An evapotranspiration deficit-based drought index to detect variability of terrestrial carbon productivity in the Middle East

To cite this article: Karam Alsafadi et al 2022 Environ. Res. Lett. 17 014051

View the article online for updates and enhancements.

You may also like

- Nitrogen deposition shows no consistent negative nor positive effect on the response of forest productivity to drought across European FLUXNET forest sites
 S C van der Gnaaf, T A J Janssen, J W Erisman et al.

- Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies
 Akiko Ito, Kazuya Nishina, Christopher P O Remy et al.

- Below-surface water mediates the response of African forests to reduced rainfall
 Nima Madani, John S Kimball, Nicholas C Parazoo et al.
An evapotranspiration deficit-based drought index to detect variability of terrestrial carbon productivity in the Middle East

Karam Alsaafari, Nadhir Al-Ansari, Ali Mokhtar, Safwan Mohammed, Ahmed Elbeltagi and Shuuben Bi

1 School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, People’s Republic of China
2 Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
3 Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
4 State of Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, People’s Republic of China
5 Institute of Land Use, Technology and Regional Development, University of Debrecen, Debrecen 4032, Hungary
6 Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
7 College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310088, People’s Republic of China
8 Department of Civil Engineering, College of Engineering, University of Diwali, Diwali Governorate 32201, Iraq
* Author to whom any correspondence should be addressed.
E-mail: bishuuben@163.com
Keywords: gross primary productivity, SEDI, ecosystem dynamics, terrestrial carbon, GLEAM dataset

Abstract
The primary driver of the land carbon sink is gross primary productivity (GPP), the gross absorption of carbon dioxide (CO₂) by plant photosynthesis, which currently accounts for about one-quarter of anthropogenic CO₂ emissions per year. This study aimed to detect the variability of carbon productivity using the standardized evapotranspiration deficit index (SEDI). Sixteen countries in the Middle East (ME) were selected to investigate drought. To this end, the yearly GPP dataset for the study area, spanning the 35 years (1982–2017) was used. Additionally, the Global Land Evaporation Amsterdam Model (GLEAM, version 3.3a), which estimates the various components of terrestrial evapotranspiration (annual actual and potential evaporation), was used for the same period. The main findings indicated that productivity in croplands and grasslands was more sensitive to the SEDI in Syria, Iraq, and Turkey by 34%, 30.5%, and 29.6% of cropland area respectively, and 25%, 31.5%, and 30.5% of grass land area. A significant positive correlation against the long-term data of the SEDI was recorded. Notably, the GPP recorded a decline of >60% during the 2008 extreme drought in the north of Iraq and the northeast of Syria, which concentrated within the agrarian ecosystem and reached a total vegetation deficit with 100% negative anomalies. The reductions of the annual GPP and anomalies from 2009 to 2012 might have resulted from the decrease in the annual SEDI at the peak 2008 extreme drought event.
Ultimately, this led to a long delay in restoring the ecosystem in terms of its vegetation cover. Thus, the proposed study reported that the SEDI is more capable of capturing the GPP variability and closely linked to drought than commonly used indices. Therefore, understanding the response of ecosystem productivity to drought can facilitate the simulation of ecosystem changes under climate change projections.

1. Introduction
In the last few decades, humanity has faced many challenges in the environmental and agricultural sectors, such as the need for reductions in carbon dioxide emissions (Jardine 2003), climate change (Saavedra et al 2009, Dai 2011), drought and water scarcity (Mishra and Singh 2011), and food insecurity (Margulis 2013). The concept of drought as a temporal dynamic phenomenon differs from aridity as a spatial dynamic phenomenon, which results from a decrease in precipitation in a specific area and a remarkable
increase in the potential evapotranspiration (PET) rate (Alsafadi et al. 2020, Elbeltagi et al. 2021). The time factor or the length of the drought period is considered one of the most important criteria for determining the severity of drought risk (Mokhtar et al. 2021a). The issue of drought and its spatial consequences have often been the focus of studies carried out in the Middle East (ME) ecosystem (Kaniewski et al. 2012, Hameed et al. 2020). In recent decades, drought has turned into one of the most severe natural disasters for the ME’s ecosystem in the context of global climate change (Leelaveld et al. 2012, Mohammed et al. 2020b). Moreover, drought has significantly affected terrestrial ecosystems, economic, social and political systems in the ME, including food security (Hameed et al. 2020), hydrological processes (Bozkurt and Sen 2013), vegetation growth (Zaitchik et al. 2007, Karakani et al. 2021) and the extinction of many plant species (Belgacem and Louhaichi 2013). Generally, the ME’s ecosystem is classified as a transitional climate pattern, located between a hot–dry and cold–humid climate pattern, which is most exposed to drought events as a result of prolonged water shortages. The ME is a crucial region for comprehension of drought globally (Barlow et al. 2016).

As a result of the close relationship between ecosystem dynamics and available water, a water deficit can be restrictive to ecosystem growth (Yi et al. 2010, Mokhtar et al. 2021b). Thus, ecosystem conditions can reflect drought risk; for instance, both precipitation and temperature changes significantly affect the ecosystem (Mokhtar et al. 2020, Mohammed et al. 2020a). Precipitation plays a vital role in controlling the productivity of the grass; increasing precipitation results in increasing grass productivity while, in contrast, the grass lands are critically impacted by temperature (Li et al. 2015, Lei et al. 2015). Indeed, biogeochemical carbon cycles of the ecosystem reflect the atmosphere conditions and serve as an indicator of climate change (Piao et al. 2005, Xu et al. 2009). Drought is one of the main factors impacting ecosystems’ distribution patterns and types (Vicente-Serrano et al. 2012, 2015). Several studies have documented that ecological programs can reduce ecosystem degradation and enhance vegetation coverage, although these programs did not work well (Deng et al. 2014, Wu et al. 2014, Zhang et al. 2015b). Further, afforestation of semiarid areas results in ecosystem degradation due to the impact of drought and human activity on ecosystem change (Cao 2008, Huang et al. 2016a).

Consequently, vegetation conditions are positively and negatively correlated with precipitation in dry and wet regions, respectively (Prasad and Staggenborg 2008, Jiao et al. 2019a). In previous studies, experimental methods, satellite observations, and carbon process models have documented that large-scale droughts reduce the vegetation activity, and severe temperatures lead to negative terrestrial carbon productivity even under mild drought conditions (Zhao et al. 2010, 2013, Stocker et al. 2019). Droughts impact ecosystem productivity by restricting vegetation growth stages, including a wide range of tree mortality and ecosystem fire, and can influence the global CO2 balance (Chen et al. 2013, Reichstein et al. 2013, Yu et al. 2017, Jiao et al. 2021).

Understanding the response of terrestrial ecosystems to drought remains challenging because of the biochemical and physiological activities of vegetation growth and cultivated crops, especially their CO2 assimilation and ecosystem carbon dioxide fluxes that are constrained by varying degrees of drought at various timescales (Sun et al. 2021).

Several evapotranspiration-based indices were established to quantify drought and its impacts on terrestrial ecosystems, including Palmer drought severity index (Palmer 1965), Reconnaissance drought index (RDI) (Tsakiris and Vangelis 2005), the standardized precipitation evapotranspiration index (SPEI) (Vicente-Serrano et al. 2010a) and the evaporative drought index (EDI) (Yao et al. 2010), the drought severity index (Mu et al. 2013). Also, there are dozens of drought indices, such as the standardized precipitation index (McKee et al. 1993), vegetation growth anomaly-based drought indices e.g. vegetation condition index (Liu and Kogan 1996) and vegetation health indices (Kogan 2002), soil moisture deficit index (Narasimhan and Srinivasan 2005), scaled drought condition index (Rhee et al. 2010), the process-based accumulated drought index (Zhang et al. 2017a), integrated drought index (IDI) (Jiao et al. 2019b), and microwave IDI (Zhang et al. 2019a).

In light of the findings of previous studies, the AET and PET-based drought indices significantly highlight the intensity of water deficits and the influence on vegetation activities more than the individually based indices (Zhang et al. 2019c). As such, Kim and Rhee (2016) suggested a standardized evapotranspiration deficit index (SEDI), and concluded that the SEDI helps detect agricultural drought events with strong land–atmosphere interactions. Zhang et al. (2019c) applied the SEDI to investigate the impact of water stress on vegetation growth under global warming and documented the strong interaction between vegetation and the evapotranspiration deficit (ED). Consequently, the SEDI is based on the evaporative stress perspective, which is more directly linked to vegetation water stress than other drought indices (Zhang et al. 2019c). The PET reflects the atmospheric potential to receive water or evaporative demand. The PET regulates soil water stress conditions, while the actual evapotranspiration (AET) is the amount of water lost from an ecosystem induced by evaporation and transpiration. From eco-physiological and agricultural perspectives, the ED is the difference between the AET and the PET (Vicente-Serrano et al. 2018). Under climatic stress, a high ED results in stomatal
closure, which decreases the photosynthetic process, carbohydrate accumulation, and terrestrial ecosystem production (NPP and GPP) (Stephenson 1998, Emanuel 2003).

Based on the above, we used a correlation analysis between the standardized GPP residual series and SEDI to investigate the drought variability and ecosystem response. This research is focused mainly on 35 years for both GPP and SEDI over the ME. Consequently, this research aims to improve the understanding of the correlation between evaporation deficit-based drought and ecosystem vegetation and detect the response of national-level GPP to drought in different land-cover types. As such, the principal aims of this research are: (a) quantify the spatial-temporal variability of GPP dynamics in response to drought at the pixel scale and for each land cover type separately, (b) analysis of ecosystem resilience to drought events of several types, and assessment of an ecosystem’s capability to tolerate drought event disturbances, and (c) prove that the ED-based index is more capable of capturing the standardized GPP residuals (sGPPR) variability and closely linked to drought than commonly used indices based on variables other than ED.

2. Materials and methodology

2.1. Study area
The ME is located in the western part of Asia and northeast of Africa, between 12° 06’ N and 42° 07’ N latitudes, and 24° 41’ E and 63° 17’ E longitudes (Figure 1). The ME officially includes 16 countries: the Arabian Peninsula region includes Bahrain, Kuwait, the Sultanate of Oman, Qatar, Saudi Arabia, the United Arab Emirate, and Yemen, and the Levant includes Jordan, Lebanon, Palestine, and Syria. Included as well are Egypt, Iran, Iraq, Israel, and Turkey. The ME covers an area of 6928 thousand km², inhabited by about 357.23 million people according to World Bank’s 2019 statistics (World Bank 2020) and according to the FAO Global Land Cover SHARE database (FAO 2014). The ME’s land cover type is mostly bare soil lands, at 61%. However, the whole area of Turkey, northeastern Iraq, western Iran, western and Northwestern Syria, most parts of Lebanon, and around the Nile River in Egypt are dominated by grasslands, shrublands, and croplands. In contrast, forests cover northern and southern Turkey and the north and western parts of Iran (see Figure 2).

2.2. Ecosystem gross primary productivity (GPP) data
To quantify the sensitivity of GPP against SEDI, we evaluated four state-of-the-art GPP datasets based on Earth observation data as following:

(a) The yearly GLASS-GPP (the Global Land Surface Satellite) dataset, specifically the latest version spanning 35 years between 1982 and 2017 (Zheng et al 2020). The GLASS-GPP dataset was derived from the Eddy Covariance—Light Use Efficiency model (Yuan et al 2007). The latest version of the yearly GLASS-GPP dataset is available globally at 0.05° arc degree spatial resolution within the GLASS products (www.glass.umd.edu).
(b) The ensemble monthly FLUXCOM-GPP, specifically the FLUXCOM-RS + METEO spanning 34 years between 1982 and 2016 (Tramontana et al 2016, Jung et al 2020). The ensemble FLUXCOM-GPP dataset was derived from satellite data and daily meteorological data. This version of the monthly FLUXCOM-GPP dataset is available globally at 0.5° arc degree spatial resolution within the FLUXCOM portal (www.fluxcom.org).
(c) The yearly GIMMS-GPP (Global Inventory Modeling and Mapping Studies), specifically the
updated version (version 4) that extend from 1982–2016 (Smith et al. 2016). The monthly GIMMS–GPP dataset is available globally at 0.5° arc degree spatial resolution.

(d) The yearly VPM–GPP data (the vegetation photosynthesis model) that extend from 2000 to 2016 (Zhang et al. 2017b). The yearly VPM–GPP dataset is available globally at 0.5° arc degree spatial resolution (https://doi.org/10.6084/m9.figshare.c.3789814).

2.3. AET and PET
To quantify the SEDI, the Global Land Evaporation Amsterdam Model (GLEAM, version 3.3a) dataset, spanning 35 years (1982–2017), was used (Miralles et al. 2011, Martens et al. 2017). The GLEAM dataset gives estimates based on remotely sensed observations to set algorithms that predict the various components of terrestrial evapotranspiration separately. They include transpiration, open water evaporation, bare soil evaporation, sublimation, and interception loss. We used annual AET and PET estimates (mm yr⁻¹) to calculate the SEDI. The GLEAM dataset is currently available within the GLEAM portal at weekly, monthly, and annual temporal and spatial resolution and at 0.25° arc degree spatial resolution for 1980–2018 (NETCDF files) (www.gleam.eu).

3. Methodology

3.1. The SEDI calculation
For all gridded points of more than 28,000 pixels for 1982–2017 at the annual scale, the SEDI was calculated (Alsafadi and Bi 2021). In this study, the SEDI was implemented as the standardized difference between AET and PET. This is similar to Zhang et al. (2019c), as shown:

\[
\text{SEDI} = \frac{\text{ED} - \text{ED}_{\text{avg}}}{\text{ED}_{\text{std}}}, \text{ED} = \text{AET} - \text{PET},
\]

where ED is the AET and PET difference (mm yr⁻¹) and ED_{std} and ED_{avg} denote the standard deviation and multi-years mean, respectively. This can highlight dry and wet conditions by tracking local water storage changes within the soil, compared with direct evaporation.

3.2. Standardized GPP residual series (sGPPR)
Normally, the contributions of human activities to variations in vegetation are removed to detect climate elements impacts independently, calculated by the residuals of the vegetation trend models by computing the de-trended analysis. Since the GPP series is affected by many variables besides climate factors, often, the annual GPP series has a positive trend specifically over agricultural systems and forests. The sGPPR series was obtained from the mean μ and standard deviation value σ of deference between the GPP value and its de-trended value for each year separately, from 1982 to 2017 at the pixel scale (Alsafadi and Bi 2021). The sGPPR was calculated as:

\[
s\text{GPPR} = \frac{\bar{y}_t^{(r)} - \mu}{\sigma}
\]

\[
y_t^{(r)} = y_t^{(o)} - y_t^{(r)}
\]

where \(y_t^{(o)}\) is the observed GPP and \(y_t^{(r)}\) is the value of the de-trended GPP in a separate year. The GPP, de-trended during the period of 1982–2018, was calculated for each pixel (more than 23,000 series) using a simple linear regression (SLR) analysis, by using the ordinary least square method, OLS, which was calculated as:

\[
\bar{y}_t = \beta_0 + x_t \beta
\]

Herein, we assumed the temporal evolution \(x_t\) from 1982 to 2017 is an independent variable, and the GPP series data a dependent variable \(y_t\), to fit the SLR or the value of the de-trended GPP in a separate year

\[
\beta = \frac{n \sum_{i=1}^{n} x_i \bar{y}_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} \bar{y}_i^2}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right)^2}
\]

\[
\bar{y}_t = \bar{y}_t^0 - \beta x_t
\]

where \(n\) is the length of the studied period, while \(\beta\) is the slope ratio or annual change of GPP (g m⁻² yr⁻¹) acquired by the ordinary least square method. \(\beta > 0\) indicates that the GPPs tended to decrease over the studied years, and vice versa. The sGPPR dataset is only available in Zenodo repository (Alsafadi and Bi 2021).

Pearson’s correlation coefficient \((r)\) was used to assess the temporal consistency of the observed GPP and SEDI across the time series.

4. Results

4.1. Assessment of SEDI impacts on GLASS-based sGPPR across terrestrial biomass
In order to quantify the sensitivity of GPP to the SEDI in different land-cover types, the yearly GLASS-GPP at 0.05° arc degree spatial resolution was used, since it has sufficient spatial resolution unlike that of the other products.

Based on the ecosystem map analysis, we further evaluated the impact of the SEDI on ecosystem productivity from 1982 to 2017. The correlation between the GLASS-based sGPPR and annual SEDI for the ME (figure 2) and each ecosystem type is shown in figure 3. The strongest significant positive correlation was presented in the central portion of the study area, especially in the north of Iraq and central area of Turkey, as well as some portions of northern Iran.
which reached more than 0.5 \((p < 0.05)\). Based on table B1, the significant positive correlation areas of crops, grass, tree covered area and shrubs area in Iraq covered 29.6\%, 30.6\%, 32.4\%, and 28.3\% of the total area for each cover type, respectively.

The highest significant positive correlation was recorded in the crops ecosystem at 34\% of its total area in Syria. The spatial correlation between the GLASS-sGPPR and annual SEDI for each ecosystem type is shown in figure 3. The croplands and grasslands' productivity had the highest positive correlation with the SEDI for several of the study area's countries, especially Iraq, Israel, Syria, and Turkey. Hence the cropland and grassland were more sensitive to SEDI variability.

In contrast, a significantly negative correlation between the sGPPR and annual SEDI was observed over Israel and Jordan for bare land, and the sGPPR of crops vegetation and the annual SEDI was negatively correlated over Egypt and Yemen; 27.2\% of this area in Egypt had a significant negative correlation (figure 2). Table B1 and figure 3 demonstrate that the tree-covered area had a significantly positive correlation for the studied countries, especially in Iraq and Turkey at 32.4\% and 21.3\% of the total area.

Moreover, Turkey, Iraq, and Lebanon achieved the highest percentage of shrubs covered area, with a significantly positive correlation of 31.8\%, 28.3\%, and 23.8\%, respectively. In contrast, the KSA recorded the highest values of significantly negative correlations for the same ecosystem type of 15\% (table B1 and figure 3). For sGPPR of the sparse vegetation land in Palestine, Iraq, Turkey, Syria and Iran generated significantly positive correlations with the SEDI of 32.5\%, 20\%, 18.8\%, 16.7\%, and 16.1\%, respectively. In contrast, the KSA recorded a significantly negative correlation of 30.9\% compared to other countries. The aquatic vegetation versus the SEDI produced a significantly positive correlation of 29.4\% and 10.4\% in Turkey and Iran, respectively, while Iraq reached 5.4\% for a highly negative correlation. The sGPPR in the soil bare ecosystem was highly positively correlated with the SEDI in Lebanon and in the UAE, at 22.5\% and 20.1\%. On the other hand, 7.1\% and 7\% of the soil bare was highly negatively correlated in Egypt and Jordan (table B1).

4.2. Performance of SEDI in detecting response of the sGPPR dataset to dry and wet climatic condition

This section aimed to prove that the ED-based index is more capable to capture the sGPPR variability and closely linked to drought than commonly used indices based on variables other than ED. Herein, we assessed the performance of SEDI against SPEI in detecting drought effects on terrestrial carbon productivity, using four state-of-the-art GPP dataset.

At the regional scale, we assessed the sensitivity of sGPPR data to the evolution of drought for each index separately. Figure 4 indicates the spatial distribution of correlation values between the four sGPPR datasets and the SEDI from 1982 to 2016. The correlation values between sGPPR and the SEDI in the study area were 0.5, 0.41, 0.3, and 0.2 for the FluxCom, VPM, GIMMS and GLASS models, respectively. In contrast, the correlations between the SPEI and sGPPR were lower with the values of 0.35, 0.23, 0.15, 0.16 for the same models respectively. The spatial distribution patterns of correlations between the SEDI and sGPPR were similar between the SPEI and sGPPR, but higher in the first pattern, which indicates that SEDI can detect stronger response from terrestrial processes, specifically the northern part. The strongest significant positive correlations were presented in the central portion of Turkey, north Iraq, and the western part of Iran and some portions of northern Iran, which reached more than 0.7 \((p < 0.05)\) for the FluxCom and VPM models against the SEDI.

4.3. Extreme drought-induced GPP anomaly

As presented in figure A1, the ME's terrestrial ecosystems have experienced drought events, as presented
by SEDI droughts, for the studied period. These have extensively hit terrestrial ecosystems from 1989 to 1990 and 2008 and 2012. The 1989 and 2008 GLASS-GPP anomalies showed high losses in GPP (figure A2). They were somewhat correlated with the annual SEDI in the same years, resulting in a clear reduction in annual GPP, specifically in the Fertile Crescent in Iraq and Syria, by 20%–60%, and higher than that in some parts. The GPP accounted for a high decline of >60% during the 2008 extreme drought (peak of drought) in the north of Iraq, the northeast of Syria, and southwest of Iran (figure 5).

The strongest reductions in annual GPP during 2008 extreme drought were presented for the GLASS and VPM models for the study area. They constituted 20% and more than 60% in some parts, while the GIMMS and FLUXCOM models-based GPP negative anomalies during the drought stress were lower than that of other GPP data and had low spatial variability. The anomalies in annual GPP from 2009 to 2012 might have resulted from a notable decrease in the annual SEDI at the 2008 extreme drought event (figures A1 and A2). After that, the moderate and slight drought from 2009 to 2012 resulted in persistent stress to vegetation, as observed via negative anomaly values of the GPP. Ultimately, this led to a long delay in restoring the ecosystem in terms of its vegetation cover.

5. Discussion

5.1. Sensitivity of GPP data to the evolution of SEDI

The results of this study have shown that spatial-temporal variability of SEDI significantly impacted the GPP models at the pixel scale in the ME. Moreover
the SEDI is more capable of capturing the GPP variability than the SPEI. Regarding the SEDI structure, the PET regulates the soil water stress conditions, while the AET is the amount of water lost from an ecosystem induced by both evaporation and transpiration. This is considered an indicator for the physiological activities of vegetation. Regarding agronomic and eco-physiological terrestrial systems, the ED can explicitly account not only for the atmospheric evaporative demand, and also the water transferred to the atmosphere from the soil and vegetation which physiologically explains the vegetation behavior and activity (Kim and Rhee 2016, Vicente-Serrano et al 2018, Zhang et al 2019c). The soil moisture deficits could result in a stomatal closure to avoid additional water deprivation. If the deficits become high enough to reduce soil moisture below the wilting point, plants will be under stress and may die as a result of vascular damage (Anderegg et al 2015). Therefore, the SEDI helps detect agricultural drought events in areas that have a strong land-atmosphere interaction and has a proven high performance in vegetation–drought interactions (Zhang et al 2019c).

5.2 Responses of vegetation activity to SEDI

The GPP for the ecosystem in the ME at annual scale showed a moderate correlation with the SEDI during the studied period. However, cropland and grassland were more sensitive to the droughts than other vegetation ecosystem types, these results consistent with previous studies (Pei et al 2013, Xiaoabin et al 2014, Sun et al 2016). The maximum correlation for grass and croplands’ GPP against the SEDI was in Iraq, Iran and Syria. In a similar context, Huang et al (2016b) found that the semi-arid ecosystem types have an essential role in inter-annual NPP variability during long-term droughts. The highest positive correlations between yearly NPP and SPEI were recorded in shrub-covered land, followed by cropland. The results identified that a slight correlation with the SEDI during the studied period was detected in the tree-covered area throughout the northern and northeastern of the study area. It has been suggested that forests productivity may be more resilient to drought events than other ecosystem types due to deeper forest root system compared with grasslands and can access water from a deeper soil profile (Teuling et al 2010, van den Hoof and Lambert 2016).

On the other hand, the results indicated that ED driven-drought events positively impacted the GPP of irrigated cropland and herbaceous vegetation aquatic over a large area on both sides of the Nile river and Egyptian Delta as presented in figure 6. Under several management practices of irrigation, it is demonstrated that the variation caused by the role of vegetation respiration in the terrestrial carbon sink. Moreover, the higher increment in GPP may be coupled with the higher rate of respiration to GPP during drought conditions, heat waves, and increment of temperature in the atmosphere all these increases the rate of respiration to GPP (Schwalm et al 2010, Williams et al 2013). Hence, a slight water deficit under irrigation practices will not have an effective role in vegetation productivity losses compared to a high ratio of vegetation respiration. As presented previously, the vegetation productivity in semi-arid lands was more negatively affected by drought than arid and desert land (Zhu et al 2021). Example is the Western Desert in Egypt, central part of Iran and the Empty Quarter desert in the KSAs.

5.3 Extreme drought-induced GPP anomaly in the ME

Overall, extreme drought is a critical driver of annual and inter-annual variability in continental and regional terrestrial gross and net primary productivity (Ciais et al 2005, Schwalm et al 2012, Liu et al 2014). This research indicated that the ME drought spells and heat waves in 1989 and 2008 over northern and northeastern reduced the carbon cycle, with strong anomalies at regional scale (0.3 and 0.12 PgC yr⁻¹), i.e. a reduction by 20% and 9% of GPP respectively. Notably, the 1989 and 2008 GPP anomalies have been coupled with high evaporation deficits, as presented by the SEDI, and were somewhat correlated with the annual SEDI in the same years, resulting in a clear reduction in the annual GPP specifically in the Fertile Crescent in Iraq and Syria by 40%–60% in 2008. The GPP accounted for a high decline of >60% during the 2008 extreme drought (peak of drought) in the north of Iraq, the northeast of Syria, and the southwest of Iran, as presented in the GLASS and VPM models (figure 6). In general, the GPP is highly sensitive to drought conditions than ecosystem respiration, whereas it is less sensitive than NPP (Schwalm et al 2010). For instance, over the Southern United States, the drought intensification is resulted in a significant decrease in NPP, with
the highest decrease of 40% occurring during drought of 2000–2004 (Chen et al. 2012). The incompatibility between the response of GPP and NPP is due to the role of vegetation respiration in the terrestrial carbon sink. Vegetation respiration is less impacted by drought spells than photosynthesis (Schwalm et al. 2010), and the higher reduction in NPP may be coupled with the higher rate of respiration to GPP during drought conditions, the land and atmosphere increase in temperature increases the rate of respiration to GPP (Green et al. 2019).

5.4. Uncertainties in analysis and finding

In our study, comparisons between GPP models and SEDI suggested that all of the GPP datasets significantly responded to the dry-wet climatic condition of the SEDI at an annual time-scale. Even though the patterns of the correlations between SEDI and various GPP dataset were similar, but the proportions of responses were extremely varied among the GPP data, could be caused by uncertainties in the GPP data rather than in the SEDI data. It is still hard to simulate GPP at global and regional levels. This limitation in GPP data may cause uncertain interpretations when evaluating the impacts of drought stress on GPP using a few or different GPP products (Liu et al. 2019). Many remotely sensed GPP datasets are presently available and have been extensively utilized at different spatial-temporal scales (Zheng et al. 2020). However, either GPP estimates from remote sensing, process-based models, or machine learning methods should be carefully used when assessing GPP response to drought.

The correlations between FLUXCOM-GPP and the SEDI were higher than that of other GPP data in the ME. At the same time, the FLUXCOM model-based GPP negative anomalies during the drought stress were lower than that of other GPP data and had low spatial variability. The flux tower observation-based upsampling data (e.g. the FLUXCOM GPP based on machine learning) can be regarded as observation-based GPP estimates and are often used to estimate GPP from remotely sensed data and process-based models. While, it suffers from an insufficient representation of several mechanism processes such as nitrogen deposition and CO₂ fertilization, and may imperfectly capture GPP inter-annual variability (Jung et al. 2019). On the other hand, Schewe et al. (2019) indicated that current terrestrial ecosystem models underestimate the effects of droughts on GPP due to the insufficient fitting of both human management and natural processes in the algorithms. Stocker et al. (2019) found that satellite-based GPP estimates underestimate the effects of drought on GPP due to a lack of consideration of soil moisture impact on light use efficiency. As presented in our study, some investigations demonstrated that the VPM (Xiao et al. 2004) and modified VPM (Zhang et al. 2015a) generally outperform the other remotely sensed GPP estimates in capturing the effect of drought on GPP, due to including the impact of soil moisture on photosynthesis in the models (Zhang et al. 2019, Pei et al. 2020).

As such, the combination of GPP dataset from diverse and independent models can facilitate more reliable conclusions when evaluating the responses of GPP to drought at global and regional levels (Wu et al. 2018, Sun et al. 2021). Additionally, other mechanism processes such as CO₂ fertilization and nutrients (i.e. phosphorus and nitrogen) on photosynthesis in the models should also be included (Du et al. 2020).

6. Concluding remarks

Based on a remote sensing-driven GPP dataset, flux tower observation-based upsampling GPP, and components of terrestrial evapotranspiration (AET and PET) driven by GLEAM dataset estimates, we comprehensively examined the impacts of the SEDI on long term GPP variability over the ME for the period of 1982–2017. Focusing on dynamic changes of ecosystems’ GPP, coupling analysis between the gGPPR and SEDI effect, and spatial heterogeneity. An ecosystem’s ability to tolerate droughts was considered, along with whether various ecosystem types have varying responses. The main findings are as follows:

(a) The ecosystem productivity is sensitive to drought in semi-arid ecosystems, and the GPP’s croplands and grasslands recorded the highest positive significant correlations and were more sensitive to the SEDI variability. Moreover, the ecosystem’s GPP recorded a high decline during the 2008 extreme drought in the north of Iraq and the northeast of Syria.

(b) The proposed study reported that the ED-based index is more capable to capture the GPP variability and closely linked to drought than commonly used indices based on variables other than ED (e.g. SPEI).

(c) The VPM and FLUXCOM-based GPP correlated against the SEDI more closely than that of other GPP data in the ME. At the same time, the VPM and GLASS models-based GPP negative anomalies during the drought stress were higher than that of other GPP data.

However, there are some limitations to this study. First, the SEDI was implemented as the standardized difference between AET and PET at annual scale. More attention is required on the impacts of the SEDI and drought intensity and duration at the monthly and seasonal scale to explain this variance clearly. Secondly, vegetation productivity and ecosystem GPP could be indirectly and directly impacted by drought.
events. Besides drought-related solar radiation and precipitation, temperature, and wind speed factors, also other artificial variables, such as land use type could caused critical changes in vegetation GPP. This study did not investigate the effect of several crop types due to the lack of detailed information about the distribution of crop types spatially, which may drive to inconsistencies and uncertainty in the results. Thirdly, it is still difficult to precisely reproduce GPP. This limitation in GPP data may cause uncertain results when assessing the drought impacts on GPP via a few or divergent GPP parameters. The uncertainties in GPP by the selected models mainly produce from forcing parameters, structures of the models which simulating the stress of drought on photosynthesis and parameterization.

Further improvement on the ability of the models to estimate GPP under numerous conditions is required. This will improve the confidence in the assessment of drought hazards and their impacts on terrestrial carbon productivity. More attention is required on the impacts of drought intensity and duration at the monthly and seasonal scales to explain this variance clearly. Therefore, further studies should analyse the effects of droughts, besides anthropogenic activities and fire events, on terrestrial ecosystems. Those studies can consider ED-based drought indices to understand the potential dynamics affecting the spatial-temporal changes of the GPP in the ME. Moreover, they can consider the importance of detecting the direct concurrent and lagged impacts of droughts.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: http://doi.org/10.5281/zenodo.4540832.

Acknowledgments

The authors grateful for Nanjing University of Information Science and Technology and Lulea University of Technology for unlimited support. Authors would like to thank the FluxCom, GIMMS, VPM and GLASS and GLEAM teams for datasets sharing, we appreciate the provision of GPP dataset and components of terrestrial evapotranspiration products by them. This work was supported by the national natural science foundation of china (under Grants 41971340 and 4127141)

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, K A; methodology, K A; software, K A; formal analysis, K A; investigation, K A; data curation, K A and A M; writing—original draft preparation, K A, A M and A E; writing—review and editing, S M, and S S S; visualization, K A; supervision, N A and S B. All authors have read and agreed to the published version of the manuscript.
Appendix

Figure A1. Spatial-temporal evolution of annual SEDI over the ME between 1982 and 2017.
Figure A2. Spatial-temporal evolution of the annual GLASS-based sGPPR series over the ME between 1982 and 2017 at 0.05° arc degree spatial resolution.
Table B1. Percentage of area (%) from each land cover separately which has a significance correlation between the GLASS-based sGPPR and annual SEDI series from 1982 to 2017 at $p < 0.05$ (i.e. 95% confidence interval).

<table>
<thead>
<tr>
<th>Country</th>
<th>*Sig area</th>
<th>Croplands</th>
<th>Grassland</th>
<th>Area covered tree</th>
<th>Shrub area</th>
<th>Sparse vegetation</th>
<th>Aquatic vegetation</th>
<th>Bare land</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHR</td>
<td>Sig (+)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>EGY</td>
<td>Sig (+)</td>
<td>1.15</td>
<td>—</td>
<td>—</td>
<td>12.7</td>
<td>5.7</td>
<td>0.98</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>27.15</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>4</td>
<td>2.5</td>
<td>7.1</td>
</tr>
<tr>
<td>IRN</td>
<td>Sig (+)</td>
<td>14.3</td>
<td>17.6</td>
<td>19.8</td>
<td>15.75</td>
<td>16.1</td>
<td>10.4</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>1.12</td>
<td>0.7</td>
<td>0.5</td>
<td>0.8</td>
<td>1.25</td>
<td>2.25</td>
<td>1.3</td>
</tr>
<tr>
<td>IRQ</td>
<td>Sig (+)</td>
<td>29.6</td>
<td>30.6</td>
<td>32.4</td>
<td>28.3</td>
<td>20</td>
<td>7.4</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0.5</td>
<td>0.2</td>
<td>0</td>
<td>0.44</td>
<td>0.43</td>
<td>5.4</td>
<td>0.5</td>
</tr>
<tr>
<td>ISR</td>
<td>Sig (+)</td>
<td>40.8</td>
<td>30.4</td>
<td>—</td>
<td>15</td>
<td>14.3</td>
<td>—</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>4.6</td>
</tr>
<tr>
<td>JOR</td>
<td>Sig (+)</td>
<td>16.5</td>
<td>—</td>
<td>—</td>
<td>4.1</td>
<td>—</td>
<td>—</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>3.4</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td>KSA</td>
<td>Sig (+)</td>
<td>4.7</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>1.3</td>
<td>—</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>9.2</td>
<td>—</td>
<td>—</td>
<td>15.2</td>
<td>30.9</td>
<td>—</td>
<td>2.9</td>
</tr>
<tr>
<td>KWT</td>
<td>Sig (+)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
</tr>
<tr>
<td>LBN</td>
<td>Sig (+)</td>
<td>15</td>
<td>14.3</td>
<td>9.4</td>
<td>23.8</td>
<td>10</td>
<td>—</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>OMN</td>
<td>Sig (+)</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>3.6</td>
<td>3.1</td>
<td>—</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>2.4</td>
<td>6.25</td>
<td>—</td>
<td>2.1</td>
</tr>
<tr>
<td>PSE</td>
<td>Sig (+)</td>
<td>0</td>
<td>7.4</td>
<td>—</td>
<td>—</td>
<td>32.5</td>
<td>—</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>1.9</td>
</tr>
<tr>
<td>QAT</td>
<td>Sig (+)</td>
<td>11.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>SYR</td>
<td>Sig (+)</td>
<td>34</td>
<td>25</td>
<td>6.4</td>
<td>12.5</td>
<td>16.7</td>
<td>—</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
<td>0.3</td>
<td>—</td>
<td>—</td>
<td>1.2</td>
</tr>
<tr>
<td>TUR</td>
<td>Sig (+)</td>
<td>30.5</td>
<td>21.2</td>
<td>21.3</td>
<td>31.8</td>
<td>18.8</td>
<td>29.4</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0.5</td>
<td>0.9</td>
<td>1.1</td>
<td>1</td>
<td>0.6</td>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>UAE</td>
<td>Sig (+)</td>
<td>10.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>YEM</td>
<td>Sig (+)</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td>Sig (-)</td>
<td>41.8</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Notes: (*) significance values (Sig+ and Sig−)

REFERENCES

Afsafi K and Bi S 2021 Standardized dataset of the ecosystem’s gross primary productivity (sGPP) and the evapotranspiration deficit index (SEDI) for 1982–2017 over the Middle East [Data set] [Version 1] (Zenodo) (https://doi.org/10.5281/zenodo.4540852)
Beguérat S, Vicente-Serrano S M, Reig F and Latorre B 2014 Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring Int. J. Climatol. 34 3001–23
Belgacem A O and Louhatchi M 2013 The vulnerability of native rangeland plant species to global climate change in the West Asia and North African regions Clim. Change 119 651–63
Bozkurt D and Sen O I 2013 Climate change impacts in the Euphrates–Tigris basin based on different model and scenario simulations J. Hydrol. 480 169–61
Cao S 2008 Why large-scale afforestation efforts in China have failed to solve the desertification problem Environ. Sci. Technol. 42 1826–31

Orcid ids

Karam Afsafi @ https://orcid.org/0000-0001-8925-7918
Safwan Mohammed @ https://orcid.org/0000-0003-2311-6789

Du E et al 2020 Global patterns of terrestrial nitrogen and phosphorus limitation Nat. Geosci. 13 221–26

FAO 2014 Global land cover (GLC–SHARE) beta release 1.0 database, land and water division, John Latham, Renato Cummari, Ilaria Rosati and Mario Bloise

Hamed M, Ahmad Alipour A and Moradkhani H 2020 Drought and food security in the middle east: an analytical framework Agric. For. Meteorol. 281 107816

Margulis M E 2013 The regime complex for food security: implications for the global hunger challenge Glob. Gov. 19 53–67

Mckee T B, Doesken N J and Kleist J 1993 The relationship of drought frequency and duration to time scales Proc. 8th Conf. on Applied Climatology vol 17 (January) pp 179–83

Mishra A K and Singh V P 2011 Drought modeling—a review J. Hydroal. 40B 157–75

Mohktar A, He H, Alsafadi K, Li Y, Zhao H, Keo S and He Q 2020 Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China Environ. Earth Sci. 79 1–21

Narasimhan B and Srinivasan R 2003 Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring Agric. For. Meteorol. 133 69–88

Pei E, Li X, Liu X and Lao C 2013 Assessing the impacts of droughts on net primary productivity in China J. Environ. Manage. 114 362–71

Pei Y, Dong J, Zhang Y, Yang J, Zhang Y, Jiang C and Xiao X 2020 Performance of four state-of-the-art GPP products (VPM, MOD17, BESS and PML) for grasslands in drought years Ecol. Inf. 56 101052
Savina C and Bud W 2009 Climate change and environmental planning: working to build community resilience and adaptive capacity in Washington State, USA Habitiat Int. 33 246–52
Schewe J et al 2019 State-of-the-art global models underestimate climate impacts from extreme events Nat. Commun. 10 10053
Stephenson N 1998 Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales J. Biogeogr. 25 855–70
Teuling A J, Seneviratne S L, Stöckli R, Reichstein M, Muos H, Ciais P and Wohlfahrt G 2010 Contrasting response of European forest and grassland energy exchange to heatwaves Nat Geosci. 3 722–7
Tsaknis G and Vangelis H 2006 Establishing a drought index incorporating evapotranspiration Evol. Water 9 3–11
van den Hoof C and Lambert F 2016 Mitigation of drought negative effect on ecosystem productivity by vegetation mixing J. Geophys. Res. Biogeosci. 121 2667–83
Xiaobin G, Huanfeng S, Wenzhao G and Liangpei Z 2014 Analysis of impacts of drought on GPP in Yunnan province based on MODIS products 2014 the Third Int. Conf. on Agro-Geosystems (IEEE) (August) pp 1–4
an analysis of vegetation carbon sequestration in the karst area of northwest Guangxi, China Environ. Earth Sci. 74 5307–17
Zhang X, Chen N, Li J, Chen Z and Niyogi D 2017a Multi-sensor integrated framework and index for agricultural drought monitoring Remote Sens. Environ. 188 141–63
Zhao J, Hartmann H, Trumbole S, Ziegler W and Zhang Y 2013 High temperature causes negative whole-plant carbon balance under mild drought New Phytol. 200 330–9