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Abstract 

Automation of tasks are progressing fast together with new improved technology. This together 

with increased availability of drones in various price-ranges has great potential for many 

automated computer vision tasks since drones are often equipped with high-tech cameras of 

many different kinds. The task of automated supervision is no more relevant than in the area of 

agriculture, where farmers are not only by law required to check on their livestock regularly but 

for their own benefit as well to carefully study their animal’s behaviour. This thesis explores the 

possibility of detecting cattle on different pastures using computer vision on images taken from 

drones by DJI. The project trains and evaluates two convolutional neural network models from 

Tensorflow object detection while discussing future research project of a potential live 

supervision system of cattle. This is done by comparing the two models and discussing external 

variables such as image acquisition distance to the cattle and its importance by using the two 

detection models as reference. This is developed further into arguments on how to acquire 

future data for a large-scale implementation of such a problem. 
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Populärvetenskaplig Sammanfattning

Att automatisera arbete blir allt vanligare idag med utvecklingen av kraftfulla verktyg inom
AI. Att underlätta tids-krävande uppgifter med automatiska system kan göra stor skillnad för
olika typer av jobb, d̊a den tiden som sparas fr̊an automatiseringen kan istället läggas p̊a mer
kvalitativt arbete. I omr̊aden som jordbruk är bondens tid ovärdelig, m̊anga arbetsuppgifter
p̊a stor mark ska täckas och ofta med omsorg för deras djur. Allt som ska göras behöver dock
inte kärlek. Ibland krävs endast ett öga under kortare tid för att se att djuren m̊ar som dom
ska. Här kan självg̊aende tekniker inom computer-vision underlätta och spara tid, d̊a bonden
inte behöver ta sig en längre sträcka endast för att se om alla djur är kvar i hagen. Den här
rapporten undersöker idén att boskap p̊a en g̊ard kan med hjälp av bilder tagna fr̊an drönare
övervakas, utan med direkt verkan fr̊an bonden. Kan man identifiera kor fr̊an högre höjd är
möjligheterna många. T.ex. att f̊a signalament fr̊an ett s̊adant automatiskt system att en ko
snart ska f̊a kalv, kan varna bonden i tid som f̊ar processen att vara s̊a säker som möjligt.
Proejktet undersöker fr̊agan med hjälp av maskininlärnings system, som lär sig att upptäcka
kor ute p̊a bete utifr̊an bilder tagna av drönare p̊a olika höjd och vinklar. Tv̊a s̊adana mask-
ininlärnings modeller tas fram, som sedan utvärderas kring hur väl dom kan upptäcka boskapen
ute p̊a bete i olika scenarion. Detta används som grund för att sedan i sin helhet ta fram olika
potentiella utmaningar som kan ske om ett s̊adant projekt ska göras p̊a ett storskaligt vis.
Modellerna visar stark förm̊aga att hitta boskap trots hög flyg-höjd, men har vissa sv̊arigheter
med t.ex. kor som smälter in väl med bakgrunden p̊a betet. Detta och andra potentiella
sv̊arigheter diskuteras, med extra vikt p̊a hur data-insamlingen av bilderna fr̊an drönaren
p̊averkar resultatet. Detta presenteras med fr̊agor och riktlinjer som man bör tänka p̊a om
liknande teknik skulle användas i ett live-system i framtiden, som förhoppningsvis kan ge djur
och bonde extra välbehövlig tid till mer omsorgfulla arbetsuppgifter.
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1 Introduction

It is no secret that the usage of drones (excluding war drones) has grown vastly the past decade
in the commercial sector, as well as the underlying technology. The unmanned aerial vehicle
is incredibly useful, especially when equipped with high resolution cameras. It can be a very
effective helping hand for various problems.

Agriculture in all its aspects has always been difficult to manage - new technical solutions
are always sought for to make the life easier for not only the farmer, but the animals as well.
In Sweden, farmers are required by the law of animal protection Djurskyddslag, (2018:1192),
to watch over the animals, every day. Digital tools such as drones with computer vision capa-
bilities could assist the farmer to supervise the animals. Relying on the automated technology,
a farmer could potentially put their time at other task while the system looks for potential
hazards such as missing cattle, or even labouring cows.

The method of object detection can usually be approached in two ways, with or without the
use of neural networks. This thesis will only use methods with deep neural networks, specifically
convolutional neural networks, as the general theory model for detecting cattle on pasture. The
question of what an object is, what an animal looks like, is a very difficult question in com-
puter vision. Trivial pre-defined parameters are seldom enough; colour, length, width is often
shared with other types of animals and not even combined do they suffice for the computer to
make an accurate assumption when facing several objects [1]. A very common solution to the
problem of how to approach object features lies in the powerful tool of machine learning. Many
machine learning methods can learn arbitrary features in images and connect the patterns to
objects, such as animals. Using structured data of agricultural animals we can train a deep
neural network over ten-thousands of iterations, creating a black-box function that recognise
the patterns concerning the features of the object in question.

Using these deep neural networks as a foundation, we seek to discuss the problem of detect-
ing cattle on pasture using image data collected from a drones.

This project was inspired by future research project ”Nötkreatur och drönare - Övervakn-
ing av djur p̊a bete med autonoma drönare och datorseende”, English ”Cattle and drones -
monitoring of animals on pasture with autonomous drones and computer vision”[2].

Problem formulation

The thesis assumes that it is possible to, through a tool unknown at the start, detect cattle
through images taken from a DJI Mavic Mini drone. The thesis seeks to discuss the potential
hazards of the task and explore proposed solutions. One or several metrics were to be deter-
mined to act as a foundation to the proposed solutions’ evaluation.
The project firstly relates to simple applications such as counting cattle on pasture, but will
discuss more complex problems such as identifying individual cattle and the potential road-
blocks.
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2 Computer vision - Introduction

The field of computer vision is at broad a task that seek to gain tools and methods to understand
the contents in images and videos at a complex level. To name a few, this includes object
detection, motion tracking, image restoration etc.
The goal is often to enhance or automate tasks that aligns with the capabilities that of the
human visual system. For instance, in the field of medicine a computer vision algorithm might
assist the human doctor with both automation and pointing out what the doctor potentially
might have missed.
The overall technical approach to computer vision problems vary, but three main components
are usually covered in such a problem:

• Acquisition - how the image is acquired matter since small changes in acquisition could
greatly change the pixel information.

• Processing - manipulation of the pixels often can enhance the features of the image that
the computer is looking for. Or reduce bad noise that disturbs the algorithm.

• Analyzing - extract valuable information from the processed image. This includes methods
such as image segmentation.

Again, the area of computer vision seeks to solve very specific problems in different scientific
areas. Even though many solution approaches consists of general sub-categories of methods like
those mentioned above, specific problems often requires specific, almost unique, solutions.
One common type of solution approach today in computer vision is that of machine learning,
more specifically the application of machine learning in form of deep neural networks. These
trained networks have turned out to be a very effective tool in this area for difficult classification
or object detection problems.

3 Neural Networks

The words neural networks has become a very frequent term in the field of computer science.
Often accompanied by deep neural networks or deep convolutional neural networks, they are
all meant to describe a method of learning. Neural networks are frequently applied in various
problems, linear and non-linear. There is no limit on the complexity of the problem since more
variables, neural layers, can always be added at the cost of computational time. Two deep con-
volutional neural networks are the foundation to the solution of this thesis. The basic theory
will therefore be covered, starting with the foundation of what a neural network is, followed
by how to build on-top of of basic neural networks to achieve deep neural networks, and then
finally discuss the fundamental difference to a deep convolutional neural network.

The root idea is inspired by, as the name states, the propagation of stimuli in biological
neurons and how they learn through their very complex and large interconnections in animal
brains. Our computers models this idea with artificial neurons, that through a manifold of
iterations create weighed paths between millions of nodes in very complex networks - mirroring
that of the biological connections such that the learning is emphasized by how well specific sets
of artificial neurons are connected.

To illustrate the trivial case, we begin with one artificial neuron that has two inputs
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Figure 1: Caption

Figure 1 a neural network with two input nodes, one hidden layer node and one output
node. The output node represents the defined decision, using a pre-defined threshold together
with a value (vote) given by the hidden neuron in the middle layer. For our case, the output
will be if the combines inputs is or is not a cattle. Using the two inputs x1 and x2, we assign
them binary values, 0 or 1, if input statement is true or false. All inputs are also assigned
weights, wm, emphasising the importance of the specific input neuron; how well the connection
is established between the two nodes. The sum of these inputs together with its weights, is the
foundation of the decision making, as the output from one neuron in the binary case could be
defined as follows:

output =

{
1 (true) if

∑
xiwi + bias ≥ 0,

0 (false) if
∑
xiwi + bias < 0.

(1)

Hence, a weight and bias are needed to set the threshold of what is considered to be a true
decision using the inputs. The inputs are arbitrary; we could assign x1 and x2 related question
such as ”does the animal have features resembling horns?” or ”does the animals body shape
resemble a cow?”. These inputs are not equal in the probability of determining if the animal
is a cow or not. Thus, they will be assigned weights, w1, w2, with different values. The body
shape is a very good indicator of cow (even though its arbitrarily defined), making the respective
weight positive and large to reinforce the connection between this input node and hidden layer
node. The second parameter that dictates the decision of the neuron is the bias, which tweaks
the likely-hood of that specific neuron to fire, to activate. To describe more complex problems,
other than the binary case described in Equation 1, other functions that activates the neuron can
be used, a continuous threshold. These are called activation functions. The choice of activation
function depends on the problem setting. A common choice is the Sigmoid activation function:

σ(x) =
1

1 + e−x
. (2)

Thus we have an continuous output value in σ ∈ (0, 1), with x = xiwi + bias. The function is
S-shaped, the domain non-linear; the hidden layer neuron can now pass on a continuous value
which makes it possible for more nuanced voting between artifical neurons.

To make the problem of cow classification more realistic, there will be more input neurons
as well as hidden layer neurons to do the calculations. Not only does the column size of the
hidden layer increase, but the number of layers as well. Since every neuron in the hidden layer
carries an input (either from the input layer or a previous hidden layer neuron) together with an
assigned weight makes the complexity of the network grow fast with each new layer of neurons.
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The gives rise to a useful flexibility since there will be millions of parameters, the weights, to
tune to fit the model. The figure below tries to visualize a deep neural network, characterized
by its many hidden layers:
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Figure 2: Deep neural network

Figure 2 shows a deep neural network with i inputs, connected to a hidden layer with j
layers, with m neurons each. Each layer of hidden neurons are interconnected with its neigh-
bouring layers, every connection is assigned a weight wj

m, where m is referencing the specific
connection path.

To make a deep neural network learn is often referred to as model training. The training
procedure tunes the connections between all of the neurons by tuning the previously mentioned
parameters of the connections: the weights and biases. This is done in two steps in what is
called back- and forward-propagation. First, the model is assigned a set of weight and biases
for each connection between neurons, these could be chosen arbitrarily. Forward propagation
refers to traversing the deep neural network and its hidden layer-neurons, each neuron receives
input and furthers the information that has been through its own activation function together
with the weights and biases. When the output layer is reached, the final calculations of the
neurons will be done and they will all produce values, votes, and its sum will be the decision.
This decision is then compared to the label assigned to the training example, and by using a loss
function as the model can evaluate its performance and make changes accordingly. Next step
is when the model utilizes the idea of back propagation. It traverses all its neurons and paths
backwards. Using the loss function as foundation, each path between neurons is evaluated
and assigned new weights and biases accordingly to its performance. If a specific pathway
between neurons were way off in its prediction, their weights and biases will receive a more
drastic change. The procedure of back- and forward-propagation is repeated many times using
preferably a high-quantity, high-quality dataset.
The evaluation in the forward and back-propagation depends on the losst/cost function. The
loss function, also known as cost function, utilizes a optimization method (a common one is
gradient descent, which will be used in the example) to find the local minimum by repeated
evaluations of the model. This means that the neural network will iterate over many training
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examples by using back and forward propagation, and after each traverse of the network the
gradient of the cost function will be calculated, which includes all the weights of the network.
The gradient of the cost function gives the algorithm a small step in the right direction, working
towards a local optima for the model. Thus this is repeated thousands of time, nudging the
weights in the right direction to find a set on neural paths that models the problem accordingly.
This is paramount for good performance. When the model has gone through these thousands
of training iterations, the weights and biases will hopefully be finely tuned to make predictions
when fed with new data.

3.1 Convolutional Neural Network

When applying neural networks to visual problems, i.e. when using image information as
input, convolutional neural networks are the dominant type of network used. The architecture
of convolutional neuron layers are designed to fit the problem of computer vision, since the
architecture is designed to introduce a spatial dimension in the input data. To clarify, if an
image were to be used in a deep neural network as in Figure 2, every pixel intensity would be
collected into a 1-dimensional long array and fed into the hidden layers, where every neuron is
connected with each other. Hence a 64 · 64 pixels image would be turned into a 64 · 64 = 4096
1-dimensional array, thus it’s not considering the spatial relationships between the pixels.
To improve on this area, connvolutional networks uses local parts of the (now 2-dimensional)
input image often in forms of small kernels to connect to one hidden layer neuron each. The
kernel then traverses over the input image, feeding each kernel data to one hidden layer neuron.
As a consequence, the hidden layer is also treated in a two dimensional manner:

Hidden
layer (1)

Input
layer

Figure 3: Example of convolutional neural network, working with a local kernel connecting the
shared weights to the first hidden layer.

Each hidden neuron still tunes its own weight, but it’s calculated (in this case) by a 4x4
kernel. Each kernel-connection also uses a bias, just like in the original deep neural network.
Figure 3 illustrates the first hidden layer traversing the input image - same procedure will be
repeated for several hidden layers all traversed by neighbouring layers and assigned weights
and biases; tuning the model to fit the problem training as described above. The key difference
here is that in a convolutional network, the first hidden layers that are connected to the input
layer are designed to look for one feature each. Thus, if the input is connected and traversed
by three hidden layers and their 4x4 respective kernels, the image will be classified by these
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three arbitrary features. Each feature, that is these first hidden layer neurons, share weights
and bias with each other, thus enabling them to look for a feature together. These features are
later simplified and then optimized with forward and back-propagation like described above,
with some changes to account for the new connections between neurons.

4 COCO 2017 Dataset

The solution to this object detection problem in this project relies on two neural networks
that hve been initialized beforehand by the Tensorflow 2 Object Detection API. Both of these
networks use the COCO (Common Objects in Context 2017 Dataset[3] as its foundation to its
training and evaluation. At its website it is described as follows: ”COCO is a large-scale object
detection, segmentation, and captioning dataset”. The dataset consists of 330 thousand images,
whereas over 60% of them are labeled images with context descriptions from various objects.
The annotation method in the COCO datastets are segmented masks, meaning the object has
been fully distinguished from the background. See Figure 9 below. This kind of labeling is
immensely high cost, requiring many human hours of work to finish but produces high-quality
data for future training. The pre-trained models on COCO 2017 are presented in the sections
below.

(a) Annotated animals from the COCO
dataset.

(b) Original image of the animals.

Figure 4: Data example from the COCO dataset, showing the detailed annotation method
eliminating the background noise from the animals.
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5 TensorFlow

Tensorflow is a machine learning platform developed by Google. It is widely used in research
and other high-level machine learning related services.
Tensorflow is fully supported in Python. Together with a wide range of other Python libraries
it makes a good tool for building deep neural networks for different purposes.
The API offers ways of converting a Tensorflow machine learning model to Tensorflow Lite
which is designed to run on on mobile devices. This is especially interesting when discussing
potential use of deep neural network models on mobile, computationally light systems such as
drones connected to phones.

5.1 TensorFlow 2 Object Detection

TensorFlow 2 Object Detection is an API that fully supports the object detection method
pipeline. It offers pre-trained models evaluated on the COCO 2017 dataset (see previous sec-
tion) together with training and evaluation scripts for custom model building[4].
The Model Zoo[5] offers many pre-trained deep neural networks that could (but not recom-
mended) be used directly for object detection if using the objects already existing in the COCO
dataset. The models offer choices of different network architecture, balancing the performance
metrics of accuracy (mean average precision, mAP) and the computational speed of the model,
measuring the average time to handle one image in milliseconds (ms).
Two object detection models from the model zoo will by used in this project. They are to be
trained on a custom image dataset. The following models was used and further trained:

Model name Time per image (ms) Accuracy (mAP)

SSD MobileNet V2 FPNLite 640x640 39 28.2

Faster R-CNN ResNet50 V1 1024x1024 61 31.0

Table 1: Performance metrics from the two pre-trained object detection models on the COCO
dataset[5]. The models are pre-trained on 90 animal classes.

Note: Table 1 does not display the result or performance numbers of the project; these
numbers only apply to the COCO dataset where they were initialized on. These are to be used
as a general reference of the performance of the architecture behind each model.
It is important to note for future discussion that both models uses a feature extractor, meaning
they pre-process the image for training by enhancing the features of the object such as body-
shape. This is because the networks such learns what an object is through such shapes and
features, and don’t want to deal with background noise such as (in this case) grass (see Figure
?? for what cow features could look like). The numbers 640x640 and 1024x1024 in the model’s
name (Table 1) represent the size the image is resized to when passed into the model and as
well as the resolution the detection is applied on. Thus the Faster R-CNN model is expected
to have higher detection accuracy, while being more computational heavy in the general case.
The key differences of architecture of the two models are presented below:

12



5.2 Model 1 - SSD MobileNet V2 FPNLite 640x640

SSD, meaning Single Shot Detection, is a object detection architecture that as the name suggests
only uses a single shot of the image to evaluate the objects within. This is a design that
emphasise high speed detection for real-time use, meaning lowering computational cost for
each evaluated image. This in comparison to other architectures such as R-CNN models that
requires two shots of each image, to render the the detections. In addition, the processed
images are handled in 640x640 resolution, which is more than the SSD model meaning higher
computational costs as well[6].

5.3 Model 2 - Faster R-CNN ResNet50 V1 1024x1024

Faster R-CNN is also a object detection architecture that aims to lover the cost of evaluation
for real-time purpose detection. However, as briefly mentioned above the apply a regional
proposal technique for requires a shot of the image, on its own, which in short terms are an
extra step in the detection process that SSD models described above does not use. In addition,
the processed images are handled in 1024x1024 resolution, which is more than the SSD model
meaning higher computational costs as well[7].

6 Drones

The abundance of drone models and their varying technical capabilities makes the choice not so
clear what kind of model to use in problem such as cattle identification. There are many different
types cameras that could be useful - varying not only in resolution but fundamental differences
such as RBG versus thermal camera technology. One very important factor is however the
price - the architecture in the solution model has to be within a reasonable price range for its
targeted use: assisting farmers. Thus the most a non-affordable drone with highly advanced
cameras might not be the best option. This is where a smart computer vision algorithm that
still can perform well using not to expensive cameras might just be the compensating solution
that can drive the price down for commercial use.
DJI, Da Jiang Innovations, is a drone manufacturer that controls the majority of the market
[8]. They offer private, hobby drones as well professional in the price range of 200 - 10 000€.
Even the ”cheaper” drones offer high resolution, easy to use photography for a reasonable price,
which is as stated an important quality if its targeted use is in the agricultural area.

6.1 DJI Mavic Mini

In this project we used the DJI Mavic Mini, an ultra light-weight 300-400€drone with the
following specifications[9]:

13



DJI Mavic Mini

Takeoff Weight 249g

Dimensions 245×289×55 (mm) (L×W×H)

Max Flight Time 30 minutes

Gimball range -90◦ to +20◦

Still images

4:3 resolution 4000x3000

16:9 resolution 4000x2250

Video

2.7K resolution 2720×1530 24/25/30 p

FHD resolution 1920×1080 24/25/30/48/50/60 p

Table 2: Relevant DJI Mavic Mini technical specifications.

The Mavic mini model offers a ultra light structure and as a consequence has a maximum
flight time of 30 minutes. This could also be a crucial quality; if a drone such as this would be
used practically in an autonomous system too low flight time might mean that the drone will
not be able to cover all of the pasture.
The drone is since its release in October 2019 widely used by RISE (Reasearch Institiute of
Sweden) because of its light structure [10]. If the drone would weigh more than 250g at takeoff,
you as the pilot of the drone are required by Swedish law to have at least 50m distance to larger
living creatures (which includes livestock), since there is always a risk of malfunctioning drones
that could be a danger to its surroundings. Thus because of the weight, the freedom of flight
is increased drastically since the law does not apply to such light drones as the DJI Mavic Mini.

6.2 Embedded information

When the drone captures a still image, meta data is embedded into the file containing reference
information and also sometimes GPS innformation as well depending on pre-existing settings.
It’s stored as EXIF-data, exchangeable image file format, which requires special software to be
read.
Below is is the embedded EXIF data listed[9]:

• AbsoluteAltitude: Measured by the drone’s barometer using the International Stan-
dard Atmosphere (ISA) as reference for converting to AMSL, Above Mean Sea Level.
The current weather (and how it differs from ISA) has great impact on this calculated
value and therefor it cannot be trusted/used.

• RelativeAltitude: Based on the barometer. A reference pressure is stored upon take-off,
the difference between the reference value and actual value is inserted in a standard atmo-
sphere to calculate the height relative to the take-off location. This value is less affected
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by the current weather but is still affected by weather change during flight. Although,
since the flight time is limited, this is within the margin of the required accuracy.

• GimbalRollDegree: Roll angle of the gimball, measured in degrees.

• GimbalYawDegree: Yaw angle, measured in degrees.

• GimbalPitchDegree: Pitch angle, measured in degrees.

• FlightRollDegree: Roll angle of the drone during flight, measured in degrees.

• FlightYawDegree Yaw angle,measured in degrees.

• FlightPitchDegree: Pitch angle, measured in degrees.
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7 Method

As discussed, computer vision problems vary vastly in in solution approaches. Since the goal
of the thesis is to discuss the potential applications using drones that could assist farmers, it is
clear that a very pragmatic approach is needed. Hence the project begins as a literature study
seeking information relating to segmenting objects from images.
It was decided that the most practical approach that would produce results in the given time
frame was a machine-learning system that through gathered data would work as the foundation
for the testing of detecting cattle in drone images. Using Python and its many image-analysis
and machine learning libraries as the main tool, two deep neural network were created through
the Tensorflow 2 Object Detection API. It were fed with 730+ images from three different
pastures, varying from 1-30 cattle in each image.
The heavy computational training of these networks were granted access to HPC2N - High
Performance Computing Center North, using GPUs; reducing the time spent on training the
models greatly.
Applying the two trained models on the test image dataset, the object detection was attempted
on each animal and assigning it a certainty score from 50− 100%. Using this certainty score as
foundation, we sought to find any correlations with exterior factors such as the size of bounding
boxes, colour of the animal, fly height, etc. The results of these correlations are later presented
in the Result sections.

7.1 Data collection

The project was given an annotated set of images of highland cattle from M. Popov and R.
Mochaourab [11]. The images were taken by drone model DJI Matris 200, presenting 330
images from 50 unique cows, varying from 1-38 cattle in every image; giving more than 5000
data points.
The quality and quantity of the data is however paramount, and the diversity of data points
is just as important. Thus, more images with different cattle and varying environment were
needed to be able to generalize the results of the methods. If not, the models would become
biased and only work on very specific data. Hence a new goal was set of having approximately
100 unique cattle in varying images to work with.
A local farm in Uppsala, having two different pastures with cattle were kind enough to use
their cattle in the data collection. The first pasture provided 9, and the second one at had 20
unique cows.
Using the DJI Mavic mini drone, images were taken from varying heights and angles to diversify
the data. See section Results form more detailed information.

This concludes a total of ≈ 80 unique cows and 730 images in the data set.

7.2 Data Annotation - LabelImg

LabelImg, read ”label image”, is a python developed program used to annotate images to assign
objects their classes [12].
Using the data acquired from the local farm, LabelImg was used to draw rectangles over every
cattle in each image. If one of the cattle was in very close proximity to another cow, or for some
other reason were covered by other objects, the rectangle was still drawn to cover as much as
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of the object as possible even if it meant overlapping objects.
LabelImg produces an information file using the structured data file-format .xml. It annotates
each object by saving each corner-coordinate of the cattle: y min, x min, y max and x max.
These coordinates will work as reference when testing the methods.

Figure 5: Example of the data annotation, showing overlapping highlighted cattle.

7.3 Image Processing / Segmentation

As shown in Figure 5, the annotation method of bounding boxes includes a lot of noise such as
grass textures and shadows from the background. Many of the deep neural networks focus on
object features when training the network, such as body shape. Hence the background noise
will disturb training, and is best to be removed.
As an attempt the remove most of the noise, image processing methods to enhance the cow
features could be valuable for improving detection results (again see Figure 9 from the COCO
dataset for the ideal case).
Various de-noising image filters were applied to enhance the features of the cattle, using the
Python library scikit-image, also known as ”skimage” [13]. This library includes a broad
collection of image-manipulating algorithms suitable for computer vision[14].
To reduce background noise, three algorithms from the scikit-image library was used:

• Morphological opening and closing, to remove the many small, bright or dark, structures
in the background created by the uneven pasture ground. In the Python library skimage,
these functions are called in

-skimage.morphology.area opening(image, area threshold,..),
and

-skimage.morphology.area closing(image, area threshold,..).
The area threshold parameter governs the size of the bright or dark structures to be
removed.

• Guassian filter, to remove general noise in the image.

-skimage.filters.gaussian(image, σg).
Here, σ is the standard deviation for the kernel.
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• Canny edge detection algorithm to enhance the features of the cattle:

-skimage.feature.canny(image, σc).
The σc refers to a second kernel for a Gaussian smoothing filter which is applied before
the edge detection.

The parameters were varied in different combinations to see if such a straight forward method
could enhance the features of the cattle, while removing the background.

Other attempts for de-noising and feature extractions where attempted using thresholding
algorithms such as Otsu-thresholding, with non-conclusive results. This area was left as incon-
clusive, and instead move over to the machine learning approach using Tensorflow as obejct
detection models.

7.4 Tensorflow 2 Object Detection API

The Tensorflow 2 Object detection API is a python framework that offers fundamental support
for object detection in images and videos. The framework is well documented and offer a
detailed tutorial to get started[15].
The tutorial (link [15]) was followed closely in a Linux environment, more specifically on the
super-cluster environment High Performance Computing Center North (HPC2N)[16].

7.4.1 Training the neural networks

The dataset of 720+ images were divided into two parts, 2
3
≈ 485 images were used for the

training of the models while the last part of 239 images of were used as the testing set to
evaluate their performance.
Since training deep neural networks are computational heavy, Tensorflow2 supports NVIDIA
GPU allocation for its training and evaluation, since GPU architecture is more efficient for these
types of computations. This is due to its capabilities of performing parallel computations[?].
The project were allowed to use HPC2N ’s super-computer Kebnekaise[17], which uses NVIDIA
GPU’s, which is compatible with the python libraries running together with Tensorflow 2.
The Tensorflow 2 object detection environment was set on this super-computer, training both
the SSD MobNet V2 and Faster R-CNN models. The following table offers specific details on
the training procedure:

Model Training steps Batch size Images/Cattle

SSD MobileNet V2 13000 32 485/6205

R-CNN ResNet50 V1 13000 6 485/6205

Table 3: Batch size and amount of training steps. Due to increasing memory demand from
the R-CNN model, the batch size had to be reduced. Both models were trained on the same
training data, which is roughly 67 % of the whole data set. The number of training steps were
not increased more to avoid over-fitting.

After completed training the neural network is stored and can be called upon by the built
in functions of the Tensorflow API to evaluate and detect objects on demand by feeding it an
image. This enables us to use it as tool gather data and draw potentially valuable conclusions.
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Figure 6: Detection example using the SSD MobNet model. Each cattle was detected assigned
a confidence score, visible in each box on the top left. The image was returned and printed
using Matplotlib python library.

7.5 Using the object detection models to gather data information

To be able to the discuss the collected data in more detail, we used both models to try to detect
all the cattle in the test and gather useful information. We seek any correlations between high
detection-score and trivial features of the data. This is to make it possible to give general rules
of thumb doing a large-scale version of a similar project to automate cattle supervision.
Key aspects to ensure a well-working model is to have high quality data; to understand which
properties to be careful of during the image acquisition. Thus the discussion limits the data
acquisition to the boundaries of drones. This raises questions as:

• What height limits the detection performance?

• What light conditions limits the detection performance?

Assuming equal resolution for all images we seek to look at the detection score as a function
of pixels; does the performance of the model vary drastically when amount of pixels are re-
duced? This is too simulate distance between the drones and the livestock when the images are
acquired; if the images is taken from above the cattle, we can simulate height by successively
reducing the pixels while keeping the original resolution ratio.
The neural networks learns features that they map to our objects. Thus if the cattle blends in
well with its background, it can be hard for the computer to extract its body; its features will
blend. This is particularly true for images taken from above without any angle. Since colour,
the RGB values, can be converted to gray-scale images we can compare the intensity of the
animal to its current background to evaluate the potential importance of these factors in future
image acquisitions.

To gather the sought information, we use all of the test images to attempt detection of each
cattle and save current useful information. This includes un-detected cattle as well.
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We begin by applying the detection model to an test image. if a cattle is detected, we take
the coordinates given by the detection boxes,and calculate the amount of pixels within each
individual detection box. Keeping to these coordinates, we also traverse the box saving each
pixel colour information by the boundaries of the detection box and save it as the neighbouring
background of the current cattle. Also, we take a chunk of pixel from the animal’s body to
save it as colour information regarding its fur. The detection score is also saved each cattle
for future evaluation. This is also repeated for the un-detected cattle, using the labeled data
from the annotation program as coordinate reference boxes to gather the same information as
described above, minus the detection score of course. To do this, a script was created as well to
separate detected objects from un-detected objects, as well as false positives. Figure 7-8 below
visualizes such examples where the detection model failed to locate all cattle, as well as how
we traverse cattle to find its colour environment:

Figure 7: Detection example where some of the cattle were not recognized by the detection
model. The red box is an indication by the python script that they were un-detected, informa-
tion gathered from the label files for the test set.
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Figure 8: Detection example, also visualizing areas of the detection boxes which saves the
information of cattle colour as well as background colour. The blue areas resemble which of
the pixels that are saved.

To further augment the data, to simulate height/distance to the cow, every test image was
also down-scaled in a series of fractions and the detection was re-done to save new data together
with the detection score.
All of the data of colour, pixels, scores and their corresponding image reference plus resize frac-
tion was saved into python-numpy arrays, for both cattle that were detected with a detection
score plus the un-detected, separately.
Again, we seek correlations between data properties and model performance. To find any po-
tential potential connections, we visualize the data below in various ways in the Result section.
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8 Results

8.1 Image Processing / Segmentation methods

The image segmentation methods from section 7.3 gave inconclusive results. Creating object-
masks of the cattle did not seem to be possible since the de-noising of the background did not
do well enough to segment the object entirely in a general method. Even though it may still
be possible to achieve, simple algorithms used in that section above was not enough and may
require more sophisticated methods.

8.2 DJI Mini embedded information

Even though each image taken by the drone contained continuous embedded data such as
absolute height and relative height, they were deemed have too high of uncertainty to be used
as reference in the experiments.

8.3 Object detection Models performance metrics

Below is the metrics from the evaluated 239 test images using the two detection models. Tables
4-5 refers to the test images evaluated on the original images, not including the manipulated
down-scaled images to simulate height.

Model SSD MobileNet V2 R-CNN ResNet50

Number of images 234 226

Number of evaluated cattle* 2748 2823

True positives, detected (TP) 1649 1472

False negatives, undetected (FN) 1099 1359

False positives (FP) 107 128

Table 4: Detected, undetected objects categorized by metrics of True positives (TP), False
negatives (FN), and False positives (FP). The total number of cattle consists of 80 unique
cows, taken from different angles. *Note: The total amount of cattle between the models vary
slightly because of certain images made the data-collecting crash for unknown reason.

Model Precision Recall mAP .50 IOU* mAP .75 IOU*

SSD MobileNet V2 93.9 % 60.0 % 94.6 % 71.2 %

R-CNN ResNet50 92.0 % 51.9 % 96.6 % 64.5 %

Table 5: Performance metrics from the two custom-trained object detection models. The values
marked with ’*’ are provided by Tensorflows’ Tensorboard application, which calculates these
metrics when evaluated in the Tensorflow API.
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Table 4-5 displays metrics to how well the two object detection networks performed. The
metrics marked with ’*’ signifies values given by Tensorboard, an evaluation of the test set of
images. The recall is calculated by recall = TP

TP+FN
, measures how well the models handles

all relevant objects. Precision is a metric that focuses on how accurate the model is when it
believes it found a true positive (TP): precision = TP

TP+FP
, which suffers from false positives.

The metrics provided by Tensorboard is also a form of precision measurement, but they also con-
sider how well the detection boxe’s area correspond to the ground truth - the labeled reference
annotation box. It is signified by the term IOU, meaning intersection over union. The number
at their side .50 and 0.75 refers to the threshold of how much the detection box is required to
overlap on the ground truth to be considered a valid detection, 50 and 75 % respectively. The
average is then calculated as the precision metric.
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8.4 Graphs visualizing results from the detection models

The following graphs consists of data generated as described in Section 7.5. This includes the
manipulated images where they have been down-scaled and run through the object detection
models again.

8.4.1 Pixel volume - Distribution and dependency

(a) Distribution of amount of pixels in SSD MobNet model detection boxes.

(b) Distribution of amount of pixels in Faster R-CNN model detection boxes.

Figure 9: Visualizing the distribution of pixel amount in the detection boxes generated by the
two models. Each data point represents a detected cattle, coloured by the fur of the animal.
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(a) Distribution of pixel amount of the undetected objects that the SSD model were not
able to detect. Pixels calculated from reference files, dots coloured by the cattle. Total
of 1099 undetected objects.

(b) Distribution of pixel amount of the undetected objects that the Faster R-CNN model
were not able to detect. Pixels calculated from reference files, dots coloured by the cattle.
Total of 1359 undetected objects.

Figure 10: For each detection model, looking at the distribution of pixel volume by scatter plot
from the cattle that were not detected in the original evaluated images. The amount of pixels
were calculated from the labeled reference files. Does not include down-scaled images.
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(a) Amount of pixels in detection box as a function of detection score, SSD model.

(b) Amount of pixels in detection box as a function of detection score, Faster R-CNN
model.

Figure 11: Detection score versus the amount of pixels in the detection box. Each data point
is coloured by the cattle’s’ fur. Both of the models has dense areas of scatter points to the left
due to the extreme points of order 2 ·105 pixel volumes to the right in the x-axis on plots a)-b).
The smallest points of pixel volumes are ≈ 100 pixels on the x-axis. For a closer inspection,
plots 12 below shows the scatter points with less pixels but more spread in detection score.
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(a) Amount of pixels in detection box as a function of detection score, x-axis limited to
1000 pixels to show spread as approaching less information. SSD model.

(b) Amount of pixels in detection box as a function of detection score, x-axis limited to
1000 pixels to show spread as approaching less information. R-CNN model.

Figure 12: Detection score versus the amount of pixels in the detection box, showcasing data
points with a maximum of 1000 pixels in detection boxes (very small volume of pixels).
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8.4.2 Colour dependency

(a) Intensity difference between the cattle as a function of detection score, data generated
by the SSD model.

(b) Intensity difference between the cattle as a function of detection score, data generated
by the Faster R-CNN model.

Figure 13: A comparison between detection score and the difference between the intensity of
cattle and the background of the animals. Each data dot is coloured red, but the higher the
intensity difference the more red they display to visualize the successive pattern of the detection
score.
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(a) SSD model.

(b) Faster R-CNN model.

Figure 14: Scatter plot of detected (blue) and undetected (red) cattle, plotting their fur and
background intensity.
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8.4.3 Simulated height - Down-scaling as a function of detection score

(a) Down-sacling factor as a function of average detection score in each image (represented by colour).
By the SSD model.

(b) Down-sacling factor as a function of average detection score in each image (represented by colour).
By the Faster R-CNN model.

Figure 15: Simulated distance to cattle by down-scaling and evaluating each image in a succes-
sive series; reducing the pixels by a factor between 1

1
to 1

14
. Here we display 8 images and the

down-scaling factor as a function of the average detection score of all cattle in each image. Each
individual image is represented with an individual colour. Same procedure for both models,
visualizing the data.
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9 Discussion

9.1 Model performance

As shown in Tables 4-5 the overall performance of the models gives a stable tool to work with
as a start to discuss future projects. Even though the recall is somewhat poor, which could
be explained by data properties, the model’s precision is performing well - meaning it is very
confident in its guesses to true positives (TP). This is mostly because of its low number of false
positives (FP) in both detection models.
Even though the R-CNN model uses a higher resolution (1024x1024) than its competitor, the
SSD model (640x640), it performs more poorly. R-CNN is also more computationally heave,
and should be looking for a wider range of features in its detection. One of the reason beacuse
is as previously mentioned, the R-CNN model is way more memory heavy in its computations
making the training more difficult. As seen in Figure 3, the SSD model uses a batch size
(amount of images per training cycle) of 32 while the R-CNN was forced to train with batch
size 6. Sometimes this could be fixed by increasing the amount of training steps for its training.
However the training was chosen to stop at 13000 since we began to experience worse loss
metrics for more steps than 13000. This could be due to over-fitting. Another reason could be
that the images as stated before contain noise, which due to higher resolution could be harder
to deal with.

9.1.1 Model plots comparison

Through the visualization of plots in the Results section we can see in a general sense that both
the models have similar tendencies in many aspects. One very interesting discontinuity however
is the one regarding the detection of what seems to be specific cows. Figure 13a-13b shows
that clear contrast between object and background seem to be good presupposition for easy
detection for both models. However, they do not seem to agree on which cows they detected.
Naturally, the R-CNN model had in comparison too the SSD model poorer Recall (Table 5)
meaning they don’t have the same cattle detected in general. But there seem to be a bias on
which cattle the R-CNN model detected; looking at Figure 11 the detected cows are on average
darker for the R-CNN model as the coloured dots shows. While this may be a small deviation
since colour is loosely defined in the neural networks (they only process gray-scale images)
this raises the possibility that different architecture of models might have varying properties
that performs better in certain environments. Thus a combination of models in a live object
detection system could be a key feature when optimizing performance for different pastures
and/or animals.

9.2 Dependency of external variables

In Section 8.4 we try to visualize external dependencies such as pixel volume and intensity
relationship with cattle and background to the models performance. As seen in Figure 15a
and 15b model seem to be invariant to down-scaling the images, since the detection score does
not change drastically for both models. This may be because the most important features of a
cattle like its body shape may not drastically change when the resolution is scaled down.
As seen in Figure 13a and 13b, both models seem to agree again that higher intensity difference
between cattle and background is favoured for a more confident score. This might be trivial,
but it shows the importance of careful acquisition of the data is paramount when the cattle is
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similar colours to its background. Such cattle could for example be easier to detect if taken
images from an angle instead of up-top, since we get more distinct features from the cow.
One interesting observation is that through the graph the R-CNN model seem to favour darker
objects for detection, or it’s having a hard time detecting cattle with brighter intensities.

9.3 Data

The data set as described was divided for two thirds as training data, and one third as test data.
The object detection models algorithm are nuanced since they do their own data augmentation
by randomly adjusting lightness other pixel manipulation to diversify the data. However one
concern for the results, which would account for the high precision and low recall, is that the
model is very biased on its training data. This might be because firstly, the data was randomly
divided meaning similar instances exists in both the training and test set. Even though this
is speculation, if there would be more time one should re-divide the data and run the same
experiments to validate the results of model performance, or gather more data as a stand-alone
validation set.
Shadows seems not to be a hazard to the models detection, while it was speculated it would.
To further confirm this speculation could be useful.

9.4 Annotation method

As shown in the annotations example in Figure 5, bounding box annotation is a crude method
since the majority of the pixels in those overlapping boxes does not belong to the cow. If
the object is not first segmented from the background, the machine learning algorithms will
be trained on a dataset that has a lot of noise; making its training more difficult and thus
will lower the performance of the model. An alternative labeling method would be to make a
full-body mask of each object when the objects are annotated. However, this method is even
more time consuming. The question is if that extra annotation time would enhance the model
drastically.

9.4.1 Overlapping annotations

It is natural as to a cow’s behaviour to be close to its herd several times during the day. As to
this, it is interesting to question the annotation method when the cows are really close to each
other - how does this affect the performance? As seen in Figure 5 where the annotations of
two cattle overlap, this is a quite normal scenario and even more overlap exists in images where
the cows stand even closer to each other. On one hand, it might be positive for the model to
have examples that it is indeed very possible for an object, cattle, to be behind another cattle.
Those ”extra” features might add to the flexibility of the model. However, those extra features
from another cow in a overlapping annotation does not actually belong to the current animal
in question. The question then stands - should overlapping objects be avoided or included in
the data set? The current images from the test set still did well on very crowded cow groups,
however this could just be the case of bias since it has very similar training examples.
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9.5 Choice of Drone

The DJI Mavic Mini was an excellent choice for this project. Since data collection of such im-
ages are incredibly important and also time consuming, its weight of 249 grams which escapes
the law of hazardous flying object saves a lot of time for planning of the acquisitions.
Since the model seem to have tendencies of having issues regarding the properties of the data
such as light conditions, its resolution of enough high quality to not expect any big improve-
ments of performance of such models if the resolution were to be increased. It is however
interesting to speculate if an easier approach could include changing the technology of the
drones vision, such as using cameras that include heat signatures.

9.5.1 Potential camera technologies

One interesting idea brought up by subject-reviewer is to use an RGB camera (like the one
used on the drone in this project) in combination with a thermal camera. This could very
practically give a more detailed first-guess as to how the cattle should be masked; segmented
from the background. This is because the thermal information could offer a straight path to
avoid the background noise of the pasture, since regardless of seasons the cows should exhibit
more heat then its surrounding environment. However it is not clear how this would work with
the current style of deep neural networks that is used in this project since we have another
dimension to handle with the heat images.

10 Conclusions

The question of external dependencies seem to have two key points. First, assuming the model
has been well trained on varying data, the distance from where the drone acquires the image
does not seem to be a major factor up to a reasonable point. Natural obstacles such as trees
that would force the drone to increase its height should not impose a problem for detecting
the cattle. However, this should be confirmed on a much larger data-set. Secondly, one should
consider the relationship between fur colour and the ground colour in some environments closely
since an additional information, like a thermal camera, for the model could be useful to ensure
that it is detected in a live model and not missed.

10.1 Improvements

10.1.1 Data

The performance of the models are only as good as its data. More data on varying environ-
ment and different cattle is necessary. Again, the topic of annotation method should be further
discussed and tested; is the overlapping of the cattle really a problem? Comparing methods
should be time well spent to determine if its necessary to change annotation strategy, to fully
segmented masks as an example.
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10.1.2 Model architecture

Deep dive into architecture of models. To optimize performance more one could create a
deep convolutions neural network that is designed for a specific case such as this. What this
would mean in practice is arbitrary, depending on what kind of architecture is used and what
parameters that could be changed. In a general sense this could mean optimizing the networks
hyper-parameters: number of neurons, activation function, optimizer function, learning rate,
batch size, and epochs to name a few (all mentioned terms applies to the training of the
neural networks). In short, fine tuning the details could improve performance of the model in
significant way.

10.2 Future work

10.2.1 Implementation - is there a practical use of these models?

With enough data, models such as these should be able to achieve a high enough detection
quality to be used in a live system. Assuming this, the SSD models are surprisingly fast in
evaluation and as such should not impose a problem since the frames evaluated per time when
it comes to cattle should not be to high, they don’t move too much!
This models are Python based and easily saved in a couple of files when fully trained. As-
suming Python handles the background work such as detection, all that is needed is a way of
communication between the drone and a external computer to handle the detection and output
to the farmer.
To lower costs, one-chip computers as Raspberry Pi’s could be enough to run a lightweight
model such as the SSD. The latency between the between the drone sending images to a com-
puter could however be a bottleneck, time of such transmissions are unknown.
Assuming the drone can wireless transmit an image to a nearby computer in seconds, and the
computer supports python, this can be done in a live system.
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