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Abstract

The primary driver of the land carbon sink is gross primary productivity (GPP), the gross
absorption of carbon dioxide (CO,) by plant photosynthesis, which currently accounts for about
one-quarter of anthropogenic CO, emissions per year. This study aimed to detect the variability of
carbon productivity using the standardized evapotranspiration deficit index (SEDI). Sixteen
countries in the Middle East (ME) were selected to investigate drought. To this end, the yearly GPP
dataset for the study area, spanning the 35 years (1982-2017) was used. Additionally, the Global
Land Evaporation Amsterdam Model (GLEAM, version 3.3a), which estimates the various
components of terrestrial evapotranspiration (annual actual and potential evaporation), was used
for the same period. The main findings indicated that productivity in croplands and grasslands was
more sensitive to the SEDI in Syria, Iraq, and Turkey by 34%, 30.5%, and 29.6% of cropland area
respectively, and 25%, 31.5%, and 30.5% of grass land area. A significant positive correlation
against the long-term data of the SEDI was recorded. Notably, the GPP recorded a decline of >60%
during the 2008 extreme drought in the north of Iraq and the northeast of Syria, which
concentrated within the agrarian ecosystem and reached a total vegetation deficit with 100%
negative anomalies. The reductions of the annual GPP and anomalies from 2009 to 2012 might
have resulted from the decrease in the annual SEDI at the peak 2008 extreme drought event.
Ultimately, this led to a long delay in restoring the ecosystem in terms of its vegetation cover. Thus,
the proposed study reported that the SEDI is more capable of capturing the GPP variability and
closely linked to drought than commonly used indices. Therefore, understanding the response of
ecosystem productivity to drought can facilitate the simulation of ecosystem changes under climate
change projections.

1. Introduction et al 2009, Dai 2011), drought and water scarcity

(Mishra and Singh 2011), and food insecurity (Mar-
In the last few decades, humanity has faced many gulis 2013). The concept of drought as a temporal
challenges in the environmental and agricultural sec- dynamic phenomenon differs from aridity as a spatial
tors, such as the need for reductions in carbon dioxide =~ dynamic phenomenon, which results from a decrease
emissions (Jardine 2003), climate change (Saavedra in precipitation in a specific area and a remarkable
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increase in the potential evapotranspiration (PET)
rate (Alsafadi et al 2020, Elbeltagi et al 2021). The
time factor or the length of the drought period is
considered one of the most important criteria for
determining the severity of drought risk (Mokhtar
et al 2021a). The issue of drought and its spatial con-
sequences have often been the focus of studies carried
out in the Middle East (ME) ecosystem (Kaniewski
et al 2012, Hameed et al 2020). In recent decades,
drought has turned into one of the most severe nat-
ural disasters for the ME’s ecosystem in the con-
text of global climate change (Lelieveld et al 2012,
Mohammed et al 2020b). Moreover, drought has sig-
nificantly affected terrestrial ecosystems, economic,
social and political systems in the ME, including food
security (Hameed et al 2020), hydrological processes
(Bozkurt and Sen 2013), vegetation growth (Zaitchik
et al 2007, Karakani et al 2021) and the extinction of
many plant species (Belgacem and Louhaichi 2013).
Generally, the ME’s ecosystem is classified as a trans-
itional climate pattern, located between a hot-dry and
cold-humid climate pattern, which is most exposed to
drought events as a result of prolonged water short-
ages. The ME is a crucial region for comprehension
of drought globally (Barlow et al 2016).

As a result of the close relationship between eco-
system dynamics and available water, a water deficit
can be restrictive to ecosystem growth (Yi et al 2010,
Mokhtar et al 2021Db). Thus, ecosystem conditions can
reflect drought risk; for instance, both precipitation
and temperature changes significantly affect the eco-
system (Mokhtar et al 2020, Mohammed et al 2020a).
Precipitation plays a vital role in controlling the pro-
ductivity of the grass; increasing precipitation res-
ults in increasing grass productivity while, in contrast,
the grass lands are critically impacted by temperature
(Li et al 2013, Lei et al 2015). Indeed, biogeochem-
ical carbon cycles of the ecosystem reflect the atmo-
sphere conditions and serve as an indicator of climate
change (Piao et al 2005, Xu et al 2009). Drought is
one of the main factors impacting ecosystems’ dis-
tribution patterns and types (Vicente-Serrano et al
2012, 2015). Several studies have documented that
ecological programs can reduce ecosystem degrada-
tion and enhance vegetation coverage, although these
programs did not work well (Deng et al 2014, Wu et al
2014, Zhang et al 2015b). Further, afforestation of
semiarid areas results in ecosystem degradation due
to the impact of drought and human activity on eco-
system change (Cao 2008, Huang et al 2016a).

Consequently, vegetation conditions are posit-
ively and negatively correlated with precipitation in
dry and wet regions, respectively (Prasad and Stag-
genborg 2008, Jiao et al 2019a). In previous stud-
ies, experimental methods, satellite observations, and
carbon process models have documented that large-
scale droughts reduce the vegetation activity, and
severe temperatures lead to negative terrestrial carbon
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productivity even under mild drought conditions
(Zhao et al 2010, 2013, Stocker et al 2019). Droughts
impact ecosystem productivity by restricting veget-
ation growth stages, including a wide range of tree
mortality and ecosystem fire, and can influence the
global CO; balance (Chen et al 2013, Reichstein et al
2013, Yu et al 2017, Jiao et al 2021).

Understanding the response of terrestrial ecosys-
tems to drought remains challenging because of the
biochemical and physiological activities of vegeta-
tion growth and cultivated crops, especially their CO,
assimilation and ecosystem carbon dioxide fluxes that
are constrained by varying degrees of drought at vari-
ous timescales (Sun et al 2021).

Several evapotranspiration-based indices were
established to quantify drought and its impacts on
terrestrial ecosystems, including Palmer drought
severity index (Palmer 1965), Reconnaissance
drought index (RDI) (Tsakiris and Vangelis 2005),
the standardized precipitation evapotranspiration
index (SPEI) (Vicente-Serrano et al 2010a) and the
evaporative drought index (EDI) (Yao et al 2010), the
drought severity index (Mu et al 2013). Also, there are
dozens of drought indices, such as the standardized
precipitation index (McKee et al 1993), vegetation
growth anomaly-based drought indices e.g. veget-
ation condition index (Liu and Kogan 1996) and
vegetation health indices (Kogan 2002), soil mois-
ture deficit index (Narasimhan and Srinivasan 2005),
scaled drought condition index (Rhee et al 2010), the
process-based accumulated drought index (Zhang
et al 2017a), integrated drought index (IDI) (Jiao
et al 2019b), and microwave IDI (Zhang et al 2019a).

In light of the findings of previous studies, the
AET and PET-based drought indices significantly
highlight the intensity of water deficits and the influ-
ence on vegetation activities more than the individu-
ally based indices (Zhang et al 2019¢). As such, Kim
and Rhee (2016) suggested a standardized evapotran-
spiration deficit index (SEDI), and concluded that
the SEDI helps detect agricultural drought events
with strong land-atmosphere interactions. Zhang et al
(2019¢) applied the SEDI to investigate the impact of
water stress on vegetation growth under global warm-
ing and documented the strong interaction between
vegetation and the evapotranspiration deficit (ED).
Consequently, the SEDI is based on the evaporat-
ive stress perspective, which is more directly linked
to vegetation water stress than other drought indices
(Zhang et al 2019c¢). The PET reflects the atmospheric
potential to receive water or evaporative demand. The
PET regulates soil water stress conditions, while the
actual evapotranspiration (AET) is the amount of
water lost from an ecosystem induced by evaporation
and transpiration. From eco-physiological and agri-
cultural perspectives, the ED is the difference between
the AET and the PET (Vicente-Serrano et al 2018).
Under climatic stress, a high ED results in stomatal
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closure, which decreases the photosynthetic process,
carbohydrate accumulation, and terrestrial ecosys-
tem production (NPP and GPP) (Stephenson 1998,
Eamus 2003).

Based on the above, we used a correlation ana-
lysis between the standardized GPP residual series
and SEDI to investigate the drought variability and
ecosystem response. This research is focused mainly
on 35 years for both GPP and SEDI over the ME.
Consequently, this research aims to improve the
understanding of the correlation between evapor-
ation deficit-based drought and ecosystem vegeta-
tion and detect the response of national-level GPP
to drought in different land-cover types. As such,
the principal aims of this research are: (a) quantify
the spatial-temporal variability of GPP dynamics in
response to drought at the pixel scale and for each
land cover type separately, (b) analysis of ecosys-
tem resilience to drought events of several types, and
assessment of an ecosystem’s capability to tolerate
drought event disturbances, and (c) prove that the
ED-based index is more capable of capturing the
standardized GPP residuals (sGPPR) variability and
closelylinked to drought than commonly used indices
based on variables other than ED.

2. Materials and methodology

2.1. Study area

The ME is located in the western part of Asia and
northeast of Africa, between 12° 06" N and 42°
07’ N latitudes, and 24° 41" E and 63° 17" E lon-
gitudes (figure 1). The ME officially includes 16
countries: the Arabian Peninsula region includes
Bahrain, Kuwait, the Sultanate of Oman, Qatar, Saudi
Arabia, the United Arab Emirate, and Yemen, and
the Levant includes Jordan, Lebanon, Palestine, and
Syria. Included as well are Egypt, Iran, Iraq, Israel, and
Turkey. The ME covers an area of 6928 thousand km?,
inhabited by about 357.23 million people according
to World Bank’s 2019 statistics (World Bank 2020)
and according to the FAO Global Land Cover SHARE
database (FAO 2014). The MFE’s land cover type is
mostly bare soil lands, at 61%. However, the whole
area of Turkey, northeastern Iraq, western Iran, west-
ern and northwestern Syria, most parts of Lebanon,
and around the Nile River in Egypt are dominated
by grasslands, shrublands, and croplands. In contrast,
forests cover northern and southern Turkey and the
north and western parts of Iran (see figure 2).

2.2. Ecosystem gross primary productivity (GPP)
data

To quantify the sensitivity of GPP against SEDI, we
evaluated four state-of-the-art GPP datasets based on
Earth observation data as following:

(a) Theyearly GLASS-GPP (the Global Land Surface
Satellite) dataset, specifically the latest version
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Figure 1. Location of the study area and land cover map,
from the GLC-SHARE database (FAO 2014).
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Figure 2. Spatial correlation between the GLASS-based
sGPPR and annual SEDI series from 1982 to 2017. The bold
colors of red and green denote the r significant correlations
i.e. significant positive correlation (Sig p) and significant
negative correlation (Sig n), while, the light colors of red
and green indicate the r not significant (Not Sig), at a 0.05
significance value (95% confidence interval) and a 0.31
critical correlation value.

spanning 35 years between 1982 and 2017
(Zheng et al 2020). The GLASS-GPP dataset
was derived from the Eddy Covariance—Light
Use Efficiency model (Yuan et al 2007). The
latest version of the yearly GLASS-GPP data-
set is available globally at 0.05° arc degree
spatial resolution within the GLASS products
(www.glass.umd.edu).

(b) The ensembled monthly FLUXCOM-GPP, spe-
cifically the FLUXCOM-RS + METEO spanning
34 years between 1982 and 2016 (Tramontana
et al 2016, Jung et al 2020). The ensembled
FLUXCOM-GPP dataset was derived from satel-
lite data and daily meteorological data. This
version of the monthly FLUXCOM-GPP data-
set is available globally at 0.5° arc degree spa-
tial resolution within the FLUXCOM portal
(www.fluxcom.org).

(¢) The yearly GIMMS-GPP (Global Inventory
Modeling and Mapping Studies), specifically the
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updated version (version 4) that extend from
1982-2016 (Smith et al 2016). The monthly
GIMMS-GPP dataset is available globally at 0.5°
arc degree spatial resolution.

(d) The yearly VPM-GPP data (the vegetation pho-
tosynthesis model) that extends from 2000
to 2016 (Zhang et al 2017b). The yearly
VPM-GPP dataset is available globally at 0.5°
arc degree spatial resolution (https://doi.org/
10.6084/m9.figshare.c.3789814).

2.3. AET and PET

To quantify the SEDI, the Global Land Evaporation
Amsterdam Model (GLEAM, version 3.3a) dataset,
spanning 35 years (1982-2017), was used (Miralles
et al 2011, Martens et al 2017). The GLEAM dataset
gives estimates based on remotely sensed observations
to set algorithms that predict the various compon-
ents of terrestrial evapotranspiration separately. They
include transpiration, open water evaporation, bare
soil evaporation, sublimation, and interception loss.
We used annual AET and PET estimates (mmyr~!) to
calculate the SEDI. The GLEAM datasets are currently
available within the GLEAM portal at daily, monthly
and annual temporal resolution, and at 0.25° arc
degree spatial resolution for 1980-2018 (NETCDF
files) (www.gleam.eu).

3. Methodology

3.1. The SEDI calculation

For all gridded points of more than 28 000 pixels
for 19822017 at the annual scale, the SEDI was cal-
culated (Alsafadi and Bi 2021). In this study, the
SEDI was implemented as the standardized difference
between AET and PET. This was similar to Zhang et al
(2019c¢), as shown:

ED — ED

SEDI = 8 ED = AET — PET, (1)

std

where ED is the AET and PET difference (mm yr—')
and EDyq and ED,; denote the standard deviation
and multi-years mean, respectively. This can high-
light dry and wet conditions by tracking local water
storage changes within the soil, compared with direct
evaporation.

3.2. Standardized GPP residual series (sGPPR)

Normally, the contributions of human activities to
variations in vegetation are removed to detect cli-
mate elements impacts independently, calculated by
the residuals of the vegetation trend models by com-
puting the de-trended analysis. Since the GPP series
is affected by many variables besides climate factors,
often, the annual GPP series has a positive trend spe-
cifically over agricultural systems and forests. The
sGPPR series was obtained from the mean u and
standard deviation value o of deference between the
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GPP value and its de-trended value for each year sep-
arately, from 1982 to 2017 at the pixel scale (Alsafadi
and Bi 2021). The sGPPRS was calculated as:
T
w —p
g

sGPPRS = (2)

yr=y =y (3)

where () is the observed GPP and (") is the value
of the de-trended GPP in a separate year. The GPP,
de-trended during the period of 1982-2018, was cal-
culated for each pixel (more than 23 000 series) using
a simple linear regression (SLR) analysis, by using the
ordinary least square method, OLS, which was calcu-
lated as:

ylm =0+x. (4)

Herein, we assumed the temporal evolution (x;) from
1982 to 2017 is an independent variable, and the GPP
series data a dependent variable (y,), to fit the SLR or
the value of the de-trended GPP in a separate year

nx Z?:Hci xy) — Z?:Nci Z?Y?

ﬁ =
nx Z?:lng_ (Z?:lxi)2

(5)

0= )_/2_53_91 (6)

where 7 is the length of the studied period, while /3 is
the slope ratio or annual change of GPP (g m? yr™!)
acquired by the ordinary least square method. 5 < 0
indicates that the GPPs tended to decrease over the
studied years, and vice versa. The sGPPR dataset is
openly available in Zenodo repository (Alsafadi and
Bi 2021)

Pearson’s correlation coefficient (r) was used to
assess the temporal consistency of the observed GPP
and SEDI across the time series.

4. Results

4.1. Assessment of SEDI impacts on GLASS-based
sGPPR across terrestrial biomass

In order to quantify the sensitivity of GPP to the SEDI
in different land-cover types, the yearly GLASS-GPP
at 0.05° arc degree spatial resolution was used, since
it has sufficient spatial resolution unlike than that of
the other products.

Based on the ecosystem map analysis, we further
evaluated the impact of the SEDI on ecosystem pro-
ductivity from 1982 to 2017. The correlation between
the GLASS-based sGPPR and annual SEDI for the
ME (figure 2) and each ecosystem type is shown in
figure 3. The strongest significant positive correla-
tion was presented in the central portion of the study
area, especially in the north of Iraq and central area
of Turkey, as well as some portions of northern Iran
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Figure 3. The spatial correlation between the GLASS-based
sGPPR and annual SEDI from 1982 to 2017 for each land
cover types: (a) bare land; (b) croplands; (c) grasslands;
(d) aquatic vegetation; (e) shrubs covered area; (f) tree
covered area. The vertical line denotes the standard
deviation of the r correlation. The critical value is 0.31 at a
0.05 significance value.

which reached more than 0.5 (p < 0.05). Based on
table B1, the significant positive correlation areas of
crops, grass, tree covered area and shrubs area in Iraq
covered 29.6%, 30.6%, 32.4%, and 28.3% of the total
area for each cover type, respectively.

The highest significant positive correlation was
recorded in the crops ecosystem at 34% of its total
area in Syria. The spatial correlation between the
GLASS-sGPPR and annual SEDI for each ecosystem
type is shown in figure 3. The croplands and grass-
lands’ productivity had the highest positive correla-
tion with the SEDI for several of the study area’s coun-
tries, especially Iraq, Israel, Syria, and Turkey. Hence
the cropland and grassland were more sensitive to
SEDI variability.

In contrast, a significantly negative correlation
between the sGPPR and annual SEDI was observed
over Israel and Jordan for bare land, and the sGPPR
of crops vegetation and the annual SEDI was neg-
atively correlated over Egypt and Yemen; 27.2% of
this area in Egypt had a significant negative correl-
ation (figure 2). Table B1 and figure 3 demonstrate
that the tree-covered area had a significantly positive
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correlation for the studied countries, especially in
Iraq and Turkey at 32.4% and 21.3% of the total area.

Moreover, Turkey, Iraq, and Lebanon achieved
the highest percentage of shrubs covered area, with
a significantly positive correlation of 31.8%, 28.3%,
and 23.8%, respectively. In contrast, the KSA recor-
ded the highest values of significantly negative correl-
ations for the same ecosystem type of 15% (table B1
and figure 3). For sGPPR of the sparse vegetation land
in Palestine, Iraq, Turkey, Syria and Iran generated
significantly positive correlations with the SEDI of
32.5%, 20%, 18.8%, 16.7%, and 16.1%, respectively.
In contrast, the KSA recorded a significantly negat-
ive correlation of 30.9% compared to other countries.
The aquatic vegetation versus the SEDI produced a
significantly positive correlation of 29.4% and 10.4%
in Turkey and Iran, respectively, while Iraq reached
5.4% for a highly negative correlation. The sGPPR in
the soil bare ecosystem was highly positively correl-
ated with the SEDI in Lebanon and in the UAE, at
22.5% and 20.1%. On the other hand, 7.1% and 7% of
the soil bare was highly negatively correlated in Egypt
and Jordan (table B1).

4.2. Performance of SEDI in detecting response of
the sGPPR dataset to dry and wet climatic
condition

This section aimed to prove that the ED-based index
is more capable to capture the sGPPR variability and
closelylinked to drought than commonly used indices
based on variables other than ED. Herein, we assessed
the performance of SEDI against SPEI in detecting
drought effects on terrestrial carbon productivity,
using four state-of-the-art GPP dataset.

At the regional scale, we assessed the sensitivity of
sGPPR data to the evolution of drought for each index
separately. Figure 4 indicates the spatial distribution
of correlation values between the four sGPPR data-
sets and the SEDI from 1982 to 2016. The correlation
values between sGPPR and the SEDI in the study area
were 0.5, 0.41, 0.3, and 0.2 for the FluxCom, VPM,
GIMMS and GLASS models, respectively. In contrast,
the correlations between the SPEI and sGPPR were
lower with the values of 0.35, 0.23, 0.15, 0.16 for
the same models respectively. The spatial distribution
patterns of correlations between the SEDI and sGPPR
were similar between the SPEI and sGPPR, but higher
in the first pattern, which indicates that SEDI can
detect stronger response from terrestrial processes,
specifically the northern part. The strongest signific-
ant positive correlations were presented in the central
portion of Turkey, north Iraq, and the western part
of Iran and some portions of northern Iran, which
reached more than 0.7 (p < 0.05) for the FluxCom and
VPM models against the SEDI.

4.3. Extreme drought-induced GPP anomaly
As presented in figure A1, the ME’s terrestrial ecosys-
tems have experienced drought events, as presented



10P Publishing

Environ. Res. Lett. 17 (2022) 014051

K Alsafadi et al

FluxCom

GLASS

GIMMS

VPM

Correlation
| [ I I I

-1 -07 -05 -03 0 03 05 07 1

a
8

FluxCom B GLASS
1 y m—SEDI (Avg.=020)

o
S

s SEDI (AvgF 0.5)
m— SPEI( Avgk 0.35) LC

w—SPEI( AVg = 0.16) [ 1

a2 @
3 &

Frequency (grid point)

N
S
L

GIMMS = VPM
m—SEDI ( Avgf 030) J w— SED| { Aug.= 0.41)

@
-1

m—SPEI (Avgk015) |

s SPEI ( Ay =023)

-]
&

Y
-3

Frequency (grid point}

N
S

-0.8-06-04-0200 0.2 04 06 08 08-06-04-0200 02 04 06 08
Correlation Correlation

=]

Figure 4. Spatial correlation between the four
state-of-the-art sGPPR dataset and standardized drought
indices (SPEI and SEDI) from 1982 to 2016 for FluxCom,
GLASS and GIMMS and from 2000 to 2016 for VPM. The
charts below indicate to the spatial frequency of the
correlations at the grid points scale. Note: we used
December values of the SPEI-12 timescale spanning
19822016 based on the SPEI base v2.6 products (Begueria
etal 2010, 2014, Vicente-Serrano et al 2010b) which are
available within the Global SPEI portal at 0.5° arc degree
spatial resolution (https://spei.csic.es/database.html).

by SEDI droughts, for the studied period. These
have extensively hit terrestrial ecosystems from 1989
to 1990 and 2008 and 2012. The 1989 and 2008
GLASS-GPP anomalies showed high losses in GPP
(figure A2). They were somewhat correlated with the
annual SEDI in the same years, resulting in a clear
reduction in annual GPP, specifically in the Fertile
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Figure 5. Extreme drought-induced GPP anomaly (%) in
the ME for 1989 and 2008.

Crescent in Iraq and Syria, by 20%-60%, and higher
than that in some parts. The GPP accounted for a high
decline of >60% during the 2008 extreme drought
(peak of drought) in the north of Iraq, the northeast
of Syria, and southwest of Iran (figure 5).

The strongest reductions in annual GPP during
2008 extreme drought were presented for the GLASS
and VPM models for the study area. They constituded
20% and more than 60% in some parts, while the
GIMMS and FLUXCOM models-based GPP negat-
ive anomalies during the drought stress were lower
than that of other GPP data and had low spatial vari-
ability. The anomalies in annual GPP from 2009 to
2012 might have resulted from a notable decrease
in the annual SEDI at the 2008 extreme drought
event (figures Al and A2). After that, the moder-
ate and slight drought from 2009 to 2012 resulted in
persistent stress to vegetation, as observed via negat-
ive anomaly values of the GPP. Ultimately, this led to
a long delay in restoring the ecosystem in terms of its
vegetation cover.

5. Discussion

5.1. Sensitivity of GPP data to the evolution of
SEDI

The results of this study have shown that spatial-
temporal variability of SEDI significantly impacted
the GPP models at the pixel scale in the ME. Moreover

6
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the SEDI is more capable of capturing the GPP variab-
ility than the SPEI. Regarding the SEDI structure, the
PET regulates the soil water stress conditions, while
the AET is the amount of water lost from an eco-
system induced by both evaporation and transpira-
tion. This is considered an indicator for the physiolo-
gical activities of vegetation. Regarding agronomic
and eco-physiological terrestrial systems, the ED can
explicitly account not only for the atmospheric evap-
orative demand, and also the water transferred to
the atmosphere from the soil and vegetation which
physiologically explains the vegetation behavior and
activity (Kim and Rhee 2016, Vicente-Serrano et al
2018, Zhang et al 2019¢). The soil moisture deficits
could result in a stomatal closure to avoid additional
water deprivation. If the deficits become high enough
to reduce soil moisture below the wilting point, plants
will be under stress and may die as a result of vascular
damage (Anderegg et al 2015). Therefore, the SEDI
helps detect agricultural drought events in areas that
have a strong land-atmosphere interaction and has
a proven high performance in vegetation—drought
interactions (Zhang et al 2019¢).

5.2. Responses of vegetation activity to SEDI

The GPP for the ecosystem in the ME at annual scale
showed a moderate correlation with the SEDI during
the studied period. However, cropland and grassland
were more sensitive to the droughts than other veget-
ation ecosystem types, these results consistent with
previous studies (Pei et al 2013, Xiaobin et al 2014,
Sun et al 2016). The maximum correlation for grass
and croplands’ GPP against the SEDI was in Iraq, Iran
and Syria. In a similar context, Huang et al (2016b)
found that the semi-arid ecosystem types have an
essential role in inter-annual NPP variability during
long-term droughts. The highest positive correlations
between yearly NPP and SPEI were recorded in shrub-
covered land, followed by cropland. The results iden-
tified that a slight correlation with the SEDI during
the studied period was detected in the tree-covered
area throughout the northern and northeastern of
the study area. It has been suggested that forests pro-
ductivity may be more resilient to drought events than
other ecosystem types due to deeper forest root sys-
tem compared with grasslands and can access water
from a deeper soil profile (Teuling et al 2010, van den
Hoof and Lambert 2016).

On the other hand, the results indicated that
ED driven-drought events positively impacted the
GPP of irrigated cropland and herbaceous vegeta-
tion aquatic over a large area on both sides of the
Nile river and Egyptian Delta as presented in figure 6.
Under several management practices of irrigation,
it is demonstrated that the variation caused by the
role of vegetation respiration in the terrestrial car-
bon sink. Moreover the higher increment in GPP
may be coupled with the higher rate of respira-
tion to GPP during drought conditions, heat waves,
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Figure 6. The regional mean of sGPPR and SEDI for
different regions (semi-arid ecosystem like north Iraq and
irrigated croplands on both sides of the Nile river and
Egyptian Delta). R? is the determination coefficient.

and increament of temperature in the atmosphere
all these increases the rate of respiration to GPP
(Schwalm et al 2010, Williams et al 2013). Hence, a
slight water deficit under irrigation practices will not
have an effective role in vegetation productivity losses
compared to a high ratio of vegetation respiration.
As presented previously, the vegetation productivity
in semi-arid lands was more negatively affected by
drought than arid and desert land (Zhu et al 2021).
Example is the Western Desert in Egypt, central part
of Iran and the Empty Quarter desert in the KSAs.

5.3. Extreme drought-induced GPP anomaly in the
ME

Overall, extreme drought is a critical driver of
annual and inter-annual variability in continental
and regional terrestrial gross and net primary pro-
ductivity (Ciais et al 2005, Schwalm et al 2012,
Liu et al 2014). This research indicated that the ME
drought spells and heat waves in 1989 and 2008
over northern and northeastern reduced the carbon
cycle, with strong anomalies at regional scale (0.3 and
0.12 PgC yr™!), i.e. a reduction by 20% and 9% of
GPP respectively. Notably, the 1989 and 2008 GPP
anomalies have been coupled with high evaporation
deficits, as presented by the SEDI, and were somewhat
correlated with the annual SEDI in the same years,
resulting in a clear reduction in the annual GPP spe-
cifically in the Fertile Crescent in Iraq and Syria by
40%-60% in 2008. The GPP accounted for a high
decline of >60% during the 2008 extreme drought
(peak of drought) in the north of Iraq, the north-
east of Syria, and the southwest of Iran, as presented
in the GLASS and VPM models (figure 6). In gen-
eral, the GPP is highly sensitive to drought conditions
than ecosystem respiration, whereas it is less sensit-
ive than NPP (Schwalm et al 2010). For instance, over
the Southern United States, the drought intensifica-
tion is resulted in a significant decrease in NPP, with
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the highest decrease of 40% occurring during drought
of 2000-2004 (Chen et al 2012). The incompatibil-
ity between the response of GPP and NPP is due to
the role of vegetation respiration in the terrestrial car-
bon sink. Vegetation respiration is less impacted by
drought spells than photosynthesis (Schwalm et al
2010), and the higher reduction in NPP may be
coupled with the higher rate of respiration to GPP
during drought conditions, the land and atmosphere
increase in temperature increases the rate of respira-
tion to GPP (Green et al 2019).

5.4. Uncertainties in analysis and finding

In our study, comparisons between GPP models and
SEDI suggested that all of the GPP datasets signific-
antly responded to the dry-wet climatic condition of
the SEDI at an annual time-scale. Even though the
patterns of the correlations between SEDI and vari-
ous GPP dataset were similar, but the proportions
of responses were extremely varied among the GPP
data, could be caused by uncertainties in the GPP data
rather than in the SEDI data. It is still hard to simulate
GPP at global and regional levels. This limitation in
GPP data may cause uncertain interpretations when
evaluating the impacts of drought stress on GPP using
afew or different GPP products (Liu e al 2019). Many
remotely sensed GPP datasets are presently avail-
able and have been extensively utilized at different
spatial-temporal scales (Zheng et al 2020). However,
either GPP estimates from remote sensing, process-
based models, or machine learning methods should
be carefully used when assessing GPP response to
drought.

The correlations between FLUXCOM-GPP and
the SEDI were higher than that of other GPP data in
the ME. At the same time, the FLUXCOM model-
based GPP negative anomalies during the drought
stress were lower than that of other GPP data and had
low spatial variability. The flux tower observation-
based upscaling data (e.g. the FLUXCOM GPP based
on machine learning) can be regarded as observation-
based GPP estimates and are often used to estim-
ate GPP from remotely sensed data and process-
based models. While, it suffers from an insufficient
representation of several mechanism processes such
as nitrogen deposition and CO, fertilization, and
may imperfectly capture GPP inter-annual variabil-
ity (Jung et al 2019). On the other hand, Schewe et al
(2019) indicated that current terrestrial ecosystem
models underestimate the effects of droughts on GPP
due to the insufficient fitting of both human manage-
ment and natural processes in the algorithms. Stocker
et al (2019) found that satellite-based GPP estimates
underestimate the effects of drought on GPP due to a
lack of consideration of soil moisture impact on light
use efficiency. As presented in our study, some invest-
igations demonstrated that the VPM (Xiao et al 2004)
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and modified VPM (Zhang et al 2015a) generally
outperform the other remotely sensed GPP estimates
in capturing the effect of drought on GPP, due to
including the impact of soil moisture on photosyn-
thesis in the models (Zhang et al 2019, Pei et al 2020).
As such, the combination of GPP dataset from
diverse and independent models can facilitate more
reliable conclusions when evaluating the responses of
GPP to drought at global and regional levels (Wu et al
2018, Sun et al 2021). Additionally, other mechanism
processes such as CO2 fertilization and nutrients (i.e.
phosphorus and nitrogen) on photosynthesis in the
models should also be included (Du et al 2020).

6. Concluding remarks

Based on a remote sensing-driven GPP dataset, flux
tower observation-based upscaling GPP, and com-
ponents of terrestrial evapotranspiration (AET and
PET) driven by GLEAM dataset estimates, we com-
prehensively examined the impacts of the SEDI on
long term GPP variability over the ME for the period
of 1982-2017. Focusing on dynamic changes of eco-
systems’ GPP, coupling analysis between the sGPPR
and SEDI effect, and spatial heterogeneity. An eco-
system’s ability to tolerate droughts was considered,
along with whether various ecosystem types have
varying responses. The main findings are as follows:

(a) The ecosystem productivity is sensitive to
drought in semi-arid ecosystems, and the GPP’s
croplands and grasslands recorded the highest
positive significant correlations and were more
sensitive to the SEDI variability. Moreover, the
ecosystem’s GPP recorded a high decline during
the 2008 extreme drought in the north of Iraq
and the northeast of Syria.

(b) The proposed study reported that the ED-based
index is more capable to capture the GPP vari-
ability and closely linked to drought than com-
monly used indices based on variables other than
ED (e.g. SPEI).

(¢) The VPM and FLUXCOM-based GPP correlated
against the SEDI more closely than that of other
GPP data in the ME. At the same time, the VPM
and GLASS models-based GPP negative anom-
alies during the drought stress were higher than
that of other GPP data.

However, there are some limitations to this study.
First, the SEDI was implemented as the standard-
ized difference between AET and PET at annual scale.
More attention is required on the impacts of the SEDI
and drought intensity and duration at the monthly
and seasonal scale to explain this variance clearly.
Secondly, vegetation productivity and ecosystem GPP
could be indirectly and directly impacted by drought
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events. Besides drought-related solar radiation and
precipitation, temperature, and wind speed factors,
also other artificial variables, such as land use type
could caused critical changes in vegetation GPP. This
study did not investigate the effect of several crop
types due to the lack of detailed information about
the distribution of crop types spatially, which may
drive to inconsistencies and uncertainty in the results.
Thirdly, it is still difficult to precisely reproduce GPP.
This limitation in GPP data may cause uncertain res-
ults when assessing the drought impacts on GPP via
a few or divergent GPP parameters. The uncertainties
in GPP by the selected models mainly produce from
forcing parameters, structures of the models which
simulating the stress of drought on photosynthesis
and parameterization.

Further improvement on the ability of the mod-
els to estimate GPP under numerous conditions is
required. This will improve the confidence in the
assessment of drought hazards and their impacts
on terrestrial carbon productivity. More attention is
required on the impacts of drought intensity and dur-
ation at the monthly and seasonal scales to explain
this variance clearly. Therefore, further studies should
analyse the effects of droughts, besides anthropo-
genic activities and fire events, on terrestrial ecosys-
tems. Those studies can consider ED-based drought
indices to understand the potential dynamics affect-
ing the spatial-temporal changes of the GPP in the
ME. Moreover, they can consider the importance of
detecting the direct concurrent and lagged impacts of
droughts.
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Figure Al. Spatial-temporal evolution of annual SEDI over the ME between 1982 and 2017.
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Figure A2. Spatial-temporal evolution of the annual GLASS-based sGPPR series over the ME between 1982 and 2017 at 0.05° arc
degree spatial resolution.
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Table B1. Percentage of area (%) from each land cover separately which has a significance correlation between the GLASS-based sGPPR
and annual SEDI series from 1982 to 2017 at p < 0.05 (i.e. 95% confidence interval).

Area
covered Shrubs Sparse Aquatic
Countray  *Sigarea  Croplands  Grassland  tree area vegetation vegetation Bare land
BHR Sig () — — — — — — 0
Sig (<) — — — — — — 0
EGY Sig (+) 1.15 — — 12.7 5.7 0.98 3.2
Sig (-) 27.15 — — 0 4 2.5 7.1
IRN Sig (4+) 143 17.6 19.8 15.75 16.1 10.4 8.1
Sig (-) 1.12 0.7 0.5 0.8 1.25 2.25 1.3
IRQ Sig(+)  29.6 30.6 32.4 28.3 20 7.4 10.9
Sig (=) 0.5 0.2 0 0.44 0.43 5.4 0.5
ISR Sig (+)  40.8 30.4 — 15 14.3 — 3.3
Sig (=) 0 0 — 0 0 — 4.6
JOR Sig(+) 16,5 0 — — 4.1 — 43
Sig (-) 0 0 — — 3.4 — 7
KSA Sig(+) 47 — — 0 1.3 — 15.2
Sig (-) 9.2 — — 15.2 30.9 — 2.9
KWT Sig () — — — — 0 — 7.4
Sig (-) — — — — 0 — 0.3
LBN Sig(+) 15 14.3 9.4 23.8 10 — 22.5
Sig (=) 0 0 0 0 0 — 0
OMN Sig (+) 0 — — 3.6 3.1 — 7.5
Sig (=) 0 — — 2.4 6.25 — 2.1
PSE Sig(+) 0 7.4 — — 325 — 16.6
Sig (-) 0 — — 0 — 1.9
QAT Sig (+) 111 — — — — — 7
Sig (-) — — — — — — 1
SYR Sig () 34 25 6.4 12.5 16.7 — 13.2
Sig (=) 0.4 0 0 0 0.3 — —
TUR Sig(+) 305 21.2 21.3 31.8 18.8 29.4 17.8
Sig (-) 0.5 0.9 1.1 1 0.6 0 1.2
UAE Sig (+) 10.7 — — — — — 20.1
Sig (-) 0 — — — — — 2
YEM Sig(+) 0 0 — — — — 7.8
Sig (-) 41.8 0 — — — — 6.1

Notes: (*) significance values (Sig+ and Sig—)
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