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ABSTRACT
Efficient modeling of censored data, that is, data which are restricted by some detection limit or truncation,
is important for many applications. Ignoring the censoring can be problematic as valuable information
may be missing and restoration of these censored values may significantly improve the quality of models.
There are many scenarios where one may encounter censored data: survival data, interval-censored data
or data with a lower limit of detection. Strategies to handle censored data are plenty, however, little effort
has been made to handle censored data of high dimension. In this article, we present a selective multiple
imputation approach for predictive modeling when a larger number of covariates are subject to censoring.
Our method allows for iterative, subject-wise selection of covariates to impute in order to achieve a fast
and accurate predictive model. The algorithm furthermore selects values for imputation which are likely
to provide important information if imputed. In contrast to previously proposed methods, our approach
is fully nonparametric and therefore, very flexible. We demonstrate that, in comparison to previous work,
our model achieves faster execution and often comparable accuracy in a simulated example as well as
predicting signal strength in radio network data. Supplementary materials for this article are available
online.
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1. Introduction

Handling censored data is essential for many research fields.
Survival models are widely used when the response is subject
to censoring, however, less effort has been put into modeling of
censored predictors. Censoring due to a lower limit of detection
is common in data measured with some instrument not having
precision enough to detect small values, such as for instance
biomedical data (Paxton et al. 1997; Hughes 1999; Lyles, Lyles,
and Taylor 2000), or signal detection (Ryden et al. 2018).

Maximum likelihood is a common approach for handling
censored covariate data. Lee et al. (2018) present a maximum
likelihood based method using generalized linear models for the
case when potentially all covariates are censored. The censoring
limits can be set individually for the different covariates. In
de Lima Taga and Singer (2018), linear regression is used to
obtain maximum likelihood estimators of the parameters in
order to handle cases of right- or left-censored data for both
the covariates and the response. Gomez, Espinal, and Lagakos
(2003) also studies a likelihood approach for the interval cen-
sored, single covariate case.

Yue and Wang (2016) consider a Bayesian approach using
a Bayesian linear model using auxiliary variables which can
handle several types of censoring, including subject specific
censoring limits. They argue that even though this model does
not perform very well for extensive censoring, it works better
than imputing and modeling in two independent steps. Bayesian
GLMs are also suggested by Wu et al. (2012) to handle primarily
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left censored data, although, the method can be extended to
right or interval censoring, and offers one lower limit per covari-
ate. The method is however sensitive to the choice of prior
distribution. A bridge between the Bayesian and the frequentist
approaches is offered by May, Ibrahim, and Chu (2011), where a
Monte Carlo version of the EM algorithm is used. The method
allows for interval censoring, subject specific and covariate spe-
cific limits of detection as well as response censoring. As the
method requires solving an extensive integral, they use rejection
sampling to approximate the resulting distribution.

Bernhardt, Wang, and Zhang (2015) suggest improper mul-
tiple imputation using the Metropolis Hastings algorithms and
generalized linear models for imputing all censored values. Lee,
Kong, and Weissfeld (2012) focus on variable specific lower
limits of detection and use multiple imputation to handle the
case where the covariates are correlated and heavily censored.
A heavy censoring context may in greater extent eliminate com-
plete cases, which are needed for an initial estimate of the model
parameters. Arunajadai and Rauh (2012) also present a multiple
imputation method using a generalized Gamma distribution to
get the expected value of censored covariates, which allows for
varying censoring limits. Tsimikas, Bantis, and Georgiou (2012)
also consider a generalized Gamma distribution for the covari-
ates in combination with a simple linear model assuming inde-
pendence between covariates, response and the censoring limit.
Their approach allows for a nonparametric form of the response
and is, according to the authors, computationally simple.
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Previous work consider cases with one or only a few covari-
ates, and the overview indicates that the field still lacks a strategy
for efficient processing of a large number of censored covariates
when all covariates are subject to censoring and when the covari-
ates and the response have unknown nonlinear relationships. In
this article, we present a selective multiple imputation approach
to minimize the mean squared error and execution time when a
larger number of covariates are subject to several different types
of censoring simultaneously and when there are no complete
cases available.

Our selective multiple imputation approach is based on the
method proposed by Bernhardt, Wang, and Zhang (2015), moti-
vated by their computationally light framework relative to other
approaches and the ability to handle several censored covariates.
We propose a number of alterations to the Bernhardt, Wang,
and Zhang (2015) approach that, while adapting the approach to
fit our predictive scenario, allow for handling high-dimensional
data and the absence of complete cases. More specifically, we
propose a selective prediction approach for better scaling and
to avoid imputations having low impact on predictive quality.
To side step the need for complete cases we propose a k nearest
neighbor estimation strategy. We furthermore propose using
Random Forest to offer a flexible nonparametric estimation of
the covariate distribution means. We focus on data with a lower
limit of detection, however, our model can be applied to other
natures of censoring.

Necessary adjustments of the Bernhardt, Wang, and Zhang
(2015) approach will be explained in Section 2.2. In Section 2.3,
we introduce an approach for selecting the values that are most
likely to be influential for imputation and better estimates for the
initial imputations. In Section 3 we run experiments on simple
artificial data and in Section 4 we evaluate the models on data
simulated to resemble signal strength data in a wireless network.
Finally, in Section 5, we discuss the results and make concluding
remarks.

2. Methods

The reference algorithm proposed by Bernhardt, Wang, and
Zhang (2015) will be presented in Section 2.1. In Section 2.2
we present necessary adjustments to focus on the predictive
modeling, for processing data with no complete cases and for
increasing the model flexibility. In Section 2.3 we present a
selective imputation approach using kNN imputation.

2.1. Improper Multiple Imputation

Bernhardt, Wang, and Zhang (2015) present a model where
some, or, with some alterations, all covariates are subject to
censoring. They assume a joint truncated normal distribution
for the censored values as a result of assuming joint normality
for the covariates. Censored values are iteratively imputed by
rejection sampling.

They assumed the observed data to consist of n observations,
continuous censored covariates x and fully observed continuous
covariates z. Let y be the binary response in a generalized linear
model where x and z are independent variables. Let xo be the
observed values in the censored covariates, xc the censored val-
ues of the censored covariates and dc be a vector containing the

lower limit of detection for each observation. For observation
i, they assume that the distribution of x, p(xi|zi; γ ), follows
a known q-variate distribution, where γ are the distribution
parameters and q is the number of censored covariates. Fur-
thermore, for covariate xj = (xj

1, . . . , xj
n) and a lower limit of

detection Li, we define an indicator for censoring as

δ
j
i = I(xj

i ≥ Li). (1)

Then, their algorithm can be described as follows:

1. Obtain an initial estimate of γ using maximum likelihood,
where γ is the true parameter vector of the candidate distri-
butions for the censored xc.

2. Using the complete cases, obtain an initial estimate of β ,
where β are the true parameters of the GLM fit of p(y|z, x, β).

3. For every observation i subject to censoring, generate
an imputation vector for xc

i from the joint distribution
p(xc

i |yi, zi, xo
i , xc

i < dc
i ; θ̂), where xc

i are the censored values
in observation i for the covariates subject to censoring
and xo

i are the observed values in observation i for the
covariates subject to censoring. θ̂ is the entire parameter
vector θ̂ = (β̂ , γ̂ )T and dc

i is the lower detection limit for xi.
4. Using the candidate imputations as well as the observed

values, reevaluate γ̂ using maximum likelihood and β̂ using
a GLM.

5. Repeat Steps 3 and 4 M times, yielding M estimates of θ̂ .
6. Obtain the final estimate of each parameter θr as the mean of

all iterations:

θ̂r =
∑M

m=1 θ̂r,m
M

. (2)

The imputations in step 3 are generated using the acceptance-
rejection method:

1. For xc
i , generate a candidate vector x̃c

i from the truncated
normal distribution p(xc

i |zi, xo
i , xc

i < dc
i ; γ̂ ) obtained from

p(xi|zi; γ ).
2. Generate u from Unif(0,1).
3. If u < p(yi|zi, xio, x̃c

i ), accept the candidate vector x̃c
i , other-

wise retry with a new candidate vector according to Step 1.

The algorithm results in a dataset where all censored values are
imputed.

Note that u ∈ [0, 1] and therefore, the right hand side of
the rejection step inequality must be limited to [0, 1]. Therefore,
for a regression scenario some majorizing constant is required.
Further note that estimating β̂ requires complete cases and that
data which cannot be considered normally distributed requires
an alternative approach for modeling the covariates. Bernhardt,
Wang, and Zhang (2015) suggest that the chain rule can be used
to model each conditional distribution more flexibly:

p(xi|zi) = p(x1
i |x2

i , . . . , xq
i , zi) · p(x2

i |x3
i , . . . , xq

i , zi) . . . p(xq
i |zi).

(3)
As stated by the authors, assuming the correct distribution for
the covariates is crucial to the performance of their method,
however, nonparametric approaches were not studied.
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2.2. Multiple Imputation

Bernhardt, Wang, and Zhang (2015) offer a promising multiple
imputation framework. In our work, we focus on data without
complete cases where all covariates are subject to censoring and
the distributions cannot be modeled with parametric methods.

Without complete covariates, Equation (3) reduces to

p(xi) = p(x1
i |x2

i , . . . , xq
i ) · p(x2

i |x3
i , . . . , xq

i ) . . . p(xq
i ), (4)

leaving p(xq
i ) to be some distribution over the range of xq. As a

flexible, nonparametric alternative to the parametric distribu-
tion assumption we propose to model the distribution of the
covariates using Random Forests as they are able to model com-
plex nonlinear dependencies (Breiman 2001). Let xj

i be the j:th
feature in an observation vector xi. We model the multivariate
probability density p(xi) by using Equation (4) and computing
conditional probability density p(xj

i|xj+1
i , . . . , xq

i ) by Random
Forest regressions, as shown by Algorithms 1 and 2.

Algorithm 1: Inference on p(x)

given current imputed dataset x; number of trees B in the RF
for j = 1 to q − 1 do

fit a RF with B trees, response xj, predictors xj+1, . . . , xq

to x
obtain point prediction function μj(xj+1, . . . , xq)
compute σ 2

j as the residual variance from the RF training
end

Algorithm 2: Sample generation from p(x)

given functions μj(xj+1, . . . , xq), scalars σ 2
j , j = 1, . . . , q − 1

and distribution p(xq)
generate x̂q from p(xq)
for j = q − 1 to 1 do

generate x̂j from N
(
μj(xj+1, . . . , xq), σ 2

j

)
end
output the vector (x̂1, . . . , x̂q

)

The probability model p(y|x1, . . . , xq) is estimated and gener-
ated in the same manner as any of p(xj|xj+1, . . . , xq), however,
using the full set of features.

As there are no complete cases available for estimation, a
naïve imputation approach considered by previous research can
be used, such as for example imputing censored values with a
lower limit of detection vector L = (L1, . . . , Ln) (Hornung and
Reed 1990).

In order to compare the likelihood of the candidate vector
to u in the acceptance-rejection step, we introduce a majorizing
constant, C, as the highest point of the density for each y pre-
diction in order to have an appropriate majorizing density for
the generator distribution (Gentle 2002). For all observations,
we set C as

C = 1
σ
√

2π
, (5)

where σ is the standard deviation of the residuals of the current
imputed dataset. This ensures that the value to compare to
u is between 0 and 1. An algorithmic overview of the mul-
tiple imputation process can be found in the supplementary
materials.

2.3. Selective Multiple Imputation Using kNN

Due to the lack of information available when many predic-
tors and many values are censored the algorithm proposed by
Bernhardt, Wang, and Zhang (2015) may lead to low predictive
accuracies and large computational times needed to predict
a large amount of censored values. We therefore propose a
modification which we call selective multiple imputation. This
approach is selective as it imputes only some portion of the
censored values that the approach considers to be useful to aid
the prediction of the response while the remaining censored
values are set to a constant. More specifically, our approach
skips imputations for which the observed part of the subject
lacks resemblance to other observations, which also speeds up
execution. Our approach is multiple as it is based on multiple
improper imputation techniques.

For an observation xi with one or more censored values, we
investigate whether it is feasible to make realistic imputations.
Let no be the number of fully observed values in observation
i and nc be the number of censored values in observation i.
We then investigate the feasibility of imputation by checking
that the user set ratio of fully observed values requirement in
observation i, omin ∈ [0, 1], is met by comparing it to the ratio
of observed values, no/(no + nc). Note that omin = 1 results
in no imputation, as this means that we require all values of
an observation to be noncensored. If the ratio of fully observed
values is lower than the set minimum, the entire observation is
skipped and all censored values for observation i are set to a fixed
value Si.

As observations that are similar have a potential to offer a
more informative starting imputation than imputing with Si,
with Si being for instance equal to the lower limit of detection,
we propose to use k nearest neighbor estimation introduced by
Cover and Hart (1967) for finding suitable initial imputations
for selected values. The kNN algorithm computes the distances
between all observations and thereby finds the observations that
are the most similar. The neighborhood of an observation is
defined in the space of the obtained distances, and the size of
the neighborhood is decided by a user set integer k. Then the k
nearest neighborhood, that is, the k closest observations in terms
of distance, can be used to make decisions or predictions for
the observation by getting majority votes or an average estima-
tion of said neighborhood (Bishop 2006). Since the traditional
Euclidean distance measure would yield erroneous distances for
censored data, we suggest a version of kNN which computes the
distances modified to handle the censored values, according to
(Jonsson and Wohlin 2004).

In order to explain our kNN strategy, we first introduce some
notations and provide an illustration, see Figure 1. Let Ii be a set
of all indices of the fully observed values in xi, that is,

Ii = {j|δj
i = 1}. (6)

https://doi.org/10.1080/10618600.2022.2035233
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Figure 1. An illustration of searching for neighbors of observation i that can poten-
tially be used to impute the feature indexed by l. Rows with light colored cells can
potentially be used to impute some cells in row i as they have noncensored values in
the columns indexed by Ii ; rows with dark colored cells cannot be used for imputing
row i.

In Figure 1, these are illustrated by highlighted cells in row 3,
while censored values are illustrated by empty cells. Our method
aims to impute the empty cells.

Let l be an index of one of the censored values in observation
i. In Figure 1, we consider l = 5. Let Il be the set of indices of all
observations which are noncensored in the features indexed by
Ii and in the feature l, that is,

Il = {s|δj
s = 1 & δl

s = 1 for each j ∈ Ii}. (7)

Thus, Il are the indices of all potential neighbors to observation
i. For the example in Figure 1, only observation 5 is noncensored
in feature 2 and 4 as well as 5, therefore, this is the only potential
neighbor.

From the pool of potential neighbors, we extract those that
satisfy the minimum observation ratio criteria and the mini-
mum k criteria set by the user, and we find the distances between
observation xi and neighbor xs as

d(xi, xs) =
√∑

p∈Ii

(xp
i − xp

s )2. (8)

The k nearest neighbors are then chosen as the k observations
with the smallest d values.

If the minimum ratio criterion or minimum k criterion is
not satisfied, the value of the l:th feature is not imputed. In the
case where at least k neighbors are found, we obtain the initial
imputation for the l:th missing value as

(x̃c)l
i ←−

{∑k
a=1 (xc)l

a
k , if

∑k
a=1 (xc)l

a
k ≤ Ld

i
Si, otherwise

(9)

for all censored values chosen for iterative imputation. The
selective initial imputation algorithm is then defined as Algo-
rithm 3.

The parameters in p(xj|x1, . . . , xj−1) and p(y|x1, . . . , xq) are
the parameters of the Random Forest models. The values for
the censored values not chosen for iterative imputation (xc−∗)
are fixed to S. An overview of the process can be found in
Algorithm 4.

Algorithm 3: Initial imputation using kNN
for i = 1 to n do

if omin < no
no+nc

< 1 then
compute Ii according to Equation (6)
for l ∈ {1, . . . , q} \ Ii do

compute Il according to Equation (7)
let I be the indices of the k smallest d(xi, xs) such
that s ∈ Il
if |I| ≥ k then

set initial imputation (xc∗)l
i according to

Equation (9)
end

end
end

end

Algorithm 4: Selective Multiple Imputation using kNN

choose xc∗ and impute using kNN and impute xc−∗ with S
for m = 1 to M do

for j = 1 to q do
estimate all parameters in p(xj|x1, . . . , xj−1)

end
estimate all parameters in p(y|x1, . . . , xq)
for i = 1 to n do

repeat
generate x̃c

i ∼ p(xc|x1, . . . , xq; Li)
generate u ∼ Unif (0, 1)

until u <
p(yi|x1,...,xq)

C ;
impute xc∗

i with x̃c∗
i

end
end

3. Simulation Study

We have evaluated the performance of the algorithms described
in Sections 2.2 and 2.3 in terms of accuracy and execution
time for simple artificially generated data. Let ω be a range of
deterministic values, and σj and μj the parameters of a normal
distribution. To enable easy visual illustrations, we choose α as a
grid of integer values. We furthermore choose σj and μj so that
we can generate data in which most observations are subject to
censoring. The value for observation index i and covariate index
j is then generated using a normal density (scaled with some
constant G) according to:

xj
i = φ(αi|μj, σj) + ε

j
i , (10)

where

φ(αi|μj, σj) = G
σj

√
2π

e
− 1

2

(
αi−μj

σj

)2

, (11)

and the noise, ε
j
i , is proportional to the maximum of each

observation:

ε
j
i ∼ N

(
0, 0.05 · max(x1

i , . . . , xq
i , yi)

)
. (12)
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Figure 2. A visual example of censoring dependent on the maximum of each observation. The plot shows the covariate values for a range of indices. The different lines
represent different covariates, all subject to censoring. The solid lines are the detectable parts of the covariate, while the dotted lines are undetectable. The figure illustrates
that the high valued covariates drenches the low valued covariates. For instance, there is only one detectable covariate around indices 110–120, as it has drenched all other
covariates due to its magnitude.

Figure 3. MSE by minimum active. The plot shows the MSE dependence of omin for an artificially generated set of 250 × 6 modeled with SMI-kNN where k = 5. The red
line shows the MSE when no imputations are made and the blue line shows the MSE when all censored values are imputed.

We set the standard deviation to 5% of the maximum as this
introduces some dynamic random variation in the data without
having a big impact on the relationship between the covariates
and the response. The response in our study, y, is computed as
follows:

yi = max(ωi) + ε
j
i , (13)

where each element in ωi follows Equation (11) with parameter
values μ

y
i and σ

y
i .

As we want to evaluate if our method can handle complex
censoring, all covariates are censored according to the following
principle:

xj
i ←−

{
xj

i, if xj
i ≥ Li & xj

i ≥ max(xi) − 	

Li, otherwise,
(14)

where 	 is a known threshold representing the maximum dif-
ference between the highest valued covariate and every other
covariate, and Li is a known censoring limit. Thus, a value in
observation i can be censored either by being below a physical
lower limit of detection, Li, or by being too small in comparison
to the maximum value in observation i. From this, we define a
second, dynamic, lower limit of detection in addition to Li as

Ld
i = max(xi) − 	. (15)

This aims to mimic a type of interference censoring, where
dominant values in observations “drenches” less dominant val-
ues. Interference is a common problem in signal processing,

for instance in localization problems (Dovis 2015). Scaling the
noise with the maximum therefore yields a dynamic fluctuation,
sensitive to the subject specific magnitudes of the data. For this
example, we let L = 0 to limit to positive values and 	 =
0.15 to achieve censoring which will censor the majority of the
values in the data. We will elaborate this statement and explain
the reasoning behind this type of censoring in the scenario
presented in the next section. We perform simulations for two
different data sizes (the parameter settings can be found in the
supplementary materials). See a visual example of the covariates
described above as well as this censoring nature in Figure 2.

For this simple example we let q = 6 and the chosen δ results
in 62% of the data to be censored. The starting values for the
censored values not chosen for imputation are set to L, as they
are reasonably below that limit.

In Figure 3, different levels of minimum observed ratio by
observation is plotted against the mean squared error (MSE) of
the regression predictions of the model p(yi|x1, . . . , xq) relative
to the mean squared error of the complete data model, com-
puted as

MSE = 1
n

n∑
i=1

(
max(ωi) − ŷi

)2, (16)

where ŷi is the ith prediction of yi. Note that max(ωi) is the true
noiseless response, which follows Equation (11). Therefore, the
MSE in these results is a measure for how well the model esti-
mates the true response and not the training error of the model.
This shows the resilience against noise for each approach.

https://doi.org/10.1080/10618600.2022.2035233
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Figure 4. A comparison of the predictive performance of kNN selected imputation versus selecting the same ratio of values to impute at random. The plot shows that for
10 randomized datasets, the MSE is reduced to between 60% and 80% when using our selective imputation approach.

Figure 5. Example of kNN starting values. The lines represent the different censored covariates in one dataset, and the points represent the kNN initial values for the
censored values chosen for iterative imputation. For the indices where no points are present, the algorithm has chosen to skip iterative imputation due to lack of information.

In the figure and throughout this article, the Nonselective
Multiple Imputation will be referred to as NMI, the Selective
Multiple Imputation using kNN starting values as SMI-kNN
and the approach where all imputations are kept set to L as NI.
One can see that imputing all censored values does not, in fact,
necessarily yield the lowest MSE, supporting the approach to
avoid imputations with few neighbors according to our custom
kNN selection or skip heavily censored observations.

To investigate the impact of the modeling order in Equa-
tion (3), a comparison between three strategies was performed;
modeling the features by decreasing and increasing level of
censoring as well as in a random order. The comparison showed
no significant difference in MSE, therefore, random order has
been used in the proceeding analyses for execution speed pur-
poses. An investigation of the impact of the choice of distribu-
tion for p(xq) was also conducted. The analyses did not show
significant difference in predictive performance between using
p(xq) = δ

(
E[xq]

)
, an empirical distribution over the observed

xq and p(xq) ∼ U
(
min(xq), max(xq)

)
. Therefore, the fastest

strategy, p(xq) = δ
(

E[xq]
)

, has been used in the further
analyses. Both analyses can be found in the supplementary
materials.

In Figure 4, the predictive performance of our kNN approach
is compared to imputation of missing values selected at random.
The plot confirms that our kNN strategy manages to choose and
impute censored values which aid prediction as it achieves an
MSE which is between 60% and 80% lower than if the values to
impute are chosen at random.

Results from the first imputation using Equation (9) with an
appropriate number of neighbors (k = 5) are demonstrated in
Figure 5. For clarity purposes only five covariates are plotted.
The lines again represent the censored covariates and the points
are the starting values for the values chosen by kNN. It can be
observed that most starting values found by our kNN approach
are better than using the lower limit of detection. For example,
all points for indices after 150 offer reasonable approximations
of the underlying functions. One can also further note that
our algorithm skips values where there are very few active
features, and manages to focus more on imputations for val-
ues where there are more similar observations available. For
instance, between indices 1 and 50, where there is heavy censor-
ing, the algorithm skips the imputation, while between indices
150 and 160, where more noncensored features are available, the
algorithm provides a reasonable imputation. This makes sense
since imputations with little available information may result in
predictions that are far from the true response.

As it is not possible to compare our approach to Bernhardt,
Wang, and Zhang (2015) directly due to the absence of complete
cases in our data and the fact that the parametric assumption
of covariate distributions does not hold, we choose our baseline
comparison models as NMI, NI and Complete, a Random Forest
model for the complete (uncensored) data. We also present
results for the Selective Multiple Imputation approach using
Ld, which will be referred to as SMI-LD. Results for various n
and k can be found in Table 1. We limit the table to these k as
values outside this range did not yield better results. The table
gives an average of 100 different datasets per data size for which
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Table 1. Results for various k for two different sizes of datasets.

Data size Model k Chosen MSE sMSE Speed-up sspeed-up

250 × 6 Complete − – 1.000 0.110 – –
NI − 0.000 2.728 0.288 – –
NMI − 1.000 1.447 0.132 1x 0.130x
SMI-LD 1 0.436 1.598 0.170 3x 0.232x

5 0.434 1.602 0.172 3x 0.226x
10 0.391 1.593 0.166 4x 0.220x
20 0.286 1.646 0.190 5x 0.306x

SMI-kNN 1 0.436 1.561 0.158 4x 0.239x
5 0.434 1.577 0.172 4x 0.226x

10 0.391 1.593 0.174 5x 0.226x
20 0.286 1.680 0.199 6x 0.289x

500 × 6 Complete − – 1.000 0.093 – –
NI − 0.000 3.196 0.264 – –
NMI − 1.000 1.890 0.142 1x 0.098x
SMI-LD 1 0.395 2.084 0.155 6x 0.146x

5 0.394 2.084 0.156 6x 0.149x
10 0.393 2.087 0.157 6x 0.167x
20 0.360 2.079 0.158 6x 0.175x

SMI-kNN 1 0.395 2.047 0.151 6x 0.151x
5 0.394 2.054 0.149 6x 0.149x

10 0.393 2.043 0.151 6x 0.149x
20 0.360 2.025 0.158 7x 0.171x

NOTE: Chosen refers to the ratio of censored values chosen for imputation and
Speed-up refers to the speed-up relative to NMI. sMSE and sspeed-up refer to the
standard deviations of MSE and Speed-up, respectively.

each iterative imputation model has been iterated M = 8 times
and the first three iterations have been removed to account for
a burn-in period. Appendix F in the supplementary materials
shows that, for four different noise levels, the impact of setting
a high M on the predictive performance for these data is very
limited. The minimum active ratio per observation required has
been set as omin = 0.2. We choose omin = 0.2 as a low omin
enables greater impact from our selective kNN.

In Table 1, Chosen refers to the ratio of all censored values
chosen for imputation. Speed-up refers to the mean execution
time speed-up relative to the computational time of NMI. sMSE
is the standard deviation for the 100 separate evaluations and
sspeed-up is the standard deviation of the speedup relative to
the mean speed-up. Table 1 shows that the NI approach yields
about three times the MSE as for the complete model, and our
suggested approach only 1.5–2 times as high. We can see that
imputing all censored observations yields the lowest MSE for
both sizes of datasets. Choosing merely between 29% and 44%
of the missing values for imputation in the smaller set with kNN
gives an MSE that is almost as low as NMI, yet 4–6 times faster.
For the SMI-LD, the MSE can get almost as low as NMI for
the small set, yet slightly slower for the lowest MSE. For the
larger data sizes, the SMI-kNN MSE is very close to the MSE of
NMI, for which k = 20 gives seven times faster execution time.
The SMI-LD also gives a significantly lower MSE than for NI,
however, not as low as for SMI-kNN. We can note that the mean
MSE for SMI-LD and SMI-kNN differ from the NI mean MSE by
more than two standard deviations, and the mean speed-up dif-
fer from the NMI execution time with more than two standard
deviations, thus, indicating a statistically significant difference
between our approaches and the NI for all experiments.

4. Application to Signal Strength Prediction

Wireless network applications demonstrate many use cases
where the underlying data are censored. At each geographical

Figure 6. A simple example of a wireless network with a base station transmitting
two frequencies to surrounding cells.

location, there may be several signal frequency options for
connection. Each frequency does in turn consist of a network of
smaller geographical areas, called cells, which are available for
connection. As users in the network move, they are assigned to
the cell in the frequency which gives the best, or most reliable,
connection. See a simplified illustration in Figure 6. Within
the frequency that a user is connected to, the signal strengths
of the surrounding cells are accessible for the user device,
allowing for easy assessment of which cell to connect to for
optimal reception. Evaluation of the signal strengths of cells
on another frequency does, however, require disconnecting
from the current frequency and connecting to the alternative
frequency to measure the performance, leaving the user without
connection for a small window of time. The signals in the
network have a lower limit of detection, as weak signals
are inaudible. As cells which are located far from the user
will naturally fall below the limit of detection, this nature of
detectability of the signals results in the absence of complete
cases. Furthermore, due to interference between the cells within
each frequency, a strong signal can drown out weaker signals,
making them inaudible despite being above the lower limit of
detection (3GPP 2018).

As our approach attempts to target the censored values likely
to aid prediction, these data constitute an interesting problem
as the signals censored due to interference are likely to be of
more interest to impute than signals censored due to being out
of range.

The data considered in this section are simulated by Erics-
son AB, a multinational Swedish networking and telecommu-
nications company, to mimic a real network. They represent
simultaneous cell-wise signal strength data of two different fre-
quencies in a geographic area modeled to resemble the wireless
network in a typical urban area. One observation consists of
q signal strength values for one frequency and the maximum
of all available signal strengths for an alternative frequency. All
datasets presented are censored in the covariates to around 47%
(the censoring level varies somewhat due to the nature of the
censoring and the random effects in data).

We consider a regression problem where the aim is, given
a connection to a specific frequency, to predict the maximum
signal strength on the alternative frequency. We use the cell-wise
signal strengths of the current frequency as covariates and the
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maximum of an alternative frequency as the dependent variable.
We use the maximum in this way as we imagine a scenario
where we are interested in the potential gain of switching to the
alternative frequency without having to measure if not needed,
as in Ryden et al. (2018) and Svahn et al. (2019). All covariates in
the scenario are subject to censoring. Due to the assumption that
our approach is likely to find values censored by interference
more helpful in prediction, we set the initial values for the
nonchosen censored values to L = 0 as the underlying values are
likely to fall below that limit. We have set the minimum observed
per observation to omin = 0.5 and have limited the iterations to
each model to M = 4 times to provide faster execution times.
Thus, removing the first three runs as a burn-in period, the table
aims to show the potential of the method even with small M.
Furthermore, the results provided refer to using the same three
datasets 10 times, resulting in different outcomes each time since
SMI and NMI are randomized algorithms. Thus, the standard
deviations aim to show how much the predictive results vary
with randomness. Note that since NI and the complete model
are deterministic algorithms, all runs give the same predictions
and therefore, no standard deviations are reported. The results
for three sizes of datasets and various k can be found in Table 2.

The table shows that both SMI approaches achieve statisti-
cally significant faster execution, up to 50 times faster than the
benchmark algorithm, while still managing to achieve a signif-
icantly lower MSE compared to the naïve imputation approach
NI. We can see that as k is increased, the execution time goes
down. It can also be observed that, for the smallest dataset,
selectively imputing with k = 40 offers a speedup of 48 times
versus 7 times for SMI-kNN, yet, the MSE does not appear to
be notably affected. While the MSE for our suggested approach
are about 20%–30% higher than for the complete data model,
all MSE are significantly lower than for the NI approach except
for the values in italic. We can furthermore see that the SMI
approaches reach an MSE rather close to the NMI approach
for the 500 × 36 data for suitable k values. For the two larger
data sizes, the mean MSE decreases as k increases, hitting the
lowest MSE for high k, with both faster execution time and
lower share of values chosen for imputation. One can further
note that SMI-kNN and SMI-LD appear to outperform NMI
in terms of MSE for high k on the n = 750 datasets since the
SMI-LD and SMI-kNN achieve significantly lower MSE than NI
while the difference between NMI and NI cannot be statistically
established. The differences in MSE and speed-up for SMI-LD
and SMI-kNN are not substantial for these data, as they offer
similar results. For the smallest sets, SMI-kNN appear to yield
a slightly lower MSE for most k, however, the difference is not
statistically significant.

5. Discussion and Conclusion

We introduced a new selective imputation approach to speed
up imputation compared to the strategy of imputing all cen-
sored values, that is, NMI. We have showed that while itera-
tively imputing all censored values typically yields a statistically
significant lower MSE than imputing with the lower limit of
detection, our selective approaches drastically reduce the CPU
time required while maintaining an MSE quite close to, or even
lower, than imputing all censored values. We have showed that

Table 2. Results for various k for three different sizes of datasets.

Data Model k Chosen MSE sMSE Speed-up sspeed-up

500 × 36 Complete − – 1.000 – – –
NI − 0.000 1.407 – – –
NMI − 1.000 1.282 0.015 1x 0.052x
SMI-LD 1 0.333 1.318 0.011 8x 0.041x

5 0.204 1.317 0.009 11x 0.073x
10 0.098 1.326 0.007 18x 0.044x
20 0.046 1.332 0.010 28x 0.061x
40 0.015 1.320 0.006 50x 0.029x

SMI-kNN 1 0.333 1.313 0.010 7x 0.064x
5 0.204 1.308 0.008 11x 0.069x

10 0.098 1.319 0.009 17x 0.035x
20 0.046 1.330 0.008 29x 0.054x
40 0.015 1.323 0.007 48x 0.111x

750 × 36 Complete − – 1.000 – – –
NI − 0.000 1.333 – – –
NMI − 1.000 1.306 0.015 1x 0.026x
SMI-LD 5 0.327 1.339 0.008 6x 0.045x

10 0.234 1.328 0.006 7x 0.031x
20 0.122 1.313 0.006 11x 0.024x
40 0.059 1.292 0.005 17x 0.036x
60 0.035 1.299 0.007 22x 0.042x

SMI-kNN 5 0.327 1.344 0.006 6x 0.041x
10 0.234 1.334 0.006 7x 0.031x
20 0.122 1.315 0.009 10x 0.027x
40 0.059 1.292 0.005 17x 0.027x
60 0.035 1.297 0.005 22x 0.038x

1000 × 37 Complete − – 1.000 – – –
NI − 0.000 1.288 – – –
NMI − 1.000 1.196 0.020 1x 0.046x
SMI-LD 20 0.151 1.279 0.007 7x 0.072x

40 0.055 1.262 0.005 11x 0.056x
60 0.031 1.252 0.005 16x 0.077x
80 0.021 1.245 0.003 19x 0.108x

100 0.017 1.246 0.004 23x 0.105x
SMI-kNN 20 0.151 1.279 0.006 7x 0.107x

40 0.055 1.267 0.009 11x 0.061x
60 0.031 1.249 0.005 16x 0.048x
80 0.022 1.245 0.006 19x 0.119x

100 0.017 1.248 0.005 24x 0.151x

NOTE: Chosen refers to the ratio of censored values chosen for iterative imputation
and Speed-up refers to the speed-up relative to NMI. sMSE and sspeed-up refer to
the standard deviations of MSE and speed-up, respectively for 10 runs of the same
dataset.

the predictive performance is valid for several different noise
levels in data. We have demonstrated that, for data simulated to
resemble a wireless network, our strategy can reduce the naïve
imputation model (NI) MSE from 12.59 to 11.81 while being
up to 50 times faster than imputing all censored values which
reduce the MSE to 11.45. We have also showed that, for a high
number of k, our approach tangent or may even outperform
NMI in terms of predictive accuracy.

We have adapted the Bernhardt, Wang, and Zhang (2015)
method for multiple imputation and made necessary alterations
to accommodate a scenario where there are no complete cases
in data and when the parametric assumption for the covariates
does not hold.

We have, in addition, demonstrated that for simple artificial
data using kNN estimations for the initial imputations can be
beneficial. For more complex data, however, the performance of
this approach is similar to selecting the values to impute with
kNN, yet using Ld as the initial imputations.

We have showed that, since the SMI-kNN outperforms ran-
dom selection of values to impute, our approach focuses on
the most important values to impute, omitting censored values
with little information. We have further provided an example
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that demonstrates the ability to choose such values and that our
selective multiple imputation method using kNN can generate
better initial imputations for the selected values than other, more
naïve methods such as using the lower limit of detection for
the initial imputations, speeding up the process additionally. We
have showed that while the approach of Bernhardt, Wang, and
Zhang (2015) modified for the case of high dimensional data
with incomplete covariates may take an extensive amount of
time, our approach can handle a high number of covariates even
with few iterations. The speed-up of our algorithm was shown
to be up to 50 times faster in our studies.

We have investigated and concluded that the modeling order
of the covariates in Equation (3) has little to no effect on the
predictive potential of the model and that we thereby can ben-
efit, in terms of execution time, from using a random modeling
order. We have also showed, for three different strategies for
modeling the last covariate in Equation (3), that there is no
considerable difference. Furthermore, according to Appendix
G, supplementary materials, our method is relatively robust
to inclusion of variables unrelated to the response (a known
property of random forests). However, the quality of prediction
may be affected if these unrelated variables have very different
degree of censoring compared to the rest of the data.

As the cases with high dimensional data requires extensive
CPU time, the simulation studies have been limited thereof, as
our approach is then difficult to compare in a statistical way to
the benchmark. While the influence of omin on the predictive
MSE have been presented for one dataset, this article does
not cover an extensive analysis of this parameter. This article
has evaluated a regression scenario, however, the approach can
be applied to a classification scenario by adjusting the scaling
majorizing constant C in Equation (5) accordingly.

As the presented approaches do not extend to the case when
the response is censored, further research for this scenario is
needed. Furthermore, the censoring threshold for the nature of
censoring in this article have been assumed known, which may
be interesting to consider unknown for better generalization.

Supplementary Materials

Additional details: A collection of information regarding the data genera-
tion process, diagnostic plots and detailed algorithm descriptions. (pdf)

R-code and data for the SMI algorithms: One of the simple artificial
datasets used in the article and R-code to perform the diagnostic
methods. (zip)
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