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Abstract
The importance of fairness in machine learning models is widely acknowledged, and ongoing academic debate revolves 
around how to determine the appropriate fairness definition, and how to tackle the trade-off between fairness and model 
performance. In this paper we argue that besides these concerns, there can be ethical implications behind seemingly 
purely technical choices in fairness interventions in a typical model development pipeline. As an example we show 
that the technical choice between in-processing and post-processing is not necessarily value-free and may have serious 
implications in terms of who will be affected by the specific fairness intervention. The paper reveals how assessing the 
technical choices in terms of their ethical consequences can contribute to the design of fair models and to the related 
societal discussions.

Keywords AI Ethics · Responsible AI · Fairness · Bias mitigation

Introduction

The increasing use of machine learning models in decision-
making processes has been accompanied in recent years by 
a growing concern about potential ethical hazards, especially 
discrimination that such models may generate. Therefore, the 
need for designing ethical models leading to fair outcomes 

is now widely acknowledged. Accordingly, the development 
of methods to define, measure and ensure fairness in pre-
dictive models is rapidly growing. Many model debiasing 
techniques have been developed in order to equalise predic-
tive outcomes in accordance with various statistical fairness 
definitions, with each technique offering advantages and 
trade-offs in terms of accuracy, use of sensitive data, com-
patibility with different families of models, or development 
stage. Thus, when developing a model, practitioners need to 
make some decisions regarding how and when to introduce 
fairness interventions. These decisions are often taken by 
considering technical and computational implications of the 
available alternatives (Green & Hu, 2018).

This study demonstrates that if these choices are based 
solely on engineering grounds, then relevant ethical con-
siderations affecting human beings may be overlooked. As 
an example, we show that when and how exactly a fairness 
intervention is introduced into the model pipeline can seri-
ously affect who benefits and who is excluded from the posi-
tive impact of such an intervention. The goal is to reveal 
the way in which such an ethical problem may emerge and 
be overlooked (or remain obscure) during the design of 
a fair model via an illustrative example. For this purpose 
we compare two approaches to fair model design, namely, 
in-processing (introducing fairness at training time) and 
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post-processing (modifying already trained classifiers via 
decision-boundary variation).

We show that, while achieving the same levels of fairness 
and accuracy with both debiasing techniques, the individual 
predictions that are modified by each intervention are sig-
nificantly different. This is because the same individual can 
be subject to a different classification outcome due to the 
interplay between specific individual characteristics and bias 
mitigation techniques. Our main conclusion is that in order 
to ensure that a model is designed ethically, it is necessary to 
scrutinize all decisions during the development process (e.g. 
especially those that appear to be engineering decisions).

The paper is organized as follows: Section Fairness and 
bias mitigation introduces fairness definitions together with 
the related ethical challenges identified in the literature, and 
provides an overview of bias mitigation interventions. Sec-
tion Bias mitigation: ethical decisions behind engineering 
choices discusses the effects of alternative bias mitigation 
techniques and reports an experimental study (as illustrative 
example) in the field of credit risk loan application. Sec-
tion Conclusion concludes by highlighting the importance 
of ethical decisions hidden behind engineering modelling 
choices and suggests future research directions. The appen-
dix contains an overview of: i) an index measure we intro-
duce at single data point level to assess the effect of debias-
ing and ii) features considered in the experimental study.

Fairness and bias mitigation

Fairness is one of the fundamental pillars underlying ethi-
cal model design in different contexts, e.g. health, legal and 
banking1 are only a few. Given the growing knowledge on 
how bias can be introduced and amplified in models (Meh-
rabi et al., 2019), this paper focuses on the ethical impli-
cations connected to engineering choices when debiasing 
a model. The goal of building fair models is to prevent 
discrimination - direct or indirect - against individuals or 
groups based on specific sensitive characteristics. In the con-
text of modeling, two aspects are particularly relevant: how 
to formally define fairness and when to enforce it. This sec-
tion describes the importance of fairness definitions in Sec-
tion Fairness definitions: the how and provides an overview 
of the main implications behind bias mitigation techniques 
in Section In-processing and post-processing: the when.

Fairness definitions: the how

Assessing fairness from a modelling perspective requires 
determining how to detect and measure the magnitude of 
undesired bias that can potentially generate discrimination. 
For this purpose, the first decision is to choose a suitable fair-
ness definition in mathematical terms. There are many quan-
tifiable fairness definitions (Dwork et al., 2012; Hardt et al., 
2016; Joseph et al., 2016; Kearns et al., 2018), capturing 
different legal, philosophical and social perspectives. Here, 
so long as one opts for fairness based on parity between dif-
ferent subgroups, there is often a trade-off between fairness 
and model accuracy: there might be cases where a model is 
classified as fair, based on a given fairness definition, at the 
cost of reduced model accuracy (Haas, 2020; Dwork et al., 
2012). Therefore, joint implications of engineering and ethi-
cal decisions may generate a dilemma between: (i) having 
a model that is fair(er) but less accurate or (ii) opting for a 
biased but more accurate model. For this reason, critical 
research has shown how different interpretations and imple-
mentations of fairness may harm the groups they intend to 
protect (Corbett-Davies & Goel, 2018) or may also ignore 
the bias for subgroups that simultaneously belong to several 
protected groups (Kearns et al., 2018). Understanding the 
inherent trade-offs and implications behind a fairness defini-
tion is therefore crucial for organisations and practitioners to 
justify and trace their implementation choices (Binns, 2020). 
However, there is no generic rule to identify a-priori what is 
the best fairness metric in each single case, and several defi-
nitions of fairness are mutually exclusive (Kleinberg et al. 
2016; Dwork et al. 2012; Chouldechova, 2017). The suitabil-
ity of any given fairness definition needs to be determined 
on the basis of the societal norms and expectations regarding 
what is considered fair about the specific issue at stake. In 
this respect, taking into account the intended purpose of the 
model (i.e. provision of a public service or filing an indict-
ment) is important. However, in the final analysis, the funda-
mentally context-dependent nature of what is considered fair 
about a given circumstance remains intact. The advisable 
approach is not to categorically select or discard a particular 
fairness definition a-priori: ethical insights from the social 
environment in which the model would be deployed are the 
key for this decision.

We can distinguish two broad categories of fairness 
definitions: individual fairness and group fairness. Indi-
vidual fairness definitions aim to prevent harm to each sin-
gle individual (e.g. data points in the sample), by ensuring 
that similar individuals would be treated similarly by the 
model regardless of the difference between their sensitive 
characteristics. Group fairness, on the other hand, aims to 
attain parity on average between subgroups such as men and 
women, that are defined based on a sensitive characteristic.

1 The relevance of fairness for modelling is highlighted both by the 
European Commission in (EC, 2019) and by the European Banking 
Authority in (EBA, 2020).
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The illustrative example proposed in this paper is built by 
considering predictive parity2 as group fairness definition 
introduced in (Chouldechova, 2017). This enables to show 
the ethical implications of operationalizing a given fairness 
definition within the model development pipeline. Selecting 
predictive parity is essentially a choice of convenience: the 
wider point we aim to raise is that pitfalls arising from the 
interplay between individual characteristics and mitigation 
techniques will arise regardless of the chosen definition.

In‑processing and post‑processing: the when

The introduction of unwanted bias in models can stem from 
a wide variety of reasons (Mehrabi et al., 2019): data col-
lection methods, features’ measurement, benchmarks for 
evaluation, relative size of different sub-groups, evolution 
of populations and behaviours over time (e.g. accumulated 
prejudices embedded in data) are few examples. In response 
to this wide spectrum of causes, there are multiple tech-
niques to actively “de-bias” models according to different 
fairness definitions. We can distinguish three approaches 
which are differentiated by their ”timing of intervention” 
within the model development pipeline: pre-processing 
methods focus on modifying the data itself, in-processing (or 
algorithm modification) methods include fairness metrics as 
an objective at training time, and post-processing methods3 
consist on taking a trained—possibly unfair—classifier and 
modifying its results to enforce fairness. The paper focuses 
on the last two, by stressing the link between bias mitigation 
and fairness metrics.

The choice of in-processing or post-processing is not 
tied to the specific fairness definition that one wishes to 
implement: both approaches can satisfy the same group 
fairness definition equally successfully. Thus, performing 
bias mitigation via in-processing or post-processing is often 
considered a pure engineering choice. In this light, the two 
approaches represent different answers to the question of 
when to introduce fairness interventions within the model 
development pipeline. Figure 1 provides a simple repre-
sentation of this by reporting a specific sub-portion of the 
model development pipeline. As highlighted in the picture: 
(i) in-processing aims to mitigate bias inside the algorithm, 

before the model output is generated (e.g. training phase), 
ii) post-processing aims to mitigate bias after the algorithm 
produces its outcomes (e.g. validation phase).

The technical differences between in-processing and post-
processing are widely acknowledged. In-processing methods 
allow practitioners to balance the trade-off between model 
performance and fairness by considering them jointly, but 
require opting for specific learning algorithms and applying 
fairness restrictions at an early stage. On the other hand, 
post-processing methods can often be used for any type of 
classifier, after fairness concerns have been identified: in this 
case, the control on the performance/fairness trade-off may 
be lower compared to in-processing, as the original classifier 
cannot be “re-learnt”.

This paper focuses on the trade-off implied at single 
data point level by in-processing and post-processing solu-
tions, highlighting how this might be linked to individual 
characteristics, due to the inherently different logic of the 
two approaches. As the outcomes for individual data points 
can be significantly different, this implementation choice 
can have strong societal and personal implications for dif-
ferent stakeholders. To take this decision in an informed, 
accountable and responsible manner, we therefore highlight 
the importance of exposing ethical decisions hidden behind 
engineering choices. We argue that understanding the trade-
offs and implications of each method at an individual level 
is a necessary step towards responsible implementations of 
statistical fairness.

Fig. 1  Bias mitigation through the model development pipeline: in-
processing vs post-processing. The plot depicts a sub-portion of the 
model development pipeline and highlights: i) fairness interventions 
for each phase (e.g. in-processing vs post-processing), (ii) specific 
instances for each phase (e.g. Adversarial Debiasing, Reject Option 
based Classifier) considered in the paper

2 Predictive parity requires the proportion of true positives within all 
positive predictions to be equal for all groups defined by the protected 
attribute. This prevents the model from having lower precision for 
underprivileged groups.
3 In its essence, post-processing can be seen as a technique based on 
threshold differentiation across different groups, to take into account 
their specific characteristics. This is the approach we also consider in 
this paper for the illustrative example. From a more general perspec-
tive, the scientific literature also proposes post-processing methods 
that consider fine-tuning at single data point level depending on the 
magnitude of the errors (Kim et al., 2019).
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Bias mitigation: ethical decisions 
behind engineering choices

The goal of this section is to show how different bias miti-
gation techniques might raise an ethical concern: alter-
native engineering implementations can imply a different 
treatment for the same data point (e.g. same person in the 
sample) depending on individual (and/or group) charac-
teristics and features’ correlation.

We focus the comparison on two specific instances of 
in-processing and post-processing implementations, respec-
tively: (i) Adversarial Debiasing (AD), (ii) Reject Option 
based Classifier (ROC), occurring at different moments of 
the model development pipeline (Fig. 1). The two methods 
represent only an instance of many, which we consider as an 
example of how the choice of the bias mitigation technique 
brings with it ethical implications down the line.

Section Same person, different outcomes? discusses the 
theoretical overview of the impacts at single data point 
level deriving from alternative fairness interventions and 
Section Experimental study: credit risk loan application 
provides a study on real data in the context of a credit risk 
loan application.

The analysis has illustrative purposes, rather than 
exhaustive. In our view, the choice between these two 
debiasing approaches is a good example of a decision 
which often appears to be of solely technical nature. In 
reality, this choice brings relevant ethical implications that 
should not be overlooked.

Same person, different outcomes?

In-processing and post-processing methods achieve fairness 
through inherently different modifications to a classifier. On 
the one hand, in-processing requires incorporating a particu-
lar definition of fairness into the optimization process either 
directly as an additional constraint within the objective func-
tion or by means of adversarial learning. Both cases aim to 
optimize accuracy and fairness simultaneously. For this pur-
pose they reduce the weight of those features which (implic-
itly or explicitly) give protected attribute information so as 
to render protected attribute information irrelevant for the 
predictions (Zafar et al., 2019; Donini et al., 2018; Komiy-
ama et al., 2018). In their essence, in-processing methods try 
to make the protected attribute information conveyed by data 
points irrelevant for the classification outcome: the extent 
to which a given data point carries the protected attribute 
information in its features is crucial for determining how 
in-processing methods would affect that data point.

Conversely, since post-processing methods may only 
modify an already trained classifier, these methods are 

focused on selecting which predictions to modify to verify 
the desired definition of fairness (Hardt et al., 2016; Cor-
bett-Davies et al., 2017). In its essence, post-processing 
can be seen as a form of threshold differentiation across 
different groups. This is also the approach we consider in 
the paper for the illustrative example: the extent to which a 
data point would be affected by post-processing is explic-
itly linked to group membership but does not require to 
carry on implicit information about it.

We show that these two distinct intervention choices 
(i.e. training time vs validation time depicted in Figure 1) 
can generate fundamentally different classifications for the 
same individual data point while operationalizing the same 
fairness definition. Therefore the choice between these two 
approaches is a good example of a decision which may 
appear to be of solely technical nature while having ethi-
cal implications.

In practice, since in-processing methods involve avoid-
ing the use of protected attribute information embedded 
in several features in a latent form, the individual data 
points whose classification is modified are precisely those 
for which protected attribute information can be inferred 
from the correlations between their features. Consider the 
case of an in-processing intervention to enforce a notion 
of group fairness between Group A and Group B. Even 
though the information about group membership may be 
explicitly included in the dataset, in a real world dataset 
group membership could also be related to a number of 
other features, which can serve as proxy variables. Given 
the in-processing goal of reducing the weight of group 
membership on classification, the weight of all features 
which bear a strong correlation with group membership 
in the dataset will be reduced. What can we then expect at 
single data point level? Most of the data points that will 
have their prediction modified by the fairness intervention 
are those who exhibit features strongly correlated with the 
characterization of group membership in the dataset. In 
other words, those individuals who share many features 
with other individuals belonging to Group A or Group B 
as they are represented in the training set.

Let us now consider an equivalent fairness intervention 
at a post-processing stage. Since post-processing meth-
ods consider already trained classifiers, their focus is on 
modifying the classifications of specific inputs to satisfy 
fairness conditions. The set of inputs whose classification 
is modified is chosen in such a way that there are differ-
ent classification thresholds for different classes of inputs. 
This set is different for each post-processing method (e.g. 
the points whose decision is modified can correspond to 
data points with low-confidence classifications, or to data 
points with a certain label or classification). In general, 
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the choice of the inputs who see their classification modi-
fied does not directly depend on the dataset features, but 
rather on the decision threshold of the original classifier4. 
Consequently, the data points who see their classification 
modified by post-processing interventions are completely 
pre-determined, regardless of whether they exhibit features 
strongly correlated to group membership in the dataset5.

Adversarial Debiasing and reject option classification

This subsection discusses the comparison between alterna-
tive approaches (Figure 1) in terms of their potential ethi-
cal consequences by means of two common methods: (i) 
Adversarial Debiasing (AD) for in-processing (Zhang et al., 
2018), (ii) Reject Option based Classifier (ROC) for post-
processing (Kamiran et al., 2012).

Adversarial Debiasing is based on training two func-
tions simultaneously: a predictor that assigns predictions 
to each input and an adversary that tries to guess the pro-
tected attribute information by using the outcome of the 
predictor. The objective of the predictor is to make accurate 
predictions while thwarting the adversary, meaning that the 
protected attribute cannot be guessed from the predictions. 
In this dynamic, making predictions independently from 
the protected attribute enables the predictor to succeed in 
both goals. Predictions are made in such a way that pro-
tected information implicitly embedded in the dataset are 
not betrayed. Thus the extent to which a given data point 
contributes to the emergence of such an implicit information 
pattern through its features is crucial for the way in which 
this point will be treated by AD.

Reject Option Classifier is based on the idea that bias 
is most likely to ‘happen’ close to the decision boundary, 
i.e. when classifications are most uncertain. Consequently, a 
strip around this boundary is marked and the classifications 
from the original model that fall into this critical region are 
modified according to a particular rule. The rule assumes 
that the protected attribute allows us to distinguish an under-
privileged group and a privileged group (such as women and 
men defined by gender). All those data points belonging to 
the unprivileged group and fall into the critical region are 
given the desirable classification outcome whereas those 
data points in the critical region belonging the privileged 
group are given the undesirable classification outcome6. For 

all data points outside the critical region, the original clas-
sification attained by the model remains. As a consequence, 
privileged and underprivileged data points which are ini-
tially located in a narrow strip around the decision boundary 
are now, respectively, pushed above or below this boundary. 
In this case, the correlation between the features and the 
protected attribute that a given point exhibits do not matter 
directly; what matters is whether this point falls into the 
critical region and whether it belongs to the (un)privileged 
group regardless of whether this belonging can be detected 
by examining the other features.

Figure  2 illustrates this case with a plot. Two data 
points A and R corresponding to members of an under-
privileged group are plotted on a space of predicted prob-
abilities. The vertical axis reports the scores predicted 
by AD, while the horizontal axis reports the score deter-
mined by ROC. Solid black lines represent the accept-
ance threshold set equal to 0.5: a score below 0.5 means 
acceptance; a score above 0.5 implies rejection. To facili-
tate comparing the classification outcomes generated 
by ROC and AD, the plot is divided into four regions, 
n a m e l y  ACCEPT ∣ REJECT  ,  REJECT ∣ REJECT  , 
ACCEPT ∣ ACCEPT  , REJECT ∣ ACCEPT  . Arrows in the 
plot indicate how the predictions for A and R are modified 
by debiasing interventions via AD or ROC respectively. The 
empty circles indicate the biased scores given to A and R 
by the initial (and biased) classifier; the red filled circles 

Fig. 2  Adversarial Debiasing (AD) vs Rejection Option Classifier 
(ROC) at single data point level. The probability predictions of the 
AD and ROC models are plotted against each other at single data 
point level. The Y axis reports the predicted risk score by the AD 
model, and the X axis reports the predicted score by the ROC clas-
sifier. Solid black lines represent the acceptance threshold at 0.5. 
Dotted black lines represent the boundaries of the critical region for 
ROC. Empty circles represent the initial position of each single data 
point. Red circles represent the position of each single data point 
resulting, respectively, from AD or ROC

4 This is often tantamount to defining different classification thresh-
olds for different groups.
5 Notice that these correlations may however directly influence 
whether this data point belongs to the class of data points that see 
their classification modified.
6 This holds for any classification model. In the case of a credit 
risk model which evaluates the risk in loan applications, the desir-
able classification would be “good creditworthiness/low risk score”, 
implying loan granted.
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indicate, for each data point, the corresponding debiased 
predictions resulting, respectively, from AD or ROC.

Post-processing via ROC modifies the classifications 
only for data points belonging to the critical region around 
the original decision boundary, marked by vertical dotted 
lines. Point R represents an underprivileged individual 
whose score is decreased below the 0.5 decision threshold 
by ROC. All data points representing underprivileged indi-
viduals situated in the critical region will have the same 
treatment. In contrast, AD intervention might impact data 
points in any area of the prediction space, even outside the 
critical region. Data point A might for example share many 
features in common with other underprivileged individu-
als belonging to the same group (training dataset), thus its 
prediction will be modified by AD. ROC will produce no 
impact on A, as it does not belong to the critical region. AD 
will impact A since it will reduce the weight of its features 
in the final classification. As a consequence, the same person 
may be affected disparately depending on the use of in- or 
post-processing.

This preliminary intuition shows how in-processing and 
post-processing methods achieve fairness through inherently 
different modifications to a classifier, producing impacts at 
single individual level that go beyond engineering aspects. 
Section 3.2 confirms the intuition via an experimental study 
in the context of a credit risk loan application built as illus-
trative example.

Experimental study: credit risk loan application

This experimental study presents and discusses the impacts 
generated at single data point level by AD and ROC when 
debiasing an originally biased classifier. The dataset we use 
for this study is based on the well-known German Credit 
Data7 , which contains values for 20 attributes of 1000 loan 

applications. Attribute 9, named Personal status and sex, 
encodes gender together with marital status, as shown in 
Table 1. The groups we are considering in our fairness inter-
vention are identified by the sensitive attribute “gender”, as 
“female” (A92, A95) and “male” (A91, A93, A94). Simi-
larly to Slack et al. (2020), we introduce controlled bias into 
the original dataset by creating a direct association between 
gender and creditworthiness8. For illustrative purposes, this 
experiment assumes the group with attribute “female” as the 
underprivileged group that is likely to suffer from bias (i.e. 
female, low credit score).

In the context of a credit risk loan application problem, 
we consider this case as an instance of the more general case 
of binary attribute and features’ correlation.

We train three classifiers9 to generate credit risk predic-
tions: (i) a logistic regression model where the sensitive 
binary attribute gender is omitted from the dataset (ii) a cor-
responding “debiased” version of the model through AD, 
and (iii) a corresponding “debiased” version of the model 
through ROC. Note that the baseline logisitic regression 
model that is “debiased” through AD and ROC is biased 
despite the fact that we implement fairness through una-
wareness: it does not explicitly contain protected attribute 
information. For both “debiased” versions of the model, the 
case is built by considering predictive parity as fairness met-
ric to optimise between groups given by the binary sensitive 
attribute gender10 in the dataset.

Figure 3 shows the results of this experiment for a given 
logistic regression baseline model. Here the debiased risk 
scores obtained from AD and ROC ’corrections’ are plotted 
against each other for the same set of data points consid-
ered as validation set, e.g. 300 data points. The vertical axis 
reports AD scores, and the horizontal axis reports ROC-
scores. In both cases the decision threshold is 0.5: any per-
son with a predicted probability above this boundary is con-
sidered ‘too risky’ (i.e. having low creditworthiness), thus 
the corresponding loan application will be rejected. Vertical 
dashed lines indicate the critical region considered by ROC.

Table 1  Attribute A9, Personal status and sex, from the German 
Credit Data dataset considered in the case study

The table provides an overview about how Attribute A9 encodes the 
binary sensitive attribute “gender” together with marital status

Attribute A9 Sex Personal status

A91 Male Divorced/separated
A92 Female Divorced/separated/married
A93 Male Single
A94 Male Married/widowed
A95 Female Single

8 From a mathematical point of view, this is done by introducing a 
probabilistic relationship between a specific attribute and the final 
target classification. Let us suppose to have attribute A, and two cat-
egories A1 , A2 . Introducing controlled bias is done via a conditional 
statement: we associate a given probability p ∈ [0, 1] to the target 
classification for individuals having A1 and (1 − p) for individuals 
having A2 . This is a way to simulate historical bias in a controlled 
environment. In practice, this implies establishing a deliberately ’low/
high’ probabilistic relationship between two binary variables, e.g. 
whether a given person is female (male) and her (his) creditworthi-
ness. The Appendix discusses the scenarios considered in this spe-
cific experiment and their impacts.
9 The three classifiers are trained on the same (randomly chosen) 700 
points of our dataset and tested on the remaining 300 points.
10 Recall that gender attribute is represented via “Attribute A9”, Per-
sonal status and sex in German Credit Data as reported in Table 1. 
We directly refer to gender for easiness of exposition.

7 We use a slightly modified version of the dataset by introducing 
controlled bias. The description of the original dataset is available 
at: https:// archi ve. ics. uci. edu/ ml/ datas ets/ Statl og+ (German+ Credit+ 
Data). The code for this experiment is available from the following 
repository: https:// gitlab. com/ ing- umea/ eit- ethic al- impli catio ns.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data)
https://gitlab.com/ing-umea/eit-ethical-implications
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To facilitate the comparison of the classification out-
comes generated by ROC and AD, the plot is divided into 
four regions with the same logic considered for Figure 2. 
To highlight how the two fairness interventions differ, the 
focus of our attention is on the ACCEPT ∣ REJECT  (top-
left) and REJECT ∣ ACCEPT  (bottom-right) regions. In the 
first one, we see the data points whose risk score would 
imply acceptance from ROC but rejection from AD; in the 
second one, we see the data points whose risk score would 
imply rejection from ROC but acceptance from AD. In these 
two regions, data points represented in blue correspond to 
”male” attribute, while in red to ”female” attribute. In the 
regions where both AD and ROC classification models agree 
(e.g. ACCEPT ∣ ACCEPT  , REJECT ∣ REJECT  ), black data 
points represent ”male” attribute and purple points ”female” 
attribute. Notice that, within the critical region for ROC, 
only data points associated to ”female” attribute are linked 
to acceptance, and only data points with ”male” attribute to 
rejection. Both ROC and AD achieve equivalent levels of 
fairness and accuracy11. However, their effect on single data 

points is quite different. Indeed, their final classifications 
disagree for a large number of individuals, as depicted in 
the ACCEPT ∣ REJECT  and REJECT ∣ ACCEPT  regions.

Impacts of Adversarial Debiasing and Reject Option based 
Classifier at individual level

To compare the impacts of AD vs ROC classification out-
comes at single data point level, we introduce Index12 t(si) to 
measure how ”common” the features of a single data point si 
are when compared to the data points in the dataset belong-
ing to the same underprivileged group. The index t(si) is 
higher when si has many characteristics in common with 
the other data points in the same group and smaller if si 
has few common features. The experimental results show 
significantly different average Index values, namely t(si) , 
for the data points where AD and ROC imply a switch in 
the classification outcome. These averages are computed 
over the number of n data points in that specific region and 
are, respectively, t̄(si) = 1.85 in the ACCEPT ∣ REJECT  
region (standard deviation sd = 0.526 , data points n = 53 ) 
and t̄(si) = 3.81 in the REJECT ∣ ACCEPT  region (stand-
ard deviation sd = 0.746 , data points n = 4 ). The two aver-
ages proved to be significantly different ( pvalue = 0.012 , 
t = −5.15) from each other from a statistical point of view. 
This result suggests that, on average: i) debiasing via AD 
tends to ignore the circumstances of individuals who do not 
reflect the most represented characteristics of the underprivi-
leged group in the dataset, whereas ii) debiasing via ROC 
alters the classification outcome of all individuals belonging 
to the critical region and does not make any further selection 
linked to feature commonality. This observation is robust 
w.r.t. different implementations and dataset changes. This 
case study reveals that the evidence remains the same when 
we change the size of the rejection region or artificially 
introduce a bigger bias into the dataset through causal rela-
tionships. There are interesting directions to explore via a 
deeper and extensive technical analysis which is beyond the 
scope of the present paper. The experimental study built on 
this credit risk loan application case aims to raise awareness 
that the choice of bias mitigation via in-processing or post-
processing has societal and ethical implications. This engi-
neering choice can impact who is most affected by the fair-
ness intervention. Implied by the nature of in-processing, the 
individuals who are likely to see their classification outcome 

Fig. 3  Credit risk loan application. The probability predictions of 
the AD and ROC interventions (on the same baseline logistic regres-
sion model) are plotted against each other for the same data points 
(e.g. validation set, 300 data points). The vertical axis reports the 
predicted score by the AD model, and the horizontal axis reports the 
predicted score by the ROC classifier. Solid black lines represent the 
acceptance decision threshold at 0.5. Dotted black lines represent the 
boundaries of the critical region for ROC. Black and blue circles cor-
respond to data points with ”male” attribute; red and purple circles 
correspond to data points with ”female” attribute. The plot reports the 
classification results based on AD and ROC for the 300 data points in 
the validation set. Within this set, 104 data points have the ”female” 
attribute, and 196 ”male” attribute. For 186 out of 300 data points (47 
”female” attribute and 139 ”male” attribute) AD and ROC agree in 
the classification outcome. Regarding the remaining 114 data points 
for which the two methods disagree in the classification, we have: 88 
data points (53 ”female” attribute, 35 ”male” attribute) rejected by 
AD but accepted by ROC, and 26 data points (4 ”female” attribute 
and 22 ”male” attribute) accepted by AD but rejected by ROC

11 A deeper analysis on the trade-off between fairness and accuracy 
is beyond the scope of this paper. Results show no material gap and, 
starting from this observation, the study rather focuses on impacts at 

12 The appendix contains the explanation of the Index t(si) com-
ponents, provides a toy example on artificial data and the technical 
details of the comparison on German Credit Data.

single individual level in terms of classification outcome to shed light 
on ethical implications.

Footnote 11 (continued)
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switching from rejected to accepted are those sharing fea-
tures with the majority of the members of the underprivi-
leged group represented in the dataset. Conversely, since 
post-processing methods rely on modifying the decision 
threshold, the individuals who are likely to see their clas-
sification outcome switching from rejected to accepted are 
the ones close to the original decision threshold. Deciding 
in favour of in-processing or post-processing bias mitigation 
techniques thus implies different impacts on different groups 
of underprivileged individuals. This choice should not be 
considered purely through an engineering lens, but should 
rather take into account also the importance of ethical deci-
sions, embedding a combination of factors such as deploy-
ment context, legal constraints, potential harm to specific 
group of stakeholders.

Conclusion

Building fair models is not an easy task. At the same time, 
it is important to acknowledge that building fair models can-
not be reduced to a purely engineering problem. Designing 
and developing models, embedding or not machine learn-
ing techniques, might require the need of specific modelling 
choices that naturally imply trade-offs between engineering 
and ethical decisions. The goal of this paper is to stress the 
importance of ethical decisions potentially hidden behind 
modeling choices and their impacts at single individual level 
by focusing on group fairness and debiasing techniques. 
The empirical analysis discussed in the paper should be 
considered as a counterfactual evidence to showcase the 
overlooked impacts of engineering decisions in individual 
predictions. We shed light on this specific issue by stressing 
the importance of getting to such decisions in an informed 
and responsible way. Each decision should be explainable, 
traceable and justified, considering the implications it might 
have on the individuals and who will be impacted by it (e.g. 
as for in-processing vs post-processing). Understanding the 
consequences brought by implementation choices is there-
fore a step forward in moving beyond the computational 
lens and considering fairness through a wider societal and 
democratic perspective (Green & Hu, 2018).

Our contribution shows that identifying how and when 
to tackle the bias mitigation issue in a model development 
pipeline is not a value-free choice. Echoing practitioner’s 
calls for comparisons and assessments of the ethical impli-
cations and side effects of different mitigation strategies 
(Holstein et al., 2019), we offer a characterisation of the 
individual data points that are impacted by in-processing 
and post-processing interventions, to be considered in the 
societal debate (e.g. which interventions are desired). It is 
not clear or obvious from an ethical point of view which sub-
group should be prioritized in debiasing operations; those 

who reflect characteristic correlations in a dataset or those 
who do not reflect any such pattern but lie within a certain 
distance of the decision threshold. This choice is to be seen 
as context dependent and require profound reflection. Our 
goal is therefore not to provide a generic solution to this 
challenge, but to point out that this decision is impactful and 
should not be over- looked. In other words our aim is to show 
that there are substantive ethical decisions embedded into 
the choice between in-processing and post-processing; and 
ignoring this context is an ethical oversight. As an example, 
when considering intersectionality, we can identify impli-
cations for people at the intersection of several protected 
classes. Depending on their representation in the dataset, 
intersectional groups might be ”targeted”or ”overlooked” by 
the intervention (e.g. in-processing intervention via AD may 
fail to consider intersectional groups if not well-represented 
in the dataset, whereas debiasing via ROC alters the classif-
fication outcome for all individuals belonging to the critical 
region without making any further selection linked to fea-
ture commonality). Indeed, the difficulty of incorporating 
intersectionality in fairness methods is well-known in the 
literature (Kearns et al., 2018; Chouldechova & Roth, 2018).

Our contribution contains an important message: it is pru-
dent to avoid making engineering choices solely on the basis 
of purely technical grounds. It is fundamental to ensure that 
no ethical choice remains unnoticed. The illustrative case 
discussed in the paper provides one full explanatory example 
supporting this advice. The results of the experimental study 
provide evidence that are robust w.r.t. different implementa-
tions and dataset changes (e.g. different size of the rejection 
region or different bias artificially introduced). The paper 
demonstrates how the translation of technical engineering 
questions into ethical decisions can concretely contribute 
to the design of fair models. At the same time, assessing 
the impacts of the resulting classification can have impli-
cations for the specific context of the original problem. A 
research direction we are currently exploring is extending 
the analysis to a broader setting and assess the robustness 
of different fairness interventions w.r.t. causal relationships 
between attributes.

Appendix: Index at individual level, Toy 
example and German Credit Data analysis

Index at individual level

Index t(si) introduced in Section Experimental study: credit 
risk loan application attributes a single non-negative real 
number to any data point si belonging to the unprivileged 
class. The index is built based on dot product operator as 
follows. Let us consider:
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– R: dataset with m columns and n rows. Columns are all 
binary features capturing absence or presence of a char-
acteristic. All values in R are either 1 (presence) or 0 
(absence). All n observations are individuals belonging 
to the unprivileged class.

– Si : row vector of dimension m characterizing a single data 
point si in terms of all the binary features. S is a subset of 
R. Row i in dataset S is represented by Si.

– T: vector of dimension m, whose generic element j con-
tains the sum of all n elements belonging to R and associ-
ated to the binary feature j.

– TB: vector of dimension m containing average values T
n

 
over the population of the underprivileged group. Each 
generic entry j in TB increases in magnitude if the par-
ticular binary feature j is common among the underpriv-
ileged group members.

The index t(si) is defined as the dot product

where Si captures the characteristics of the single individual 
compared to the group and TB captures the characteristics 
of the group. The result of the dot product is a real value 
t(si) which increases when individual si shares more charac-
teristics with the majority of the unprivileged group mem-
bers in the dataset. Conversely, the index decreases if si has 
few common features with the majority of the unprivileged 
group members in the dataset.

Toy example

This toy example illustrates how to compute Index t(si) on a 
specific dataset. This example considers a case with a sam-
ple of n = 7 individuals belonging to a group based on the 
protected attribute gender. For each generic individual si in 
the sample, there are m = 3 binary features. Table 2 reports 
the overview of the series of binary features observed for 
each individual. As we can see from the table, individual A 

(1)t(si) = Si.TB,

shares: i) Feature 1 with individuals B, C, G; ii) Feature 3 
with individuals B, E, G. In other words, individual A has 
some characteristics in common with three other individu-
als in terms of Feature 1 and - also - with three individuals 
in terms of Feature 3. On the other hand, individual D has 
characteristics in common only with individual G as they 
both share Feature 2. Individual F has no shared charac-
teristics with any other individual in the group. By looking 
at the table, we can argue that, based on this set of binary 
features, F has no commonality with the other individuals 
in the group.

Table 3 reports the values of Index t(si) computed for all 
the individuals in the group.

German Credit Data Analysis

The experiment performed on German Credit Data consid-
ers two distinct sets of data points, namely SA, SB (associ-
ated to different subsets of R). Index t(si) given in Eq. (1) is 
computed for each data point in each subset and then t̄(si) 
averages the single values to a unique measure at subgroup 
level ( SA, SB ). The use of t-test with unequal sample size 
enables to compare the mean values at group level to deter-
mine whether these two sets of data points have statistically 
different index scores.

Table 4 reports the binary features used for the index 
computation in the experimental study on German Credit 
Data. They represent the entries of R dataset in our experi-
mental study13.

To add controlled bias in the dataset, we artificially alter 
the classification outcomes for gender attribute “female”, as 
mentioned in Section Experimental study: credit risk loan 
application. We introduce controlled bias via a probabilis-
tic relationship (conditional statement) assigning the value 
’defaulted’ to any given data point with ”female” attribute 
with probability 60% . Thus, while in the original dataset 
the correlation between ”female” attribute and ’default’ is 

Table 2  Toy example: single individual data points and binary fea-
tures. The Table reports the overview of the binary features per each 
individual in the sample

Individual s
i

Feature 1 Feature 2 Feature 3

A 1 0 1
B 1 0 1
C 1 0 0
D 0 1 0
E 0 0 1
F 0 0 0
G 1 1 1

Table 3  Toy example: Index 
t(s

i
) values. The Table reports 

the values of Index t(s
i
) given 

in Eq. (1) computed for each 
individual considered in the 
toy example. Table 2 reports 
the binary features per each 
individual in the sample

Individual s
i

Index t(s
i
)

A 1.1429
B 1.1429
C 0.5714
D 0.2857
E 0.5714
F 0.0000
G 1.4286

13 The interested reader can refer to https:// archi ve. ics. uci. edu/ ml/ 
datas ets/ Statl og+ (German+ Credit+ Data) for a full description of the 
single instances for each feature.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data)
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−0.007 , this stochastic treatment increases the correlation 
to approximately 0.18. As a result, the classifier will have 
an increased likelihood of attributing a low creditworthiness 
score to data point with ”female” attribute. We train three 
models (logistic regression, Adversarial Debiasing, reject 
option based classification) first on a training set of size 700 
and then used the trained models to generate the outcomes 
presented in the main text which is the validation set of size 
300.
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