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The prevalence of somatic insulinopathies, like metabolic syndrome (MetS), obesity, and type 2 diabetes mellitus (T2DM), is higher
in Alzheimer’s disease (AD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Dysregulation of insulin
signalling has been implicated in these neuropsychiatric disorders, and shared genetic factors might partly underlie this observed
multimorbidity. We investigated the genetic overlap between AD, ASD, and OCD with MetS, obesity, and T2DM by estimating
pairwise global genetic correlations using the summary statistics of the largest available genome-wide association studies for these
phenotypes. Having tested these hypotheses, other potential brain “insulinopathies” were also explored by estimating the genetic
relationship of six additional neuropsychiatric disorders with nine insulin-related diseases/traits. Stratified covariance analyses were
then performed to investigate the contribution of insulin-related gene sets. Significant negative genetic correlations were found
between OCD and MetS (rg=−0.315, p= 3.9 × 10−8), OCD and obesity (rg=−0.379, p= 3.4 × 10−5), and OCD and T2DM (rg=
−0.172, p= 3 × 10−4). Significant genetic correlations with insulin-related phenotypes were also found for anorexia nervosa (AN),
attention-deficit/hyperactivity disorder (ADHD), major depressive disorder, and schizophrenia (p < 6.17 × 10−4). Stratified analyses
showed negative genetic covariances between AD, ASD, OCD, ADHD, AN, bipolar disorder, schizophrenia and somatic
insulinopathies through gene sets related to insulin signalling and insulin receptor recycling, and positive genetic covariances
between AN and T2DM, as well as ADHD and MetS through gene sets related to insulin processing/secretion (p < 2.06 × 10−4).
Overall, our findings suggest the existence of two clusters of neuropsychiatric disorders, in which the genetics of insulin-related
diseases/traits may exert divergent pleiotropic effects. These results represent a starting point for a new research line on
“insulinopathies” of the brain.
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INTRODUCTION
Mental disorders are characterised by a reduced life expectancy of
~10 years [1]. In addition to violent causes of death, more than
67% of the increase in premature mortality is due to natural
causes [2]. The increased prevalence of insulin-related somatic
diseases (i.e., type 2 diabetes mellitus (T2DM), obesity, and
metabolic syndrome (MetS)) observed in mental disorders, with
a resulting increased cardiovascular risk, contributes significantly
to the lower life expectancy [3].
A number of studies have investigated this higher comorbidity,

focusing mainly on metabolic disturbances as possible conse-
quences of unhealthy lifestyles, sedentary habits, or the chronic
use of psychotropic medication [4]. However, there is growing

evidence for the presence of glycaemic and metabolic imbalances
in drug-naïve acute psychiatric patients already at disease onset,
suggesting that common pathogenic mechanisms may also be
involved [5]. Shared genetic factors may play a role, and genomic
studies may help to unravel the biological underpinnings of the
phenotypically observed comorbidity of neuropsychiatric disor-
ders with somatic insulin-related diseases and traits.
The above-mentioned insulin-related and neuropsychiatric

diagnostic groups consist of complex and heterogeneous diseases
with a highly polygenic inheritance pattern; heritability estimates
from twin and family studies range between 30% and 80% [6, 7].
Large meta-analyses of genome-wide association studies (GWASs)
have identified hundreds of disease-associated single nucleotide
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polymorphisms (SNPs), each contributing with a small effect to the
overall risk for these diseases [8]. Genetic sharing has already been
highlighted between T2DM, obesity and MetS, as expected from
their highly interrelated pathogenesis [9], and recent evidence has
also revealed the presence of substantial pleiotropy among
psychiatric disorders [10].
A key feature that T2DM, obesity and MetS have in common is

an impaired response to insulin stimulation in peripheral tissues,
better known as insulin resistance [11]. Abnormalities in insulin
signalling might also link with neuropsychiatric disorders.
Indeed, beyond the anabolic function of insulin at the peripheral
level, where it promotes glucose uptake in tissues while
stimulating glycogenesis and lipogenesis, this hormone can
also bind to insulin receptors (INSRs) on the surface of both
neurons and glial cells in the central nervous system (CNS) [11],
where insulin signalling is regulated a.o. by the neurotransmit-
ters serotonin and dopamine [12]. In the CNS, insulin plays a key
role in synaptic plasticity and neurotransmission, apoptosis
inhibition, and neuroinflammation [13]. Preclinical studies have
suggested that an increase in the mammalian target of
rapamycin (mTOR) activity, one of the major downstream
effectors of the INSRs, may lead to reduced synaptic pruning,
and thereby contributes to the cognitive inflexibility and
perseverative/repetitive behaviours observed in those animals
with mTOR genetic alterations [14, 15]. Cognitive abnormalities
of a similar nature were shown in TALLYHO/JngJ mice, an animal
model of T2DM [16].
Recently, dysregulation in insulin signalling has been sug-

gested to contribute to neuropsychiatric disorders more widely.
Evidence is strongest for Alzheimer’s disease (AD) and autism
spectrum disorder (ASD) [17–22]. Our own recent work also
suggested a link with obsessive-compulsive disorder (OCD)
[18, 22]. In the case of AD, it has been shown that insulin
sensitivity is altered even before the onset of cognitive decline
or β-amyloid (Aβ) accumulation in the CNS [20]. The hyper-
activity of the phosphatidylinositol-3-kinase (PI3K)/protein
kinase B (AKT)/mTOR cascade, mediated by the phosphorylation
of INSR via insulin binding to the neuronal surface, leads to the
inhibition of autophagy processes and subsequent accumula-
tion of damaged mitochondria and misfolded proteins seen in
AD [19]. The same PI3K/AKT/mTOR hyperactivity is also involved
in ASD pathogenesis [17], and genes within the mTOR pathway
were also shown to associate with brain volume variability and
ASD [23]. Furthermore, offspring of mothers who have T2DM
during pregnancy have a higher risk of developing ASD [21]. The
integration of data from different types of genetic studies has
also implicated CNS insulin signalling as one of the biological
mechanisms underlying OCD, where this signalling pathway
may modulate excitatory synaptogenesis and postsynaptic
dendritic spine formation [18]. Also, obsessive-compulsive
symptoms in the general population have been associated with
genes related to CNS insulin signalling [22], and shared genetic
aetiologies of peripheral insulin-related phenotypes (i.e., T2DM,
glucose levels 2 h after an oral glucose challenge (2hGlu), and
fasting plasma insulin (FPI)) were found with both obsessive-
compulsive symptoms and OCD [22].
In light of the above evidence, we aimed to investigate the

extent of the potential genetic sharing and contribution of insulin-
related gene sets in the observed comorbidity of neuropsychiatric
disorders having preclinical evidence of insulin signalling dysre-
gulation (i.e., AD, ASD, and OCD) with somatic diseases related to
insulin resistance, namely MetS, obesity, and T2DM. For this
purpose, we performed Linkage Disequilibrium SCore regression
(LDSC) and stratified GeNetic cOVariance Analyzer (GNOVA)
analyses [24, 25]. In addition, we explored other potential brain
“insulinopathies” by estimating the genetic overlap between other
neuropsychiatric disorders and insulin-related somatic
phenotypes.

MATERIALS AND METHODS
Input datasets
As input for the analyses, we used summary statistic data of the largest
GWASs available at the time of conducting our analyses for the
phenotypes of interest (see also Table 1 and the Supplementary
information). We considered the most prevalent somatic diseases linked
to insulin resistance (i.e., MetS, obesity, and T2DM), and neuropsychiatric
disorders having preclinical evidence of insulin signalling dysregulation,
namely AD, ASD, and OCD [15, 16, 20]. We also investigated insulin-related
traits (i.e., 2hGlu, body mass index (BMI), fasting plasma glucose (FPG) and
FPI, glycated haemoglobin (HbA1c), and homeostatic model assessment
for insulin resistance (HOMA-IR)), and other six neuropsychiatric disorders,
which are those best characterised genetically by the Psychiatric Genomics
Consortium [10] (i.e., attention-deficit/hyperactivity disorder (ADHD),
anorexia nervosa (AN), bipolar disorder (BD), major depressive disorder
(MDD), schizophrenia (SCZ), and Tourette’s syndrome (TS)). Data were
downloaded from online repositories (see URLs), when publicly available,
or requested (i.e., MetS) from the GWAS authors.

Genome-wide bivariate genetic correlation estimations
Bivariate LDSC (https://github.com/bulik/ldsc) analyses were performed to
estimate the genetic correlation (rg) ascribed genome-wide to common
variants between AD, ASD, OCD and MetS, obesity, and T2DM, following
the software guidelines (https://github.com/bulik/ldsc/wiki/Heritability-
and-Genetic-Correlation). Also through LDSC, exploratory analyses were
carried out to estimate the extent of the genetic sharing between other
neuropsychiatric disorders (ADHD, AN, BD, MDD, SCZ, TS, along with AD,
ASD, and OCD) and insulin-related somatic diseases/traits (i.e., 2hGlu, BMI,
FPG and FPI, HbA1c, HOMA-IR, along with MetS, obesity, and T2DM).
Further details on the quality control (QC) steps and the LDSC method are
provided in the Supplementary information. LDSC is computationally
robust to sample overlaps between studies [24]. Bonferroni correction was
applied, accounting for the number of analyses performed (α= 0.05/(9 ×
9)= 6.17 × 10−4).

Genetic covariance analyses stratified by functional
annotations
GNOVA (https://github.com/xtonyjiang/GNOVA) was used to investigate
whether neuropsychiatric disorders were genetically correlated to MetS,
obesity, or T2DM specifically through nine gene sets involved in peripheral
and/or CNS insulin signalling (gene set sizes ranged from 27 to 137 genes;
see Tables S1–S2 for a complete list of genes included in each gene set).
Further details on the GNOVA method and the selection of the insulin
signalling-related gene sets are provided in the Supplementary informa-
tion. GNOVA-computed covariance estimates are robust to sample
overlaps [25]. Bonferroni correction was applied to GNOVA results
considering the nine tested gene sets and the 27 pairwise combinations
of three insulin-related somatic diseases and nine neuropsychiatric
disorders for which GNOVA analyses were performed (α= 0.05/(9 × 3 ×
9)= 2.06 × 10−4).

RESULTS
Description of the input datasets
A description of the samples (with sample sizes, number of cases
and controls, and the derived effective sample size) included in
the analyses is provided in Table 1. Further information on the
GWAS samples can be found in the Supplementary information.

Pairwise genome-wide genetic correlations between
neuropsychiatric disorders and insulin-related somatic
diseases and traits
A genetic correlation plot depicting the LDSC analyses results is
shown in Fig. 1; details on the genetic correlation estimates (rg) for
each pair and statistical significance are provided in Table 2. After
correcting for multiple testing, negative genetic correlations were
highlighted between OCD and MetS (rg=−0.315, p= 3.9 × 10−8),
OCD and obesity (rg=−0.379, p= 3.6 × 10−5), and OCD and
T2DM (rg=−0.172, p= 3 × 10−4). Nominally significant genetic
correlations were also found between AD and T2DM (rg= 0.155,
p= 0.048), and ASD and MetS (rg= 0.115, p= 0.002).
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When insulin-related somatic traits (i.e., 2hGlu, BMI, FPG, FPI,
HbA1c, HOMA-IR) were considered, OCD was also found to be
significantly negatively genetically correlated with BMI
(rg=−0.284, p= 2.6 × 10−11), but neither AD nor ASD showed
significant correlations with the traits.
Analyses were also extended to other neuropsychiatric dis-

orders (i.e., ADHD, AN, BD, MDD, SCZ, and TS) and significant
genetic correlations were found between insulin-related diseases/
traits and ADHD, AN, MDD, and SCZ (see Fig. 1 and Table 2).

Genetic covariance between neuropsychiatric disorders and
insulin-related somatic diseases stratified by insulin-related
gene sets
After Bonferroni correction, stratified GNOVA analyses highlighted
significant negative genetic covariance between AD and obesity
through the Reactome INSR recycling gene set (p= 4.6 × 10−5), as
well as between ASD and MetS through the Biocarta, KEGG, and
PID insulin signalling pathways (p ≤ 3.2 × 10−5). OCD showed
negative genetic covariance with MetS and T2DM through the
Reactome INSR recycling gene set (p ≤ 1.6 × 10−4).
When the other neuropsychiatric disorders were also con-

sidered, negative genetic covariance was found between BD and
T2DM, BD and MetS, SCZ and MetS through the PID insulin
signalling pathway (p ≤ 2 × 10−5), as well as between AN and
T2DM through the Biocarta insulin pathway (p= 1.26 × 10−5).
Moreover, positive genetic covariance was highlighted between
AN and T2DM through the Reactome insulin processing gene set
(p= 3.77 × 10−5), as well as between ADHD and MetS through
the Reactome regulation of insulin secretion gene set (p=
1.18 × 10−4) (see Table 3; detailed results are shown in Tables
S3–S11).

DISCUSSION
In this study, we investigated the genetic overlap of AD, ASD, OCD
with somatic insulinopathies, namely MetS, obesity and T2DM,
hypothesising an important role for gene sets related to insulin
signalling. Our genome-wide analyses indicate significant global
negative genetic correlations between OCD and obesity, T2DM,
and MetS. Gene set stratified genetic covariance analyses of
specific insulin-related pathways helped identify a genetic link of
AD, ASD, and OCD with somatic insulinopathies. Moreover, our
exploration of other potential brain “insulinopathies” yielded
evidence for global genetic overlap of ADHD, AN, MDD, and SCZ
with somatic insulin-related diseases/traits, while genetic covar-
iance at the level of insulin-related gene sets was identified
between ADHD, AN, BD, SCZ and T2DM/MetS/obesity.
The previous clinical and epidemiological studies available to

date indicate a higher prevalence of obesity, MetS, and T2DM in
patients with OCD than the general population [26, 27]. Further-
more, a mouse model for T2DM showed compulsive traits, as
discussed above [20]. We thus had hypothesised a genetic
correlation between OCD and somatic disorders characterised
by insulin resistance to exist, which we indeed found in this study.
The negative direction of the correlation we found was
unexpected, as it might suggest a protective role of the genetics
underlying OCD on the chance of having T2DM, MetS and/or
obesity. However, for behavioural traits, environmental sources of
variation may operate orthogonally to genetic factors, masking
the effect of the genetics at the phenotypic level [28]. Therefore,
one hypothesis explaining our result can be that environmental
effects act in the opposite direction to genetics, causing an
increased risk in the presence of protective genetics and resulting
in variability in the phenotypic manifestations over time. Indeed,

Table 1. Characteristics of the samples used for the Linkage-Disequilibrium SCore regression (LDSC) and GeNetic cOVariance Analyzer (GNOVA)
analyses.

Trait/
disorder

Author Year PMID Consortium Ancestry N Cases Controls Neff

2hGlu Saxena et al. 2010 20081857 MAGIC European 15,234

BMI Pulit et al. 2019 30239722 GIANT European 697,734

FPG Lagou et al. 2021 33402679 MAGIC European 140,595

FPI Lagou et al. 2021 33402679 MAGIC European 98,210

HbA1c Wheeler et al. 2017 28898252 MAGIC European 123,665

HOMA-IR Dupuis et al. 2010 20081858 MAGIC European 37,037

MetS Lind 2019 31589552 European 291,107 59,677 231,430 189,772.64

Obesity Watanabe et al. 2019 31427789 European 244,890 9805 235,085 37,649.69

T2DM Mahajan et al. 2018 30297969 DIAGRAM European 898,130 74,124 824,006 272,025.75

ADHD Demontis et al. 2019 30478444 PGC European 53,293 19,099 34,194 49,017.41

AD Wightman et al. 2021 34493870 PGC European 762,917 86,531 676,386 306,866.18

AN Watson et al. 2019 31308545 PGC European 72,517 16,992 55,525 52,041.91

ASD Grove et al. 2019 30804558 PGC European 46,350 18,381 27,969 44,366.62

BD Mullins et al. 2021 34002096 PGC European 413,466 41,917 371,549 150,669.89

OCD OCGAS/IOCDF-GC 2018 28761083 OCGAS/IOCDF-
GC

European 9725 2688 7037 7780.14

MDD Wray et al./
Howard et al.

2019 29700475/
29662059

PGC European 500,199 170,756 329,443 449,855.91

SCZ Pardinas et al. 2018 29483656 PGC+ CLOZUK European 105,318 40,675 64,643 99,863.42

TS Yu et al. 2019 30818990 PGC European 14,307 4819 9488 12,783.30

2hGlu glucose levels 2 h after an oral glucose challenge, BMI body mass index, FPG fasting plasma glucose, FPI fasting plasma insulin, HbA1c glycated
haemoglobin, HOMA-IR homeostatic model assessment for insulin resistance,MetSmetabolic syndrome, T2DM type 2 diabetes mellitus, ADHD attention-deficit/
hyperactivity disorder, AD Alzheimer’s disease, AN anorexia nervosa, ASD autism spectrum disorder, BD bipolar disorder, MDD major depressive disorder, OCD
obsessive-compulsive disorder, SCZ schizophrenia, TS Tourette’s syndrome, N total sample size, Neff effective sample size [Neff = 4/(1/Cases+ 1/Controls)].
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metabolic complications have been particularly associated with a
longer duration of antipsychotics treatment in patients with OCD
[26]. It is also reasonable to assume that patients with more severe
symptoms, having higher genetic load for OCD, are more likely to
develop metabolic side effects of such treatments because they
require higher doses and longer therapies, even though they
might be genetically more protected against insulin-related/
metabolic disturbances. The analyses considering insulin-related
glycaemic/anthropometric traits also showed a negative correla-
tion between OCD and BMI. This finding is consistent with
previous evidence in smaller samples of a negative genetic
relationship with a negative direction between OCD and body fat
measures [29]; it also further supports the negative correlation
trend that we observed between OCD and somatic insulinopa-
thies. Zooming in through analyses of gene sets related to insulin
signalling, we found genes involved in the INSR recycling process
involved in the genetic correlation of OCD with both MetS and
T2DM. This molecular pathway mediates the recycling of the INSR
and reintegration into the plasma membrane. After activation, the
INSR-insulin complex is internalised into the cell within an
endosome, and insulin is degraded, while INSR is dephosphory-
lated and reintegrated into the plasma membrane [30]. To our
knowledge, this is the first study reporting involvement of the
INSR recycling pathway in neuropsychiatric phenotypes. In this
respect, it should be noted that endosomal recycling processes
are relevant to the functioning of the brain. They are important for
synaptic functioning and plasticity (and related glutamatergic
neurotransmission) as well as for the maintenance of levels of
membrane proteins, more generally [31].

We did not observe significant genome-wide genetic correla-
tions between AD and somatic insulin-related diseases, only
nominally significant positive genetic correlations were seen with
MetS and T2DM before multiple testing correction. Our results
may add support for a predominant influence of environmental
and epigenetic factors in the comorbidity observed between AD
and somatic insulinopathies, although we cannot exclude the
possible existence of patterns of local genetic correlation [32]. It
should be noted that ageing is considered the greatest risk factor
for AD, and T2DM incidence also increases with ageing [33].
Processes linked to oxidative damage and ageing could trigger
the onset of both diseases in a way that is partly independent
from genetic effects [19]. Air pollution, smoking, and low physical
activity are also important risk factors for broadly defined
dementia, and they also contribute to insulin resistance and
cerebrovascular disease [33, 34]. The role of epigenetic modula-
tion, including DNA methylation, histone modifications and non-
coding RNAs, in the aetiopathogenesis of AD is also well
recognised, and this may provide novel avenues for treatment
in the upcoming years [35]. A hypothesis is that the clinical
heterogeneity of AD may have camouflaged the presence of
genetic factors shared with somatic insulinopathies. In this regard,
more deeply phenotyped samples might help better investigate
the presence of pleiotropic effects in the future [36]. Alternatively
or in addition, previous evidence may point to a role for insulin
signalling specifically in individuals carrying APOE polymorphisms,
suggesting that new insights may be derived from stratification of
the AD population according to APOE genotype. Indeed, oral
antidiabetics, such as thiazolidinediones and intranasal insulin
have shown differential efficacy in AD depending on the APOE-ε4
genotype [37], which is the strongest common genetic risk factor
for late-onset AD [38]. Moreover, a previous study has also shown
a strong regional genetic correlation between AD and T2DM for
the genetic variants mapped to the apolipoprotein-E (APOE) locus
[39]. However, the absence of genetic correlations at the genome-
wide level does not preclude the existence of genetic sharing, as
both positive and negative local genetic correlations may occur
and potentially cancel each other out when summed at the
genome-wide level [40]. In this regard, we demonstrated
significant genetic covariance between AD and obesity at the
INSR recycling gene set level. Under physiological conditions, INSR
is maintained in equilibrium between an internalising and an
exposed state at the plasma membrane [41]. Either excessive or
insufficient surface INSR can lead to the development of insulin
resistance [41]. Our finding is in line with the evidence of an
altered cellular distribution of INSRs in AD, resulting in a loss of
INSRs at the neuronal membrane, suggesting that alterations in
INSR recycling/trafficking are present [42].
A role of metabolic dysregulation in ASD has been previously

suggested by the increased risk for ASD and neurodevelopmental
delays in the offspring of mothers who have metabolic conditions
during pregnancy [43]. Nevertheless, our study did not find ASD to
be significantly genetically correlated at the genome-wide level
with either MetS, obesity or T2DM, in line with non-significant
previous reports using smaller sample sizes [44]. However, the
stratification to insulin-specific gene-sets revealed significant
localised negative genetic covariance of ASD with MetS through
genes within insulin signalling pathways. Although further studies
will be needed to disentangle the biological meaning of this
finding, we could speculate that the observed pathway-level
negative genetic covariance between ASD and MetS might reflect
higher complexity of reciprocal regulation between monoamine
and insulin signalling at the CNS and peripheral level [12]. What
we found at the gene set level may also be consistent with prior
findings of enhanced insulin signaling in the brain of a Drosophila
model of Fragile X syndrome, which represents the most prevalent
hereditary type of intellectual disability and autism [45].

Fig. 1 Genetic correlation plot summarising the results from the
bivariate Linkage Disequilibrium SCore regression (LDSC) ana-
lyses. The size of the circle is proportional to the genetic correlation
estimates, going from warmer to colder colours as the direction of
the effect changes from positive to negative. Bonferroni multiple
testing correction was applied, correcting for the number of
analyses performed (α= 0.05/(9 x 9) = 6.17e−4). AD Alzheimer’s
disease, ASD autism spectrum disorder, OCD obsessive-compulsive
disorder, ADHD attention-deficit/hyperactivity disorder, AN anorexia
nervosa, BD bipolar disorder, MDD major depressive disorder, SCZ
schizophrenia, TS Tourette’s syndrome, MetS metabolic syndrome,
T2DM type 2 diabetes mellitus, 2hGlu glucose levels 2 h after an oral
glucose challenge, BMI body mass index, FPG fasting plasma
glucose, FPI fasting plasma insulin, HbA1c glycated haemoglobin,
HOMA-IR homeostatic model assessment for insulin resistance.
** Statistically significant bivariate genetic correlation (p < 6.17 × 10−4).
* Nominally significant bivariate genetic correlation (p < 0.05).
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To extend the spectrum of potential brain “insulinopathies”,
LDSC analyses were performed considering six other neuropsy-
chiatric disorders and diseases/traits related to insulin resistance.
Our analyses identified several additional genetic correlations of
the somatic insulin-related diseases with neuropsychiatric dis-
orders; negative genetic correlations were seen between MetS
and both AN and schizophrenia, and positive genetic correlations
were observed for MetS with both ADHD and MDD. Of note, the
diagnosis of MetS is made when at least three out of the following
co-occur: high systolic blood pressure, low levels of high-density
lipoprotein (HDL), hyperglycaemia, high levels of triglycerides,
and/or increased waist circumference [9]. Our findings are
consistent with previous evidence of pairwise genetic sharing
between lipidemic traits (HDL and triglycerides), waist circumfer-
ence and AN, ADHD, and/or MDD [8, 46–48]. In line with the
negative genetic correlations that we observed between MetS and
both AN and schizophrenia, MR studies have previously identified
AN and SCZ as causal for decreased fat mass [29]. This finding may
suggest a prevalent contribution of environmental factors, such as
the use of antipsychotics, unhealthy diet and lifestyle, reduced
access to medical care on the epidemiological evidence of an
increased risk of MetS, hypertension, and dyslipidaemia in patients
with SCZ [49]. We also replicated and updated previous evidence
of genetic sharing of ADHD, AN, and MDD with T2DM, as well as of
ADHD, AN, MDD, and SCZ with both obesity and BMI
[8, 24, 29, 46, 47, 50]. With regard to SCZ and BMI, the negative
direction of the genetic correlation corresponds to the previously
reported evidence of a negative association of polygenic risk
scores for SCZ with BMI [50]. Exploring further the genetic links
between these neuropsychiatric disorders and glycaemic traits
linked to insulin resistance, we revealed a novel positive
correlation between ADHD and FPG, as well as negative bivariate
correlations between AN and both FPI and HOMA-IR that replicate
and update previous findings [29, 46]. A Mendelian randomisation
study had also previously shown that higher levels of FPI have a
causal effect in reducing the risk of AN [51].
Interestingly, the local genetic covariance we have highlighted

between neuropsychiatric disorders and somatic diseases linked
to insulin resistance was in most cases in the negative direction at
the level of gene sets related to insulin signalling, except for AN
and ADHD. A negative direction means that genetic variability at
the level of these gene sets may result in an opposite pleiotropic
effect on these two groups of diseases. However, the biological
interpretation of these findings does not seem obvious at present
and additional investigations at the gene and functional level will
be necessary to clarify their biological significance.
This study comes with some strengths and limitations. The

major strength is the investigation of the possible specific
involvement of insulin-related gene sets at the genomic level for
the first time in the phenotypically observed comorbidity between
neuropsychiatric disorders and somatic diseases related to insulin
resistance. GNOVA provided us with more powerful statistical
inference and more accurate genetic covariance estimates than
LDSC and helped dissect the shared genetic architecture of the
considered complex diseases, while giving us greater insights into
the underlying biology. We exploited the largest public GWAS
summary statistics (up to 898,130 individuals for T2DM) and used
a strict Bonferroni correction to avoid type-1 errors. Our study may
be limited by not having considered in our analyses the potential
effect of environmental factors and epigenetic mechanisms, which
are likely to mediate the relationship between neuropsychiatric
and somatic insulinopathies, as well as potential sex effects due to
the unavailability of publicly available sex-stratified data for all the
traits/disorders tested and the loss of power for some of the
phenotypes investigated. Another limitation is the inclusion of
European-only datasets in our analyses, which limits the
generalisability of our findings. In addition, the composition of
insulin-related gene sets, used as functional annotations in ourTa
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stratified analyses, may be influenced by the current, still
incomplete knowledge of the biology and functioning of the
pathways to which they refer.
In conclusion, our study revealed the presence of genetic

overlap between OCD and insulin-related somatic diseases, with a
likely protective effect of the genetics underlying OCD on the
chance of having MetS, obesity, and/or T2DM. However, environ-
mental effects, such as psychotropic drug use, or a relatively
unhealthy lifestyle, may act in the opposite direction to genetics,
causing increased metabolic risk despite protective genetics. We
pointed out that other neuropsychiatric disorders, besides OCD,
represent potential brain “insulinopathies”. Two distinct clusters of
psychiatric disorders have emerged, in which the genetics of
insulin-related traits/diseases may exert divergent pleiotropic
effects: one consisting of AN, OCD, and SCZ, which showed
negative genetic overlap with somatic insulin-related diseases and
traits, and the other one comprising ADHD, and MDD, which
showed positive genetic overlap with insulin-related diseases and
traits. Finally, we demonstrated that insulin-related gene sets may
be pleiotropic for neuropsychiatric disorders (i.e., AN, ADHD, ASD,
BD, OCD, and SCZ) and somatic insulinopathies, suggesting that
the cumulative effect of genetic variability within insulin-related
gene sets on the investigated neuropsychiatric disorders except
for AN and ADHD is in the opposite direction to the effect on
somatic insulinopathies. Our work might open up new directions
for clinical and neuropsychopharmacological research by introdu-
cing insulin signalling as a possible mechanism underlying the
multimorbidity of major mental disorders and somatic diseases.
Further studies are warranted to investigate the biological
meaning of the observed correlations and potential non-genetic
effects contributing to insulin-related multimorbidity.

URLs
LDSC, https://github.com/bulik/ldsc; Pre-computed European LD
scores, https://data.broadinstitute.org/alkesgroup/LDSCORE/; GNOVA,
https://github.com/xtonyjiang/GNOVA;
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