated from the above sampling pro-
grams using the MagnaPure compact nucleic acid isolation kit (Roche,
Stockholm, Sweden). Whole genome sequencing was performed using the
Mlumina HiSeq 4000 (Illumina, San Diego, USA). In the case of samples
from Alaska (USA), whole genome sequencing information was previously
collected and described as part of a prior investigation (Ahlstrom et al.,
2019), though information was included for comparative analyses as part
of this project. All other genomic information is presented here for the
first time. All sequences are publicly available in the sequence read archive
under accession number PRJNA800400.

Raw reads were trimmed and filtered using fastp (Chen et al., 2018)
using default settings and then assembled de novo with Unicycler (Wick
et al., 2017). Antimicrobial resistance genes, virulence genes, and plasmid
replicons were detected from assemblies using Abricate (Seeman, https://
github.com/tseemann/abricate) using the ResFinder (Zankari et al.,
2012), virulence factor (Chen et al., 2016), and PlasmidFinder (Carattoli
et al., 2014) databases, respectively. In silico multilocus sequence typing
(MLST) was performed using SRST2 (Inouye et al., 2014) based on the
seven gene E. coli #1 typing scheme retrieved from pubmlst.org.
Kleborate (Lam et al., 2021) was used to determine virulence and K
loci of Klebsiella pneumoniae isolates. The immediate genetic context of
carbapenemase genes was identified using TETyper (Sheppard et al.,
2018) and by aligning contigs containing carbpenemase genes in Geneious
(Kearse et al., 2012).
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Isolates within a particular sequence type were reference mapped to a
completed genome using the Burrows-Wheeler Alignment tool (Li and
Durbin, 2009) and variant sites were identified using SAMtools (Li et al.,
2009). Variant sites were filtered based on depth of coverage (at least 2
high quality single nucleotide polymorphisms (SNPs) on both the forward
and reverse strand), mapping quality (>40), and heterozygosity (<5%).
An alignment of concatenated SNPs were used to create maximum likeli-
hood phylogenetic trees using PhyML (Guindon et al., 2010).

Simpson's diversity index (1-D) was computed in the statistical program
R (R Core Team, 2016) using the package vegan (Oksanen et al., 2018) and
was based on 1) the number of unique sequence types, 2) the number of
unique carbapenemase genes detected at each location, and 3) the com-
bined sequence type/carbapenemase gene combination.

2.3. Assessment of spatial and temporal dissemination of CRE by wild birds

We assessed support for spatiotemporal patterns of dissemination of
CRE by gulls and kites based on the bacterial sequence type, carbapenemase
gene content, and immediate genetic context of the carbapenemase gene.
We considered isolates with an identical sequence type but different
carbapenemase genes to provide weak evidence for dissemination. We con-
sidered isolates sharing an identical sequence type and carbapenemase
gene, but with different immediate genetic contexts to provide moderate
support for dissemination. We considered isolates with an identical se-
quence type, carbapenemase gene, and identical genomic context of the
carbapenemase gene to provide strong support for dissemination through
space/time. All remaining isolate comparisons, including those without
shared sequence types, were considered not to support dissemination
through space/time. Additional comparisons of isolate diversity, dominant
clones, and virulence genes among isolates from globally diverse sites was
included to provide further information on potential dissemination patterns
and implications to public/veterinary health; though, such information was
not considered in a formal analytical framework.

3. Results

A total of 68 CRE isolates were successfully cultured and sequenced
from wild bird fecal samples collected from globally diverse sites, including
Citrobacter spp. from Turkey (n = 2); E. coli from Alaska (n = 7), Chile (n =
15), Spain (n = 16), Turkey (n = 6), and Pakistan (n = 6); and
K. pneumoniae from Spain (n = 14), Chile (n = 1), and Ukraine (n =
1) (Fig. 1). Genes encoding for variants of four carbapenemases were iden-
tified, including Klebsiella pneumoniae carbapenemase (KPC), New Delhi
metallo-beta-lactamase (NDM), oxacillinase (OXA), and Verona integron
Metallo beta-lactamase (VIM). All isolates, with the exception of one, a
VIM-1 producer from Spain, phenotypically demonstrated reduced suscep-
tibility to at least one carbapenem antibiotic (Supplementary Table 1). No
isolates demonstrated phenotypic resistance to colistin. Given that our iso-
lates were obtained opportunistically from different project objectives and
sampling strategies, we do not compare prevalence or detection levels of
CRE in wild birds among locations or host species.

3.1. Identity and diversity of multilocus sequence types and carbapenemase genes

Twenty-eight unique sequence types were identified, only three of
which were found in multiple locations. E. coli ST38 was identified from
samples collected from Alaska, Spain, and Turkey; E. coli ST410 was
identified from samples from Alaska and Spain; and E. coli ST744 was iden-
tified from samples collected in Chile and Spain (Fig. 1). Three sequence
types were identified from samples longitudinally collected at the same
location including E. coli ST38 (Alaska), E. coli ST167 (Pakistan), and
K. pneumoniae ST11 (Spain) (Fig. 1).

Seven different carbapenemase genes were detected, including blaxpc .,
blakpc 3, blaxpm.1, blanpas, blaoxa-as, blaoxa-24s, blaym (Fig. 2A). Com-
mon carbapenemase genes found in isolates from multiple locations in-
cluded blaxpc.» (Alaska, Chile, Spain, and Turkey), blaxpy.1 (Spain and
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Fig. 2. Count and identity of carbapenemases found in Enterobacteriaceae isolated
from (A) six locations and (B) in Spain during four sampling occasions.

Ukraine), blaypm.s (Chile, Pakistan, and Spain) and blapxa.4s (Alaska,
Spain, and Turkey) Two Citrobacter spp. isolates from Turkey were double
carbapenemase producers, harboring both blagpc » and blaoxa 4g. A total of
32 unique MLST/carbapenemase gene combinations were detected (Fig. 1;
Supplementary Table 1).

Among six sampling sites from which bird feces were collected and cul-
tured, Spain exhibited notably high diversity of both sequence types and
carbapenemase genes (Table 1, Fig. 2B). In contrast, Chile and Pakistan
had relatively low diversity of sequence types and carbapenemase genes,
respectively (Table 1; Fig. 1). Generally, locations sampled longitudinally
across seasons (Spain and Pakistan) exhibited relatively high diversity
values for sequence types/carbapenemase genes as compared to locations
sampled once or within a given season (Alaska, Chile, Turkey, and
Ukraine) (Table 1). A single clone (i.e. identical sequence type and
carbapenemase gene) also represented >50% of isolates per site for these
latter sampling locations (Fig. 1).

Table 1

Number of CRE isolates genomically characterized from each location and diversity
metrics based on MLST, carbapenemase genes, or the MLST/carbapenemase gene
combination.

Location Number of  Diversity ~ Diversity Diversity
isolates MLST carbapenemase = MLST/carbapenemase

genes gene

Alaska, USA 7 0.49 0.49 0.49

Chile 16 0.42 0.22 0.42

Pakistan 6 0.72 0 0.72

Spain 30 0.92 0.75 0.94

Turkey 8 0.53 0.53 0.53

Ukraine 1 0 0 0
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3.2. Plasmid replicons

Diverse plasmid replicon types were identified among isolates from six
sampling sites (Fig. 3). Full genetic context of carbapenemase genes was not
possible to infer using only short read sequencing; however, the immediate
genetic context of carbapenemase genes (i.e. genetic elements within the
same contig) could be inferred for most isolates, except for those harboring
blaoxa.4g and blapxa.o4s. KPC genes were located within three different var-
iants of Tn4401 and a non-Tn4401 genetic element (Fig. 3; Supplementary
Table 1). Three E. coli isolates from Alaska harbored KPC genes within
Tn4401a-1, one E. coli and one K. pneumoniae isolate from Chile, both
from the same gull, harbored blaxpc.» within a non-Tn4401 element, and
three K. pneumoniae isolates from Spain harbored blaxpc.s within
Tn4401a-2. Two isolates from Spain (one E. coli and one K. pneumoniae,
each sampled at different time points) and three isolates from Turkey
(one K. pneumoniae and two Citrobacter spp.) harbored blaxpc.» within a
truncated Tn4401 element. NDM genes were located within the same
immediate genetic context as previous reports of NDM-producing
E. coli (dsbD-trpF-bleMBL-blaypn /5), though longer contigs indicated
some differences downstream of blaypy genes. OXA-48-like genes
were found on short (~2300 bp) contigs; thus, the genetic context of
these genes could not be conclusively resolved. However, an IncL/M
pOXA-48 plasmid was detected in 20 of the 29 isolates harboring
OXA-48-like genes (Fig. 3). No plasmid replicons were detected in five
E. coli ST38 isolates from Turkey, suggesting chromosomal integration
of blapxa.4s. Carbapenem resistance failed to be transferred from these
five isolates through conjugation experiments, further supporting chro-
mosomal integration of blapxa.4g. Chromosomal integration of blapxa.4s
was confirmed in the four isolates from Alaska via long read whole ge-
nome sequencing (Ahlstrom et al., 2019).

3.3. Temporal dissemination

We found variable evidence for temporal dissemination of CRE at
three locations (Alaska, Spain, and Pakistan) with longitudinal sam-
pling (Fig. 1) as inferred through genomic comparisons among 27
clones. In Pakistan, one clone was detected at multiple sampling time
points, an E. coli ST167 clone that harbored blaypy.s within the same ge-
netic context was isolated in May and then again in December of the
same year. We previously reported the repeated detection of an E. coli
ST38 clone harboring chromosomal blapxa.4s from gulls in Alaska,
USA in June and then again in August (Ahlstrom et al., 2019). Both of
these examples provide strong support for temporal dissemination. In
Spain, two isolates with the same K. pneumoniae sequence type (ST11)
were identified at multiple sampling events, though they harbored
two different blapxs carbapenemase genes, providing only weak evi-
dence for dissemination.

3.4. Spatial dissemination

We also found evidence for spatial dissemination of CRE among sample
locations (Fig. 1). A total of 32 clones were detected among six sites, though
only two clones were found in multiple locations. E. coli ST38 OXA-48-pro-
ducing isolates were found in Alaska, Turkey, and Spain and comparisons
among isolates provided strong evidence of dissemination. Reference map-
ping to the completed genome of the previously reported Alaska strain and
comparison among all ST38 isolates identified in this study for the first time
revealed only 1 to 5 SNPs (divergence = 0.0000002-0.0000009%) be-
tween the isolates from Turkey and Alaska. In contrast, the ST38 isolate
from Spain differed by 388-392 SNPs (divergence = 0.00007%) (Fig. 4).
The second clone, E. coli ST410 KPC-2-producing isolates, was found in
Alaska and Spain and provided moderate support for dissemination, as
the immediate genetic context of the blagpc » was different (Supplementary
Table 1). Lastly, E. coli ST744 isolates were found in both Chile and Spain,
though the carbapenemase genes differed providing only weak support for
dissemination.
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3.5. Hypervirulence and multidrug resistance

A total of 16 K. pneumoniae isolates were recovered from Chile, Spain,
and Ukraine, all of which were MDR. Two isolates, one each from Spain
(2507b) and Ukraine (3132), were identified as hypervirulent based on
presence of yersiniabactin and aerobactin virulence genes. The single iso-
late from Ukraine was ST395, capsule type K2, harbored blaypy s and the
mucoid phenotype regulator gene rmpA. The other hypervirulent strain
was isolated from a gull in Spain and was ST11, capsule type K24, and har-
bored blapgxa_4s-

Genes conferring resistance to a total of 12 different antibiotic clas-
ses, including rifampicin, aminoglycoside, betalactam, phenicol, trimetho-
prim, macrolide, fosfomycin, lincosamide, colistin, fluoroquinolone,
sulphonamide, and tetracycline, were identified in our collection of 68
CRE isolates (Fig. 5). Ninety-seven percent (66,/68) of isolates were MDR,
with some isolates harboring AMR genes conferring resistance to up to 10
different antibiotic classes. Colistin resistance genes were identified in
gulls sampled in Chile and Spain. One E. coli isolate from Spain harbored
the mobile colistin resistance gene mcr-10 and three K. pneumoniae isolates
from Spain harbored K. pneumoniae with mutations in mgrB, which may
confer colistin resistance. Thirteen E. coli isolates from Chile harbored
mcr-9, including the dominant ST1178 clone as well as a single ST744
isolate.

4. Discussion
4.1. High diversity and limited spatiotemporal dissemination

Our results reveal extensive diversity of CRE harbored by wild birds
sampled in diverse global settings. In four out of the five locations where
more than one isolate was found, two or more different classes of
carbapenemases were identified. Very high diversity was found in Spain,
where seven carbapenemase genes were identified over the course of four
sampling events, two to five of which were identified during a single sam-
pling event. This is in contrast to previous research in Australia and France,
where a single carbapenemase gene was found when samples were
collected at a single time point, despite the relatively high prevalence of
CRE in gulls (Dolejska et al., 2015; Vittecoq et al., 2017). On the other
hand, relatively high diversity of carbapenemases and bacterial sequence
types was recently reported in gulls inhabiting the Lisbon coastline of
Portugal (Aires-de-Sousa et al., 2020). We found lowest diversity in
Pakistan, where a single carbapenemase gene was identified. Our results
suggest recurrent local acquisition of CRE by wild birds, rather than interna-
tional dispersal through migration or a distinct wildlife reservoir of CRE. A
single clone was dominant at some locations, which could reflect transmis-
sion within the wild bird population or exposure to the same point source.

At some sampling events, particularly in Chile and Spain, a high propor-
tion of CRE was recovered from wild bird samples (10-16 isolates out of
100 samples collected). During these sampling events, gulls harbored
KPC, OXA, and NDM carbapenemases within E. coli and K. pneumoniae
clones known to be pathogenic in humans, exemplifying potentially impor-
tant public health implications of CRE in wild birds. The frequency at which
CRE was detected at these locations/times suggests prevalence in wild birds
may be equal or exceed levels found in many human populations, including
in Latin America and Spain (European Centre for Disease Prevention and
Control, 2019; Hansen, 2021). Although we do not directly estimate preva-
lence of CRE in wild birds in this study given methodological considerations
(see Materials and Methods and Results), the high number of detections is
noteworthy and emphasizes the need to further understand the role that
wild birds may play in the maintenance and dissemination of CRE. For ex-
ample, the well-visited beach in Estepona, Spain where the sampling took
place is situated close to the densely populated city center, but not in the ab-
solute vicinity of any farms. There are only small private hospitals in
Estepona and the wastewater treatment plant and landfill are situated
quite far from the city center. More detailed studies are clearly needed to
identify the most relevant point sources for AMR acquisition by gulls.
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Fig. 3. Depiction of plasmid replicons identified among CRE isolates, grouped according to carbapenemase. Colored circles represent locations where samples were collected
and the matrix indicates presence of specific plasmid replicons (grey shading). To the right, boxes are colored according to carbapenemase and the immediate genetic context
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In Alaska, Pakistan, and Spain, where samples were collected longitudi-
nally, we found some evidence for temporal dissemination of clones over
time. A single ST167 clone in Pakistan appeared to persist over a period
of several months (May — December) and we previously reported an
E. coli ST38 clone detected in Alaska gulls sampled in June and August of
the same year (Ahlstrom et al., 2019). This indicates that gulls and kites
may be capable of facilitating the persistence of CRE or are repeatedly ex-
posed to the same CRE in the environments they inhabit. The former is
plausible given that gulls are capable of shedding clinically-important anti-
biotic resistance genes (e.g. mcr-1 conferring colistin resistance) for at least
16 days following experimental challenge that can persist in the environ-
ment for at least 29 days (Franklin et al., 2020). Weak evidence for tempo-
ral dissemination, on the other hand, was found in Spain, where only one
sequence type was isolated from multiple sampling events, though with dif-
ferent carbapenemase genes. Two sampling events in Spain (e.g. May and
September) provided a high number of detections of CRE. Such temporal
variation in detection of CRE among wild birds is consistent with previous
research in which samples from mallard ducks had a higher prevalence of
extended-spectrum beta-lactamase-producing Enterobacteriaceae in warmer
months (Hessman et al., 2018). This weak evidence of temporal dissemina-
tion in Spain is somewhat unexpected given the findings of Franklin et al.
(2020) and may indicate that a greater number of samples are required to
detect temporal trends.

Strong evidence for spatial dissemination was found among samples
collected in Alaska, Spain, and Turkey. We identified remarkable genomic
similarity between E. coli ST38 blapxa. 4s-positive clones isolated from
gulls in Turkey (sampled in 2015) and Alaska (sampled in 2016), with
more diversity found within isolates from each site than between sites.
These isolates harbored chromosomally-encoded blapxa. 4, which has

previously been reported in multiple countries and clinical settings
(Beyrouthy et al., 2014; Hendrickx et al., 2021; Pitout et al., 2020). The
other ST38 isolate recovered from Spain, as well as all other blapxa.4s-
positive isolates, harbored an IncL/M plasmid that is frequently associated
with OXA-48. This isolate from Spain also had a larger number of SNPs
compared to ST38 isolates from Alaska and Turkey, suggesting a more dis-
tant epidemiological connection. There is no migratory flyway that con-
nects Alaska and Turkey; thus, intermediary transmission routes almost
certainly played some role in the clonal dispersal of CRE between gulls
from these two distant locations. OXA-48 was first identified in an isolate
from Turkey in 2001 (Poirel et al., 2004) and has since spread widely, espe-
cially in the Middle East (Poirel et al., 2012). Human infections caused by
OXA-48-producing CRE, on the other hand, are rare in the United States
and are often associated with overseas travel (Lyman et al., 2015; Walters
etal., 2018). It is therefore plausible that visitors to Alaska or residents trav-
elling abroad became colonized with this clone and shed it into an environ-
ment where gulls were exposed.

We also identified moderate and weak evidence for spatial dissemina-
tion among samples from Alaska and Spain and samples from Chile and
Spain, respectively. Although E. coli ST410 harboring blaxpc.» was found
in both Alaska and Spain, the immediate genetic context of the blaxpc >
gene was different. These differences likely reflect different epidemiologi-
cal histories and modes of carbapenemase gene acquisition (i.e. indepen-
dent acquisition of blaxpc.» by two different ST410 clones) (David et al.,
2020; Matlock et al., 2021) and thus provide only moderate evidence for
spatial dissemination. E. coli ST744 isolates from Chile and Spain are
unlikely to be epidemiologically linked, as they harbored different
carbapenemase genes. MLST is a relatively course tool to determine
genomic similarity and ST744 is geographically widespread, reported
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Fig. 5. Depiction of AMR genes identified among CRE isolates grouped according to bacterial species and multilocus sequence type. Colored circles represent locations where
CRE was isolated and the matrix to the right indicates presence of AMR genes, colored according to antimicrobial class. Green shading with a black dot indicates the

carbapenemase gene(s) detected.

in Africa, Asia, Europe, North America, and South America (http://
enterobase.warwick.ac.uk).

4.2. Clinically-relevant clones and virulence

Most CRE isolated in this study are well-known MDR human pathogens
(Dunn et al., 2019; Wyres et al., 2020), often reflecting clones or
carbapenemases reported in spatially proximate human populations. For
example, NDM-5-producing E. coli was dominant in wild birds in
Pakistan, which corresponds to the dominance of NDM carbapenemases
on the Indian subcontinent (Hornsey et al., 2011; Logan and Weinstein,
2017; Qamar et al., 2019). Furthermore, carbapenemase producing E. coli
ST167 and ST405 found in black kites in Pakistan have been previously re-
ported in clinical settings in Pakistan (Hadjadj et al., 2021). Similarly, we
identified a KPC-2 gene embedded in a non-classical transposon element
in isolates originating from gulls in Chile, a genetic context which has
also been reported in clinical isolates from a hospital outbreak in the
same region of the country (Wozniak et al., 2021). In Spain, several
carbapenemases were reported among clinical isolates in Andalucia be-
tween 2014 and 2018, including KPC-3-producing K. pneumoniae ST512,
and OXA-48-like-producing K. pneumoniae ST11, ST15, ST392, and ST307
(Lopez-Hernandez et al., 2020), all of which we detected in gulls in south-
ern Spain. Such similarity of CRE clones isolated from spatially proximate

humans and gulls was also recently observed in gulls sampled in Portugal
(Aires-de-Sousa et al., 2020).

Co-occurrence of colistin and carbapenem resistance genes was found in
25% of isolates (17/68) despite the fact that none of the isolates exhibited
phenotypic resistance to colistin through laboratory culture. Given that co-
listin is one of the few remaining treatment options for carbapenem-
resistant infections, further evaluations of the co-occurrence of resistance
to these two classes of antimicrobials in diverse environmental settings
may be warranted to inform the evaluation of risk to human and veterinary
medicine. Co-resistance to colistin and carbapenems has been reported in
Enterobacteriaceae isolated from humans, agricultural environments, and a
wild bird (Macesic et al., 2021; Wang et al., 2017; Yang et al., 2016) and
human-animal transmission of an E. coli ST744 clone co-producing NDM-
5 and MCR-1 was evidenced from humans and their backyard animals in
China (Li et al., 2019). Macesic et al. (2021) described silent spread of
mcr-9.1 on IncHI2 plasmids in Australia among isolates that did not demon-
strate phenotypic resistance to colistin. We similarly isolated 13 phenotyp-
ically colistin sensitive E. coli isolates harboring mcr-9 from Chile and one
isolate harboring mcr-10 from Spain. In Spain, we also isolated three KPC-
3-producing K. pneumoniae ST512 isolates with a deletion in mgrB, a
clone that has been previously reported in southern Spain (Oteo et al.,
2016). Should CRE in environmental sources develop phenotypic resistance
to colistin or become more common, our data suggest that environmental
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pathways could facilitate the dissemination of bacteria that may be ex-
tremely difficult to treat in clinical settings.

The presence of carbapenem resistant hypervirulent K. pneumoniae (CR-
hvKp) in gull feces sampled in two European countries may also have impli-
cations to veterinary and public health. MDR strains and hypervirulent
strains of K. pneumoniae were once considered two distinct populations,
though strains that possess both phenotypes have been increasingly re-
ported (Lan et al., 2021). We detected a blaxpy.1-positive ST395 hypervir-
ulent isolate from a gull in Ukraine, which is the same clone that was
isolated from hospitalized patients in Russia (Lazareva et al., 2020). We
also detected a blapxa.4s-positive hypervirulent ST11 isolate in Spain.
Both hypervirulent isolates belong to the K. pneumoniae clonal group 258
(Wyres et al., 2015), which has a strong association with carbapenem resis-
tance; thus, these carbapenem resistant isolates likely acquired virulence
genes via horizontal gene transfer, as opposed to hypervirulent clones ac-
quiring carbapenemase genes (Lan et al., 2021).

Our comparisons of isolates from gulls and kites to previously reported
findings are consistent with local acquisition of clinically-relevant CRE by
wild birds and support the premise that anthropogenically-associated wild-
life may be good sentinels for understanding the burden of antimicrobial re-
sistance in the local human population (Nieto-Claudin et al., 2021; Ramey
and Ahlstrom, 2020). Long read sequencing could confirm similarity of
clones and plasmids among isolates in this study and previously reported
isolates from humans and the environment, which may help to clarify epi-
demiologic relationships among these sectors. For example, the clinical iso-
lates from Chile harboring KPC genes in a non-classical transposon element
within an IncN plasmid (Wozniak et al., 2021) could be compared to the
gull isolates harboring KPC-2 genes in the same non-classical transposon el-
ement. Furthermore, the KPC-2 gene in this genetic context was identified
in both an E. coli and K. pneumoniae isolate from the same gull fecal sample,
both of which harbored IncN plasmid replicons. This suggests possible
transfer of the same KPC-2-containing plasmid between genera, and
perhaps between humans and gulls, though confirmation via long read
sequencing is requisite to improve resolution of inference.

4.3. Future directions

Our results provide valuable data from which to inform future studies
specifically designed to assess spatiotemporal patterns of CRE dissemina-
tion among wild birds globally. Carefully selected geographic locations
throughout migratory pathways of anthropogenically associated wild
birds could provide more robust inference on the spatial patterns of dissem-
ination, while bird tagging and/or movement data (e.g. obtained through
banding or satellite telemetry) could resolve whether longitudinally col-
lected samples reflect a consistent population of birds and further refine mi-
gratory connectivity. Given the opportunistic nature of our samples, only
bacterial isolates collected from locations where CRE was detected were in-
cluded in analyses, which did not necessarily reflect the most spatiotempo-
rally refined sampling locales for detecting epidemiological connections.
Thus, future studies designed to systematically collect data over space and
time would minimize such sampling bias and provide opportunities to com-
pare prevalence estimates of CRE among locations and assess seasonal var-
iations within discrete or interconnected populations of birds. Finally,
genomic comparisons of CRE derived from human clinical cases and wild
birds from the same geographic region and time period could help deter-
mine epidemiological relationships between these host species and clarify
the zoonotic potential of CRE harbored by wild birds.

5. Conclusions

We found a high diversity of CRE among wild bird fecal samples collected
from six countries, with relatively high proportions of birds at some locations
harboring CRE. Strong evidence for temporal and spatial dissemination was
found, though the majority of clones were not detected at multiple locations
or repeated sampling events. CRE detected in wild birds often appears to re-
flect clones and/or carbapenemase genes circulating in the local human
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population and detection of CR-hvKp among birds in two European countries
exemplifies the public health significance of CRE harbored by wild birds. In-
creased surveillance for clinically-relevant antimicrobial resistant bacteria in
the environment, including wild birds, might elucidate the epidemiological
role of these hosts in the maintenance and dissemination of CRE, not only
through space and time, but also among humans, animals, and other wildlife.
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