
Development of a Light Weight L2-Cache

Controller

Måns Arildsson

Space Engineering, master's level

2022

Luleå University of Technology

Department of Computer Science, Electrical and Space Engineering

Abstract
An L2 cache is a device that buffers data in fast memory closer to the Central Processing Unit
(CPU) in order to deliver its contents with much lower latency than can otherwise be achieved by
main memory. This provides a substantial performance increase in many systems as the memory
interface is often a bottleneck. The goal of this thesis is to develop a simple L2 cache using
VHDL for Cobham Gaisler’s open source hardware library GRLIB which currently lacks such a
core. The outcome of the thesis is the IP core L2C-Lite which will be released in Febuary of 2022
as an addition to GRLIB. L2C-Lite has been integrated into multiple systems and has provided
major performance gains in applications running under linux as well as other benchmarks. In
addition, some potential improvements have been identified to further increase the performance
of the cache, as well as improve its usability in systems.

1

List of Figures
1 Relative performance gain in processing speed vs memory latency over time. [20]

[10] . 2
2 Cache heirachy of a typical, modern CPU. 3
3 Cobham Gaisler GR740 Rad-hard Quad-core SoC. Source: https://gaisler.

com/index.php/products/components/gr740 6
4 High level illustration of the bus concept. 6
5 Multiplexed AHB bus illustrated. Source [9] . 7
6 Generic two process circuit. 10
7 8-way associative LRU scheme. 12
8 Illustration of the PLRU algorithm in 8-way associative cache. 13
9 PLRU eviction sequence in 8-way associative cache. 14
10 Behavior of copy-back and write-through write policies during write access hit &

eviction of cache line. 15
11 L2 cache file structure. 17
12 Example of single read transaction on 32-bit bus. 18
13 Generic bus master core overview. 19
14 Example of GBM write transaction . 20
15 Control state machine flow chart. READ_S, WRITE_S, R_INCR_S and W_INCR_S

are separate states, they are grouped in the image to compress the flow chart. . 21
16 Backend write state machine flow chart. 22
17 Address sectioned into tag, index and offset. 23
18 Illustration of multi-way cache. 23
19 Parallel lookup, multi-way cache. 24
20 Data transfer between cache storage and the interface bus. 25
21 Functional flow when replacing dirty cache line. 25
22 Tree PLRU bits mapped to VHDL vector. 26
23 Example of PLRU algorithm in use. 27
24 Endianess byte swap. 28
25 Functional flow of cache flushing feature. 29
26 Cache configuration bit description. 30
27 Full system summary. 31
28 Testbench system overview. 35
29 Error transcript from simulation run in ModelSim. 36
30 Example of AHB bus tracing using GRMON. 37
31 Arty Artix-7 T100 development board. Source: https://digilent.com/shop/arty-

a7-artix-7-fpga-development-board/ . 38
32 LEON3 SoC overview. 39
33 SELENE SoC overview. Source: Internal SELENE git. 40
34 DMIPS/MHz with and w/o L2 cache. LEON3 Artix-7 SoC and NOEL-V VCU118. 41
35 Linux file system benchmark with and w/o L2 cache. H2020 SELENE 6-core SoC. 42

2

https://gaisler.com/index.php/products/components/gr740
https://gaisler.com/index.php/products/components/gr740

List of Tables
1 Approximate access latency on AMD 5900X paired with 3800 MT/s, 15 CAS

latency, DDR4, dual channel RAM. Benchmark data from AIDA64 Cache &
Memory Benchmark. 2

2 Specification summary [14][15] . 8
3 Overhead comparison between Least Recently Used & Pseudo Least Recently

Used . 13
4 Cache feature summary . 16
5 Relevant AHB signals. 18
6 GBM signals. 20
7 Cacheability map. 28
8 Internal I/O registers . 30
9 Generics summary . 32
10 Signals summary . 32
11 Latency summary . 33

3

Acronyms
I2C Inter-Integrated Circuit. 7, 9, 38

AHB Advanced High-performance Bus. 2, 7–9, 11, 17, 19, 32, 34–40, 44–46

AI Artificial Intelligence. 4, 39, 40

AMBA Advanced Microcontroller Bus Architecture. 6, 7, 29, 34

APB Advanced Peripheral Bus. 7–9, 38, 45

ASIC Application Specific Integrated Circuit. 4

ATF AMBA Test Framework. 34, 35

AXI Advanced eXtensible Bus. 7, 8, 11, 19, 32, 39, 40

BRAM Block Random Access Memory. 26

CAN Controller Area Network. 9

CISC Complex Instruction Set Computer. 9

CPU Central Processing Unit. 1–3, 41

DDR Double Data Rate. 38–40

EDA Electronic Design Automation. 4

FIFO First In First Out. 44

FPGA Field Programmable Gate Array. 4, 7, 34, 40

FPU Floating Point Unit. 9

GBM Generic Bus Master. 2, 3, 11, 19, 20, 32, 46

GPIO General Purpose I/O. 38

GPL GNU General Public License. 9, 12, 39, 40

GPP General Purpose Processing. 39, 45

GRLIB Gaisler Research Library. 1, 6–10, 16, 26, 35, 37, 38, 44

HDL Hardware Description Language. 4, 5

I/O Input/Output. 7, 17, 28–30, 32, 37–39

IC Integrated Circuit. 1, 4

IP Intellectual Property. 1, 4, 6, 8, 9, 11, 16, 19, 27, 34, 37, 38, 40

ISA Instruction Set Architecture. 8, 9, 37

4

JTAG Joint Test Action Group. 37, 38, 40

LRU Least Recently Used. 3, 12, 13

MIG Memory Interface Generator. 38, 39

MIPS Mega Instructions Per Second. 41

MSB Most Significant Bit. 28

NoC Network-On-Chip. 39, 40, 45

P&P Plug & Play. 7, 18, 29, 37

PCI Peripheral Component Interconnect. 9, 40

PLRU Pseudo Least Recently Used. 3, 13, 14, 26, 27, 44

R-M-W Read-Modify-Write. 26, 44

RAM Random Access Memory. 2–4, 16, 23, 35, 45

RISC Reduced Instruction Set Computer. 8, 9, 39

SoC System-on-Chip. 1, 2, 4, 6, 9, 12, 35, 37–42

SPI Serial Peripheral Interface. 9, 38, 40

UART Universal Asynchronous Receiver/Transmitter. 7, 9, 38, 40

5

Contents
1 Introduction 1

2 Background 2
2.1 Data Caching . 2
2.2 Cobham Gaisler . 4
2.3 HDL & FPGAs . 4

3 Target Systems 6
3.1 SoC Interconnects . 6

3.1.1 Working Principles . 7
3.1.2 Access types . 8
3.1.3 Addressing . 8
3.1.4 Split Support . 8
3.1.5 AMBA summary . 8

3.2 Processor Cores . 8
3.2.1 RISC . 9
3.2.2 LEON . 9
3.2.3 NOEL-V . 9

3.3 Debug Units . 9
3.4 I/O . 9

4 Cache Specification & Design 10
4.1 Specification . 10

4.1.1 Design Method . 10
4.1.2 Interfacing . 11
4.1.3 Cache Configuration . 12
4.1.4 Replacement Policy . 12
4.1.5 Write Policy . 14
4.1.6 Cachablility . 15
4.1.7 Endianess . 16
4.1.8 Performance Counters . 16
4.1.9 Specification Summary . 16

4.2 Design . 17
4.2.1 Frontend Interface . 17
4.2.2 Backend Interface . 19
4.2.3 Cache State . 20
4.2.4 Tag Matching Logic . 22
4.2.5 Read Handling . 24
4.2.6 Write Handling . 26
4.2.7 Replacement policy . 26
4.2.8 Cacheability . 27
4.2.9 Endianess . 28
4.2.10 Cache Flush . 28
4.2.11 Internal I/O registers . 29
4.2.12 System Summary . 31

5 Verification 34
5.1 ATF . 34

5.1.1 AMBA Test Master . 34

6

5.1.2 AMBA Test Slave . 34
5.2 L2 Cache Test Bench . 35

6 Integration 37
6.1 GRMON3 . 37
6.2 LEON3 Artix-7 SoC . 38
6.3 SELENE 6-core NOEL-V SoC . 39

7 Benchmarks & Performance 41
7.1 Dhrystone . 41
7.2 Linux . 42

8 Future Work 44
8.1 Latency Improvements . 44
8.2 Timing Optimizations . 44
8.3 Coherency . 45
8.4 Cache Diagnostics Port . 45
8.5 Flush Improvments . 45
8.6 Cache Invalidation . 45
8.7 Frontend Layer . 46
8.8 SPEC2006 benchmark . 46

A Technical Specification Open Source L2 Cache 49

B L2C-Lite - Level 2 Cache controller 57

7

PAGE 1 SECTION 1 INTRODUCTION

1 Introduction
The computing industry has been one of, if not the most innovative industry in the world
since the inception of the first computers in the late 1940s and early 1950s. As vacuume tubes
were replaced by transistors and Integrated Circuit (IC)s, the transistor count on a typical
chip has increased from 1500 to 50 billion, meaning a 33 million-fold increase[16]. Naturally,
the increased transistor count has resulted in computer systems being much faster and able
to perform tasks that previously were not possible. What has lagged behind the increase in
processing power has been the speed of which it takes to access stored data[3]. The lag in
memory access latency can starve the CPU which forces it to stop execution until the required
data has been fetched. One of the ways this issue is countered is by introducing fast on-chip
memory, where data can be buffered and stored for much faster access. This thesis report
addresses the specification, design, implementation and verification of such a device, an L2
cache, and also briefly discusses potential improvements that can be done to the design in order
to further increase the performance. The goal of the project is to create a simple, but modular IP
core that can be used with already existing System-on-Chip (SoC)s to boost their performance.
The cache is developed in collaboration with Cobham Gaisler, a company specializing in digital
hardware for space applications and will be an addition to the companies open source IP library,
GRLIB. The L2 cache developed during this thesis will be available in the upcoming February
release of GRLIB under the name "L2C-Lite".

Page 1

PAGE 2 SECTION 2 BACKGROUND

2 Background

2.1 Data Caching
As mentioned in Section 1, the growing disparity between memory access latency and processing
speed requires hardware developers to find other solutions to keep a processor fed with data,
see Figure 1.

Figure 1: Relative performance gain in processing speed vs memory latency over time. [20] [10]

One way of solving the issue is using smaller, on-chip, memory buffers that make more frequently
accessed data available much faster for the CPU. The idea was originally introduced in 1965 by
british computer scientist Maurice Wilkes as "Slave memories" in the article "Slave Memories
and Dynamic Storage Allocation" [22]. Since then, the concept has evolved and is now a central
part of a processing systems architecture, in some cases using significant portions of the on-chip
die area. To understand why caches are so effective in increasing the performance of a system,
it can be helpful to compare the access latency of different types of memory. Table 1 shows the
time required for different memory accesses in a high end consumer PC. It takes 68 times longer
fetching data from main memory compared to the L1 cache even with fast and low latency
RAM.

Table 1: Approximate access latency on AMD 5900X paired with 3800 MT/s, 15 CAS latency,
DDR4, dual channel RAM. Benchmark data from AIDA64 Cache & Memory Benchmark.

Memory access Latency
L1 cache 0.8 ns
L2 cache 2.3 ns
L3 cache 10.2 ns
Main memory 54.5 ns

Page 2

PAGE 3 SECTION 2 BACKGROUND

The increased performance that can be achieved from adding caches to a system relies on the
concept "principles of locality". The principles are divided into "spatial" and "temporal" locality
and describe how memory typically is accessed[13][11]. Spatial locality states the tendency
for programs to access consecutive memory addresses in sequence. As an example, an array
allocation in C will return a pointer to the first address and then make sure that the following
addresses, up until the end of the array, are free and available for the program to use. Iterating
over such an array will thereby yield memory accesses that are adjacent to each other. A cache
exploits this fact by fetching larger chunks of data, referred to as cache lines, while serving
a specific access, in case the nearby data will be requested in the near future[13]. Temporal
locality instead exploits the fact that data is typically reused during the programs execution
and it can therefor be useful to keep already used data close and ready for a faster response[11].

Modern caching structures are generally designed to be hierarchical, see Figure 2. The L1 cache
is small and usually built into the processor where it is divided into a data and an instruction
cache. This cache is private to the core and contain the instructions that are currently being
executed and the data that the core is working with. The next cache level, L2, is connected
to the L1 cache with some implementation specific internal bus. It is larger and has worse
latency than the first level, but is still significantly faster than going directly to main memory.
Depending on the system, the L2 cache can be private to a single core, or shared between a
cluster of cores, see Section 6.3 for an example of a shared L2 cache. Some systems have L3 and
even L4 caches which builds on the hierarchy even further. [10]

Figure 2: Cache heirachy of a typical, modern CPU.

When the requested data can be found in the cache, it is referred to as a cache hit and the data
can be served as soon as the cache is ready. Data not found in the cache is referred to as a cache
miss and the request is instead forwarded to either the next cache level or to the main memory.

Page 3

PAGE 4 SECTION 2 BACKGROUND

In order to place and keep track of all cache lines inside the cache, a system that relates the lines
to the address of the data is required. There are three ways of doing so, direct mapped, fully
associative and way associative caches. A direct mapped cache maps one line to one location
in the cache and is the simplest configuration. The fully associative cache allows any cache line
to be stored in any part of the cache. Since this requires all locations to be searched to find
the data, it is either expensive in logic and power, or dramatically increases the latency of the
search. For these reasons, it is rarely used. Instead, a common middle ground is way associative
caches, where one cache line can be mapped to multiple locations in the cache. In such a cache,
increasing the way associativity will increase the locations where a cache line can be stored and
thus, which locations needs to be searched. When a cache line are replaced in a system that
maps to more than one location, a replacement strategy is required to select the data that is
least likely to be used again in the near future. This is referred to as a "replacement policy"
and vary from complicated schemes that record the usage history of the cache lines to simple
counters that select which line is replaced randomly. How writing data to the cache is handled
can also vary heavily between implementations. This is referred to as "write policy" and the
two methods discussed in this report are compared in Section 4.1.

The state-of-the-art research is focused on more complicated replacement and write policies,
and is more of an optimization effort in order to get the highest performance, for as little cost
as possible. The complexity of these algorithems put them out of the scope for this thesis.

2.2 Cobham Gaisler
Cobham Gaisler was founded as "Gaisler Research" in 2001 by Jiri Gaisler. In 2008 the company
was aquired by an American aerospace company Aeroflex[4] which later was aquired by Cobham
in 2014[2] where the current name originates from. The company specializes in embedded
computer systems designed for harsh environments (safety critical applications) and develops
IP cores and custom ASICs. The company also develops software and toolchains to accompany
their hardware products such as debug monitors and simulators.

2.3 HDL & FPGAs
A Field Programmable Gate Array (FPGA) is an Integrated Circuit (IC) that features recon-
figurable hardware. The devices consist of logic blocks and interconnects that can be arranged
in ways creating complex combinatory and sequential logic. This allows a user to implement
anything from a full SoC to specialized hardware accelerators for AI, all on the same chip.
FPGAs also have built in block-RAM that can be used in designs where larger storage is re-
quired. BRAM work as very fast (1 cycle response) RAM chips but have configurable address
depth and data width. The flexible nature of the FPGAs make them an extremely useful tool in
digital hardware development, where an iterative approach otherwise is prohibitively expensive
and time consuming. Because FPGAs are designed to be flexible, they lose out on performance,
both in power consumption and timing. Timing is of special concern, as complicated logic in
combination with a high clock frequency might lead to wrong or unpredictable behavior. This
is due to signal propagation delays through the logic and the interconnects.

Much like when writing software, hardware design is aided by the use of abstraction layers and
instead of placing the logic by hand, the use of a Hardware Description Language (HDL) allows
the designer to describe higher level functionality. The HDL code can be used by an EDA tool
to produce a bitstream, which contains the programming information for an FPGA. The process
of producing bitstreams from HDL code is referred to as synthezis and implementation. HDL
code can also be simulated, which is where most of development generally takes place. This

Page 4

PAGE 5 SECTION 2 BACKGROUND

allows the developer to have insight into all signals, and how they change during testing and is
a powerful tool during debugging. The HDL language used in this project will be VHDL.

Page 5

PAGE 6 SECTION 3 TARGET SYSTEMS

3 Target Systems
The cache development targets typical SoC’s found in GRLIB. These systems range from simple
single core designs with 32-bit interconnects to large multi-core SoC’s with rich interfacing and
wide 128-bit interconnects (see Figure 3). [6]

Figure 3: Cobham Gaisler GR740 Rad-hard Quad-core SoC. Source: https://gaisler.
com/index.php/products/components/gr740

3.1 SoC Interconnects
IP cores developed by Cobham Gaisler generally use AMBA on-chip interconnects to allow for
flexibility and reusability between projects. The bus standard is open source and is developed
by ARM ltd. The AMBA interconnects are commonly used in SoC’s and processing systems as
the main interconnects between modules.[14][15] 1

Figure 4: High level illustration of the bus concept.

1The functionality described in this section follow the specifications implemented in GRLIB. GRLIB imple-
ments AHB & APB specification 2.0 and AXI specification 3.0 and 4.0.

Page 6

https://gaisler.com/index.php/products/components/gr740
https://gaisler.com/index.php/products/components/gr740

PAGE 7 SECTION 3 TARGET SYSTEMS

The standard includes three interfaces suitable for different applications; Advanced Peripheral
Bus (APB), Advanced High-performance Bus (AHB) and Advanced eXtensible Bus (AXI).
The APB bus is less feature rich and is appropriate for low bandwidth devices such as UART
controllers, I2C controllers and timer modules. The AHB and AXI interfaces are developed
for high performance applications and the interfaces are typically used between high bandwidth
devices such as processor cores, memory controllers and high speed I/O such as ethernet. The
GRLIB implementation of the AMBA interconnects has been extended to include, AMBA Plug
& Play (P&P), a register that allows masters and slaves to insert their configuration information.
This register is accessable during run-time and allows the user to confirm that the correct
configuration has been set[9].

GRLIB has only the AHB controller available thus making it the only option for the main bus
connected to the core. The library does however have bridges allowing parts of the address
space to be bridged to either AXI or APB[7].

3.1.1 Working Principles

All bus types are implemented by multiplexing (see Figure 5), thus avoiding tristate signals. This
suits FPGAs well, as tristate behavior is typically synthesized by multiplexing either way.[9]

Figure 5: Multiplexed AHB bus illustrated. Source [9]

Each master has a common input record and its own dedicated output record. The records
contain the signals required for the specific interface. The same structure is used for the slaves
where they share a common input record and has their own dedicated output record. All the
signals are routed to the bus controller which selects what master is allowed access to the bus.

The arbitration algorithm is not defined in the AMBA specificaton and is instead decided by the
specific implementation. The AHB controller in GRLIB can use either fixed priority or a round
robin approach. The fixed priority allows access depending on the master index and the round
robin rotates which master has priority each time an access is made to the bus. If no master

Page 7

PAGE 8 SECTION 3 TARGET SYSTEMS

is requesting access to the bus, it can be parked to the last bus owner or to a pre-configured
master. For further details see implementation[8] and GRLIB manual[9].

3.1.2 Access types

Access types vary between the interfaces. The APB interface only allow simple single accesses.
These accesses are as large as the data width of the bus, which can be configured between 8-32
bits. The AHB data bus width can be configured between 32-128 bits and the AXI data bus
can be between 32-1024 bits (AXI4 specification). Both the AHB and AXI interfaces can create
single and incremental accesses and each access can be from 8 bits to the bus width wide in
steps of power of two’s.[14][15]

3.1.3 Addressing

Each slave on the bus occupies a specific address range configured by generics. The master
requests access to a specific address and the bus controller asserts the appropriate signals to the
slave occupying the address range. The addressing vector is 32 bit, making the available address
space 4 GiB (232 byte).[14][15]

3.1.4 Split Support

Both AXI and AHB support some form of access split to allow for more efficient bus access. If a
slave needs more cycles to generate the access response, the controller can give access to another
master during the mean time. The split access is resumed when the slave is able to produce the
requested data. This type of access behavior needs to be supported by both the slave and the
controller.[14][15]

3.1.5 AMBA summary

A short summary of the main features of each AMBA bus type can be seen in Figure 2.

Table 2: Specification summary [14][15]

AMBA interface APB (Spec 2.0) AHB (Spec 2.0) AXI (Spec 4.0)
Address width 32 [bits] 32 [bits] 32 [bits]
Data bus width 8/16/32 [bits] 32/64/128 [bits] 32/64/128/256/512/1024 [bits]

Access types Single R/W Single/Incremental R/W Single/Incremental R/W
Access size Data bus width 8 - Data bus width [bits] 8 - Data bus width [bits]

Split Support No Yes Yes

3.2 Processor Cores
Two types of processing cores are available in GRLIB. The LEON cores are based on the SPARC
v8 Instruction Set Architecture (ISA) and the NOEL-V cores are based on the relatively young
instruction set, RISC-V. Both ISAs are open source, can be implemented free of charge and are
RISC architectures. SPARC does however use big endian while RISC-V uses little endian, forcing
GRLIB IP cores to support both endianesses if they are to be compatible with both processors.
SPARC and RISC-V are both load-store architectures, meaning that the instructions never work
directly on memory addresses. Instead they load the memory contents into an internal register
using one instruction, manipulate the data and then stores the data back into memory with
another instruction.[19][18]

Page 8

PAGE 9 SECTION 3 TARGET SYSTEMS

3.2.1 RISC

A RISC ISA uses simple and shorter instructions to perform a processing task. The simpler
instructions usually take less cycles to perform and can therefor compete, and in some cases,
outperform the more complicated CISC instructions even though more instructions are required
for the same operation. Having less complicated instructions can be favorable when imple-
menting hardware, as the CISC systems require large amounts of dedicated logic to implement
specific, not always useful, instructions that bloat the architecture. Chips based on RISC ISAs
have for a long time dominated the mobile computing industry because of the often superior
power consumption of the chips. It has recently gained traction in the consumer and enterprise
markets as the performance gap between the traditionally dominating CISC chips and the RISC
chips have become smaller. [17]

3.2.2 LEON

Within GRLIB there are multiple iterations of the LEON processor core. Each version iterates
on the micro architecture, improving the pipeline, adding branch predictors and other features
boosting performance substantially. The cores are configurable and can be synthesized with or
without support for features such as FPUs, L1 caches and instruction trace buffers, although
some features can only be found in the non-GPL version of GRLIB. All LEON cores are based
on SPARC v8 ISA and are 32-bit architectures.[7]

3.2.3 NOEL-V

NOEL-V is Cobham Gaislers latest processor development. The core can be synthesized as one
of 7 configurations, supporting different RISC-V ISA extentions. As with the LEON cores, the
more advanced and high performance features of the core does not fall under the GPL license of
GRLIB and can therefor not be used for free. NOEL-V high performance configurations have
similar performance to the latest LEON (LEON5) cores.[7]

3.3 Debug Units
A debug unit is typically connected to the main AHB bus and can be interacted with using
Cobham Gaisler debug monitor, GRMON. The debug unit allows for instruction and bus trac-
ing, hardware breakpoints, stalling the processor, single step operation and internal register
overview.[7]

3.4 I/O
GRLIB provides IP cores for all the common interfaces used within the space industry. This
includes CAN, I2C, PCI, UART, SPI, ethernet, space wire and more. It also provides modules
for adding GPIO, timers, memory controllers, interrupt handlers, hardware watchdogs and other
common functionality used in SoCs. The modules are usually connected to the system as a slave
on either the AHB bus or the APB bus, making them accessable to the core via read and write
accesses on the bus.[7]

Page 9

PAGE 10 SECTION 4 CACHE SPECIFICATION & DESIGN

4 Cache Specification & Design
The development process begins with creating a technical specification in collaboration with
Cobham Gaisler, see Appendix A. The technical specification describes all functionality that
the cache should be able to perform and to what degree it should be configurable to.

4.1 Specification
4.1.1 Design Method

To conform with the rest of GRLIB the L2 cache will be written in VHDL and use the two process
design method. The two process method allows for writing well structured, more readable and
easily maintainable code.

The method divides the sequential logic (registers) into one process and the combinational logic
(asynchronous) into another process and uses a record type, r in Figure 6, to contain the current
state.

Figure 6: Generic two process circuit.

The record r is updated with rin at rising edge of the clock cycle inside of the sequential process
which triggers the combinational process. In the combinational process, r is temporarily stored
into a variable, typically called v, where all state specific operations are stored. At the end of
the process, outputs are assigned and rin is assigned v, thus saving the new state. Another
positive effect of using the r record type to save the state is the ease of adding new registers.
Instead of declaring a new signal, adding it to the sensitivity list and driving the signal, it can
simply be added to the record.

Below is an example of the two process method using a state machine to increment a counter,
until it reaches 100, then changing the state where it is reset to zero in the coming cycle.
Although a contrived example, one can imagine replacing the logic within the state machine to
something more useful and complex.

Page 10

PAGE 11 SECTION 4 CACHE SPECIFICATION & DESIGN

-- TWO PROCESS METHOD EXAMPLE --
architecture rtl of example is

type reg_type is record
state_machine : state_machine_t;
counter : integer range 0 to 100;

end record;
signal r, rin : reg_type;

begin
comb : process (r)
begin

v := r;
---- STATE MACHINE ----
case r.state_machine is

when STATE_1 =>
v.counter := r.counter + 1;
if v.counter = 100 then

v.state_machine := STATE_2;
end if;

when STATE_2 =>
v.counter := 0;
v.state_machine := STATE_1;

when others =>
end case;
-------- OUTPUTS --------
external_output <= v.counter;
rin <= v;

end process;

regs : process (clk, rstn)
begin

---- ASYNC RESET ----
if rstn = ’0’ then

r.counter <= 0;
elsif rising_edge(clk) then

r <= rin;
end if;

end process;
end rtl;

4.1.2 Interfacing

To create a portable and reusable L2 cache it was determined that it should act as a bridge
between the main AHB bus and a secondary, either AHB or AXI bus, containing the memory
controller of the device that should be cached. A typical bridge has a slave interface on the
frontend, accepting requests from masters on the bus and a master interface on the backend,
generating the appropriate requests on the backend bus. The frontend of the cache controller
can be hardcoded to work with AHB simplifying the development somewhat while the backend
should be interchangeable between the interfaces. The backend flexibility will be achived using
the Cobham Gaisler IP core Generic Bus Master (GBM).

Page 11

PAGE 12 SECTION 4 CACHE SPECIFICATION & DESIGN

4.1.3 Cache Configuration

Development effort should be put into making the cache as configurable and scalable as possible.
This is to ensure that the cache can be used in both high and low end systems. The cache
configuration is set to at least match the non-GPL L2 cache in size and flexibility. This meant
1-4 ways, each way between 1-512 KiB in size with line sizes either 32 or 64 bytes. This had
proven to give Cobham Gaisler SoCs major performance gains previously and is a reasonable
minimum requirement for the development.

The minimum specification would allow for a maximum cache size of 2 MiB, which is the size
used in the latest rad-hard SoC developed by Cobham Gaisler, the GR740, see Figure 3.

4.1.4 Replacement Policy

Selecting the replacement policies that should be available for the cache will depend on other
design choices. The considerations that need to be made are mostly related to overhead required
for the algorithm and implementation complexity. A common replacement strategy is called
Least Recently Used (LRU) [10]. As the name implies, the cache line that was least recently
used is replaced, exploiting the temporal locality of memory accesses, see example of LRU on
an 8-way associative cache in Figure 7. LRU has high performance in most programs, but can
require large amounts of overhead, when scaling the caches associativity.

Figure 7: 8-way associative LRU scheme.

The LRU overhead for one index can be calculated with:

overhead [bits] = w ∗ log2(w), (1)

where w is the way count in the set. This overhead is perhaps tolerable at lower way associa-
tivities but quickly become unreasonably large and this is the reason why LRU will not be used

Page 12

PAGE 13 SECTION 4 CACHE SPECIFICATION & DESIGN

in the cache.

Because of the growing overhead, other strategies have been developed to approximate the LRU
behavior using less overhead, these are often referred to as Pseudo Least Recently Used (PLRU).
While there are many different PLRU schemes one of the most common algorithms is tree based
PLRU. The replacement policy can be shown to perform very similar and in some instances
better than regular LRU while scaling significantly better[1]. Tree PLRU scales according to:

overhead [bits] = w − 1, (2)

and a comparison between the two replacement policies can be seen in Table 3.

Table 3: Overhead comparison between Least Recently Used & Pseudo Least Recently Used

Way LRU [bits] t-PLRU [bits]
1 0 0
2 2 1
4 8 3
8 24 7
16 64 15

The t-PLRU works as a binary tree, where each level points you in the direction of the latest
access. Each node in the tree is either 1 or 0, which represent a direction to traverse the tree.
Following the nodes to the bottom of the tree gets you to the latest access, i.e. the most recently
used block. Going the other direction, is what gets you to the "least recently used" cache line,
that would be evicted. This cache line can not be guaranteed to be the least recently used, but
it approximates the behavior well. An illustration of the tree being traversed can be seen in
Figure 8 where the red arrows show the "PLRU" block and the green arrows show the most
recently used block.

Figure 8: Illustration of the PLRU algorithm in 8-way associative cache.

When an access is made for data that is not present in the cache, first a cache line is selected
for eviction(red block). This is done by traversing in the opposite direction of the arrows. Then
a new cache line is fetched and replaces the evicted block. To update the access history, the

Page 13

PAGE 14 SECTION 4 CACHE SPECIFICATION & DESIGN

affected arrows (bits) are changed to point towards the new cache line. An example of this is
shown in Figure 9.

Figure 9: PLRU eviction sequence in 8-way associative cache.

After the new R block has been inserted into the cache, we can now move against the arrows
and see that block H is up for eviction next.

To allow for better scalability, t-PLRU is therefor chosen as the main replacement policy for the
cache. In most workloads PLRU schemes have good performance. There are however instances
where a random replacement policy would outperform it. A random replacement policy evicts
cache lines based on an incrementing counter, and would replace a filled block even if there
are others that are empty. Since this is very simple to implement, and can be useful in some
instances, it will also be an option in addition to t-PLRU.

4.1.5 Write Policy

There are many write policies to choose from, each with their own advantages and disadvan-
tages, but two very common methods are called copy-back and write-through with allocation.
Assuming copy-back policy, if a write access is made and the data is not found in the cache, the
line is fetched and stored in the cache. The line is then modified according to the access and is

Page 14

PAGE 15 SECTION 4 CACHE SPECIFICATION & DESIGN

kept inside the cache, now out of sync with main memory. The memory stays out of sync until
the modified line gets evicted, where it is written back to main memory. This makes it possible
to aggregate multiple write operations before having to interact with the slow main memory. To
keep track whether or not the cache is out of sync with the main memory, a single bit per cache
line is stored, called the dirty bit. The asynchronous nature of copy-back makes it unsuitable
to use if more than one L2 cache is used in the system, as coherency between the caches would
have to be handled separately.

Write-through solves the coherency issue by simply writing the data directly into memory. This
puts significantly more load on the backend memory interface and can also stall the cache
pipeline and thereby impact the performance. In both methods allocation can be made at write
accesses, meaning the cache line is fetched when a write access is made, the same behavior as
with read accesses. This has shown to improve performance in almost all applications, once
again exploiting the temporal locality of memory accesses. [12]

Figure 10: Behavior of copy-back and write-through write policies during write access hit &
eviction of cache line.

4.1.6 Cachablility

In certain applications it can be useful to be able to exclude some parts of the cache address
space from being cached. The cache would in those cases act only as a bridge between the

Page 15

PAGE 16 SECTION 4 CACHE SPECIFICATION & DESIGN

master making the access and the memory controller on the backend bus.

4.1.7 Endianess

Since the cache will have to support both the LEON and NOEL-V cores, the system will have
to be bi-endian, i.e. support both little and big endian. This should be controlled via a VHDL
generic.

4.1.8 Performance Counters

Some performance counters can be useful, to measure whether or not the current cache con-
figuration is working well or needs to be iterated upon during testing. Therefore a hit, miss
and access counter will be implemented. This can also be useful during implementation of the
device, to see if accesses are handled correctly.

4.1.9 Specification Summary

In addition to the aforementioned specifications, it was also determined that it would be fa-
vorable if the cache utilized the GRLIB IP core "syncram" to create the RAM instances. The
syncram core maps technology specific BRAM blocks to the required data width and address
lengths specified by the user. This allows for efficient BRAM use, independent of the technology
in which the core is implemented on to.

Table 4: Cache feature summary

Cache feature Configuration

Cache Configurations
N-ways: 1 - 4 (preferably scalable to N-way)
Way size: 1 - 512 KiB
Set size: 32 / 64 byte

Interfacing Front-end: AHB slave
Back-end: AHB/AXI master

Replacement Policy Pseudo-Random
Pseudo-LRU

Write Policy Copy-Back

Endianess Little and Big endian support

AMBA Plug & Play Yes

Performance Counters
Hit counter
Miss counter
Cache access counter

Page 16

PAGE 17 SECTION 4 CACHE SPECIFICATION & DESIGN

4.2 Design
To keep the development organized, the core is divided into multiple files each responsible for one
or more functions within the cache. Two top modules are available depending on the backend
interface that is used. The files are identical aside from what generic bus master is instantiated
and used. The top file also instantiates the cache control module and the cache memory/logic
module, see Figure 11.

Figure 11: L2 cache file structure.

4.2.1 Frontend Interface

The cache is hardcoded to follow the AHB 2.0 protocol. The relevant interface I/O can be seen
in Table 5. 2 The controller deciphers the incoming access and determines which state the cache
should move to in order to handle the access. The access details such as address, transfer type,
size and write data (if write access) are all buffered in registers to save the information before
transitioning to the next state. This also has the added benefit of pipelining the logic, reducing
logic delays in the implementation stage.

2Other inputs and outputs are described in the bus protocol, but are not used by the cache. They are
deliberately left out to avoid confusion.

Page 17

PAGE 18 SECTION 4 CACHE SPECIFICATION & DESIGN

Table 5: Relevant AHB signals.

Signal Name Type Purpose
HSEL Input, Vector Slave select vector, if the bit representing the slaves

index is asserted the slave is selected.

HADDR Input, Vector Access address.

HWRITE Input, Signal Mediates whether the access is read or write.

HTRANS Input, Vector Mediates the bus transfer status, idle, busy, nonseq
and seq.

HSIZE Input, Vector Mediates the size of the access, 8, 16, 32, 64 and
128 bits.

HBURST Input, Vector Mediates what access, single or burst. Other access
types exists, but are not handled by the cache.

HWDATA Input, Vector Data supplied during a write accesses.

HREADY Output, Signal Asserted when slave responds to access or when
slave is ready for a new access.

HRESP Output, Vector Mediates slave response to an access, okay, error,
retry or split.

HRDATA Output, Vector Data vector for responding to read accesses.

HCONFIG Output, Custom type Custom, static record type describing the slaves
characteristics. Used by the bus controller to con-
figure the address map and the P&P register.

An access is initiated when HSEL is asserted and HTRANS is set to either NONSEQ or SEQ.
During the same cycle, HBURST, HWRITE and HSIZE are set to describe the type of access.
If the cache is not able to respond to the access the following cycle it de-asserts HREADY
to inform the bus controller that more time is required, this is referred to as inserting wait
states. The bus controller then simply waits for HREADY to be asserted again together with
the access response. This effectively locks the bus and no other accesses can be made during
the wait states. See Figure 12 for a single read access of 4 bytes, where the slave inserts 1 wait
state before responding with the data.

Figure 12: Example of single read transaction on 32-bit bus.

Page 18

PAGE 19 SECTION 4 CACHE SPECIFICATION & DESIGN

4.2.2 Backend Interface

The backend interface uses Cobham Gaisler IP core Generic Bus Master (GBM). The core defines
a simple custom bus interface that is translated to either a AXI or AHB master interface, see
Figure 13. This allows the user to develop for a single interface, while still being compatible
with both protocols and future development to the generic bus master might also extend the
caches compatibility.

Figure 13: Generic bus master core overview.

GBM provides separate read and write interfaces, see Table 6. A transaction is initiated by
asserting the request signal together with the address, transaction size and data, if its a write
transaction. Once the GBM core is ready to start the transaction it de-asserts the request
granted signal. If the read or write data is to large for the bus master interfaces, it is provided
in smaller chunks until all data has been sent. The core uses the BMWR_FULL indicate when
the next data chunk should be delivered during writes and BMRD_VALID when the read data
on the bus is valid and should be sampled.

Page 19

PAGE 20 SECTION 4 CACHE SPECIFICATION & DESIGN

Table 6: GBM signals.

Signal Name Type Purpose
BMRD_ADDR Input, Vector Read access address.

BMRD_SIZE Input, Vector Read access size.

BMRD_REQ Input, Signal Read access initiation.

BMRD_REQ_G Output, Signal Bus master read access acknowledged.

BMRD_DATA Output, Vector Read access data.

BMRD_VALID Output, Signal Signal asserted when BMRD_DATA contains valid
data.

BMRD_DONE Output, Signal Signal asserted the when access has finished.

BMWR_ADDR Input, Vector Write access address.

BMWR_SIZE Input, Vector Write access size

BMWR_REQ Input, Signal Write access initiation

BMWR_REQ_G Output, Signal Bus master write access acknowledged.

BMWR_DATA Input, Vector Write access data.

BMWR_FULL Output, Signal Signal asserted when the bus master is ready for
more data.

BMRD_DONE Output, Signal Signal asserted when the access has finished.

Figure 14 shows an example of a 16 byte write transaction on a 8 byte wide GBM core. The first
8 bytes are delivered together with the address and size and the remaining 8 bytes are delivered
the same cycle as BMWR_FULL is de-asserted. The last 8 bytes needs to remain on the bus
until BMWR_DONE is asserted.

Figure 14: Example of GBM write transaction

4.2.3 Cache State

The cache functional flow is controlled by one main state machine shared between the control
module and the cache memory interface. The state machine flow can be seen in Figure 15. The
cache waits in IDLE_S until an access is made, all relevant input from the bus is buffered and

Page 20

PAGE 21 SECTION 4 CACHE SPECIFICATION & DESIGN

the cache moves to either READ_S or WRITE_S. The access address is compared to the tags to
check for a cache hit. If there is no cache hit, the cache will move to the BACKEND_READ_S
to fetch the cache line, assuming that the backend is not already busy with previous accesses.
Once the data has been fetched and stored in the cache, it will move back to the READ/WRITE
state where it will now register a cache hit. The cache fulfills the transfer and either moves back
to IDLE_S or to the incremental access states which handles the burst accesses.

Figure 15: Control state machine flow chart. READ_S, WRITE_S, R_INCR_S and
W_INCR_S are separate states, they are grouped in the image to compress the flow chart.

A secondary state machine is built to handle backend writes asynchronous to the main state.
This allows for handling some requests while writing to the backend, thus not stalling the whole
cache during line evictions. The secondary state machine waits in its own IDLE_S state for a
flag from the eviction handling. Once asserted, it checks if the backend is busy and if not it
enters the BACKEND_WRITE_S, where it stays until the eviction operation is finished, see
Figure 16.

Page 21

PAGE 22 SECTION 4 CACHE SPECIFICATION & DESIGN

Figure 16: Backend write state machine flow chart.

4.2.4 Tag Matching Logic

To track which data is saved in the cache some identifier of the specific cache line has to be
stored along with the data, this is usually referred to as a "tag". A tag is saved with each line
and is usually derived from the address of the data in some way. The size of the tag in this
implementation depends on the address range, the size of each cache way and the size of the
cache lines. To calculate the overhead for one cache line see Equation 3:

tag size = address range − log2

(
way size
line size

)
− log2(line size). (3)

To illustrate further, assume a 32-bit addressing range, 64 KiB way size and 32 byte line size.
Since the way size is 64 KiB and each line is 32 byte, there will fit,

64 ∗ 210
32

= 2048, (4)

unique cache lines. To individually go through the lines a total of log2(2048) = 11 bits are
required, these bits are called the "index". Then, in order to go through each cache line byte
by byte, another log2(32) = 5 bits are required, these bits are called the "offset". What is left
of the address, 16 bits, is a unique identifier that is used to check if the address is cached, i.e.
the tag, see Figure 17.

Page 22

PAGE 23 SECTION 4 CACHE SPECIFICATION & DESIGN

Figure 17: Address sectioned into tag, index and offset.

In the example above, also assuming 4 ways, the total cache size would be 256 KiB and would
require 16 KiB of overhead for the tags. Since the index is used to go through all cache lines
in memory, two addresses with identical index ranges occupy the same space in RAM. This is
tackled by higher associativity where multiple cache lines with the same index but with varying
tags can be stored.

Figure 18: Illustration of multi-way cache.

Central to the caches function, is the tag matching logic required to check whether or not the
data is in the cache. Tag matching can be implemented in different ways, depending on what
is prioritized, energy efficiency and low logic overhead or latency. This design prioritizes low
latency, as it will produce the highest performance gain for the system. The differentiation arise
when deciding if the tag look up in all ways should be done in parallel or series. The parallel
lookup enables all tag and data RAM during the same cycle where the tag data is compared
to the access address and controls a multiplexer that selects between the cache data outputs,
see example in Figure 19. The serial lookup would instead enable one tag and data RAM at
a time, going through the cache one way at a time. This would consume many cycles as the
associativity grows and is not an option for this implementation.

Page 23

PAGE 24 SECTION 4 CACHE SPECIFICATION & DESIGN

Figure 19: Parallel lookup, multi-way cache.

In addition to the tag for each cache line, two extra bits are stored. The first bit is used to show
the validity of the cache line, if the bit is set to zero the tag will not produce a cache hit. This
is used at boot when the cache is empty as well as when the cache is flushed. The second bit is
used to identify cache lines that have been modified, assuming a copy-back write policy. This
tells the cache that a line needs to be evicted before it is replaced, because it is not synchronized
with main memory. As previously mentioned, this bit is referred to as the dirty bit.

4.2.5 Read Handling

Once the frontend has identified that the incoming access is a read access, it moves the state
machine into the READ_S. In the read state tag lookup is performed to check for a hit in the
cache. If a hit on the cache line is registered, the data is sent to a multiplexing stage which
selects what part of the cache line needs to be delivered to the bus and the selection process is
performed, with the help of the access size and OFFSET region of the access address, see Figure
20. 3 The latency of the read hit is 1 cycle.

3Unaligned access are not supported, example: 2 byte access to address 0x5.

Page 24

PAGE 25 SECTION 4 CACHE SPECIFICATION & DESIGN

Figure 20: Data transfer between cache storage and the interface bus.

Furthermore, the burst type is checked to see whether or not the cache should move to the burst
state or move back to idle, waiting for the next access. If the cache is moved to the burst state,
it uses the size of the access and the fetched cache line to continue to deliver data each of the
following cycles until the end of the cache line or when the bus terminates the access. If the end
of the cache line is reached, the state is automatically moved back to READ_S, where a new
tag lookup is performed.

When a tag lookup results in a miss, the replacement policy is used to select which way will
be exchanged. Once the way has been selected the dirty bit is checked to see if the cache line
needs to be evicted and written back to main memory. If the cache line is dirty, it is buffered to
a register while the cache uses the backend to fetch the new line. Once the new line has been
cached and the backend is no longer busy, the old line gets written back to memory. Writing
back the old cache line is done asynchronously to the main state and allows the cache to accept
new accesses during backend writes, see Figure 25.

Figure 21: Functional flow when replacing dirty cache line.

Page 25

PAGE 26 SECTION 4 CACHE SPECIFICATION & DESIGN

4.2.6 Write Handling

In a very similar fashion to the read handling, the main state machine is moved into the
WRITE_S and performs a tag lookup. When a hit on the cache line is registered, the whole
line is buffered into a register. During the following cycle, the write data from the bus is written
to the buffer in the correct position and the full line is then written back to the cache. This
sequence is referred to as Read-Modify-Write (R-M-W) and is used because the BRAM does not
accept single or multiple byte writes, the full data width needs to be written. Syncram with this
feature does exists in GRLIB, but it was realized deep into the development, and is a potential
future improvement as the R-M-W sequence adds one cycle of latency.

As with the read access, the cache checks whether or not it should move to the burst state or
move back to idle. The burst accesses are written directly to the already buffered cache line,
thus avoiding the extra read-out cycle and improving the latency. The cache line is written back
to memory once the bus terminates the burst access or when the end of the line is reached, and
a new tag lookup is needed in the WRITE_S state.

A write miss is handled in the same way as the read miss, see Section 4.2.5.

4.2.7 Replacement policy

Two replacement policies are implemented and can be selected via generics. The default policy
is using a pseudo-random replacement strategy that evicts a random cache line based on a
counter that increments each clock cycle. The counter is incremented from 0 to way - 1 and is
sampled and buffered at time of eviction. The replacement policy has lower performance than
other strategies in most applications, but has the advantage of requiring no overhead and being
very simple to implement.

The second replacement policy is, as mentioned in the specification, the tree based Pseudo
Least Recently Used. To implement the strategy, two functions are needed. One to update
the tree at read and writes accesses, thus setting the most recently used cache line, and one to
traverse the tree in the opposite direction, in order to select which cache line to evict. The main
implementation issue is mapping each level in the tree two a one dimensional logic vector, see
Figure 22. This has to be done as custom types are quite limited in VHDL and the functions
need to automatically scale with increasing ways.

Figure 22: Tree PLRU bits mapped to VHDL vector.

Page 26

PAGE 27 SECTION 4 CACHE SPECIFICATION & DESIGN

To store all data related to the PLRU algorithm an array with the same length as the cache
index is created. Each array element is a vector with the length of "way count" - 1 and will
store the tree bits. Moving from a lower level in the tree to the next level, assuming the bits are
organized as in Figure 22, can be done by using the following equation:

New Index = Old Index ∗ 2 + 1 + Direction (5)

To work, moving in the left direction is represented by a zero and moving in the right direction is
represented by a one. The equation can be tested by simply following the arrows and calculating
the index. The equation does however only work until the highest level is reached, and will not
translate to the final way index. Instead, the final way index can be calculated by:

Way Index = 2 ∗ (Old Index − (⌊Way Count/2⌋ − 1)) + Direction (6)

The equations works because division in VHDL can not produce fractions and always truncates
the value result4. The equations can easily be rearranged to allow traversing the tree in the op-
posite direction, thus making it possible to update the tree when a cache hit has been registered.
An example of the equations and the algorithm in use can be seen in Figure 23.

Figure 23: Example of PLRU algorithm in use.

4.2.8 Cacheability

Situations may arise where it is preferable or necessary for the IP core to not cache a certain
address range. In these cases the cache would only act as a bridge between the frontend and
backend buses and would immediately forward the incoming frontend access. The feature is
implemented using a 16-bit mask, controlled via a generic, where each bit in the mask covers
a 256 MiB range. Setting the bit to 1 enables caching in that range and a zero disables the
caching. For example, the mask 0x00F1 creates the following cacheable area:

0x00F1 −→ 0b0000000011110001 (7)
4Hardware limitation, true fractions can not be synthesized.

Page 27

PAGE 28 SECTION 4 CACHE SPECIFICATION & DESIGN

Table 7: Cacheability map.

Address Range Cacheablility
0x00000000 - 0x0FFFFFFF CACHEABLE
0x10000000 - 0x3FFFFFFF NOT CACHABLE
0x40000000 - 0x7FFFFFFF CACHABLE
0x80000000 - 0xFFFFFFFF NOT CACHABLE

The feature is implemented by typecasting the 4 MSB of the incoming address to an integer
and using the integer to index into the mask vector. If the selected bit in the vector is a 1, the
address is cacheable. To illustrate, assume the same mask as before, 0x00F1 and an incoming
address of 0x6681FC. The top 4 bits in the address is 0x6 which converted to the base 10 integer
value 6. Using 6 as the index in the mask vector will return a one which in turn tells the core
to cache the access.

4.2.9 Endianess

The main implementation follows a big endian byte sequence. In order to integrate into little
endian systems as well, a simple byte swapping function is applied at every read and write access
in the cache, see Figure 24. The endianess of the cache is controlled via a generic.

Figure 24: Endianess byte swap.

4.2.10 Cache Flush

Flushing the cache, i.e. evicting and invalidating all cache lines can be initated by writing 0x1
to the internal I/O register with offset 0x00. The main state machine enters the FLUSH_S
and begins the flushing sequence. The sequence begins by resetting the way counter and index
counter. These are used to cycle through each index and all ways to check for dirty cache lines
that needs to be evicted. If a cache line is dirty, it is sent to the backend for eviction and the
flushing is stalled until the backend write is finished. If the cache line has not been modified,
the validity bit is simply set to zero and the correct counter is incremented. The processes is
done until the last index is reached. See state diagram in Figure 25.

Page 28

PAGE 29 SECTION 4 CACHE SPECIFICATION & DESIGN

Figure 25: Functional flow of cache flushing feature.

4.2.11 Internal I/O registers

AMBA P&P allows a slave to add a dedicated I/O address range in addition to the memory
space. The I/O address range is often used as a way to configure and control the core, for
example, enable and disable, read the internal status or turn on a specific feature of the core. The
cache implements 4 internal 32-bit registers that allow the users to read the cache configuration,
cache performance data and initiate a cache flush. The register descriptions and offset can be
seen in Table 8.

Page 29

PAGE 30 SECTION 4 CACHE SPECIFICATION & DESIGN

Table 8: Internal I/O registers

Offset Register R/W
0x00 Writing 0xFFFF to this address will initiate a flush of the cache. W

0x04 Register contains a 32-bit counter that is incremented at each cache hit.
The counter wraps around to zero when it overflows. Counter can be reset
by writing 0x0 to the address.

R/W

0x08 Register contains a 32-bit counter that is incremented at each cache miss.
The counter wraps around to zero when it overflows. Counter can be reset
by writing 0x0 to the address.

R/W

0x0C Register contains the current cache configuration. The register contains
information on the replacement policy, the way count, line size and the
way size. How the data should be extracted from the vector can be seen
in Figure 26.

R

Figure 26: Cache configuration bit description.

The implementation of I/O-registers is completely stand alone from other memory accesses.
The I/O can only be accessed with 32-bit read or writes as the registers are hard-coded for
the length. The cache identifies an I/O access from the address range while in the idle state.
From the full address, it extracts the register offset, and uses it to index into a large vector that
contains all 5 registers and it is therefore possible to read and write to all 4 registers, although
it should not be done.

If the flush enable register is written to, the main state machine moves into the flush state. Once
the flush has finished, the register is reset to 0x0 and the state machine moves back into idle.
During this period, the cache freezes the bus.

Page 30

PAGE 31 SECTION 4 CACHE SPECIFICATION & DESIGN

4.2.12 System Summary

What results from the design described in section 4.2 is a fully functioning L2 cache, compatible
with most of the current and next generation SoCs from Cobham Gaisler. The full core can be
seen summarized in Figure 27.

Figure 27: Full system summary.

Page 31

PAGE 32 SECTION 4 CACHE SPECIFICATION & DESIGN

The signals and generics going in and out of the cache are summarized in Table 9 and 10.

Table 9: Generics summary

Generic Name Purpose
tech Used to techmap the syncram.

hmindex Backend master bus index.

hsindex Frontend slave bus index.

ways Associativity of cache.

waysize Size of each cache way.

linesize Cache line width.

repl Replacement policy selection.

haddr Base address of the cache.

hmask Address range mask.

ioaddr Base address of I/O registers.

cached Determines cacheability of address range.

be_dw Width of GBM bus width.

Table 10: Signals summary

Signal Name Type Purpose
rst Input, Signal Cache reset.

clk Input, Signal System clock.

ahbsi Input, Custom Record Frontend slave input.

ahbso Output, Custom Record Frontend slave output.

ahbmi/aximi Input, Custom Record Backend master input, either
AXI or AHB.

ahbmo/aximo Output, Custom Record Backend master output, ei-
ther AXI or AHB.

Page 32

PAGE 33 SECTION 4 CACHE SPECIFICATION & DESIGN

The latency of each access type can be seen in Table 11. It is important to consider that read
and write misses are mostly dependent on the backend response latency. The response from
the memory controller can be anywhere between 10-100 cycles depending on the hardware and
makes up the majority of the latency.

Table 11: Latency summary

Access Type Latency (cycles per access)
Single Read Hit 1

Single Write Hit 2

Burst Read Hit 1

Burst Write Hit (1 + burst length)/burst length

Single Read Miss 4 + backend fetch latency

Single Write Miss 5 + backend fetch latency

Burst Read Miss (4 + backend fetch latency + burst length)/burst
length

Burst Write Miss (5 + backend fetch latency + burst length)/burst
length

Page 33

PAGE 34 SECTION 5 VERIFICATION

5 Verification
Typically when developing hardware, the majority of the testing is done in simulation software
such as ModelSim or Vivado5. Simulations has the advantage of giving complete insight into
every signal within the core and how all modules interact with each other, which can not be
done when running on real hardware such as an FPGA. Simulations also has the advantage of
often being much faster than synthesizing the design at each design iteration. Synthesizing and
implementing the 6-core SELENE design, for example, takes 6 hours on a high end machine,
while simulating might vary from a few seconds to a few minutes. To simulate the design, it
is important to develop an extensive test bench that covers all the behavior that the core can
be exposed to. The test bench developed for this project is largely based on the proprietary
AMBA Test Framework (ATF) developed by Cobham Gaisler.

5.1 ATF
ATF is a non-synthesizeable library that implements cores and functions that aid in testing
AHB connected IP cores. The main two components of the library is the AMBA test slave and
the AMBA test master.

5.1.1 AMBA Test Master

The master is connected to the AHB bus and can be instructed to create accesses to the slaves
on the same bus. The access response can be registered and used to confirm the correct behavior
of the slave. This allows the developer to incrementally extend what access types the slave is
exposed to allowing for a structured development process. The accesses can be made in burst
or single, back to back or with delay, to the whole 32-bit address range and target any slave on
the bus.

5.1.2 AMBA Test Slave

The slave core acts as mass memory and allows a master to write to it and read from it via the
AHB bus interface. Each slave has a debug port associated with it that allows the developer
to change the response behavior of the slave as well as read and write content to the memory
without creating AHB accesses. The debug port is typically used after a read or write access
to confirm correct data transfer between master and slave on the AHB bus. The memory of
the slave can also be preloaded with data from external SREC files which can be used to run
software or have known data to compare against when reading from the memory.

5Vivado: https://www.xilinx.com/products/design-tools/vivado.html, ModelSim: https://
www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html

Page 34

https://www.xilinx.com/products/design-tools/vivado.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/model-sim.html

PAGE 35 SECTION 5 VERIFICATION

5.2 L2 Cache Test Bench
The test bench for the L2 cache is developed in parallel to the cache itself. As new features
were added to the L2 cache, tests were developed to validate the features. The test system is
developed around ATF and is set up to resemble a typical SoC in order to replicate a realistic
use case.

Figure 28: Testbench system overview.

The system consists of 2 AHB buses. The frontend controller connects the two AT masters
together with the slave side of the L2 cache and an AT slave. The backend controller connects
the L2 cache master interface together with the AT slave which simulates the main memory in a
real SoC. Multiple masters are connected to the frontend to simulate a multi-core system, where
each core acts as a master. The additional slave on the frontend bus simulates other devices
being accessed on the same bus such as an ethernet contoller or a debug unit. The backend
bus houses only the L2 cache and the memory, which is typically how the GRLIB SoC’s are
designed.

The ATF library has been extended with features to allow for easier verification of the L2 cache.
The extension mainly added a secondary storage unrelated to the L2 cache, where each write
accesses is automatically duplicated to. The storage is instantiated as an array and can be
written to like any other signal in VHDL. The secondary memory can be used during reads to
confirm the data received on the bus. The debug port on the AT slaves are usually used for these
purposes but could not be used as the L2 cache and the slave memory could be out of sync. One
of the main drawbacks of the extension is that the full array worth of memory is allocated at the
start of the simulation. If the L2 cache is set to cover an address space of 1 GiB, an additional
1 GiB RAM is required for the simulation, which most likely will crash the software. To work
around this, much smaller address spaces are used in the test bench. Potential solutions for
this issues, could be saving each write access in a dynamic linked list, allocating memory as the
simulation moves on, but this was not implemented, as the development effort was deemed to
high.

Page 35

PAGE 36 SECTION 5 VERIFICATION

During the early development a handful of tests were made for testing specific features. Separate
tests were run to check single write accesses, single read accesses, all burst types and other
internal features such as replacement strategy. Deeper into the development a single, more
exhaustive and automated test were made to verify the nominal behavior of the L2 cache.
The test loops through a function that uses (pseudo)randomly generated numbers to select the
characteristics of the upcoming access. This generates thousands of unique accesses in a random
order testing most(all) edge cases. If a discrepancy between the data from the bus and the data
in the secondary storage is registered, the address, the bus data, the expected data and the time
of the event is written out to the simulation console, see Figure 29. The first version of the test
bench supported only the 32-bit AHB bus width but was later extended to allow for 128-bit
widths as well.

Figure 29: Error transcript from simulation run in ModelSim.

Page 36

PAGE 37 SECTION 6 INTEGRATION

6 Integration
Two SoC’s were targeted for integration with the L2 cache. The systems vary in complexity,
where one is a single core LEON3 design with less I/O and peripherals and the second is a large
6-core NOEL-V design with large bus widths and considerable I/O. Since the SoC’s implement
both RISC-V and SPARC ISA, it also gives the opportunity to verify the caches endianess
handling. Appendix B shows the IP core manual which describes the features of the L2 cache
and how to instantiate one in a design. To interact with the SoC’s during integration a debug
monitor called GRMON3 is used.

6.1 GRMON3
GRMON is a debug monitor developed by Cobham Gaisler which highly integrates with GRLIB
IP cores. The debug monitor connects to systems using debug IP cores and acts as a bridge
between a PC and the systems main AHB bus. Multiple debug interfaces are available, such as
JTAG, UART and ethernet all with varying transfer speeds. Typically, in higher end SoC’s such
as SELENE (see Section 6.3), the JTAG connection is used initially to configure the Ethernet
controller, which is then used as the main debug interface because of its superior transfer speeds.

GRMON is used for all interactions with the system, this includes reading P&P information
from the SoC, upload software, running software, observing the internal CPU’s state, tracing
the AHB bus, instruction tracing and disassembly, manual AHB accesses and more. During
integration, reading the P&P registers and manually creating AHB accesses is especially useful,
as it can verify changes made to the SoC and test the newly integrated core.

A typical debugging session during the L2 cache development used many of the tools provided by
GRMON. The most frequently used features were break points (of all kinds), AHB bus tracing,
instruction tracing, memory read and write and memory dumping. AHB bus tracing allows
the user to get insight into what accesses are being made and how the L2 cache responds to
each access. The trace buffer can be varied in size and is controlled via generics pre-synthesis.
What accesses that are traced can be filtered by addressing range, read or write access and by
what master. The AHB trace buffers all data related to the access such as read/write address,
data, transfer type, transfer size, master index, burst type and slave response. Figure 30 shows
a series of single 64-bit write accesses, made by masters 1-5, which in this case are processor
cores.

Figure 30: Example of AHB bus tracing using GRMON.

The break points allow for the user to stop execution when the program counter hits a certain
address or when an AHB access to a certain address is made.

Page 37

PAGE 38 SECTION 6 INTEGRATION

6.2 LEON3 Artix-7 SoC
Arty Artix-7 T100 is an FPGA development board developed by Digilent using the Xilinx
Artix-7 FPGAs [5]. The board is equipped with an ethernet jack, a USB-UART Bridge via a
microUSB, PMOD connectors, switches, buttons and LEDs. The board also features 16 Mb SPI
flash and 256 Mb of DDR3 SDRAM that can be used as its main storage, see Figure 31.

Figure 31: Arty Artix-7 T100 development board. Source: https://digilent.com/shop/arty-a7-
artix-7-fpga-development-board/

In GRLIB, an SoC specifically designed and mapped for the Arty board has been made for
public use. The design is built around a LEON3 core and a 32-bit wide AHB bus. The design
uses the DDR3 memory as mass storage and the SPI flash as a locked down bitstream storage for
automatic reconfiguration at power toggle. To use the DDR memory an AHB Memory Interface
Generator (MIG) is required as an layer between the bus and the physical DDR module. The
MIG is an IP core that can be generated by the Vivado synthesis tool and is specific to the
memory type and the bus used. Connected to the AHB bus is also a debug support unit, JTAG
debug interface and an AHB to APB bridge. Behind the APB bridge, I/O and peripherals such
as I2C, UART, GPIO, timers and interrupt controllers are connected.

To integrate the L2 cache into the SoC, a new backend AHB controller is added. The DDR MIG
is moved to the backend bus and the L2 cache is connected as a bridge between the two buses.
The L2 cache slave side is set up to cover the same address range as the MIG did previously
and will thereby intercept all accesses that are meant for the main memory· The full SoC with
an integrated L2 cache can be seen in Figure 32.

Page 38

PAGE 39 SECTION 6 INTEGRATION

Figure 32: LEON3 SoC overview.

Initial hardware testing is performed on the LEON3 SoC, as the system is simpler to use and
debug. Since the SoC is smaller, it also requires less time to synthesize and implement the design.
Test software such as CoreMark and Dhrystone were compiled for the SPARC architecture and
run on the system to confirm nominal functionality.

6.3 SELENE 6-core NOEL-V SoC
The H2020 SELENE project is a European collaboration between industry and academia devel-
oping an open source, multi-purpose, safety critical computing platform. The Cobham Gaisler
contribution to the platform is a multi-core RISC-V based SoC, featuring a rich set of high
speed I/O such as gigabit Ethernet, multiple Space Wire and CAN FD controllers. The SoC
design is built around 3 subsystems, the General Purpose Processing (GPP) subsystem, the
memory subsystem and the I/O subsystem. The GPP element instantiates 6 NOEL-V cores
connected to a common AHB bus together with either an L2 cache or an AHB-to-AXI bridge,
which in turn is connected to the memory subsystem. Since the L2 cache developed by Cob-
ham Gaisler is not released as GPL, the public version of the SoC features the bridge instead,
severely impacting performance. The memory subsystem connects the backend of the bridge or
L2 cache to a 128-bit AXI bus, referred as the Network-On-Chip (NoC). Also connected to the
NoC is a DDR4 MIG (has recently been extended to two MIGs) as well as two dedicated AI
hardware accelerators. The I/O subsystem bridges the GPP AHB bus to a secondary AHB bus
that is connected to the high speed I/O previously mentioned. See Figure 33 for the full SoC.
The system can be set up to run bare metal(no operating system) or boot an embedded linux
distrobution (SBI), although Linux without an L2 cache runs very slow.

Page 39

PAGE 40 SECTION 6 INTEGRATION

Figure 33: SELENE SoC overview. Source: Internal SELENE git.

Because of the large system, the SoC is implemented onto the high end VCU118 development
board, featuring a Virtex UltraScale+ FPGA[23]. In addition to the FPGA, the board has 8
GB DDR4 memory, 1GB SPI flash, PCI express, ethernet, UART, JTAG, etc.

Integrating the GPL L2 cache into the SoC can be done by simply changing out the AHB-to-AXI
bridge with the L2 cache IP core. The L2 cache is configured with the same addressing range
and master/slave index as the bridge and can now cache the DDR4 memory. To exclude caching
the AI accelerator address range, that are also connected to the NoC, the cacheablity mask is
configured accordingly. To confirm the nominal functionality of the SoC, Linux is booted from
the cached memory, and benchmarks are run to identify the performance increase.

Page 40

PAGE 41 SECTION 7 BENCHMARKS & PERFORMANCE

7 Benchmarks & Performance

7.1 Dhrystone
Dhrystone is a synthetic CPU benchmark that was developed by Reinhold P. Weicker. The
benchmark has been around since 1984 and aims to test integer performance of processing
systems but has the reputation of having some shortcomings. The more serious issues with the
benchmark includes small program size (fits in many modern L1 caches), code compilers can
easily optimize for it and it tests only a few mathematical and basic operations. One advantage
of the dhrystone benchmark is the simplicity of how it reports the score. The benchmark
reports DMIPS (Dhrystone-MIPS) which is essentially a measure on how many loops of the
benchmarks can be run during 1 second. It is also common practice to divide this number
by the CPU frequency to get DMIPS/MHz to also take into account the clock speed of the
processor[21].

Especially important to the measurement of the L2 cache performance is the small program size.
The LEON3 core features a 8 kB L1 cache, divided equally between instructions and data. This
is not enough to fit all dhrystone code or data, which is ∼ 60 kB and ∼ 16 kB respectivly. It is
therefor reasonable to expect some performance increase by the addition of an L2 cache. The
NOEL-V core has a 4 times larger L1 cache, 32 kB, also split equally between an instruction and
data cache. This is still likely not enough, but should make the difference much less noticeable.

Figure 34: DMIPS/MHz with and w/o L2 cache. LEON3 Artix-7 SoC and NOEL-V VCU118.

As seen in Figure 34, the performance increase seen by adding a cache to the LEON3 system
is substantial. An almost 2x increase in performance shows that the system was bottlenecked
by the memory interface. Adding an L2 cache to the NOEL-V shows a much smaller increase
in performance of 10%. The smaller impact on the NOEL-V system is expected and could be
the result of a still to small L1 cache. Some of the gain could perhaps also be accounted for by

Page 41

PAGE 42 SECTION 7 BENCHMARKS & PERFORMANCE

the write policy of the L2 cache. Since the L1 cache always uses a write-through policy, to keep
coherency between cores, without an L2 cache this would mean writing directly to slow main
memory. Instead the L1 cache writes to the L2 cache with much lower latency, which in turn
is able to aggregate many writes before evicting back to main memory, thus allowing for much
better performance.

7.2 Linux
Linux operating systems comes in many shapes and sizes. The operating systems themselves
are generally not used as a benchmark, but can be used to host other, often more exhaustive
benchmarks such as the SPEC2006 benchmark suite. Additionally normal operations used
within the shell can be benchmarked to measure responsiveness and overall fluidity of the system.
Using the SELENE platform discussed in Section 6.3 it is possible to boot a Cobham Gaisler
developed linux distribution based on SBI. A shell script has been developed that measures the
time it takes to move files around in the file system. The script measures the time it takes to
perform the operation and allows the user to change the sizes of the files. Running the script
with and w/o an L2 cache yields the result seen in Figure 35.

Figure 35: Linux file system benchmark with and w/o L2 cache. H2020 SELENE 6-core SoC.

The performance increase from using an L2 cache in the file system test shows a very large
increase in performance. Analyzing what exactly is causing the very large performance increase
can be difficult, without going into details on how the file system and linux implements the "cp"
command. Further testing using smaller ways, as well as varying the replacement policy of the
L2 cache showed very similar results to the ones seen in Figure 35. This suggests that the L2
cache fits all data and code used to move the files and the benefit comes from the much lower
latency that is achieved from interacting with the L2 cache instead of main memory. The boot

Page 42

PAGE 43 SECTION 7 BENCHMARKS & PERFORMANCE

process is also significantly faster taking only 27 seconds to reach the login shell compared to
96 seconds without an L2 cache.

Page 43

PAGE 44 SECTION 8 FUTURE WORK

8 Future Work

8.1 Latency Improvements
The latency of the response from the L2 cache can be improved in a few ways. The most
notable improvement would most likely be generated from adding split support to the slave.
Split support would allow the L2 cache to inform the bus controller that it is waiting for data
from the backend and it can not respond immediately. Instead of locking the bus while waiting
for the response, other AHB requests can be fulfilled in the mean time. Splitting the accesses
would be implemented only when the L2 cache is making backend reads, as writes are already
asynchronous to the frontend, and does not lock up the bus.

The current implementation of handling write accesses also leaves some room for latency im-
provements. Since the syncram used in the L2 cache does not have byte write functionality a
R-M-W sequence is required every time a cache line is modified. Implementations of syncram
with byte write does exist within GRLIB and making the change could likely be done without to
much development effort. The improvment would remove one cycle at each single write access.

Conceivably, a pipepline could also be constructed around the write accesses, simply acknowl-
edging each request immediately, saving them in a FIFO buffer and writing to the L2 cache
asynchronously. The only time the L2 cache would need to either lock the bus or insert split
response when handling write accesses would be when the buffer is full. This approach would
improve both latency and implementation timing but would also require a major architectural
redesign of the L2 cache.

8.2 Timing Optimizations
Improving timing within the core and thus allowing it to be implemented in higher frequency
systems can be done by pipelining "logic heavy" segments of the L2 cache. From implementa-
tions done in Vivado, some critical paths have been identified and could be the focus of such
optimizations. Pipelining the design does often come with a cost to the response latency which
needs to be taken into consideration, as it will hurt the performance.

Meeting timing requirements when configuring the cache with 64 byte cache lines or larger has
shown to be an issue. This is likely a result of the complex multiplexing scheme required to
insert the data from the bus into the cache and vice versa. In order to improve the timing in
this regard, it could be reasonable to insert 1 cycle of delay between the tag lookup and the
data output to the bus.

Using PLRU can also results in lower timing performance in some configurations. This could be
the result of the complex logic required to implement the binary tree traversing in combination
with the tag lookup, as they depend on each other. To improve timing in this instance the same
solution as previously mentioned could be applied, inserting a 1 cycle delay between the tag
lookup and binary tree traversing.

It should be mentioned that what causes the critical path can be hard to exactly identify. The
Vivado synthesizing and implementation tool reports what signal paths are of concern, but
because of the complicated nature of the implementation optimizations, it is not always clear
what is the culprit.

Page 44

PAGE 45 SECTION 8 FUTURE WORK

8.3 Coherency
Coherency between multiple L2 caches might be of interest in some systems. The SELENE-
platform was originally planned to have clusters of CPUs (multiple GPP-elements) each con-
nected to the NoC through their own L2 cache. This could not be done since the cache currently
uses a copy-back write policy and the main memory will be out of sync. If one CPU cluster has
an address cached and modified, a secondary cluster accessing the same address from the main
memory will receive wrong data.

Solving the coherency issue could be done in multiple ways, but a common implementation is
the use of bus snooping. This requires each cache, or perhaps a centralized unit, to monitor
the accesses made to all caches and confirm that the requested data is not cached in any other
cache. If the data is present in another cache, it is ordered to evict the line before the access
is finished, thus keeping coherency. This is the solution used for both LEON and NOEL-V L1
caches, to keep coherency between multiple cores.

8.4 Cache Diagnostics Port
Adding a diagnostics port to the cache might be useful to give software developers more in-
sight into the caches behavior and its interaction with the code. The debug interface could
be implemented either as a secondary AHB or APB slave. The interface could allow access
to individual ways and cache lines as well as all configuration and performance registers. Dis-
connecting the debug interface from the main access bus could be useful for more complicated
systems that might have a separate debug bus, like the SELENE platform, see Figure 33. If the
main bus would hang or stop functioning reliably, diagnostics could still be recovered from the
core through the secondary interface.

8.5 Flush Improvments
One improvement to the flushing functionality built into the cache would be to not lock the bus
while the flush is ongoing. Instead the frontend could, after the flush is initiated, set the slave
as busy and let accesses to other slaves through.

Allowing the user to flush the cache without invalidating all cache lines might also be of use
in some circumstances. This too, could quite easily be implemented using very similar logic to
what already exists. Flushing without invalidating would simply bring back coherency between
the cache and main memory by evicting the data and clearing the dirty bit, while keeping the
valid bit set.

8.6 Cache Invalidation
Adding a way to invalidate the entire cache or specific lines without flushing it back to memory
might be of use during startup and initialization of the system. If the cache RAM contains
random data during boot, it could be tricked into thinking that the data is valid. This can
be dealt with by software implementations currently, but invalidating the full cache during
initialization would simplify the process. Invalidating the full cache could likely be implemented
somewhat effortlessly, as the method of doing so would be the same as with flushing without
evictions.

Page 45

PAGE 46 SECTION 8 FUTURE WORK

8.7 Frontend Layer
As the design currently stands, the frontend interface is hardcoded to work with the AHB 2.0
slave interface. To increase compatibility and perhaps "future proof" the core, the frontend
interface could be replaced with a generic cache interface and have a separate layer which
translates the real frontend to the generic cache frontend. In such an implementation, the
translation layer can be exchanged to match future bus interfaces and thus not requiring any
change to the caches core functionality. The functional principle would resemble that of the
GBM, but for a slave interface instead.

8.8 SPEC2006 benchmark
In order to measure the difference between cache configurations, much more thorough and
exhaustive benchmarks are needed. The SPEC benchmark suite is generally used for this purpose
because it uses a series of test programs derived from real applications. SPEC benchmarks also
tend to work with large data sets, putting a larger load on the memory interface which is not
only relevant but necessary when performance testing an L2 cache.

Effort was put in to building and running SPECINT2006 (SPEC integer benchmarks) on the
SELENE platform but was unfortunately unsuccessful. If the benchmarks was ported to the
platform, it would allow for measuring performance difference between the replacement policies,
way associativity, way size and cache line sizes more effectively.

Page 46

PAGE 47 SECTION REFERENCES

References
[1] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. “Performance Evalua-

tion of Cache Replacement Policies for the SPEC CPU2000 Benchmark Suite”. In: New
York, NY, USA: Association for Computing Machinery, 2004. isbn: 1581138709. doi:
10.1145/986537.986601. url: https://doi.org/10.1145/986537.986601.

[2] Businesswire. Aeroflex To Be Acquired by Cobham plc For Approximately $1.46 Billion.
https://www.businesswire.com/news/home/20140519006808/en/Aeroflex-
To-Be-Acquired-by-Cobham-plc-For-Approximately-1.46-Billion. Ac-
cessed: 2022-01-27.

[3] Carlos Carvalho. “The gap between processor and memory speeds”. In: Proc. of IEEE
International Conference on Control and Automation. 2002.

[4] Design and Reuse. Aeroflex Incorporated Announces the Purchase of Gaisler Research AB.
https://www.design-reuse.com/news/18670/gaisler-research.html.
Accessed: 2022-01-27.

[5] Digilent. Arty A7 Reference Manual. https://digilent.com/reference/programmable-
logic/arty-a7/reference-manual?redirect=1. Accessed: 2022-02-10.

[6] Cobham Gaisler. Cobham Gaisler website. https://www.gaisler.com/. Accessed:
2022-02-10.

[7] Cobham Gaisler. GRLIB IP Core User’s Manual. https://www.gaisler.com/
products/grlib/grip.pdf. Accessed: 2022-01-15.

[8] Cobham Gaisler. GRLIB IP Library. https://www.gaisler.com/products/
grlib/grlib-gpl-2021.2-b4267.tar.gz. Accessed: 2022-01-15.

[9] Cobham Gaisler. GRLIB IP Library User’s Manual. https://www.gaisler.com/
products/grlib/grlib.pdf. Accessed: 2022-01-15.

[10] David Harris and Sarah Harris. Digital Design and Computer Architecture. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2012.

[11] In: Digital Design and Computer Architecture. Ed. by Sarah L. Harris and David Harris.
Morgan Kaufmann, 2022. isbn: 978-0-12-820064-3.

[12] Daranee Hormdee, J.D. Garside, and Steve Furber. “An asynchronous copy-back cache
architecture”. In: Microprocessors and Microsystems 27 (2003). doi: 10.1016/S0141-
9331(03)00101-7.

[13] Bruce Jacob, Spencer W. Ng, and David T. Wang. “Memory Systems - Cache, DRAM,
Disk”. In: ed. by Bruce Jacob, Spencer W. Ng, and David T. Wang. San Francisco: Morgan
Kaufmann, 2008, pp. 57–77. isbn: 978-0-12-379751-3.

[14] ARM Limited. AMBA™ Specification (Rev 2.0). https://documentation-service.
arm.com/static/5f916403f86e16515cdc3d71?token=. Accessed: 2022-01-06.

[15] ARM Limited. AXI4 Protocol Specification. https://developer.arm.com/documentation/
ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification. Accessed: 2022-
01-06.

[16] Hannah Ritchie Max Roser. Transistor count 1970 - 2020. https://ourworldindata.
org/uploads/2020/11/Transistor-Count-over-time.png. Accessed: 2022-01-
25.

[17] David A. Patterson and David R. Ditzel. “The Case for the Reduced Instruction Set Com-
puter”. In: SIGARCH Comput. Archit. News (1980). doi: 10.1145/641914.641917.
url: https://doi.org/10.1145/641914.641917.

[18] Inc SPARC International. The RISC-V Instruction Set Manual. https://riscv.org/
technical/specifications/. Accessed: 2021-12-27.

[19] Inc SPARC International. The SPARC Architecture Manual. https://www.gaisler.
com/doc/sparcv8.pdf. Accessed: 2021-12-27.

Page 47

https://doi.org/10.1145/986537.986601
https://doi.org/10.1145/986537.986601
https://www.businesswire.com/news/home/20140519006808/en/Aeroflex-To-Be-Acquired-by-Cobham-plc-For-Approximately-1.46-Billion
https://www.businesswire.com/news/home/20140519006808/en/Aeroflex-To-Be-Acquired-by-Cobham-plc-For-Approximately-1.46-Billion
https://www.design-reuse.com/news/18670/gaisler-research.html
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual?redirect=1
https://digilent.com/reference/programmable-logic/arty-a7/reference-manual?redirect=1
https://www.gaisler.com/
https://www.gaisler.com/products/grlib/grip.pdf
https://www.gaisler.com/products/grlib/grip.pdf
https://www.gaisler.com/products/grlib/grlib-gpl-2021.2-b4267.tar.gz
https://www.gaisler.com/products/grlib/grlib-gpl-2021.2-b4267.tar.gz
https://www.gaisler.com/products/grlib/grlib.pdf
https://www.gaisler.com/products/grlib/grlib.pdf
https://doi.org/10.1016/S0141-9331(03)00101-7
https://doi.org/10.1016/S0141-9331(03)00101-7
https://documentation-service.arm.com/static/5f916403f86e16515cdc3d71?token=
https://documentation-service.arm.com/static/5f916403f86e16515cdc3d71?token=
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png
https://ourworldindata.org/uploads/2020/11/Transistor-Count-over-time.png
https://doi.org/10.1145/641914.641917
https://doi.org/10.1145/641914.641917
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://www.gaisler.com/doc/sparcv8.pdf
https://www.gaisler.com/doc/sparcv8.pdf

PAGE 48 SECTION REFERENCES

[20] Bill Tran. A Brief History of Cache. https://trantriducs.medium.com/a-
brief-history-of-cache-5e51826f4873. Accessed: 2022-02-10.

[21] Alan R. Weiss. Dhrystone Benchmark, History, Analysis, "Scores" and Recommendations.
https://johnloomis.org/NiosII/dhrystone/ECLDhrystoneWhitePaper.
pdf. Accessed: 2022-02-10.

[22] M. V. Wilkes. “Slave Memories and Dynamic Storage Allocation”. In: IEEE Transactions
on Electronic Computers EC-14 (1965). doi: 10.1109/PGEC.1965.264263.

[23] Xilinx. VCU118 Evaluation Board. https://www.xilinx.com/support/documentation/
boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf. Accessed: 2022-02-10.

Page 48

https://trantriducs.medium.com/a-brief-history-of-cache-5e51826f4873
https://trantriducs.medium.com/a-brief-history-of-cache-5e51826f4873
https://johnloomis.org/NiosII/dhrystone/ECLDhrystoneWhitePaper.pdf
https://johnloomis.org/NiosII/dhrystone/ECLDhrystoneWhitePaper.pdf
https://doi.org/10.1109/PGEC.1965.264263
https://www.xilinx.com/support/documentation/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu118/ug1224-vcu118-eval-bd.pdf

Appendix A Technical Specification Open Source L2 Cache

49

Technical Specification
Open Source L2 Cache

Version 1.2

Måns Arildsson
February 13, 2022

Version History

Version Date Modifications Modified by

1.0 2021-09-05 Document created M. Arildsson
1.1 2021-09-10 Major part of feature set M. Arildsson
1.2 2021-09-15 Clean-up M. Arildsson

Contents

1 Project description 2
1.1 Design principles . 2
1.2 System considerations and constraints 2

2 Cache Design 3
2.1 Interfacing . 3
2.2 Cache configuration . 3
2.3 Replacement Policy . 4
2.4 Write Policy . 4
2.5 Cachability . 4
2.6 Cache flush . 5
2.7 Endianess . 5
2.8 Storage . 5
2.9 Debugging features . 5

3 Cache register layout 6

1

1 Project description

The project aims to develop a lightweight L2 cache for the open source VHDL
library GRLIB. Open source hardware has in recent years gained traction and
projects such as H2020 SELENE are looking to develop fully open source
safety-critical computing platforms. Because the processor cores in GRLIB
currently lacks an open L2 cache, considerable performance gains can be
achived, even with a somewhat simple cache design. The cache IP core will
act as a bridge between an internal AHB bus typically connecting CPU cores
and an external AHB/AXI bus connected to slower main memory.

Figure 1: Cache SoC interaction.

1.1 Design principles

During design special care will be taken to keep design complexity down,
while still providing valuable features required bymodern processing systems.
The IP core will be developed in VHDL using the two process method.

1.2 System considerations and constraints

To ensure wide compatibility, the back-end interface will us the "Generic
Bus Master" core. This allows the cache to be integrated into systems that
uses either AHB or AXI without any major modifications. The front-end slave
interface will use AHB as this is the typical protocol in the type of systems
that the core will be attached to.

2

2 Cache Design

Cache feature Configuration

Cache Configurations
N-ways: 1 - 4 (Should be scalable to N-way)
Way size: 1 - 512 KiB
Set size: 32 / 64 B

Interfacing Front-end: AHB slave
Back-end: AHB/AXI master

Replacement Policy Pseudo-Random
Pseudo-LRU

Write Policy Copy-Back

Endianess Little or Big endian

AMBA Plug & Play TBD

Debugging Hit & Miss counter
Cache access counter

Table 1: Cache feature summary

2.1 Interfacing

The L2 cache will interface with the CPU and L1 cache using an AHB slave
interface. For increased portability, the cache shall use the "Generic Bus
Master" IP core as its interface with the main memory. This allows for flexible
integration into systems using either the AHB or AXI bus on the main memory
interface.

2.2 Cache configuration

The cachewill feature configurable line &way sizes aswell as a direct-mapped
or multi-way associative cache. The cache lines will be configurable as
either 32 or 64 Bytes with a way size between 1 - 512 KiB (steps power of
2). The cache will have configurable associativity from 1 to 4 ways(at a
minimum) using either pseudo-random or pseudo-LRU replacement policies.
Configurations will be determined by VHDL generics.

3

Configurable parameter Value Generic
Line size 32 / 64 Bytes TBD
Way size 1 - 512 KiB TBD
N-way associativity 1 - 4 ways TBD

2.3 Replacement Policy

Naturally the replacement policy is dependent on the cache configuration.
A direct-mapped cache configuration uses no special policy, when a cache
miss is registered the corresponding line will be evicted and replaced.

In multi-way associative configurations it should be possible to configure
with either pseudo-random or pseudo-LRU replacement policies. The pseudo-
random policy will simply replace the way depending on a wrap-around
counter that is incremented by the clock. Pseudo-LRU or pLRU is a lightweight
option to LRU that features a similar performance but with less overhead,
particularly for higher way-associative caches. pLRU uses log2(N− 1) bits of
overhead per cache line compared to LRU’s log2(N!). An 8-way associative
cache requires

Configuration Replacement Policy Generic
Direct-mapped - TBD

N-way associative Pseudo-Random
Pseudo- Least Recently Used TBD

2.4 Write Policy

The cache will be using copy-back write policy.
Using the copy-back policy will write data back to the cache during write
hits. Only during line eviction does the cache write back the data to main
memory and can therefore aggregate many writes into one, off loading the
main memory interface. To keep track of which line that has been modified a
bit referred to as the "dirty" bit is introduced.

2.5 Cachability

Cachability will be determined by the cache field in the AMBA plug & play
information. This will allow the user to set up to four address spaces for the
cache and select whether or not they are cacheable.

4

2.6 Cache flush

Flushing and invalidating the cache will be controlled by writing to the cache
control register (see 3). Invalidating the cache clears all "valid" bits in the
tag memory. Each line is invalidated regardless if it is out of sync with main
memory. Flushing the cache will write the dirty cache lines back to main
memory before invalidating the line.

2.7 Endianess

The system shall be compatible with both big and little endianess. Selecting
which configuration is done through VHDL generics.

Endianess Generic
Little Endian TBD
Big Endian TBD

2.8 Storage

The cache shall utilize RAM as both tag and data storage. The RAM will be
implemented using the SYNCRAM two port core from GRLIB as the it allows
for optimizations dependent on the targeted platform.

2.9 Debugging features

The cache will feature an optional debugging unit that can be enabled by
VHDL generics. Data from the unit can be extracted by reading debug regis-
ters.

The debugging unit will implement the following features:

• Cache utilization

• Hit and Miss rates

5

3 Cache register layout

This section describes the registers within the cache and their respective
functionalities. Access to the registers is done with 32-bit read or write ac-
cesses to the I/O bank address + register offset.

Offset 0x00 : Flush (W)
Offset 0x04 : Hit Counter (R/W)
Offset 0x08 : Miss Counter (R/W)
Offset 0x0C : Eviction Counter(R/W)
Offset 0x10 : Cache Configuration(R)

6

Appendix B L2C-Lite - Level 2 Cache controller

57

GRIP
Feb 2022, Version 2021.2 1363

Cobham Gaisler AB
Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | www.caes.com/gaisler

GRLIB IP Core

83 L2C-Lite - Level 2 Cache controller

83.1 Overview

L2C-L implements a level-2 cache for processors with an AHB interface. The cache uses the GRLIB
core "Generic Bus Master" to act as a bridge from AHB-AHB or AHB-AXI. The cache supports both
big & little endian, making it suitable for NOEL-V and LEON designs. The frontend and backend
support bus widths between 32 - 128 bits.

83.2 Configuration

L2C-L can be configured as a direct-mapped or a multi-way associative cache. The cache supports 2 -
N way associativity, assuming that the pseudo random replacement policy is selected. Using pLRU
replacement policy requires the way associativity to be a power of two, i.e 2, 4, 8, 16 ... 2^N. Cache
line size can be configured between 16-256 bytes and the size of each way can be configured between
1-N KiB assuming powers of 2.

83.2.1 Replacement policy

The IP core implements pLRU and pRandom replacement policies. pLRU is a replacement method
trying to mimic LRU, but using less memory overhead. The policy has been shown to perform very
close to real LRU but requires N-1 bits/index. The overhead benefits become more pronounced at
higher way associative caches. The pseudo random replacement selects the cache line to evict based
on a counter that is incremented each clock cycle.

83.2.2 Write policy

The cache uses a copy-back write policy. A write access will fetch the associated cache line from
memory(unless a cache hit), write the new data to the cache line and set the valid and dirty bits in the
tag data. When the cache line is evicted it is written back to memory.

Figure 233. Block diagram

CPU

Memory

L2C

CPU

Controller

Backend AHB/AXI BUS

Front-side AHB BUS

32, 64, or 128-bit

32, 64 or 128-bit

GRIP
Feb 2022, Version 2021.2 1364

GRLIB IP Core

Cobham Gaisler AB
Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | www.caes.com/gaisler

83.2.3 Cachability

The core uses the VHDL generic, “cached”, to determine which address range is cachable. Each bit in
the 16-bit value defines the cachability of a 256 Mbyte address block on the AMBA AHB bus. A
value of 16#00F3# will thus define cachable areas in 0 - 0x20000000 and 0x40000000 - 0x80000000

83.2.4 AHB address mapping

The AHB slave interface occupies two AHB address ranges. The first AHB memory bar is used for
the cache data range and is set up using VHDL generics “haddr” and “hmask”. The second range is
used for accessing I/O registers and its address is set up using VHDL generic “ioaddr”. The size of the
I/O area is statically set to 64 kB.

83.3 Operation

83.3.1 Read

The read access will start with a tag lookup. If the tag is found and valid, the cache will deliver the
requested data the following clock cycle. If the tag is not found, the replacement policy is used to
select which line is going to be replaced. The valid and dirty bits are checked to determine if eviction
of the cache line is required. If the cache line needs to be evicted, it is buffered and written back to
main memory once the new line has been fetched. During the fetch of the new line the cache will
insert wait states until the data is ready to be delivered. Writing back evicted cache lines is done asyn-
chronously when the backend is free and allows the cache to handle other accesses in the mean-
time.For a non-cacheable read access, the cache controller will issue single read accesses to the
backend to fetch data from memory. This is done regardless if the frontend access is a single or burst
access and may therefor affect the performance.

83.3.2 Write

A write access will start with a tag lookup. Writes to the cache are handled with a read-modify-write
sequence, where the cache line is initially read from memory, then modified and written back to mem-
ory the following cycle. because of the read-modify-write sequence, one wait state is inserted every
single write hit. For write burst accesses the line is read once and written back when the burst is termi-
nated or when the end of the cache line is reached, triggering a new tag lookup. A write hit will also
result in the dirty bit being set, thus indicating that the cache line will need to be evicted before it is
replaced. A write miss is handled in the same way as a read miss and allocates a new cache line.

83.3.3 Cache flushing

The cache can be flushed by writing to the flush register. One flush mode exists, flushing the entire
cache with write-back. During this operation, every cache line is invalidated and dirty lines are
evicted.

83.3.4 AHB slave interface

The slave interface is the core’s connection to the CPU and the level 1 cache. The core can accept 8-
bit(byte), 16-bit(half word), 32-bit(word), 64-bit, and 128-bit single and burst accesses. INCR and
WRAP accesses are not supported.

83.3.5 AXI/AHB Master interface

The master interface is the core’s connection to the memory controller. It uses the Generic Bus Master
IP core and supports AXI and AHB. The width of the backend is controlled with VHDL generic
“be_dw “and can be configured as either 32, 64 or 128.

GRIP
Feb 2022, Version 2021.2 1365

Cobham Gaisler AB
Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | www.caes.com/gaisler

GRLIB IP Core

83.3.6 Endianness

The core is compatible with big and little-endian systems.

83.3.7 Performance counters

Two performance counters are available, access and miss counters. The counters are 32-bit and will
wrap around if overflown. The counters can be read and reset by reading and writing to their respec-
tive addresses, see register overview below. A hit counter can also be calculated by subtracting the
miss counter from the access counter.

83.4 Registers

The core is configured via registers mapped into the AHB memory address space. Only 32-bit single-
accesses to the registers are supported.

Table 1677.L2C-Lite: AHB registers

AHB address offset Register

0x00 Flush enable register

0x04 Access counter

0x08 Miss counter

0x0C Cache configuration

GRIP
Feb 2022, Version 2021.2 1366

GRLIB IP Core

Cobham Gaisler AB
Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | www.caes.com/gaisler

83.4.1 Flush enable Register

83.4.2 Access Counter Register

83.4.3 Miss Counter Register

Table 1678.0x00 - L2C-Lite - Flush enable register
31 0

RESERVED Flush
enable

0

w

0 Write 1 to initiate cache flush
31:1 RESERVED

Table 1679.0x04 - L2C-Lite - Access counter register
31 0

Access counter

0

r/w

31 : 0 Access counter. Write 0 to clear counter.

Table 1680.0x08 - L2C-Lite - Miss counter register
31 0

Miss counter

0

r/w

31 : 0 Miss counter. Write 0 to clear counter.

GRIP
Feb 2022, Version 2021.2 1367

Cobham Gaisler AB
Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | www.caes.com/gaisler

GRLIB IP Core

83.4.4 Status Register

83.5 Vendor and device identifiers

The core has vendor identifier 0x01 (Cobham Gaisler) and device identifier 0x0D0. For description of
vendor and device identifier see GRLIB IP Library User’s Manual.

83.6 Implementation

83.6.1 RAM usage

The L2C-Lite uses dual-port RAM to implement both cache tags and data memory. The tags are
implemented using the SYNCRAM_2P core, with the width and depth depending on the cache size
configuration. The data memory is implemented using the SYNCRAM_2P which means that it can
limit the line size and way size depending on which technology is used. See SYNCRAM_2P for tech-
nology specific limitations.

83.6.2 Endianness

The core changes endianness behaviour depending on the settings in the GRLIB configuration pack-
age (see GRLIB User’s Manual).

Table 1681.0x0C - L2C-Lite - Cache configuration
31 30 29 28 27 20 19 16 15 14 13 0

REPL RESER
VED

WAYS LINE-SIZE RESER
VED

WAY-SIZE

* * * * * *

r r r r r r

31: 30 Replacement policy (REPL), 0 = Pseudo random, 1 = Pseudo LRU
29: 28 RESERVED
27: 20 Multi-way configuration (WAYS) - (Associativity - 1)
19: 16 LINE-SIZE -

0 : 16 B

1 : 32 B

2 : 64 B

3 : 128 B

4 : 256 B
15: 14 RESERVED
13: 0 WAY-SIZE - Size in KiB

Table 1682.Configuration options

Generic name Function Allowed range Default

tech The memory technology used for the internal Syncram. 0 - NTECH 0

hmindex Master index 0 - NAHBMST-1 0

hsindex Slave index. 0 - NAHBSLV-1 0

ways Number of cache ways 1, 2, 3 ... N 2

waysize Size of ways (KiB) 1,2,4,8,16,32,64, 128 ... 64

linesize MASK field of the AHB BAR. 0 - 16#FFF# 0

GRIP
Feb 2022, Version 2021.2 1368

GRLIB IP Core

Cobham Gaisler AB
Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | www.caes.com/gaisler

83.7 Signal descriptions

Table 1683 shows the interface signals of the core (VHDL ports).

83.8 Library dependencies

Table 1684 shows the libraries used when instantiating the core (VHDL libraries).

repl Replacement policy: 0 = pseudo-random, 1 = pseudo-
LRU

0-1 0

haddr ADDR field of the AHB BAR 0 - 16#FFF# 0

hmask MASK field of the AHB BAR. 0 - 16#FFF# 0

ioaddr ADDR field of the AHB I/O BAR 0 - 16#FFF# 16#000#

cached Cacheable memory ranges x“0000” - x“FFFF” x“FFFF”

be_dw Backend bus width 32, 64, 128 32

Table 1683.Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AXIMI * Input AXI master input signals -

AXIMO * Output AXI master output signals -

*) see GRLIB IP Library User’s Manual.

Table 1684.Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER L2CACHE Component Component declaration

Table 1682.Configuration options

Generic name Function Allowed range Default

GRIP
Feb 2022, Version 2021.2 1369

Cobham Gaisler AB
Kungsgatan | SE-411 19 | Goteborg | Sweden

+46 31 7758650 | www.caes.com/gaisler

GRLIB IP Core

83.9 Instantiation

This example shows how the core can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
use grlib.tech.all;
library gaisler;
use gaisler.l2c_lite.all;

entity l2c_lite_ex is
 port (

clk : in std_ulogic;
 rst : in std_ulogic
);

end;
.
.
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
signal ahbsi2 : ahb_slv_in_type;
signal ahbso2 : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi2 : ahb_mst_in_type;
signal ahbmo2 : ahb_mst_out_vector := (others => ahbm_none);
signal aximi : ahb_somi_type;
signal aximo : ahb_mosi_type;

architecture rtl of l2c_lite_ex is

begin

(AHB backend instantiation)
...

l2c_lite0 : l2c_lite_ahb
 generic map(tech => 0, hmindex => 1, hsindex => 1, ways => 1, waysize => 64,
 linesize => 32, repl => 0, haddr => 16#400#, hmask => 16#C00#,
 ioaddr => 16#FF4#, cached => 16#00F3#, be_dw => 32)
 port map(rst => rst, clk => clk, ahbsi => ahbsi, ahbso => ahbso(1),
 ahbmi => ahbmi2, ahbmo => ahbmo2(1), ahbsov => ahbso2);

...

(AXI backend instantiation)
...

l2c_lite0 : l2c_lite_axi
 generic map(tech => 0, hmindex => 1, hsindex => 1, ways => 1, waysize => 64,
 linesize => 32, repl => 0, haddr => 16#400#, hmask => 16#C00#,
 ioaddr => 16#FF4#, cached => 16#00F3#, be_dw => 32)
 port map(rst => rst, clk => clk, ahbsi => ahbsi, ahbso => ahbso(1),
 aximi => aximi, aximo => aximo);

...

end;

	Introduction
	Background
	Data Caching
	Cobham Gaisler
	HDL & FPGAs

	Target Systems
	SoC Interconnects
	Working Principles
	Access types
	Addressing
	Split Support
	AMBA summary

	Processor Cores
	RISC
	LEON
	NOEL-V

	Debug Units
	I/O

	Cache Specification & Design
	Specification
	Design Method
	Interfacing
	Cache Configuration
	Replacement Policy
	Write Policy
	Cachablility
	Endianess
	Performance Counters
	Specification Summary

	Design
	Frontend Interface
	Backend Interface
	Cache State
	Tag Matching Logic
	Read Handling
	Write Handling
	Replacement policy
	Cacheability
	Endianess
	Cache Flush
	Internal I/O registers
	System Summary

	Verification
	ATF
	AMBA Test Master
	AMBA Test Slave

	L2 Cache Test Bench

	Integration
	GRMON3
	LEON3 Artix-7 SoC
	SELENE 6-core NOEL-V SoC

	Benchmarks & Performance
	Dhrystone
	Linux

	Future Work
	Latency Improvements
	Timing Optimizations
	Coherency
	Cache Diagnostics Port
	Flush Improvments
	Cache Invalidation
	Frontend Layer
	SPEC2006 benchmark

	Technical Specification Open Source L2 Cache
	L2C-Lite - Level 2 Cache controller

	pbs@ARFix@2:
	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@44:
	pbs@ARFix@45:
	pbs@ARFix@46:
	pbs@ARFix@47:
	pbs@ARFix@48:
	pbs@ARFix@49:
	pbs@ARFix@50:
	pbs@ARFix@51:
	pbs@ARFix@52:
	pbs@ARFix@53:
	pbs@ARFix@54:
	pbs@ARFix@55:
	pbs@ARFix@56:
	pbs@ARFix@57:
	pbs@ARFix@58:
	pbs@ARFix@59:
	pbs@ARFix@60:
	pbs@ARFix@61:
	pbs@ARFix@62:
	pbs@ARFix@63:
	pbs@ARFix@64:
	pbs@ARFix@65:
	pbs@ARFix@66:
	pbs@ARFix@67:
	pbs@ARFix@68:
	pbs@ARFix@69:
	pbs@ARFix@70:
	pbs@ARFix@71:
	pbs@ARFix@72:

