
Data-driven traffic flow:
Summary of experiments

Ian Marsh, Henrik Abrahamsson (RISE AB)
Pei-Lun Hsu, (KTH)

RISE report 2021:119
ISBN 978-91-89561-10-6

This work is licensed under CC BY 4.0.

1



English abstract
This final report is the second of two reports. Both are the result of a Swedish

project, the Swedish Energy Authority’s TENS project, which spanned from

2018-2021. Other reports from the project provide results from estimating emissions

from traffic measurements as well as simulation studies. Like any European capital,

Stockholm suffers from many problems related to its road network. The main factor

is traffic jams, which are aggravated with difficult weather conditions in winter but

also due to accidents, popular events and holidays. Therefore, this report provides

the results from a data-driven approach to estimating traffic flow. This work aims at

predicting and understanding the behavior of this network based on data collected at

several places. More specifically, the goal is to predict and model the traffic flow i.e

macroscopic information, on ground measurements (MCS), using floating

microscopic (INRIX) data. We focus on estimating the fundamental traffic law

relationships, the flow using time series and future directions. Methods and results

are in the related work section.

Keywords: Transport ITS, data-driven, traffic flow.

Svenska sammanfattning
Denna slutrapport är den andra av två rapporter. Båda är resultatet av två svenska

projekt, Energimyndighetens TENS-projekt, som sträckte sig från 2018-2021. Andra

rapporter från projektet ger resultat från uppskattning av utsläpp från

trafikmätningar och simulering. Som vilken europeisk huvudstad som helst, lider

Stockholm av många problem relaterade till vägnätet. Den främsta är

trafikstockningar, som förvärras med svåra väderförhållanden till exempel vintertid,

men också när olyckor inträffar. Därför ger den här rapporten resultaten från en

datadriven metod för att uppskatta trafikflödet. Detta arbete syftar till att förutsäga

och förstå beteendet i detta nätverk baserat på data som samlats in på flera ställen,

med hänsyn till de olika variabler som påverkar hur människor kör. Mer specifikt är

målet att förutsäga och modellera trafikflödet, dvs makroskopisk information, på

markmätningar (MCS), med hjälp av flytande mikroskopisk (INRIX) data. Vi fokuserar

på att uppskatta de grundläggande trafiklagsförhållandena, flödet med tidsserier och

framtida riktningar. Metoder och resultat finns i det relaterade arbetsavsnittet.

Nyckelord: Transport ITS, datadriven, trafikflöde.

The TENS project
Energimyndigheten

Diarienummer: 2018-006615
Projektnummer: 46963-1
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1 Introduction

The goal with the analysis is to observe traffic in practice and how flow relates to

speed. First looking at the MCS flow and MCS speed measurements in order to:

1. Predict flow from speed (without the extra complications and uncertainties

that are introduced when trying to use INRIX speed to estimate MCS flow)

2. Can speed variance or time of day be useful features to improve the flow

prediction?

3. Test different methods for prediction

Traffic flow on a motorway is often very predictable from day to day. There is little

traffic during night, and there are rush hours in the mornings and afternoons during

weekdays. The pattern is different during weekends and holidays with less traffic in

the mornings. The average speed on the road follows a similar daily cycle. There are

high speeds around the speed limit during night and during other free-flow periods,

and low speeds when there is congestion during the rush hours. The figures below

show how the traffic flow and average speed varies over one week on a motorway

section in Stockholm in October 2018.

2 The datasets

MCS data
The traffic flow in Stockholm is monitored with a Motorway Control System (MCS). A

large number of stationary MCS-portals gantries have been installed on the E4 and

other roads. The MCS-portals are equipped with radar detectors and they monitor

the flow and speed of traffic in each lane of the road. The data gives the regional

traffic control centre information about the current traffic flow and speeds. The data

is also input to a control system that sets variable speed limit signs. The radar

measurements are point measurements and give time-mean-speed. This is in

contrast to probe measurements such as INRIX calculate speed over a distance and

provide space-mean speed. The Stockholm Motorway Control System, including the

subsystems for Variable Speed Limits (VSL) and Automatic Incident Detection (AID), is

described in [Nissan2010].
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The Motorway Control System (MCS)
ID Date Speed Speed

Deviation

Flow Used

Lanes

1164 2018-10-01

00:01:00

16.94 7.18 120 {1}

1164 2018-10-01

00:22:00

13.05 9.53 60 {1}

Table 1: An example of the MCS dataset.

INRIX data
Founded in 2005, INRIX pioneered the practice of managing traffic by analyzing data

not just from road sensors, but also from vehicles. This breakthrough approach

enabled INRIX to become one of the leading providers of data and insight into how

people move around the world. INRIX combines data from many sources to provide

traffic information. A major part of the data comes from a crowdsourced model

where INRIX continuously collects speed and location from probe vehicles, combines

the data into an updated view of the current traffic situation on the road, and sends

it back to the vehicles.

The INRIX data
Segment

ID

TMCID

Timestamp

(UTC)

Segment

Type

Speed Average Referenced

speed

Travel

time

(mins)

Score Cvalue Speed

Bucket

Registered

225525816 2018-10-0

1 00:00:15 

XDS 85 0.501 60 30 56 49 3 2018-10-0

1 02:00:14

225525816 2018-10-0

1 00:01:13

XDS 95 0.501 68 30 56 98 3 2018-11-0

1 00:55:11

Table 2: An example of the INRIX dataset.

Field Descriptions

Example Segment ID An identifier for defining a unique road segment. Timestamp

The timestamp of the measurement in UTC. Segment Type Type of road segment: XD

Segment (XDS) or TMC segment. XDS Speed Average speed of vehicles on the

segment calculated from the most current time slice, in km/h. Average Speed The

historical average speed on the segment for the given day and time (km/h).

Reference Speed An expected free-flow speed on the segment, determined from the

INRIX traffic archive (km/h). Travel Time. The time required to travel across the

segment in minutes. Score. A measure of confidence in a given reported speed with

three possible values: 10/20/30. Samples with confidence scores larger than 10 are
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based on real-time data, otherwise are based on historical data. Cvalue. The second

measure of confidence ranges from 0 to 100, which only applies when the

confidence score is 30. Speed-bucket Level of congestion according to the range of

speed. Level of congestion according to the range of speed.

MCS and INRIX locations

The goal of this report is to evaluate using MCS and INRIX together. That is using

INRIX speed and flow to infer MCS speed and flow.

Figure 1: Locations of the MCS and INRIX data segments in Stockholm
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3 Traffic state estimation

Figure 2 is a conceptual diagram which describes the traffic data, traffic state, and

their relation in the time-space domain. As mentioned before, a subset of traffic

state variables can represent a traffic station highway, i.e., any two or three traffic

state variables. In figure 2, the traffic state is observable at the locations where

stationary sensors are installed. However, stationary sensors are usually installed

sparsely on highways due to cost reasons. In the regions outside stationary sensors’

coverage, the yellow regions in figure 2, traffic state variables are either unobserved

or only partially observed through traffic data collected by other sensors, e.g., mobile

devices. TSE aims to estimate the unobserved traffic state variables using partially

observed traffic data in regions where stationary sensors are absent, e.g., the yellow

region with the dashed boundary in the figure. Moreover, even at the locations

where stationary sensors are installed, traffic datasets usually suffer from missing or

corrupted data due to failures of sensors or communication. Therefore, a specific TSE

method called imputation has been developed for imputing the missing or corrupted

data in the traffic datasets collected from the locations where the sensors are

installed but suffer from missing data.

Figure 2: An illustration of the traffic state estimation (adapted from [Seo2017]).
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4 Data exploration

We first look at the MCS and INRIX data from an exploratory point of view. The point
of views are times series, time correlations, speed histograms.

Time series view

If we look at the first 21 days in the dataset, we see that the traffic is very similar

from week to week on an hourly basis.

Figure 3: Traffic flow over three weeks in 2018

In the graph below is the data by weekday and calculated the average flow per hour,

based on the first three weeks of data (Oct 1-21). We have the average flow on

Mondays between 00:00-01:00, 01:00-02:00 etc., for each hour per week. We can

see that the traffic behavior on weekdays Monday-Thursday is very similar. Friday is

somewhat different, indicating an earlier second rush hour. And weekends are

different with much less traffic in the mornings.

8



Figure 4: Flow of vehicles over one week in 2018

Figure 5: Speed of vehicles over one week in 2018

The daily and weekly traffic patterns can of course vary between different

motorways. Not all motorways have congestion during rush hours. Some roads have

lower speeds during night because there is a large share of slower trucks and heavy

traffic on the road at that time, etc. The amount of traffic and the average speed may

also depend on the weather and the road conditions. For instance, with lower speeds
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during winter when there is snow and slippery roads. The traffic pattern on a

motorway with daily and weekly cycles is very predictable. But it can also change

both temporarily and over a long period of time. It is therefore important to

continuously monitor the traffic.

The traffic can change on an hourly basis due to accidents or sport events or weather

conditions. It can change for weeks and months due to roadworks or as a more

unusual example: due to a pandemic . There are also many long-term trends and1

political decisions that might influence the traffic flow. Just a few examples: more

people are moving to cities which means more traffic & subsequently congestion.

New residential areas are built but also alternative roads, that in some cases move

traffic away from cities. There is a trend to cycle or use public transport instead of

using vehicles, for obvious environmental reasons. There are political decisions such

as road tolls, bridges & tunnel projects that influence traffic patterns within a city.

Time corrections

As we can see the timestamps, over and above the time zone differences diverge. We

will later compensate for it too. A simple subtraction can be done, but as one sees in

the Figure, the steps indicate perhaps more advanced methods such as Dynamic

Time Warping could be applied [DTW].

Figure 6: Timestamp misalignment example of the MCS and INRIX datasets

1 The traffic on the Swedish road network decreased with 25% in April 2020 due to the Corona virus

<https://www.trafikverket.se/tjanster/trafiktjanster/Vagtrafik--och-hastighetsdata/trafikarbetets-forandring-pa-det-statlig
a-vagnatet-tf/trafikforandringar-under-coronaviruset/ >, viewed 7 August 2020.
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Figure 7: Timezone differences of the INRIX and MCS datasets

Time windowing

In part I of these reports, we posed the question what are the appropriate

parameters with which to process the data. Windowing is important as the intervals

range from 1 to 1440 minutes per day. The length of a window can have significant

effects on the outcomes, whether on the averages, smoothing, input to the ML or

the visualistions.

There is an extra complication. INRIX speed and flow are given over a segment whilst

MCS speed and flow are from a point (in general). Both need some processing. For

simplicity we will choose the same chunks at which we look at. In part I of the report

we gave a glossary and their units and typical values. Some need inputs per minute,

but are acted upon on 10-15 minute intervals. Obviously, speed control per minute

would lead to road chaos. Note also, at least MCS reports speed and flow at

resolutions less than a minute, we however only see that resolution.
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Figure 8: Example of smoothing the INRIX data

Time averaging/smoothing

The basic time resolution in traffic theory is the minute. Data collation, not

collection, is often at this minute resolution. From each minute to hours, days to

weeks some form of averaging or windowing is needed. Different time scales serve

different purposes. Minute level-collations are processed hourly for rush-hour

analysis. Daily aggregates are needed for weekday/weekend analysis etc. Averaging

traffic flow quantities is needed. The time-mean speed is measured at a MCS

reference point on the roadway over a period of time. Average speed measurements

obtained from this method are not accurate because instantaneous speeds averaged

over several vehicles do not account for the difference in travel time for the vehicles

that are traveling at different speeds over the same distance. The space-mean speed

is measured over the whole roadway segment. Some form of monitoring tracks the

speed of individual vehicles, and then the average speed is calculated. It is

considered more accurate than the time mean speed. The time mean speed is never

less than space mean speed, see [Marsh2021TENS1], section 6.
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Week day flow differences

Figure 9: Flow over a day for each day

Speed differences between INRIX and MCS

Looking at the speed differences between the two types of flow we have, adjusted
using the time shifting above we see the speed differences in Figure 7.

Figure 10: Example speed distributions of INRIX-MCS data using kernel
densities
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Figure 11: Flow versus speed (effect of 4, 3, 2 and 1 lanes)

Figure 11 shows how important it is to gather all data across the motorway. The blue

points include all lanes including the slowest one. This gives the flow speed plot its

distinctive shape seen in the theory texts. The texts however do not usually point out

the lane importance in the theoretical plots.

5 Results: Estimating the dual phase traffic relationships

This section aims to introduce machine learning methods utilized in this work for

extracting dynamic relations between traffic variables for traffic flow estimators.

Below we introduce two models, i) piecewise linear regression, derived from the

fundamental diagrams and ii) deep neural networks. Our works have looked at deep

neural networks before, for example LSTM models to infer traffic flow. In this case for

MCS data, alone [Ghandeharioon2018Evaluation].
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Figure 12: Flow versus speed (using the full dataset)

Figure 13 Flow versus speed (colour indicates time of day)
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Estimating flow from speed using a two-step linear regression on the timescale of

hours, re-sampled the MCS data to the timescale of hours. This resulted in 744 data

points. used the first 80%, the first 25 days, as training data and the last 20% as test

data.

Figure 14: Flow versus speed (speed critical limit shown)

A first attempt to predict flow from speed using linear regression uses one line

segment for the free flow state and another one for the congested state. A two-step

linear regression model. Calculated one line for the free-flow phase, for data points

where the speed was above the critical limit = 70km/h, and another line for the

congested phase. With a linear model, high speeds could be mapped to negative

flows. set the minimum predicted flow to 104 veh/h, which is the minimum flow

value in the training data when re-sampled to hours.
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Figure 15: Flow versus speed (with critical limit at 70 km/h)

Figure 16 Flow versus speed (colour indicates time of day)

The same thing but plotting flow versus speed (since we predict flow from speed) :
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Figure 17 Flow versus speed (showing critical speed and flow indicated)

Evaluation of the two-step linear regression model

Figure 18 Flow prediction over a month (blue recorded flow, orange, a
prediction)
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Evaluation of the two-step linear regression model using the test set

Figure 19 Flow prediction over a week, blue recorded flow, orange, a
prediction, mean absolute error: 114.96, R2 score: 0.906

Using speed variance to identify flow in the uncongested state

Blandin et. al. presents the idea that, in the uncongested phase, the drivers can drive

at whatever speed they feel comfortable with, given the speed limit, if there is no or

little other traffic [Blandin2012]. Hence the speed variance is expected to be high if

the flow is low. However, at higher flows and still in the uncongested phase “the

individual speed variance is expected to be relatively small because commuters are

constrained by other surrounding vehicles and hence cannot freely choose their

traveling speeds.”

In the MCS data we have the speed standard deviation as input for INRIX: so one

calculates the variance when the data is upsampled to an hourly resolution. Looking

at the speed standard deviation in the first week of the MCS data, 1st-7th of October

2018. Plotting the speed standard deviation over time and comparing it with speed

and flow:

19



Figure 20 The speed standard deviation

Figure 21 Speed variation over a week
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Figure 22 Flow variation over a week

One thing we notice is that the speed variance is higher during night when the speed

is high. Below we see a scatter plot of speed versus flow. And the color shows the

speed variance.

Figure 23 Flow versus speed with standard deviation as colours
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Figure 24 Flow versus speed with standard deviation in purple (speed deviation

greater than 5 km / hour)

If we are given a speed value of 80 km/h we know that we are in the uncongested

phase. However, the flow can range from 60 to 1600 veh/h. Additional information

about the speed standard deviation can help us predict if we are a low or high flow.

Processing INRIX and MCS data (northbound)

A first look at the INRIX data and a comparison with MCS on the timescale of hours.

The main purpose here is to look for possible features that can help us predict MCS

flow from INRIX speed. There seems to be a two-hour difference in time between

INRIX and MCS, minus a 6-minute lag. We added 114 minutes to the INRIX time to be

able to compare the two data sets:

inrx['timestamputc'] = inrx['timestamputc'] +
datetime.timedelta(minutes=114)

Also, in the data, at 2018-10-28 03:00, there is a change to wintertime which has to

be dealt with. Here, in the first iteration, look at a subset of that data from

2018-10-01 02:00:00 to 2018-10-21 23:59:59

inrx = inrx['2018-10-01 02:00:00':'2018-10-21 23:59:59']

Re-sample the data from minutes to hours
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a. inrx60Min['speed'] =
inrx.speed.resample('60Min').mean()

b. inrx60Min['speedvar'] =
inrx.speed.resample('60Min').var()

Below we see plots of MCS and INRIX hourly average speeds. First over two days and then
over a week. INRIX speed is in general lower.

Figure 25 Daily and weekly MCS and INRIX speeds

Plots of speed versus flow using hourly averages are as we have seen previously. We

see a clear free-flow phase, with speeds above 70 km/h. The gradient is quite steep

in the free-flow phase, compared to the traffic theory in Notley et. al. This makes it

easier to predict flow from speed.

Figure 26 Speed versus flow for MCS data only
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If we look at INRIX speed versus MCS flow we see a larger spread of speed values at low flow
(top left corner of the plot below).

Figure 27 Speed versus flow for MCS and INRIX data

Feature engineering : other INRIX fields

Can speed variance help to predict flow in the uncongested state? The idea

presented by Blandin et. al. and described in previous sections is that the speed

variance is expected to be high if the flow is low in the uncongested phase. Because

drivers are not limited by other traffic and can choose speed freely. At higher flows

and still in the uncongested phase the speed variance is expected to be smaller.

In our datasets we don’t have the speed of individual cars and we don’t have the

speed variance. With INRIX we have the average speed of possibly many vehicles per

minute. Here the data is aggregated and calculated the mean speed per hour, and at

the same time also calculated the variance of the per minute speed values during

each hour. Below we see again two scatterplots with INRIX speed versus MCS flow,

and this time the colors show speed variance. The first plot shows the full range of

speed variance values. The second plot highlights speed variance values above a

certain threshold.
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Figure 28 Flow versus speed for MCS and INRIX data (colours = speed variation)

Figure 29 Flow versus speed for MCS and INRIX data (colours indicate the speed

variation > 5 only)

We see that the speed variance is higher at low flow in the uncongested phase, top

left corner of Figure 29. On this road, the speed ranges from 60km/h to 95km/h

during periods with low flow. The variance is larger for the INRIX speeds than for
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MCS speeds. And the variance can be high in most of this range. So high variance

does not necessarily imply high speed. But the important thing here is the

correlation between flow and speed variance. The scatterplots below show MCS flow

versus INRIX speed variance. First for all traffic, both free-flow and congested and

then, more interestingly, with focus on the free-flow state, here identified by a speed

greater than 70 km/h.

Figure 30 MCS Flow versus INRIX speed (all states)

1. Pearson's correlation: -0.110
2. Spearman correlation: -0.315

A correlation coefficient measures the extent to which two variables tend to change

together. The Pearson correlation evaluates the linear relationship between two

continuous variables. A relationship is linear when a change in one variable is

associated with a proportional change in the other variable. The Spearman

correlation evaluates the monotonic relationship between two continuous or ordinal

variables. In a monotonic relationship, the variables tend to change together, but not

necessarily at a constant rate. The Spearman correlation coefficient is based on the

ranked values for each variable rather than the raw data, for examples see .2

2https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regressi
on/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/
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Figure 31 MCS Flow versus INRIX speed (in the free-flow state)

1. Pearson's correlation: -0.533
2. Spearman correlation: -0.644

We see that there is a correlation in the free-flow state. High speed variance

indicates low flow (top left). It is still an open issue whether this is sufficient (not

necessary) for speed variance to be a useful feature when predicting flows.

Can INRIX reference speed help us to predict flow? No, reference: “The free flow

speed on the segment for the given day and time”, This field is constant at 60 km/h

for all our INRIX data. Not useful for predicting flow. Can INRIX speedbucket help us

to predict flow? Probably not as speedbucket: Level of congestion, which can have

values: 0, 1, 2, 3. The Speedbucket is related to speed rather than flow. The

speedbucket value seems to be high when the speed is high enough, irrespective of

flow. When re-sampling and aggregating the data from minutes to hours we selected

the minimum speedbucket value during each hour.
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Figure 32: Flow versus speed, colours show the speedbucket field

Figure 33: Flow prediction

As can be seen the prediction is very good. Week four is very similar to the previous

three weeks on an hourly basis. The mean absolute error is: 35.6, which means that

on average the prediction is off by 36 cars. The coefficient of determination, the R2
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score is 0.989. The conclusion from this small and initial study is that traffic flow on a

road can be very predictable from week to week. The flow history grouped by hour

and weekday can often very well predict the upcoming flows for the next week.

Deep Learning approaches

We also used 5 deep learning methods for estimating the flow for the road data

sections we had access to. For a full account of the methods, results and conclusions

see [Hsu2021]. They are:

1. A univariate neural network

2. A multivariate neural network

3. A neural network with temporal dependency

4. A multivariate neural network with temporal dependency

5. A neural network with spatio-temporal dependency

All the proposed neural networks are based on an architecture called "Wide & Deep

Learning," introduced in a 2016 paper [Cheng2016Wide]. The architecture enables

the neural network to learn both deep patterns through deep neural network layers

and simple patterns in data by connecting the inputs directly to the output layer.

Each neural network consists of six layers: one input layer, three hidden layers, one

concatenate layer and one output layer. The first layer is considering

temporaldependencies.an input layer with dimension n equals to the number of

input features.

For example, if the model’s independent variables are speed and travel time, equals

two. The input layer is followed by three densely connected hidden layers containing

120, 60, and 30 neuron nodes, respectively. The number of neuron units in each

hidden layer is determined by hyperparameter tuning. The first and third dense

hidden layer outputs are fed into a concatenate layer, which merges the outputs of

two layers and feeds the concatenation to the output layer. The purpose of the

concatenate layer is to provide a short path to the model, through which it can learn

simple and undistorted patterns from the layer closer to the input features.

The last layer of the model is an output layer, which densely connects its inputs and

produces a predicted value of traffic flow on the road segment as the entire

estimator’s output. The dimension of the output layer is one for all neural network

models. Figure 34 shows the structure of one of the proposed ANN models with 27

input features, including speed, hour, and day features.
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Figure 34: structure of the deep learning model

Two performance measures tend to be used in deep learning, RMSE and MAPE. They

are used to evaluate the trained estimation models accuracy when applied to the

test datasets. RMSE measures the differences between values predicted by an

estimator and the actual value, i.e., the prediction errors, and computes the square

root of the average of squared errors. RMSE is also a straightforward measure that

has the same unit as the predicted variable, i.e., veh/h in this thesis. On the other

hand, MAPE expresses the accuracy as a percentage error by computing the average

of absolute ratios of prediction error to the actual value. The MAPE in the project is

presented in percentage after multiplying by 100.
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Figure 35: structure of the deep learning model

Figure 35 represents the overview of the estimation performance in MAPE for all

models when validated on the south and north test datasets collected in a week, i.e.,

22nd to 29th, following the training dataset, i.e., 1st to the 21st. The models in the

figure are presented from left to right with increasing complexity. The baseline model

on the left is the simplest model with only one input feature, speed, and the

spatiotemporal neural network on the rightmost is the most complex, having the

most input features and model parameters. As shown in the figure, incorporating

additional features, and increasing the model complexity generally can improve the

estimation performance on both segments. Again, we refer to the full report

[Hsu2021] for details on the north and southbound differences as well as the

performance metrics.

Figure 36: Example prediction from the neural network prediction (5 above)
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6 Related work

Nikovski compared non-parametric KNNs, regression trees, locally weighted

regression and neural networks to predict the short-term travel times in

[Nikovski2004]. Duan also used deep neural networks, an Autoencoder to

impute/estimate the missing flow data from traffic sensors, and compared its

performance with other non-parametric models, e.g., linear regression and

back-propagation neural networks [Duan2016]. Other non-parametric models

include k-nearest neighbours, neural networks, deep learning and so on [Lint2012,

LV2015, Ma2015, Polson2017, Zhao2017, Li2017].

Linear regression

Linear regression belongs to the non-parametric methods for solving traffic

prediction/estimation problems as both the model structure, the number of

independent variables or degree of polynomial, and values of the parameters, the

intercept and coefficient of each dependent variable, are determined from the

historical data. Linear regression uses historical data to fit a function that

characterizes how each covariate, known as the independent variables, influences

the outcome variable known as the dependent variable. This linear function is then

used to estimate/predict the flow, speed, density, based on unseen data.

Many studies use linear regression as a baseline model to compare with some more

sophisticated models, such as neural networks, for traffic flow prediction [Lint2012].

Kwon et. al.. use a linear regression model to predict future travel time based on data

from loop sensors such as the flow and occupancy, and probe sensors from the

departure times and week days [Kwon2000]. Nikovski et. al. also used a simple linear

regression model with 1 to 3 most recent travel times as input variables to predict

the travel time in a short-term future [Nikovski2004].

Some studies also adopted linear regression models to estimate traffic states based

on partially observed spatial data [Seo2017]. For example, Chen et. al. used a linear

regression model to estimate the missing data for loop sensors based on traffic data

from neighboring sensors around the sensor with missing data [Chen2007].

Although linear regression models for traffic prediction are sometimes outperformed

by nonlinear models in traffic flow prediction due to the nonlinear nature of traffic

flow, its computational efficiency and low memory usage still give it a competitive

edge while short execution time is a critical requirement. Moreover, linear regression

models sometimes show comparable accuracy in predicting traffic flow as other

nonlinear models [Nikovski2004]. In this project, linear regression models mainly
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serve as baseline models for performance comparison with other models. For

example, we use linear regression as one of ML models to describe the relation

between INRIX data and macroscopic traffic flow in MCS data.

Parametric and non-parametric traffic models can also be combined. Parametric and

nonparametric traffic state prediction techniques have previously been developed

with different advantages and shortcomings. While nonparametric prediction has

shown good results for predicting the traffic state during recurrent traffic conditions,

parametric traffic state prediction can be used during nonrecurring traffic conditions,

such as incidents and events.” In this paper, parametric and nonparametric traffic

state prediction techniques are combined through assimilation in an ensemble

Kalman filter. For nonparametric prediction, a neural network method is adopted;

the parametric prediction is carried out with a cell transmission model with velocity

as state." [Allström2106]

Traditionally, traffic has been measured with expensive stationary road sensors that

provide information about flow, speed and occupancy. These sensors are sometimes

referred to as eulerian sensors. Traditional traffic models have been developed based

on this data, and therefore often need flow or density as input. But today it is

common to collect data from probe vehicles (i.e. GPS-equipped cars and

smartphones). Probe vehicle data is sometimes also called mobile data, floating car

data (FCD) or Lagrangian data. That data is continuously gathered from the vehicles

while driving. The data gives information about speed and traveltime, but it does not

typically give any flow information. Given this new type of data, researchers are

trying to: (a) adapt or create new traffic models that incorporate probe data; and (b)

find methods to derive traffic flow from vehicle probes that measure speed and

travel time [Seo2017].

One common approach to estimate the traffic flow from probe data is to use a

fundamental diagram that provides the relationship between speed and flow for a

specific road. Given speed data the flow can, at least in principle, be calculated. But

mapping from speed to flow using a fundamental diagram can be challenging,

especially in the free-flow phase [Herrera2010, Blandin2012, Anuar2016, Seo2017].

Blandin et. al. [Blandin2012] studied the empirical relation between point speed and

point flow for stationary traffic radars in the San Francisco Bay Area, California. They

studied stationary measurements but the goal, in the end, was to assess the

feasibility of inferring traffic flow from probe speed. The authors emphasize that in

classical traffic flow theory, using a triangular fundamental diagram, velocity is

constant at the free-flow speed in the uncongested phase. If the spacing between

vehicles is large enough, the drivers will not be constrained by the surrounding

vehicles, and so they can travel at free-flow speed. This means that in the
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uncongested phase, conversion from speed to flow is theoretically impossible as

speed is theoretically constant at the free-flow speed. However, Blandin et. al. show

with empirical measurements from radar stations that in reality the speed-flow

relation can look very different at different roads, flat, increasing linearly, decreasing

linearly, non-linear. Blandin et. al. use linear regression to estimate flow from speed,

calibrating the model using historical stationary data. They also investigate regression

of flow over speed variance. The paper concludes that the proposed methods give

reasonably accurate flow estimates, and that the conventional speed-flow method

gives significantly more accurate results than the speed variance-flow method.

Using probe data raises a number of additional issues to consider: A basic question

with the FD approach is how a well-calibrated fundamental diagram is created. If the

objective with probe measurements is to replace expensive stationary

measurements, then it doesn't work to use loop-detector data to provide a good FD.

A fundamental diagram from another road in the same category might then be used,

if it can be assumed to be similar enough. There are also efforts to derive the FD

without stationary measurements. For instance, Seo et. al. [Seo2019] present a

framework for estimating the fundamental diagram without stationary detectors.

Instead they use only probe data and information about the jam density.

The aggregation interval of the speed data is often also an important issue. It is also

important to consider how representative the speed of the probe vehicles are,

compared to all traffic. How large of a share of the vehicles on the road provides

speed data (the penetration rate)? Do we mostly get values from a fleet of slow

trucks and/or fast driving taxis? Another issue to consider is that probe techniques

provide space-mean speed while stationary sensors would give time-mean speed.

The characteristics of a specific road segment can also influence the speed and flow

estimates (ramps, variable speed limits etc.) compared to measurements at a fixed

point.

Herrera and Bayen [Herrera2010] propose two methods to incorporate speed

measurements from vehicles into flow models for traffic state estimation purposes: a

Kalman filtering technique and a Newtonian relaxation method. The latter technique

modifies the Lighthill–Whitham–Richards partial differential equation to include a

correction term which reduces the discrepancy between the probe measurements

and the estimated state. Converting speed measurements into density using a

fundamental diagram introduces some errors. However, the paper concludes that

despite this error the proposed methods produce accurate estimates.

[Neumann2013a] derive traffic volumes from probe vehicle data by applying the

speed-flow relationship of the fundamental diagram (using the van Aerde model) on

hourly averaged data. Evaluation is done with data from 600 local detectors and a
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taxi fleet with 4300 vehicles in Berlin, Germany. In [Neumann2013b] the authors say

that the approach is "more or less applicable, in principle", but the deterministic

modelling of the speed-flow relation does not capture the variations in speeds given

the same traffic flow. [Neumann2013b] proposes a more detailed representation of

the fundamental diagram (speed and flow) based on Bayesian networks which also

takes into account the dynamic transitions between traffic states over time.

K. A. Anuar estimates traffic volume from probe vehicle data specifically for freeways

in the Ph.D. thesis [Anuar2016]. Fundamental diagrams is one of three methods

explored in the thesis (the other two approaches being: shockwaves and information

about the space headway between lead and follower vehicles). The thesis studies

four different fundamental diagrams (Greenshields, Underwood, Northwestern, Van

Aerde) and data aggregated in 5, 10 and 15 minutes intervals. The results using

fundamental diagrams are also presented in the paper [Anuar2015]. The probe

vehicle data used in this study comes from the Mobile Century project in San

Francisco (2008) where GPS data (timestamp and position) was collected from

vehicles with recruited drivers. The estimated traffic flows are compared to

measured traffic flows from loop detectors. In this case study the Van Aerde-model

provides the best results. It gives reasonable estimates of traffic flow rates with good

estimates during periods of high flow rates, and with slight underestimation during

medium flow rates. Aggregating the data into 15-minutes intervals smoothens the

data and gives lower estimation errors. Traffic flow rates are more accurately

estimated during congested traffic conditions compared to free-flow conditions in

this study.

Road traffic measurements are performed by many different stakeholders:

government agencies, municipalities, researchers and commercial companies. The

measurements are done for many different reasons, on different time scales, and

with different techniques. See for instance Allström et. al. [Allström2017] and

Sharma et. al. [Sharma2017] for an overview of traffic sensors and data collection

techniques.

Government agencies and municipalities often measure road traffic for planning of3

future roads, for operation and maintenance, and for analysis of accident risks and

environmental impact. The timescale of interest is often days, months or years. But

sometimes measurements are also collected and used in real-time for traffic control

and incident detection. The measurement techniques often include inductive loops,

radars or pneumatic tubes. The Swedish Transport Administration, “Vägverket”,

3 "Kartläggning av trafiktekniska mätningar och hur kommuner använder dem", 2017, Marcus Nilsson and Pontus Karlsson,
student paper, Lund University. <https://lup.lub.lu.se/student-papers/search/publication/8918020>, viewed 2020-06-16.
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measures road traffic on the government owned roads in Sweden . They measure for4

instance traffic volume, "trafik arbete", expressed in vehicle kilometers, to

understand the usage of the road network. In order to monitor traffic trends in the

country over time, the Swedish Transport Administration continuously measures

traffic on about eighty road sections . These roads are selected to represent the5

entire state road network in Sweden. Complementary sampling is also done on many

other stretches of road.

Several commercial companies, including Google, Waze, Here, TomTom, INRIX and

many others, today collect and provide traffic information to drivers (and in some

cases also to automotive companies, cities and road authorities). As an example,

Google Traffic relies on crowdsourcing from drivers to collect traffic information.

Google collects GPS information from phones and calculates the speed of the users

on the road. In 2007, Google started to offer live traffic information on top of Google

maps. A color code (green, orange, red) is used to highlight the speed of traffic on a

road: green means no traffic delays and the darker the red the slower the traffic on

the road. Waze also relies on crowdsourcing from drivers to provide a real-time

traffic service. They collect map and traffic information, and also allow users to

report incidents on the road via a phone app [WAZE]. Google bought Waze in 2013.

INRIX provides traffic information to road authorities, cities, automotive industries

and individuals. They collect traffic data from many sources including road sensors,

connected cars and mobile devices [INRIX]. Here Technologies is another example of

a company that provides map, traffic and location services to both companies and

individuals [HERE]. Also telecom companies collect data about traffic and mobility

and provide services based on the data. In Sweden an example of this is Telia Crowd

Insights [Telia].

New technology opens up new innovative ways of measuring traffic . This includes6

video and cameras, Bluetooth and wifi measurements [Forsman2018], the use of

drones , and connected cars talking to each other and the road infrastructure.7

Techniques that use Bluetooth or wifi are common for Automatic Vehicle

Identification (AVI). The Bluetooth or wifi addresses of devices in cars are captured

by roadside equipment. The same vehicle can in this way be identified at several

locations; and this can be used to calculate travel time.

7 Datafromsky, <https://datafromsky.com/>, viewed 17 June 2020.

6 BBC, “The technology that could end traffic jams”, 2018,
<https://www.bbc.com/future/article/20181212-can-artificial-intelligence-end-traffic-jams>, viewed 17 June 2020.

5 "Helårsmätpunkter för uppföljning av trafikarbetets förändring på statliga vägnätet" (map of monitoring points
in Sweden) <https://www.trafikverket.se/contentassets/5abd840104264f72b7340e481b3771db/tf_punkter.pdf>,
viewed 2020-06-14.

4 Trafikverket: Vägtrafik- och hastighetsdata
<https://www.trafikverket.se/tjanster/trafiktjanster/Vagtrafik--och-hastighetsdata/> , Trafikarbete
<https://www.trafikverket.se/tjanster/trafiktjanster/Vagtrafik--och-hastighetsdata/Trafikarbete/>, viewed 2020-06-16.
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Alternative sensor data like vehicle probe data is much cheaper to collect, compared

to traditional stationary sensors like radar and inductive loops. Also, with the new

sensors a much larger part of the road network can be monitored. But there is an

important difference in what type of data the different methods can provide. Vehicle

probe data can provide speed and travel time but typically not traffic flow data. If

flow data is needed as input to algorithms for traffic control or other calculations,

then there is a need to estimate the flow from speed or travel time data. This

estimation problem is the focus of the work in this report. Previous research on this

estimation problem was surveyed by Seo et. al. [Seo2017].

Blandin et. al. [Blandin2012] studied the empirical relation between point speed and

point flow for 112 stationary traffic radars in the San Francisco Bay Area, California.

They studied stationary measurements but the goal, in the end, was to assess the

feasibility of inferring traffic flow from probe speed. The authors emphasize that in

classical traffic flow theory (using a triangular fundamental diagram) velocity is

constant (at the free-flow speed) in the uncongested phase. If the spacing between

vehicles is large enough, the drivers will not be constrained by the surrounding

vehicles, and so they can travel at free-flow speed. This means that in the

uncongested phase, conversion from speed to flow is theoretically impossible as

speed is theoretically constant at the free-flow speed. However, Blandin et. al. show

with empirical measurements from the radar stations that, in reality, the speed-flow

relation can look very different at different roads (flat, increasing linearly, decreasing

linearly, non-linear). The figure below comes from the paper by Blandin et. al.

[Blandin2012].

Kim and Coifman evaluate INRIX speed data by comparing it against concurrent loop

detector data [Kim2014]. They study two months of data from an urban Interstate

freeway in Columbus, Ohio, USA. The paper shows that, at a timescale of five

minutes, both plots of the INRIX data and corresponding plots derived from loop

detector data show similar patterns of congestion. The authors conclude that INRIX

data works well for monitoring traffic but they point out three issues with the data:

First, INRIX exhibited a latency of about 6 min compared to the loop detector data.

Second, INRIX reports speed every minute, but most of the time the reported speed

is identical to the previous sample, which indicates that the speed is calculated over

a longer time period. Third, the INRIX confidence measures do not appear to reflect

the latency or repeated measures. Kim and Coifman note that since the INRIX

process is proprietary, there is no way to know if the INRIX data stream includes

measurements from the same sensors that the study uses for evaluation.

Comparisons between INRIX data and loop detector data should be viewed in this

context. In this report we most often assume that the INRIX speed values are based

on probe data and calculated from the GPS speed in vehicles.
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Sharma et. al. studied INRIX probe data used for traffic operations and safety

management in the state of Nebraska, USA [Sharma2017]. They evaluated INRIX-data

against PVR (per vehicle record) sensordata. There are two main conclusions in their

report: First, there is almost always a speed bias between data streaming from

probes, the INRIX data and traditional infrastructure-mounted sensors. The average

speed bias for real-time data reported in this work was 6.06 mph which is 9.75 km/h.

The second conclusion is that the lack of confidence score of 30 real-time INRIX

probe data is a critical issue that needs to be considered when doing traffic analysis.

Ahsani et. al. explores the coverage of INRIX real-time data in the state of Iowa, USA,

and demonstrates the growth in real-time data over a 4-year timespan [Ahsani2018].

A comparison is made with Wavetronix smart sensors to evaluate INRIX’s speed data

quality. The paper investigates speed bias: the difference in speed values between

the INRIX data and the Wavetronic sensors. Some differences are inevitable due to

the differences in data collection methods. INRIX and other probe technologies

calculate space mean speed; that is the average speed of vehicles over a length of

road. Wavetronix, and other stationary road sensors, instead calculate time mean

speed; which is the arithmetic mean of vehicles’ speed passing a given point. The

paper shows that the speed bias may also depend on speed, segment length and

time of day. Ahsani et. al. also study how accurate and reliable INRIX is when it

comes to detecting congestion (both recurring and non-recurring).

In addition to factors such as speed and density, which affect flow rate based on

traffic theory, studies also found that the relations between flow and speed/density

are in fact not static but changes with time, ie, dynamic. Dervisoglu et. al. found that

the maximum flow rate of a road segment not only changes on different days, but

also changes before and after the congestion occurs under the same critical density,

which means the flow-density relation in a road segment [Dervisoglu2009]. Duan

also found that the flow rate patterns in weekends are different from patterns in

weekdays, and using the data with different temporal factors when training could

improve the performance of flow data imputation [Duan2016]. In this work, we also

observed that the relation between flow and speed is different between daytime and

night, i.e., a flow drop is observed under the same speed between daytime and

night. Therefore, including the temporal factor of daytime/night into our feature

vector should help the regression models to estimate the flow rate more precisely.

Previous studies showed that traffic state parameters such as speed and flow rate of

road links have spatial correlation with each other, which means that there are

dependencies between different road links in the same road network and their traffic

states are influenced by their neighbors [Ermagu2017]. Based on these observations,

various studies have utilized the spatial dependency between road links in the

problems of traffic state estimation and prediction. For example, Chen
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estimated/imputed the missing flow rate data of the detector by using data collected

from neighbor detectors (in the same timestamp) based on the linear relations of

flow rate between the center and neighbor detectors [Chen2003]. Among spatial

relations between road links, strong positive correlations were observed between

the links and their upstream/downstream links [Ermagu2017]. For example, Duan et.

al. found that the accuracy of their flow estimation model could be improved by

including the data from upstream and downstream road segments instead of only

using the data from a single road segment as the input feature [Duan2016].

Moreover, the spatial correlation between road links, especially the positive

correlations between target links and their immediate upstream/downstream links,

are widely used to solve the traffic prediction and estimation problems [Zhang2019,

Ermagu2017]. In this work, we also observed a high correlation of INRIX data

between south and north road segments at the same time step (correlation > 0.95).

Therefore consider the spatial factor by including INRIX data from the adjacent road

segment into our model. By doing so we expect to improve the accuracy of

estimation since the data from the upstream/downstream segments may provide

extra information about traffic states based on the spatial correlation.

A 30-page white paper published by the UK TRL research lab exemplifies the most

important traffic flow relationships [Notley2009]. Non-linear density-flow,

flow-speed, density-speed relationships are explained. In the flow-speed cases traffic

phases are given, free-flow and breakdown. Some plots show the maximum or

optimal traffic situations using the data to indicate capacity for example.

Shockwaves, or the back propagation of slowing down, are exemplified on the busy

M25 ring road around London. Comparison of time of day effects are shown as

histograms (1 per day). This report is directly relevant to our work, in that we will

recreate the plots for at least the MCS data. It differs in that it only uses loop sensors,

whereas we utilize both loop and probe data. It differs from us in that we use floating

car data as well and apply ML methods too. An introductory textbook on traffic flow

is [Elefteriadou2014].

There are also methods that estimate flow from mobile measurements without using

a fundamental diagram. These methods often either (a) combine mobile

measurements with vehicle counts and other limited stationary data [Seo2017,

Coifman2003, Astarita2006, Qiu2010, Bekiaris-Liberis2016, anthawichit2003,

Sekula2017] or (b) make use of more advanced mobile data (than just speed and

traveltime), for instance spacing information [Seo2015a, Seo2015b, Anuar2016].
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7 Potential future directions

Spatial-temporal correlations

Mining spatial and temporal information in the spatial-temporal correlation datasets

is a prevalent topic in traffic data imputation and prediction. We did not in detail the

temporal and spatial correlation between neighboring data points in the time-space

domain for traffic flow estimation and imputation. We did capture the traffic

condition’s dependency on the hour/weekday and location in the historical data and

used this information to infer the traffic flow based on the real-time INRIX measures.

However, more information is hidden in an unobserved/missing data point’s

neighboring data in the time-space domain. For example, a road segment’s traffic

flow could be heavily affected by the traffic conditions from its upstream and

downstream road segments. Moreover, traffic flow in a time slice could have strong

correlations with traffic conditions in its previous and later few time slices. Therefore,

full use of spatial-temporal information could help us improve the accuracy of traffic

flow estimation, imputation, or prediction. One possible direction for future research

is to collect a comprehensive dataset containing INRIX and MCS data collected from

many road segments on the road or in a road network during an extended period.

One could use sophisticated deep learning methods such as Recurrent Neural

Network (RNN), CNN, or Graph Convolutional Network (GCN) to extract the temporal

and spatial correlations between traffic flow and INRIX’s measures from the dataset

containing rich spatial-temporal information. The extracted spatial-temporal

correlations and real-time INRIX measures could be solely used for estimating the

traffic flow on a road segment, like what we did in this work, or could be used

together with other fixed sensordata for estimating, imputing, or predicting the

traffic flow.

Traffic Flow Prediction

Predicting short-term traffic flow is a challenging but more valuable task for traffic

control ITS and transportation planning. Therefore, one possible future direction is

extending the approach proposed in this report to work for traffic flow forecasting.

Most studies use features solely from the fixed-location sensor’s measures to predict

traffic flow to the best of the author’s knowledge. At the same time, very few of

them took alternative data sources, e.g., mobile data, into account when it comes to

traffic prediction. The quickest way to extend our approach for traffic forecasting is

using flows in the short-term future, e.g., 15 minutes, as labels to train the neural

network models, and then using the models to predict the traffic flow based on the
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current INRIX measures. However, a typical prediction approach will be extracting the

temporal correlations from the historical data using some time-series models, e.g.,

RNN or Long Short-Term Memory (LSTM), and then using the extracted correlation

for prediction based on the recent INRIX data from the current and previous time

slices. Some recent studies also captured the spatial correlation and the temporal

correlation using GCN to make full use of both spatial and temporal information in a

road network for traffic forecasting. No matter which method one uses to extract the

temporal and/or spatial correlations between INRIX measures and the traffic flow,

INRIX data as an additional informationsource should help improve the prediction

accuracy when used together with the typical fixed sensor’s measures. Besides, we

could also use INRIX alone for predicting the short-term traffic flow when other data

sources are not available, e.g., the fixed detector malfunctions.

Using density as a traffic control parameter

By density we mean the number of vehicles per road length. Some reasons for

preferring traffic density over flow or average speed are:

1. Density is intuitive, we can think of the number of vehicles per road section

2. Velocity is dependent on the vehicle type:

○ Trucks are slower than cars

○ Density is independent of the vehicle type.

3. Density can be compared between road sections, countries, etc.

4. Average velocity and flow can be difficult or sensitive to local conditions

5. Density is a better input to emissions as the #vehicles / area can be correlated

to the CO2 or heavy NOX particles. See the other TENS reports.

In some cases, extra inference is needed to obtain queue buildup between sensors,

as queues can accumulate very quickly, i.e. at higher resolutions than the

cross-sectional traffic. Space does not permit its derivation here, but density changes

are obtained from the PDE relationship between flow-density-velocity.

Alternative prediction methods

Given the periodicity and relatively regular pattern of flow and speed using spectral

techniques is a possibility. The better known one is Fourier analysis and its associated

Fourier transform (FT). It is a mathematical transform that decomposes functions

depending on space or time into functions.
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Figure 15: Wavelet decomposition of speed (left), subsequent reconstruction (right)

Wavelets are termed a "brief oscillation". It is a wave-like oscillation with an

amplitude that begins at zero, increases or decreases, and then returns to zero

one or more times. A taxonomy of wavelets has been collated which is based on

the number and direction of the pulses. Wavelets have properties that make

them useful for signal processing, time series, coding media and so on.

8 Conclusions

Traffic flow is a complex phenomenon. Although relatively predictable on longer time

scales as we have plotted, as the time scales shorten the prediction becomes more

difficult. From a driving point of view, individual drivers can make irrational

maneuvers that affect the entire flow of a lane, road or city.

Using regression and the fundamental diagrams time-of-day is a good predictor for

flow. The average flow per hour during the first three weeks of the data, predicts well

the flow per hour during the fourth week. Speed variance might be a useful feature

for improving the prediction of flow from speed during the free-flow phase. A first

test with a simple linear regression with two line-segments, separating the free-flow

and congested state, gives a good score (0.89 R2). Also using neural networks show

similar results, albeit at higher complexity, more data, but better opportunities for using

feature engineering.

In this report (with background in the first report) we have looked at the

predictability of flow in MCS and INRIX systems. Then we take one step further and

try to infer the flow in the complex MCS system from the potentially easier to gather

floating or Bluetooth sensors. Pros and cons are available in the other TENS reports.
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