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Abstract 

 

Around 1% of the population worldwide suffer from epilepsy, a condition which is 

characterized by recurring seizures. The development of reliable biomarkers for both prediction 

and targeted treatment of seizures is critical, as they can pave the way towards personalized 

therapy in epilepsy. In addition, sensitive biomarkers can be utilized for the detection of 

epilepsy in its early stages and allow for early treatment intervention. Various types of 

biomarkers have been studied in relation to epilepsy, with blood markers emerging as major 

candidates. Blood biomarkers offer the benefit of being cost and time efficient, in addition to 

being less invasive to sample in contrast to cerebrospinal fluid markers. Importantly, they can 

enhance patient diagnosis and prognosis when supplemented with other diagnostic methods, 

such as EEG. In this pilot study, five blood biomarkers of brain injury are studied in epilepsy, 

post-stroke epilepsy and single seizure patients. The aim is to analyze whether S100B, NSE, 

GFAP, NfL and tau are promising indicators of epilepsy after a first seizure in adults. The 

results present S100B as the most promising biomarker, with potential to predict early epilepsy.  
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Figure 1: Classification of Seizure Types based on the International League Against 
Epilepsy, 2017. Diagram created using BioRender (biorender.com). 

 

1. Introduction 

 

Epilepsy is a chronic brain condition characterized by abnormal hyperexcitation of neurons 

which cause recurring seizures. It is one of the most common neurological disorders, affecting 

over fifty million individuals worldwide (Anwar et al. 2020). As per the International League 

Against Epilepsy (ILAE), a diagnosis of epilepsy can be made when one of the following 

conditions is met: (1) a minimum of two unprovoked seizures that manifest at least 24 hours 

apart; (2) one unprovoked (or reflex) seizure and a probability of further seizures similar to the 

general recurrence risk after two unprovoked seizures, occurring over the next 10 years; (3) a 

diagnosis of an epilepsy syndrome (Fisher et al. 2014). The ILAE classifies epilepsy into four 

types: focal, generalized, combined generalized and focal, as well as unknown (Figure 1). Focal 

epilepsy represents repetitive seizures that are restricted to one hemisphere of the brain, while 

generalized epilepsy affects both hemispheres. Combined generalized and focal describes the 

condition in which both generalized and focal seizures are experienced, and these generally 

occur in infants and children with severe epilepsy. Unknown epilepsy is the term given to 

patients who have an unknown onset type or cannot determine seizure type due to inadequate 

clinical information (Sarmast et al. 2020, Scheffer et al. 2017). While recurring seizures is the 

primary symptom pertaining to epilepsy, patients often suffer from other cognitive and 

psychiatric problems in conjunction with seizures. A single seizure alone can already cause 

behavioral and cognitive abnormalities due to alterations in neural development. Despite the 

increase in public awareness and understanding, persons with epilepsy continue to be subjected 

to social stigmatization (Anwar et al. 2020).  
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1.1. Pathophysiology 

Epileptogenesis describes the process of a normal brain undergoing structural and functional 

changes which leads to an increased susceptibility to seizure activity. The exact mechanisms 

that define the pathogenesis of epilepsy remain unclear, with evidence suggesting the cause is 

multifactorial (Kobylarek et al. 2019a). Imbalances between excitation and inhibition are 

believed to play an essential role in epileptogenesis, with studies often implicating two 

neurotransmitters: γ-aminobutyric acid (GABA) and glutamate. Neuronal hyperexcitability in 

epilepsy has been attributed to an increase in glutamate excitatory transmission in concordance 

with reduced GABA mediated inhibition (Anwar et al. 2020). Apart from the glutamatergic 

system, several hypotheses have also proposed disruption to the blood-brain barrier (BBB), 

neurodegeneration, oxidative stress and epigenetic changes as contributing factors to 

epileptogenesis (Kobylarek et al. 2019a). A vast number of studies have also associated 

neuroinflammation with epilepsy and suggest that certain inflammatory molecules play a hand 

in seizure generation (Vezzani et al. 2011).  

 

1.2. Diagnosis and Treatment 

Epileptic seizures are diagnosed based on patient history, neurologic examination, genetic 

testing, and findings from various imaging techniques. These techniques include 

electroencephalography (EEG), magnetic resonance imaging (MRI) and computed 

tomography (CT) scan. EEG is used for the detection of abnormal electrical activity such as 

focal spikes or diffuse bilateral spike waves. Since the occurrence of epileptiform abnormalities 

differ between states of consciousness, an EEG is conducted during wakefulness, drowsiness 

and while asleep (Stafstrom & Carmant 2015). When making clinical evaluations, CT and MRI 

are often used in junction with EEG. MRI is usually favored over CT due to its enhanced 

sensitivity, with structural MRI used as the primary neuroimaging tool when identifying 

epileptogenic lesions (Stafstrom & Carmant 2015, Anwar et al. 2020). Treatment of epilepsy 

commonly begins with monotherapy of an anti-epileptic drug (AED) which is chosen in 

accordance with seizure type. Once patients have been seizure free for at least two to five years, 

discontinuation of medication can be considered. Patients with drug-resistant epilepsy (DRE) 

who are not able to control their seizures with AEDs are referred to alternative treatments. 

These include surgical removal of seizure focus, brain neurostimulator implants and ketogenic 

diets (Liu G et al. 2017).  
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1.3. Biomarkers in Epilepsy 

According to the WHO, biomarkers are defined as “almost any measurement reflecting an 

interaction between a biological system and a potential hazard, which may be chemical, 

physical or biological” (World Health Organization & International Programme on Chemical 

Safety 1993). Biomarkers are therefore indicators of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention as per the National 

Institutes of Health (NIH) (Walker et al. 2016). The identification of valid biomarkers in 

epilepsy is highly desirable for predicting the onset of an epilepsy condition, monitoring 

disease progression and determining pharmacoresistance (Engel et al. 2013). 

 

Potential biomarkers of epilepsy range between imaging, electrophysical measurements, 

changes in gene expression and metabolites in blood or tissues (Engel et al. 2013). The two 

primary categories that these biomarkers fall under are diagnostic and prognostic markers. 

Diagnostic markers are helpful for the detection or confirmation of an epileptic condition, while 

prognostic markers allow for predictions to be made regarding severity of epilepsy, speed of 

disease progression and the development of comorbidities (Pitkänen et al. 2016). It is also 

crucial to uncover the time frame in which a biomarker is expressed in connection to seizures, 

as well as the variations in its expression level before, during and after seizures. The sampling 

method is another significant factor to consider; markers sampled from cerebrospinal fluid 

(CSF) are rich in information but have the disadvantage of being highly invasive, restricting 

their usage both clinically and in clinical trials (Engel et al. 2013).  

 

Individualizing and optimizing treatment therapies is one of the main goals in biomarker 

development. As stated by Pitkänen et al., there is difficulty in designing suitable clinical trials 

in epilepsy largely due to the heterogeneity of epileptogenesis and recovery mechanisms of the 

brain after injury, which is found in even the most well-defined patient groups with epilepsy. 

The discovery of reliable biomarkers can therefore facilitate the stratification of individuals 

based on their predicted risk of epileptogenesis (Pitkänen et al. 2016).  
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1.4. Thesis Objective 

The aim of this thesis was to investigate the profile of brain injury biomarkers in a pilot study 

on patients with new-onset seizures using machine learning. Serum and plasma samples were 

collected from 73 patients after experiencing a first seizure, and were followed until a diagnosis 

of epilepsy, post-stroke epilepsy or a single seizure could be made. The biomarkers in this 

study comprise of S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), 

glial fibrillary acidic protein (GFAP), neurofilament light (NfL) and microtubule-associated 

protein tau. The absolute values of each marker have been quantified in a previous publication 

by our research group (Eriksson et al. 2021). The objective in this project was to assess 

differences in the profile of these biomarkers between patient groups, and whether they are 

indicative of epilepsy after a first seizure.  
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2. Literature Review: Blood-based Markers in Epilepsy 

 

2.1. Introduction 

The search for blood-based markers in epilepsy has generated a multitude of studies that 

implicate certain biochemical molecules as potential diagnostic and prognostic biomarkers. 

Despite these numerous findings, there are currently no validated biomarkers for epilepsy 

(Simani et al. 2020, Walker et al. 2016). Blood biomarkers are especially beneficial as they are 

both cost and time efficient, and less invasive to sample than CSF markers. The limited 

specificity of EEG further adds to the demand for these markers. When utilized in conjunction 

with other diagnostic methods, such as EEG, blood markers can provide significant aid in 

determining a patient’s diagnosis and treatment plan. In this review, the most promising blood 

markers of epilepsy are discussed. 

 

2.2. Inflammatory Molecules 

A growing collection of both clinical and experimental data has lent credence to the theory that 

inflammatory molecules form a major component in the development of epileptogenesis.  

Certain cytokines, among other inflammatory molecules, have become implicated after 

epileptic seizures (Vezzani et al. 2011). Local or peripheral injuries to the central nervous 

system lead to the release of inflammatory molecules and initiate a flow of inflammatory 

events. This may subsequently trigger individual seizures further contributing to the ongoing 

process of inflammation and eventually epileptogenesis (Kobylarek et al. 2019a). Further 

studies are required to consolidate this hypothesis, and address uncertainties regarding the role 

of inflammation at different stages of epileptogenesis and to what extent inflammation varies 

between patients and different epilepsy etiologies (Vezzani et al. 2011). 

 

2.2.1. Interleukin-1β (IL-1β) 

IL-1β, a proinflammatory cytokine, is usually found at low levels in the central nervous system 

(CNS). However, under certain conditions - such as active seizure or infection – it is elevated 

in the brain (Kobylarek et al. 2019b). In a mouse model of pediatric brain injury, increased 

levels of both IL-1β and IL-1 receptor were identified after traumatic brain injury (TBI) 

induction. Mice treated with IL-1Ra (the antagonist to the IL-1 receptor) had a decreased 

tendency to develop both seizures and cognitive impairments (Semple et al. 2017). The 

proconvulsive effects of IL-1β were also observed in seizure-induced rats, with exogenously 
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applied IL-1β prolonging seizure activity (Vezzani et al. 1999).  IL-1β and another pro-

inflammatory cytokine - high mobility group box 1 (HMGB1) - were also found to decrease 

the seizure threshold in two focal seizure models in rat cortical brain slices. The study 

suggested that IL-1β and HMGB1 could increase neuronal response to NMDA receptor 

activation, which is what led to a lowered threshold (Chiavegato et al. 2014). 

 

2.2.2. Interleukin-1 receptor antagonist (IL-1Ra) 

IL-1Ra blocks the actions of IL-1β by binding to the IL-1 receptor and therefore exerts an anti-

inflammatory effect. During seizures, IL-1Ra is induced after IL-1β and acts as a prominent 

anticonvulsant (Youn Y et al. 2013). A study on limbic seizures in rodents observed IL-1Ra to 

be elevated after IL-1β, IL-6 and TNF-a reached their peak. They also noted that the molar 

ratio of IL-1Ra to IL-1β was 1:1 in the rodent brain. Conversely, during peripheral 

inflammation, IL-1Ra is found in excess (by 10-100-fold) compared to IL-1β, with IL-1Ra 

expression also occurring simultaneously to IL-1β expression instead of after. This implies that 

the brain may not be as quick and effective at hindering IL-1β compared to the periphery 

(Vezzani et al. 2002).  In neonatal seizures IL-1Ra induction was observed to be unstable as it 

was continuously inactivated, and its concentration dropped significantly within 48-72 hours 

of seizure attack. This was assumed to be a characteristic of neonatal seizures indicating that 

the neonatal period was more susceptible to seizures (Youn Y et al. 2013)(Youn YA et al. 

2012a). 

 

2.2.3. Interleukin-6 (IL-6) 

IL-6 is a key cytokine involved in controlling various immune reactions and responses. IL-6 

levels above baseline are generally found in patients after seizure, but these levels strongly vary 

depending on the magnitude of the seizure (Kobylarek et al. 2019b). Lehtimäki et al. noted that 

IL-6 levels were increased in patient groups with recurrent generalized tonic-clonic seizures 

(GTCS) and single GTCS. However, IL-6 levels were significantly higher in recurrent GTCS 

patients, who experienced stronger epileptic activity (Lehtimäki et al. 2004). Another study 

conducted a meta-analysis on IL-6, and also determined that IL-6 plasma concentration was 

elevated in patients with temporal lobe epilepsy (TLE) and extra-TLE in contrast to control 

subjects (Yu et al. 2012).  
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2.2.4. Tumor necrosis factor alpha (TNF-α) 

TNF-α is a chief player in signaling related to necrosis and apoptosis, via modulation of the 

receptors p55 and p75. Studies present TNF-α as having both anti and pro-convulsive effects; 

one knock-out study on mice associated this contrast with the p55 and p75 receptors. Mice that 

lacked p75 (or both p75 and p55) demonstrated enhanced epileptic activity when injected with 

kainite, while mice deficient in p55 showed a reduction in seizures (Balosso et al. 2005). 

Interestingly, another study suggested that the convulsive effects of TNF-α may be 

concentration dependent. Mice treated with Shigella dysenteriae were administered the pro-

convulsant pentylenetetrazol. At low concentrations, TNF-α exhibited a pro-convulsive effect, 

while a higher concentration exercised an anti-convulsive effect in mice (Yuhas et al. 2003). 

While there are limited clinical findings of the relation between TNF-α and epilepsy in humans, 

research on animal models imply that it may play an important role in seizure development and 

prevention.  

 

2.2.5. Cyclooxygenase 2 (COX-2) 

COX-2 is a membrane-associated protein catalyzing the formation of prostaglandins. COX-2 

is induced rapidly in the brain at elevated levels after seizure and observed to also increase the 

chances of having recurrent seizures (Rojas et al. 2014). The pathway resulting in the synthesis 

of prostaglandin E2 (PGE2) was found to encourage epileptogenesis, as it has excitatory 

effects. A study in membrane-bound PGES-1 knock out mice demonstrated a low production 

of PGE2 which led to enhanced neuronal survival after pentylenetetrazole (PTZ) injection, 

compared to wild type (WT) mice that instead showed a sudden increase in severity of seizures 

(Shimada et al. 2014). Additionally, the activation of only one PGE2 receptor aggravated the 

rapid increase of both IL-1b and IL-6 while downregulating TNF- α and IL-10, implying that 

the balance between pro- and anti-inflammatory molecules is interfered with (Rojas et al. 

2014). 

 

2.2.6. Interleukin-8 (IL-8) 

IL-8 is a chemokine involved in attracting neutrophils in inflammation. In patients with 

refractory epilepsy, IL-8 is significantly increased in the serum and CSF after seizures. This 

includes focal, generalized tonic-clonic, myoclonic, atypical absence and typical absence 

seizures (Li G et al. 2011). In neonatal seizures, IL-8 was reported to increase within 24 hours 

and remained at elevated levels 48-72 hours after seizure onset. If detected within the 72 hour 
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time frame, IL-8 has potential to serve as a biomarker for early detection of brain injury (Youn 

Y et al. 2013). IL-8 concentration may also be connected to both seizure frequency and severity 

in TLE, extra-TLE and idiopathic generalized epilepsy (Wang Y et al. 2015).   

 

2.2.7. Interleukin-10 (IL-10) 

The anti-inflammatory cytokine IL-10 reduces the influx of pro-inflammatory molecules 

during inflammation by deactivation of macrophages. IL-10 was reported as increasing its 

concentration twofold in neonatal seizure patients compared to controls after 24 hours of 

seizure onset. While levels dropped within 72 hours, they still remained significantly more 

elevated in the seizure group implying that IL-10 has a protective role to counteract the 

convulsive effects of pro-inflammatory cytokines (Youn Y et al. 2013, Youn YA et al. 2012b). 

Elevated levels of IL-10 were also implicated in TLE patients, however, patients with 

hippocampal sclerosis (HS) in TLE presented a chronically reduced level of plasma IL-10, 

suggesting that the inflammatory response is lacking when HS is also present. Additionally, 

IL-10 production still faced a decrease in TLE patients when duration and severity of TLE 

seizures was increased. IL-10 can therefore be highlighted as a biomarker for both stratifying 

TLE patients with HS from other epilepsies and act as a marker for epileptogenesis (Basnyat 

et al. 2020).  

 

2.3. Brain Injury Markers 

 
2.3.1. Neurofilament light chain (NfL) 

Neurofilaments are structural proteins involved in neuronal scaffolding and are released into 

the CSF and blood stream as a consequence of neuroaxonal damage (Evers et al. 2020). The 

development of high sensitivity assays has allowed for the reliable detection of neurofilament 

light chain in blood samples, which was previously limited to the CSF (Fyfe 2019). While NfLs 

are recognized as markers of several neurodegenerative diseases, there is a lack of studies 

examining the relevance of serum or plasma NfL in epilepsy (Loeffler et al. 2020). Paediatric 

patients with febrile seizures did not present increased serum NfL in the postictal state, but 

demonstrated a correlation to gender and age (Evers et al. 2020). Since febrile seizures are 

generally considered benign, it could be argued that they may not exert a significant amount of 

neuroaxonal damage to cause pathological increases in NfL (Xixis et al. 2021). Patients with 

post-stroke epilepsy had a significant increase in serum NfL as opposed to patients with a single 
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seizure. Epilepsy patients also presented a slight increase in NfL, but not to a significant level. 

NfL could therefore be implicated as a marker of seizure burden or severe brain injury 

(Eriksson et al. 2021).  

 
2.3.2. Neuron-Specific Enolase (NSE) 

NSE is an isoenzyme of the glycolytic enzyme enolase, localised primarily in neurons and 

peripheral neuroendocrine cells (Isgrò et al. 2015). NSE is considered a highly sensitive marker 

of brain damage after stroke, trauma and cerebral hypoxia, and is often used to assess the degree 

of brain injury (Büttner et al. 1999a). Serum NSE was elevated in critically ill patients with 

seizures, and correlated to seizure frequency – the highest serum levels of NSE were detected 

in status epilepticus patients (Shaik et al. 2019). Patients who experienced a single tonic-clonic 

seizure were also found to have significantly increased serum NSE compared to syncope and 

control groups (Lee et al. 2010). In adults with new-onset epilepsy, there was no observable 

difference between groups (Eriksson et al. 2021). There seems to be some controversy 

regarding serum NSE’s use as a diagnostic marker of epilepsy, as a comparison study between 

persons with epilepsy and psychogenic attacks also did not present any statistically significant 

increases in serum NSE (Willert et al. 2004). The variations in findings seem to be mainly 

related to NSE’s relationship with type or duration of seizure, as reflected by Chang et al. who 

found that while NSE serum levels were not substantially different between TLE and control 

groups, they did find higher serum NSE levels in patients with higher seizure frequency (Chang 

et al. 2012, Büttner et al. 1999b).  

 

2.3.3. Glial Fibrillary Acidic Protein (GFAP) 

The brain specific GFAP is a type III intermediate filament protein, primarily expressed by 

astroglia cells (Simani et al. 2018). Children with new-onset epilepsy, in particular epileptic 

spasms, had significantly higher serum concentrations of GFAP within 24 hours of a seizure 

episode (Zhu M et al. 2018b). Another paediatric study also found circulating levels of GFAP 

to be significantly higher in epilepsy, especially in individuals with generalized and active 

seizures. GFAP was strongly correlated to  the  severity of seizures in the previous six months 

and considered a predictor for active seizures to monitor disease progression and severity 

(Elhady et al. 2021). In adults, serum GFAP was also significantly higher following epilepsy 

than psychogenic attack, however, the findings did not show a correlation to seizure frequency 

or duration (Simani et al. 2018). An added benefit of GFAP is its longer half-life over other 

biomarkers, providing a longer time frame to sample blood after a seizure (Simani et al. 2018).  
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2.3.4. Microtubule-associated Tau Protein (Tau) 

Tau proteins are predominantly expressed in neurons and are involved in axonal transport by 

stabilizing the structure of microtubules (Schraen-Maschke et al. 2008). There is a scarcity in 

information that clarifies the use of serum tau in epilepsy, with most studies focused on CSF 

tau. The findings have also been rather inconsistent, with Palmio et al. observing no statistically 

significant changes in CSF tau in epilepsy while another study implicated CSF tau as a 

biomarker for determining the severity of status epilepticus and prognosis (Palmio et al. 2009, 

Monti et al. 2015). Serum tau in new-onset epilepsy did not display any remarkable changes 

in comparison to controls, implying it may not be a suitable marker in early epilepsy (Eriksson 

et al. 2021). Seizures have also been associated with an accumulation of hyperphosphorylated 

tau in the brain; a study by Tai et al. found hyperphosphorylated tau in patients with refractory 

epilepsy (Tai et al. 2016).  

 

2.3.5. Ubiquitin carboxy-terminal hydrolase L1 (UCHL-1) 

UCHL-1 is a neuron-specific enzyme readily detected in the blood stream in response to 

neuronal death and BBB permeability (Mondello et al. 2012). Considerably higher plasma 

levels of UCHL-1 were detected in individuals with recurrent seizures and a strong correlation 

to age was reported. The study found that plasma UCHL-1 could be detected within 12 hours, 

but not 48 hours, after a seizure making UCHL-1 a prospective marker for determining seizure 

damage early on. Two important features of UCHL-1 are therefore its early detection and long 

half-life in serum (Mondello et al. 2012). Serum UCHL-1 also had a greater concentration in 

epilepsy patients over controls and psychogenic non-epileptic seizure patients, however, did 

not correlate to seizure frequency, type or duration (Asadollahi & Simani 2019). This comes 

in agreement with Yasak et al. who also did not find a correlation to seizure duration (Yasak 

et al. 2020).  

 

2.4. Blood Brain Barrier Dysfunction 

A prominent characteristic of brain injury is the dysfunction of the blood brain barrier (BBB). 

Disturbances to the BBB can occur either by direct insult to the endothelium or by systemic 

factors. Such factors involve the activation of leukocytes as well as the release of inflammatory 

molecules that increase BBB permeability. Alterations observed in the BBB, after events such 

as brain insult or seizure, have therefore been linked to inflammation (Kobylarek et al. 2019b). 
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One study observed that IL-1β and interleukin 1 receptor type 1 (IL-1R1) immunoreactivity 

surrounding blood vessels of microvasculature, were detected in the same areas as serum 

albumin leakage in models of TLE in rats. This leakage can lead to chronic neuronal 

hyperexcitability and result in the entry of adaptive and innate immune cells into the brain, 

further propagating any ongoing inflammation (Ravizza et al. 2008).  

 

2.4.1. Transforming growth factor beta (TGFβ) signaling 

When serum albumin is extravasated into the cerebral cortex microenvironment, it promotes 

the activation of TGFβR, initiating a signaling cascade in astrocytes. Canonical TGFβ signaling 

is triggered when albumin binds to TGFβR2 and eventually leads to dysfunctional astrocytes, 

neuroinflammation, downregulation of GABA-related genes and excitatory synaptogenesis 

(Bar-Klein et al. 2017). Several studies have demonstrated that suppressing TGFβ in albumin 

induced rat brains lowered the probability of developing epileptogenesis (Ivens et al. 2007, 

Cacheaux et al. 2009). The activity of TGFβ1 was found to be both neuroprotective and 

harmful in certain studies; while displaying protective activity in glutamate neurotoxicity and 

ischemic injury, transgenic mice developed seizures when overexpressing TGFβ1. The 

intricacy of the TGFβ pathway in neurological disorders highlights the need to expand on our 

understanding of the pathway and mechanisms connecting TGFβ signaling and seizures 

(Cacheaux et al. 2009).  

 

2.4.2. Metalloproteinase 9 (MMP-9) 

MMPs encompass a large family of zinc-dependent proteinases, involved in the remodelling 

of the extracellular cell matrix. MMP-9 appears to play a critical role in the pathogenesis of 

epilepsy as it has been linked to impaired plasticity of the synapse and mossy fibre sprouting, 

both of which are thought to contribute to the creation of a new epileptic focus. MMP9 is also 

linked to BBB disruption, which reduces the seizure threshold (Konopka et al. 2013). Although 

there is a lack of human studies concerning MMP9 and epilepsy, Meguid et al. showed that 

MTLE patients had marked increases in MMP-9 levels which correlated with seizure severity 

(Meguid et al. 2018). A similar finding was reported in patients with tonic-clonic seizures 

(Cudna et al. 2017). Children with acute encephalopathy following prolonged febrile seizures, 

also exhibited a high serum MMP9 level as well as an increased MMP9/TIMP-1 (tissue 

inhibitor of metalloproteinases 1) ratio implicated in BBB dysfunction (Suenaga et al. 2008). 
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2.4.3. S100 calcium binding protein B (S100B) 

S100B is a calcium-binding protein that is predominantly produced by astrocytes. S100B 

proteins have a role in a variety of physiological activities, including signal control and cell 

cycle progression. Since higher serum levels are frequently associated with brain damage and 

BBB breakdown, S100B has emerged as a valuable marker for these conditions (Liang et al. 

2019). Serum S100B has been implicated as a prognostic biomarker in focal seizure, in 

particular TLE in both adult and pediatric patients (Maiti et al. 2018). Chang et al. also reported 

that pediatric patients with poorer cognitive performance and higher seizure frequency were 

associated with increased levels of S100B (Chang et al. 2012). Upregulated levels of S100B 

were also documented in studies related to intractable epilepsy; Calik et al. found that serum 

S100B was significantly higher in focal epilepsy patients than those with generalized epilepsy 

(Calik et al. 2014, Griffin et al. 1995). It has been suggested that blood levels of S100B are 

linked to age and gender; one study indicated that higher mean age led to reductions in serum 

S100B. Simani et al. also observed a strong connection between elevated serum S100B in 

children but not in adults (Liang et al. 2019, Simani et al. 2020). However, some studies did 

not find a remarkable difference in serum S100B levels and epilepsy, with one study even 

reporting a decrease in serum S100B in adult epilepsy patients compared to controls (Hamed 

et al. 2013, Sarı Doğan et al. 2013). These contradictory findings may be attributed to 

differences in inclusion criteria for age group and ethnicity. 

 

2.5. Oxidative Stress 

The connection between oxidative stress and epilepsy is a recent discovery, with an imbalance 

in free radical production and antioxidant levels thought to be a contributing factor to 

epileptogenesis by oxidative injury (Menon et al. 2012). By increasing neuronal 

hyperexcitability or modifying the structure of certain molecules, such as lipids and proteins, 

reactive oxygen species (ROS) may play a hand in epileptogenesis (Karaaslan & Tüzün 2019). 

Due to the brain’s high rate of oxygen consumption, it is particularly sensitive to excess 

amounts of ROS (Medina-Ceja et al. 2020). A collapse in brain energy production has been 

linked to changes in redox potential and a decreased level of ATP after status epilepticus (SE). 

Other studies have also attributed increased oxidative and nitrosative stress in mitochondria 

after persistent seizures (Aguiar et al. 2012). Oxidative stress is said to have a causal 

relationship with chronic inflammation, as it can activate transcription factors that express 
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inflammatory genes (Hussain et al. 2016). ROS plays a role in pro-inflammatory cytokine 

production and microglial activation during epilepsy (McElroy et al. 2017).  

 

Well studied markers of oxidative stress include the end products of lipid peroxidation, protein 

carbonyl groups and nitric oxide (Menon et al. 2012). A study by Menon et al. evaluated the 

levels of malondialdehyde (MDA), protein carbonylation (PC) and nitric oxide (NO). MDA, 

the end-product of lipid peroxidation, as well as PC were found at elevated levels in patients 

with epilepsy. In comparison, NO did not display any significant difference in levels between 

patient and control groups. NO presents contrasting evidence in its role in epilepsy, as some 

studies found it to be pro-convulsive, while others anti-convulsive (Menon et al. 2012). 

Another study in rats also demonstrated increased levels of lipid peroxidation, as well as nitrite 

formation, in the hippocampus, striatum and frontal cortex after SE (Freitas et al. 2004).  

 

2.5.1. High mobility group box 1 (HMGB1) 

HMGB1 stimulates the release of pro-inflammatory cytokines such as IL-1, IL-6 and TNF-α. 

The production of disulfide HMGB1 has been associated with oxidative stress and 

inflammation; this isoform of HMGB1 is believed to promote epileptogenesis. By binding to 

toll-like receptor (TLR) 4, which is abnormally released through neurons and astrocytes during 

epileptic seizures, disulfide HMGB1 triggers the NF-kB pathway to modulate the release of 

pro-inflammatory cytokines (Karaaslan & Tüzün 2019, Paudel et al. 2019 p. 1). Increased 

levels of HMGB1 were found in epilepsy patients and termed a significant predictor for 

diagnosis of epilepsy in children, alongside IL-1β. Moreover, HMGB1 is believed to hold a 

higher predictor accuracy for seizure frequency than IL-1β (Zhu M et al. 2018a p. 1). In a 

model of mesial temporal lobe epilepsy (MTLE) in rats and children, overexpression of 

HMGB1 and TLR4 was also reported. The study therefore concluded that both HMGB1 and 

TLR4 potentially play significant roles in the pathogenesis of MTLE (Yang et al. 2017).  

 

2.6. microRNA (miRNA) 

Epigenetic profiles have recently implicated miRNAs as potential players in the 

pathophysiology of epilepsy. A substantial amount of altered miRNAs have been identified via 

molecular profiling in the hippocampus of epileptic animal models and human tissues (Cava et 

al. 2018). These include miRNA-23a, -132, and -146a, as well as the p53 regulated miRNAs: 
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miRNA-34a, -21, 29a and -132 (Dixit et al. 2016). These miRNAs have been indicated in 

neuroinflammation, oxidative stress and apoptosis, as outlined in this review.  

 

2.6.1. miRNA in Neuroinflammation 

The expression patterns of TNF-α and miRNA-155 were investigated and found to be 

significantly elevated in an immature rat model of SE and in children with MTLE. The result 

implies a direct relationship between TNF-α and miRNA-155 as both have an analogous 

expression pattern in all stages of MTLE progression, thus targeting the TNF-α /miRNA-155 

axis may act as a potential therapeutic strategy for MTLE (Ashhab et al. 2013). In a rat model 

of TLE and in human TLE, miRNA-146a was upregulated and is believed to mitigate 

inflammation by regulating NF-kB, IL-1 and interferon alpha (INF-a) expression after an 

epileptic event (Wang J & Zhao 2021). Upregulation of miRNA-146a has also been observed 

to increase seizure susceptibility by increasing levels of IL-1β in chronic TLE causing the 

downregulation of complement factor H (CFH) (He F et al. 2016)(Li T-R et al. 2018). Li et al. 

state that regulating the miRNA-146a complement factor H-IL-1β loop circuit could be 

presented as a possible approach for TLE treatment (Li T-R et al. 2018). Furthermore,  

miRNA-132 expression was also found at increased levels in the hippocampus of patients with 

TLE, downregulating pro-epileptogenic factors such as IL-1β and COX-2 in human primary 

astrocytes (Korotkov et al. 2020).  

 

2.6.2. miRNA in Oxidative Stress 

Oxidative stress and miRNA play an interlinked role in various processes related to 

neurological diseases. The expression levels of miRNAs are strongly influenced by oxidative 

stress, with miRNAs also controlling genes involved in oxidative stress response (Wang J & 

Zhao 2021). In a kainic acid (KA) induced TLE mouse model, miRNA-23a was upregulated 

after SE in the hippocampus, followed by oxidative damage. Inhibition of miRNA-23a 

improved memory impairment in TLE mice and lowered hippocampal oxidative stress (Zhu X 

et al. 2019). In addition, miRNA-129-5p has been shown to inhibit the progression of 

autoimmune encephalomyelitis (AE)-related epilepsy in a rat model by suppression of HMGB1 

and the TLR4/NF-kB signalling pathway. When miRNA-129-5p was inhibited, the increase in 

HMGB1 expression led to increased neuronal injury as the TLR4/NF-kB pathway was 

activated (Liu et al. 2017).  
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2.6.3. miRNA in Apoptosis 

Recurring seizures are a cause of neuronal apoptosis, with declining cell numbers facilitating 

the reorganization of synapses between neurons; this leads to the formation of abnormal 

synaptic loops (Wang J & Zhao 2021). miRNA-421 plays a part in cell proliferation by 

targeting MYD88 thus downregulating the TLR/MYD88 pathway involved in cell apoptosis. 

A mouse model of epilepsy reported that an overexpression of miRNA-421 led to a decline in 

apoptosis rate, implicating miRNA-421 as a target for treatment in epilepsy (Wen et al. 2018). 

Various studies have reviewed miRNA-34a’s involvement in epilepsy, and determined it is a 

seizure regulated miRNA involved in p-53 dependent apoptosis (Sano et al. 2012). Increased 

levels of pro-apoptotic miRNA-34a were detected in a rat model in the days after SE induction 

as well as two months after TLE in another rat model. Using a miRNA-34a antagomir, the 

activity of miRNA-34a was hindered, subsequently blocking the expression of activated 

caspase-3 protein. This was believed to contribute to an increase in neuronal survival and 

reduction in apoptosis (Hu et al. 2012). miRNA-21 demonstrated the opposite effect in a rat 

model; namely promoting apoptosis by enhancing expression of caspase-3 and other pro-

apoptotic proteins like caspase-9 and Bax, as well as the p53 pathway. Moreover, miRNA-21 

plays a hand in upregulating various pro-inflammatory factors including IL-1b, IL-6 and TNF-

α (Haiqiong Lv, Zhichao Zhou 2020 p. 21).  

 

2.7. Conclusion 

Blood biomarkers present themselves as useful, non-invasive tools for diagnosis and prognosis 

of various epilepsy conditions. The most studied markers were summarized in this review, and 

mounting evidence has demonstrated their potential as biomarkers of epilepsy as well as 

seizure burden. Future studies will need to shift focus on categorizing these biomarkers under 

epilepsy type, as not all biomarkers are applicable for all epileptic conditions. Marker levels 

should also be studied at different time intervals and the time frame in which they can be 

observed at elevated levels. Further research should aim to establish a panel of biomarkers 

specific to epilepsy condition which could eventually facilitate the development of 

personalized therapy and tailor treatment to a patient’s individual biomarker profile (Engel et 

al. 2013). 
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3. Methodology 

 

The dataset used in this project originates from a pilot study on the biomarker values of S100B, 

NSE, GFAP, NfL and tau in adult patients with new-onset seizures. Machine learning methods 

were applied on the dataset to investigate whether differences between patient groups could be 

found, and which of the five biomarkers have potential as markers of epilepsy. The methods 

incorporated in this study include a classification analysis, adjusting class imbalance in the 

dataset, feature importance, principal component analysis and constructing a logistic regression 

model that integrates Bayesian inference. Statistical analysis was also conducted at the end. 

 

3.1. Background 

 
3.1.1. Classification and Overview of Machine Learning Algorithms 

A classification analysis is the process of identifying and dividing data into various categories. 

A binary classification involves separating input data into two classes: a positive and a negative 

class. Several algorithms – also known as ‘classifiers’ – exist to make predictions on the 

likelihood of input data falling under one of the two classes (Netoff 2019). In this project, four 

different classifiers were implemented on the dataset and evaluated based on their ability to 

separate patients with epilepsy and post-stroke epilepsy (PSE) (class I) from patients with 

single seizures (class II). The classifiers comprise of random forest, extreme gradient boosting, 

support vector machine and multi-layer perceptron. The dataset is separated into two sets: a 

training set and a test set. The classifier models undergo supervised learning on the training set 

where the algorithm is trained on what the desired outputs are for each input. The models are 

then blinded to the training set and, based on what they learn during training, are evaluated on 

the test set.  

 

To measure the classifiers’ ability of differentiating between the classes, area under curve 

(AUC) of receiver characteristic operator (ROC) and the F1-score were used as evaluation 

metrics. ROC represents the trade-off between sensitivity and specificity while AUC 

summarizes the ROC curve and reveals the degree of separation a classifier achieved (Netoff 

2019). The F1-score is also a measure of accuracy and is generated by calculating the mean of 

precision and recall (Kulkarni et al. 2020). Although ROC AUC is considered a critical 
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measure of model performance, the F1-score overcomes problems associated with class 

imbalances (Netoff 2019).  

 

3.1.1.1. Random Forest 

Random forest (RF) is a supervised machine learning model based on the decision tree 

algorithm. A decision tree is similar to a flow chart and is composed of nodes that symbolize a 

certain characteristic and branches that represent the range of possible outcomes. RF combines 

the outcomes of multiple decision trees, thereby outperforming decision trees in accuracy and 

avoids overfitting the data (Ali et al. 2012). Jointly referred to as bagging, RF employs 

bootstrapping and aggregation when training decision trees (Misra & Li 2020). Bootstrapping 

ensures a low variance across the whole forest by random sampling of data points, and the 

predictions generated by each tree are then aggregated. RF demonstrates good generalization 

and derives its strength from building an ensemble of “weak learners” (single decision trees) 

to create one “strong learner” (Will Koehrsen 2018, Shrivastava et al. 2020).  

 

3.1.1.2. Extreme Gradient Boosting (XGBoost) 

The XGBoost algorithm is based on the gradient boosting machine (GBM) which is an 

ensemble-based model that iteratively combines single decision trees. Unlike random forest 

which grows trees in parallel, XGBoost cultivates trees sequentially. New models are 

successively fitted based on the information from the previous model to establish a better 

estimate of the response variable. This allows for each new tree to learn from the mistake made 

by the previous tree (Natekin & Knoll 2013). 

 

3.1.1.3. Support Vector Machine 

The support vector machine (SVM) is also commonly applied in classification tasks and fits a 

line, or “ hyperplane”, which acts as a decision boundary to separate the data points into two 

groups (Fei 2020). The data points closest to the hyperplane are termed 'support vectors' and 

are used in the search for an optimal hyperplane (Gudivada et al. 2016, Rohith Gandhi 2018). 

A perfect SVM analysis would produce two non-overlapping groups, however, as data is often 

noisy and target classes usually have some over-lapping data points, true separation is not 

always attainable. To allow for some misclassification, a cost parameter is used to generate a 

soft margin (i.e., less defined boundary between classes) to create a more accurate model, at 

the cost of lower generalization (Wikberg et al. 2011). 
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3.1.1.4. Multi-layer Perceptron 

The multi-layer perceptron (MLP) is based on the artificial neural network (ANN) algorithm, 

which is a non-linear, deep learning model built on the structure of biological neural networks. 

ANNs are comprised of a set of nodes – termed artificial neurons – which are organized in 

layers (Wikberg et al. 2011). The network setup consists of an input layer, one (or more) hidden 

layers and an output layer. Artificial neurons are connected to one another and hold an 

associated weight and threshold. A neuron becomes active once its output is above a certain 

threshold, allowing a signal to be passed along to the next layer (Choi et al. 2020). During 

model training, ANNs undergo backpropagation which involves fine-tuning the weights of the 

ANN based on the error rate of each artificial neuron. The output of the model is compared to 

the expected output and the error propagated back through the network, updating the weights 

as it passes each layer (Lillicrap et al. 2020, Lin et al. 2015 p.).  

 

3.1.2. SMOTE and SMOTE-Tomek 

When datasets have an imbalanced class distribution (there are more data points for one class 

than the other) over-sampling or under-sampling techniques can be used to adjust the 

distribution. The dataset used in this project had a larger number of patients with epilepsy and 

PSE (majority class) than single seizures (minority class) creating a class imbalance. Synthetic 

minority over-sampling technique (SMOTE) creates synthetic samples using information 

available in the minority class. SMOTE therefore not only increases the size of the minority 

class, but also the variety of data points (Blagus & Lusa 2013, Raden & Andhika 2021). In 

some cases, under-sampling of the majority class has improved classifier accuracy; this 

approach is generally applied on large datasets, when there is an adequate number of datapoints 

in the minority class. Tomek-Links is one such under-sampling method that searches for data 

points in the majority class that have the lowest Euclidean distance with data in the minority 

class. These data points, also known as ‘Tomek links’ are then removed to improve the 

separation between the two classes (Raden & Andhika 2021). Combining over-sampling and 

under-sampling may sometimes yield an improved overall performance of the model compared 

to applying the sampling methods separately. Applying a modest amount of both techniques is 

believed to reduce bias on the majority class while also improving bias towards the minority 

class (Kurtis Pykes 2020). SMOTE-Tomek is a combined sampling method which balances 

the class distribution by applying SMOTE, then searches for ‘Tomek links’ and removes them 
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to improve the class separation (Batista et al. 2003). SMOTE and SMOTE-Tomek were applied 

on the dataset and the accuracy of the classifiers re-evaluated.  

 

3.1.3. Principal Component Analysis 

A principal component analysis (PCA) is a dimensionality-reduction technique often employed 

to condense the dimensionality on large datasets while maintaining most of the data’s variation. 

As the PCA is an unsupervised learning method it can be used for the discovery of patterns 

within the data, without the need of prior knowledge (Lever et al. 2017). A set of variables in 

the data are transformed into lower dimensions called principal components (PCs) that still 

retain the majority of information (Wikberg et al. 2011). PCs are selected to minimize the 

distance between the data and their projection onto the PCA. The generated PCs are 

uncorrelated to one another, making them geometrically orthogonal to each other (Lever et al. 

2017).  

 

3.1.4. Bayesian Inference 

Bayesian inference is a method of statistical inference based on Bayes’ theorem and is used to 

determine the probability of an event. Bayes’ theorem is driven by the use of a prior belief or 

knowledge – often simply termed ‘prior’ – for calculating the probability of an event 

(Matsumori et al. 2018, van de Schoot et al. 2014). The three main components of Bayesian 

inference include the aforementioned ‘prior’, the likelihood and the posterior distribution. The 

prior is expressed by a function termed the ‘prior distribution’; prior distributions can be 

informative or uninformative and affect the posterior distribution. Informative priors are 

usually preferred as they provide more specific background information about the current data 

(Schulz et al. 2021). Non-informative priors are often vague, allowing the data to speak for 

itself, and are implemented when no or little prior information is available (van de Schoot et 

al. 2014). The likelihood function summarizes the observed evidence found in the actual data 

and, in cases where non-informative priors are used, exerts more influence over the posterior 

distribution (Bittl & He 2017). The posterior distribution is then created once the prior updates 

the current data (likelihood) and therefore reflects the now updated information we have on the 

data. The precision of the posterior distribution relies heavily on the prior information - a highly 

specific prior will generate a smaller posterior variance, and therefore provide better certainty 

about the results (van de Schoot et al. 2014, Schulz et al. 2021). In this thesis, Bayesian 
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inference was incorporated into a logistic regression model to assess whether prior knowledge 

improves the model’s accuracy.  

 

3.2. Methods 

 
3.2.1. Data 

The data analyzed in this project was obtained from a longitudinal pilot study on patients with 

new-onset seizures who were admitted to the department of neurology at Sahlgrenska 

University Hospital. The data was collected over a period of three years (June 2016 – June 

2019) and contains a total of 73 patients who were followed yearly until a diagnosis of epilepsy, 

post-stroke epilepsy or single seizure was made. Patients who had an unprovoked, first seizure 

and were over the age of 25 were included in this study. Non-consenting patients as well as 

progressive structural cerebral disease were both factors for exclusion.  

 

3.2.2. Blood Sampling and Biomarker Measurements 

Samples of blood were collected once, during a patient’s first visit, after experiencing a seizure. 

Plasma was stored in Ethylenediaminetetraacetic acid (EDTA) and centrifuged for 10 minutes 

at room temperature, while serum was collected in gel tubes. Samples were then stored at  

-80°C. Biomarker values were measured by board-certified laboratory technicians who were 

blinded to the clinical data. S100B and NSE serum were measured with the 

ElectroChemiLuminescence Immunoassay (ECLIA) on the Elecsys platform (Roche 

Diagnostics, Penzberg, Germany) while plasma GFAP, NfL and tau were measured with 

commercially available kits on a single molecule array (Simoa) HD-1 analyzer (Quanterix, 

Billerica, MA).  

 

3.2.3. Data Preparation 

The original dataset consisting of 73 patients was prepared for analysis by removing patients 

with unclassifiable data and patients with insufficient follow-up data. After preparation, the 

dataset was made up of 61 patients which was used in all subsequent analysis (Table 1). 

Features included for analysis were the biomarker values of S100B, NSE, GFAP, NfL and tau 

as well as gender and age. Patients diagnosed with epilepsy and post-stroke epilepsy were 

grouped together under the class name ‘epilepsy’ while patients who experienced a single 

seizure were assigned the class name ‘single seizure’. Programming was carried out in python 
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using PyCharm CE (version 2020.3.5). The complete code is available at 

https://github.com/Sarah-UU/Master-Thesis.  

 

Table 1: Summary of patient characteristics in the prepared dataset 

 All patients (N=61) Training cohort (N=40) Test cohort (N=21) 
Gender    
      Male 30 17 13 
      Female 31 23 8 
Age (range) 57 (25 – 89) 57 (25 – 89) 57 (26 – 88) 
Epilepsy 24 18 8 
PSE1 15 7 0 
Single seizure 22 15 13 

1 post-stroke epilepsy 

 

3.2.4. Training and Testing Set 

The prepared dataset was divided into a training set (67%) and a test set (33%). The training 

set was used to train the machine learning models on the expected output (i.e., which biomarker 

values were expected to fall under ‘epilepsy’ or ‘single seizure’). The test set remained 

unexposed to the models during training to ensure that the model would work efficiently on 

unseen data and would not overfit. After training, the models were assessed on the test set and 

their accuracy measured.  

 

3.2.5. Classification 

A binary classification analysis was applied on the dataset using four different machine 

learning algorithms. The classifiers comprised of random forest (RF), support vector machine 

(SVM), XGBoost (XGB) and an artificial neural network classifier called multi-layer 

perceptron (MLP). Classification is the process of predicting which class a given data point 

falls under; in this project, a binary classification was conducted on the features using the two 

class labels ‘epilepsy’ and ‘single seizure’. Before training the algorithms on the dataset, the 

features were rescaled into a standard range between 0 and 1 since the features did not share 

the same units. The classifiers then underwent training using data in the training set, and their 

efficiency measured on the test set using two evaluation metrics: ROC AUC and F1-score. 

 

3.2.6. Permutation Importance 

To assess the significance each feature exerted on the classifier models when making 

predictions, the permutation importance was calculated. The importance of a feature is 
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determined by calculating the prediction error of the model after permuting the feature. 

Permuting is defined by shuffling – if shuffling the values of a feature increases the prediction 

error of the model, it is considered important since it implies the model was dependent on the 

feature when making predictions. If the prediction error remains unchanged after shuffling, the 

feature is deemed unimportant. Although there is no set rule on whether to apply permutation 

importance on the training or test set, the test set is usually preferred since model error estimates 

tend to be unreliable in the training set (Molnar, Christoph 2019). The permutation score was 

applied on both the training and the test set, and the standard deviations for each feature were 

evaluated. Since the standard deviations were much higher on the test set, the training set was 

chosen to assess feature importance. 

 

3.2.7. SMOTE and SMOTE-Tomek 

Since the dataset had a class imbalance (39 ‘epilepsy’ to 22 ‘single seizure’ patients), 

techniques to adjust the class distribution were applied on the training set. The training set 

originally had an imbalance of 25:15 – the minority class (‘single seizure’) was over-sampled 

using SMOTE to reach a balanced ratio of 25:25 for both classes. The balanced training set 

was then used for training in all four classifiers and the ROC AUC score was measured. 

SMOTE-Tomek, a combination of over- and under-sampling, was also applied on the training 

set to obtain a ratio of 21:21. Again, the models were trained and evaluated on the test set.  

 

3.2.8. Principal Component Analysis 

A two-component PCA was performed to examine whether it would show separation between 

the two classes. Gender and age were excluded for the PCA and only biomarker values were 

included. The data was scaled to ensure that all variables had the same units and therefore were 

of equal importance. The features were then projected into two dimensions by fitting the data 

onto the PCA and generating two principal components. The PCA was visualized on a scatter 

plot. To calculate the percentage of variance defined by each component (i.e., the significance 

of each principal component) the explained variance ratio was calculated.  

 

3.2.9. Bayesian Inference 

To evaluate whether incorporating prior knowledge would improve model accuracy, a logistic 

regression model was combined with Bayesian inference. The prior information incorporated 

into this model included the mean biomarker values of S100B, NSE, GFAP, NfL and tau in 
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Alzheimer’s disease (AD) patients (Table 2). The model was updated with the dataset used in 

this project (the likelihood) to generate the posterior distribution. The Hamiltonian Monte 

Carlo algorithm called No-U-Turn Sampler (NUTS) was then used to draw samples from the 

posterior and the model was analyzed using the F1 score metric. 

 

The biomarkers investigated in this project are not as well studied in epilepsy as they are in 

other neurodegenerative diseases. For this reason, the prior information used in the model came 

from studies in AD. Biomarker values likely differ between AD and epilepsy, meaning the 

priors may not be completely reliable. As a comparison, another logistic regression model was 

created using non-informative priors allowing the dataset to speak for itself instead of relying 

on specific prior information.  

 
Table 2: Literature for biomarker values in Alzheimer’s disease used as priors 

Biomarker Literature Biomarker Value (mean ± SD) 
S100B (Chaves et al. 2010) 

 
0.08 ± 0.06 (µg/L) 

 
NSE (Chaves et al. 2010) 9.28 ± 3.86 (µg/L) 

 
GFAP (Oeckl et al. 2019) 376 (294 – 537) (pg/mL) 

 
NfL (de Wolf et al. 2020) 16 ± 12.9 (pg/mL) 

 
Tau (de Wolf et al. 2020) 2.6 ± 2.3 (pg/mL) 

 
 

3.2.10. Statistical Analyses 

Statistical analysis was performed with GraphPad prism software (version 9.2.0). To test for 

the normality of the distribution, a Shapiro-Wilk test was performed. Group comparisons 

between patients with epilepsy and PSE versus single seizures were made using an unpaired 

two-sample t-test with Welch’s correction, where values of p £ 0.05 were significant.  
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4. Results 

 

4.1. Classification of biomarker values 

A classification analysis was carried out to evaluate whether the machine learning models 

could successfully categorize the features under the correct class name: ‘epilepsy’ or ‘single 

seizure’. The performance of the classifiers was analyzed and the results presented in Table 3. 

Table 3: Performance metrics of the classification algorithms 

Classifier ROC AUC Score (%) F1-Score (%) 

RF 46 64 
XGB 57 71 
SVM 68 84 
MLP 61 76 

 

The SVM model exhibited the best performance out of all classifiers, with a ROC AUC score 

and F1-score of 68% and 84%, respectively. Based on the F1-score, the MLP and XGB models 

are somewhat reliable in classification, with the RF classifier presenting an overall low ability 

to discriminate. The F1-score may be a slightly more reliable metric for this dataset as it 

overcomes the problems associated with imbalanced datasets. The models in general do not 

demonstrate a high aptitude for differentiating the biomarker values between the class labels 

‘epilepsy’ and ‘single seizure’; however, the performance of the SVM, based on the F1-score, 

suggests that discriminating ability could possibly improve, perhaps on a larger dataset, and 

biomarker profiles indicative of epilepsy could be found. 

 

4.2. Importance of features during model training 

To assess the degree of influence each feature had on the models when making predictions 

during training, the permutation score was calculated (Figure 2).  
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Figure 2: Feature importance calculated as permutation score and ranked across all 
biomarkers. The features gender and age were also included. 
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S100B presented the highest permutation score across all classifiers indicating it had a strong 

impact during model training when the algorithms were learning how to separate between the 

two classes. Based on Figure 1, NSE had the smallest effect on the models, with NfL and GFAP 

also not leaving a major impression. Tau had a slightly higher effect than NSE, NfL and GFAP 

– while the permutation score was not necessarily as impactful as it was for S100B, the results 

suggest it may be somewhat indicative of epilepsy.  

 

4.3. Balancing class distribution 

To manage the imbalanced class distribution in the dataset, SMOTE and SMOTE-Tomek were 

applied. The ROC AUC score was calculated and presented in Table 4. 
 

Table 4: Over and under-sampling with classification algorithms 

Classifier  ROC AUC Score (%) 
 SMOTE SMOTE-Tomek 

RF 59.8 61.2 
XGB 59.4 60.8 
SVM 57.0 57.4 
MLP 52.8 50.8 

 

The performance of the RF classifier improved significantly upon oversampling, in contrast to 

the SVM which experienced a reduction in accuracy, similar to the MLP. A minor difference 

in model performance was observed between SMOTE and SMOTE-Tomek. The results 

suggest that the RF and XGB classifiers will likely perform better on a larger, balanced dataset 

and may detect patterns indicative of epilepsy. The same could be said for the SVM and MLP 

model, as their decrease in performance accuracy may be related to a heightened sensitivity 

towards synthetic data. As a comparison, Tomek-Links was applied to the dataset, however, as 

expected, there was a drastic reduction in performance since the dataset was rather small.   

 

4.4. Principal Component Analysis 

A two-component PCA was generated to examine whether it would present a separation 

between the two classes. The percentage of variance explained by each component was also 

measured and presented as an explained variance ratio. 
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The PCA did not indicate a clear separation between data points with the class labels ‘epilepsy’ 

and ‘single seizure’ (Figure 3). No patterns were discovered in the analysis which is reflected 

by the low explained variance ratio of 35% for PC1 and 21% for PC2. Based on the PCA, the 

biomarker values between the two class labels did not seem to differ significantly. 

 

4.5. Logistic regression model with Bayesian inference 

A logistic regression model combined with Bayesian inference was constructed to assess 

whether the use of prior information could be of benefit to model accuracy (Table 5). 

 

             Table 5: Evaluating a logistic regression model using Bayesian inference 

Priors Accuracy (%) 

Informative 70 

Non-informative 73 

 

The results between both informative and non-informative priors were relatively similar and 

demonstrated higher model accuracy compared to some of the earlier models which did not 

incorporate Bayesian methods (Table 3). Providing the model with background information – 

whether informative or non-informative – slightly improved the ability to separate between 

patients with epilepsy and PSE versus single seizures.  

 

 

Figure 3: Two-component principal component analysis with mapped 
features of biomarker values. 
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4.6. Statistical Analysis 

A comparison of mean biomarker values between patients with and without epilepsy was 

assessed using an unpaired two-sample t-test with Welch’s correction (Figure 4). S100B (p = 

0.0002) and NfL (p = 0.02) showed significant differences, while no significance was 

detected in the p-values of NSE, GFAP and tau.  
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Figure 4(a)(b)(c)(d)(e): Mean comparison of biomarker levels between patients with and without epilepsy 
using an unpaired two-sample t-test with Welch's correction that assumes unequal standard deviations. P-
values £  0.05 were significant. 
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5. Discussion 

 
For the 50 million people suffering from epilepsy globally, the development of viable 

biomarkers is crucial for both prediction and targeted treatment of seizures. The large 

heterogeneity in treatment effects among patients is a major obstacle for the correct 

prescription of anti-epileptic drugs (van Dijkman et al. 2017). Biomarkers could pave the way 

towards personalized therapy by basing treatment on a patient’s individual biomarker profile. 

A specific biomarker panel could also be developed for each epileptic condition (Kobylarek et 

al. 2019a). Particularly sensitive biomarkers could aid in early detection, therefore also 

prevention, of epilepsy, and shed light on the still rather elusive process of epileptogenesis 

(Kobylarek et al. 2019a,  Engel et al. 2013). Circulating biomarkers in the blood have emerged 

as prime candidates as they are less invasive than sampling CSF markers and offer the 

advantage of being cost and time efficient. They may also improve patient diagnosis and 

prognosis when used in tandem with CSF markers or imaging techniques such as EEG 

(Kobylarek et al. 2019a, O’Bryant et al. 2017).  

 

In this study, five prospective brain injury markers of epilepsy were studied in two different 

patient groups, namely epilepsy (+ post-stroke epilepsy) and single seizure patients. The results 

obtained from the machine learning models, while not exceptionally high, imply that there is 

some difference in biomarker values in patients with epilepsy and post-stroke epilepsy versus 

single seizure patients. Balancing the class distribution somewhat improved model 

performance, although not to a significant extent. S100B appears to be the most promising 

biomarker out of the five, presenting a high feature importance for the models and significant 

statistical difference between the patient groups. While NfL did not demonstrate a high feature 

importance score, it did show a statistical significance indicating a possible diagnostic role.  

 

5.1. S100B 

S100B has come to light as a potential marker of blood-brain barrier permeability, with an 

increase in serum S100B indicating BBB disruption (Washington et al. 2020). In addition, 

S100B meets all the clinical characteristics required of a suitable peripheral biomarker (Walker 

et al. 2016). Several studies have associated an increased serum level of S100B to adults and 

children with epilepsy, suggesting a possible diagnostic role for S100B (Calik et al. 2014, Maiti 

et al. 2018, Kaciñski et al. 2012). Our study also concluded that S100B serum concentration 
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varies largely in patients who developed epilepsy and those who only experienced a single 

seizure. The results from this study propose that S100B has the potential to be a predictive 

marker of epilepsy after a first seizure.  

 

However, it is still unclear to what extent S100B can be utilized as a diagnostic tool in epilepsy, 

as some studies have presented contrasting evidence. Freund et al. reported that plasma S100B 

is not capable of predicting the likelihood of seizure recurrence, similar to Nass et al. who 

concluded that the prognostic value of S100B after a single generalized tonic-clonic seizure 

was very limited (Freund et al. 2015, Nass et al. 2017). A study on patients admitted to the 

emergency after seizures found significantly lower serum levels of S100B compared to control 

groups; another study on pediatric patients with untreated epilepsy found no statistical 

difference between epilepsy and control groups (Sarı Doğan et al. 2013, Hamed et al. 2013). 

Interestingly, there seem to be many studies that implicate increased serum S100B in focal 

epilepsy patients, primarily for TLE, in both adults and children (Calik et al. 2013, Chang et 

al. 2012, Lu et al. 2010). One such study in intractable epilepsy even determined that S100B 

concentrations were significantly elevated in focal epilepsy patients as opposed to generalized 

epilepsy patients (Calik et al. 2014). Contrary to this result, the findings by Bai et al. instead 

showed a significantly higher serum level of S100B in generalized epilepsy patients, which 

they attribute to the more severe brain damage often found in generalized epilepsy (Bai et al. 

2018). These inconsistencies could be traced back to differences in sampling time, variations 

in inclusion criteria, as well as age group and ethnicity (Simani et al. 2020). The type of 

epileptic condition as well as seizure frequency can also play a role in how significant the 

variations are in S100B values between groups. Despite these differences, more studies support 

the view that elevated serum S100B is found in persons with epilepsy. A meta-analysis, that 

adjusted for the heterogeneity between the 18 studies reviewed, also surmised that serum 

S100B is increased in epilepsy (Liang et al. 2019).  

 

5.2. NSE 

NSE has been established as a reliable marker of neuronal damage in various neurologic 

disorders, and several studies have attempted to evaluate serum NSE levels after seizures (Mu 

et al. 2020). In this study, NSE did not present any significant differences between the groups 

indicating that it may not be a useful marker in early epilepsy. It was also the marker with the 

least influence on the models during training. Likewise, a study comparing persons with 
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epilepsy and psychogenic attacks did not report any significant differences (Willert et al. 2004). 

However, several studies have indicated increased serum NSE in seizures. Findings in critically 

ill patients with seizures showed that elevated serum concentrations of NSE corresponded to 

seizure severity (Shaik et al. 2019). Patients with status epilepticus were observed to have the 

highest levels of serum NSE; this comes in agreement with De Giorgio et al. who observed that 

major subtypes of SE were correlated to increased levels of serum NSE (Shaik et al. 2019, 

DeGiorgio et al. 1999). Complex partial and subclinical status epilepticus had the highest NSE 

levels which are the two subtypes associated with the poorest outcomes (DeGiorgio et al. 

1999). These findings seem to suggest that elevated serum NSE is associated with severer 

forms of seizures. Chang et al. also observed a link between seizure frequency and serum NSE 

although did not detect significant differences between individuals with TLE and controls 

(Chang et al. 2012). Based on these studies, and the findings in this report, serum NSE may 

not hold promise as a diagnostic marker for early epilepsy. However, since it has been 

implicated in seizure frequency and severity it could prove useful as a biomarker of seizure 

burden.  

 

5.3. GFAP 

GFAP has been implicated as a potential marker of epilepsy and possibly also seizure burden 

in various studies (Simani et al. 2018, Elhady et al. 2021). Although there were no significant 

findings related to GFAP in this study, our previous study on the absolute values of each marker 

presented a significant difference in serum GFAP between single seizures and PSE (Eriksson 

et al. 2021). Serum GFAP remained at increased levels long after patients experienced a stroke, 

which could allude to severer brain injury or a prolonged response, as suggested by the authors 

(Eriksson et al. 2021). Similar to NSE, GFAP may not be a marker in early epilepsy but could 

represent severer forms of epilepsy. These thoughts are reflected by the findings in children 

with generalized epilepsy and active seizures where serum GFAP significantly correlated to 

seizure severity (Elhady et al. 2021). Likewise, GFAP was elevated in children with new-onset 

epilepsy within 24 hours of a seizure episode; serum concentrations were notably higher in the 

epileptic spasm group (Zhu M et al. 2018b). GFAP also has the additional benefit of a longer 

half-life over other biomarkers, providing a more suitable time frame for sampling blood after 

a seizure (Simani et al. 2018).  
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5.4. NfL 

NfL has been acknowledged as a clinical marker of neurodegenerative diseases, however, there 

is a paucity of studies regarding its usage as a serum/plasma marker in epilepsy (Loeffler et al. 

2020). A small significance was detected between the patient groups in this study, reflected by 

our previous study (Eriksson et al. 2021). Our findings indicate a possible role for NfL as a 

marker of epilepsy, and perhaps also seizure burden. This is reflected by the findings of 

Ouédraogo et al. who detected significantly elevated levels of serum NfL in drug-resistant 

epilepsy compared to controls, especially among older individuals in the epilepsy group 

(Ouédraogo et al. 2021). Increased plasma NfL has been associated with cognitive decline; 

although NfL does tend to increase with age, studies have observed it to be unusually high in 

neuroinflammatory and neurodegenerative diseases (He L et al. 2021, Ouédraogo et al. 2021). 

There was no observable increase in serum NfL after febrile seizures, which again could reflect 

the conclusion that NfL is related to seizure severity as febrile seizures tend to be considered 

benign and therefore may not cause enough damage to account for pathological increases 

(Xixis et al. 2021).  

 

5.5. Tau 

Tau did not display any statistical significance in the epilepsy group but interestingly did score 

better than GFAP, NfL and NSE for feature importance. Although the reliability for this 

particular result is uncertain, it could still potentially hint at a role for serum tau in epilepsy.   

Tau studies related to epilepsy have primarily focused on CSF samples, which have produced 

controversial results (Monti et al. 2015, Palmio et al. 2009). The accumulation of 

hyperphosphorylated tau in the brain has been associated with seizures, as it was found in 

patients with refractory epilepsy (Tai et al. 2016). Although tau is principally implicated in 

other neurodegenerative diseases, notably Alzheimer’s disease, tau may still play a potential 

role in epilepsy as a marker, especially in severer forms of epilepsy such as status epilepticus 

(Monti et al. 2015). Further studies should therefore aim to clarify the relationship between 

serum and plasma tau in epilepsy.  

 

5.6. Limitations 

The present study is subjected to several limitations. Due to the pilot nature of the study, the 

dataset size was small which could account for the mediocre performance of the machine 

learning models. The dataset was split into a train and test set, meaning an already small dataset 
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is divided into even smaller sets. A larger training set would benefit the models when learning 

how to separate between the classes. Furthermore, the blood of the patients was also not 

sampled within a specific time frame after seizure which likely influenced the biomarker 

values, hence also the models. Clinicians occasionally discovered that a patient had 

experienced seizures before their first clinical evaluation, indicating that not all biomarker 

values in this study are representative of values after a first seizure. 

 

6. Conclusion & Future Outlooks 

 

The findings from this pilot study present S100B as the most promising biomarker out of the 

five investigated and indicate its potential as a predictive marker of early epilepsy. Although 

the results obtained for NSE, GFAP, NfL and tau were not as impressionable, various literature 

have proposed a connection to various epilepsy conditions. According to several studies, 

increased levels of GFAP and NSE likely reflect severer forms of epilepsy, which could 

indicate as to why their concentrations were not significant after a first seizure. This also 

denotes a prospective role for GFAP and NSE as markers of seizure burden. NfL and tau are 

largely implicated in brain injury for several neurodegenerative diseases, but still require 

extensive studies to fully elucidate their potential as blood markers of epilepsy. The next step 

in this research is already underway, as we look further into S100B as a potential biomarker in 

epilepsy. Based on the findings of this study, the minimum sample size requirement for S100B 

has been calculated and patient selection has begun.   
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