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Abstract: Dietary advanced glycation end-products (dAGEs) have been hypothesized to be asso-
ciated with a higher risk of colorectal cancer (CRC) by promoting inflammation, metabolic dys-
function, and oxidative stress in the colonic epithelium. However, evidence from prospective
cohort studies is scarce and inconclusive. We evaluated CRC risk associated with the intake of
dAGEs in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Di-
etary intakes of three major dAGEs: Nε-carboxy-methyllysine (CML), Nε-carboxyethyllysine (CEL),
and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated in 450,111 partic-
ipants (median follow-up = 13 years, with 6162 CRC cases) by matching to a detailed published
European food composition database. Hazard ratios (HRs) and 95% confidence intervals (CIs) for
the associations of dAGEs with CRC were computed using multivariable-adjusted Cox regression
models. Inverse CRC risk associations were observed for CML (HR comparing extreme quintiles:
HRQ5vs.Q1 = 0.92, 95% CI = 0.85–1.00) and MG-H1 (HRQ5vs.Q1 = 0.92, 95% CI = 0.85–1.00), but not
for CEL (HRQ5vs.Q1 = 0.97, 95% CI = 0.89–1.05). The associations did not differ by sex or anatomical
location of the tumor. Contrary to the initial hypothesis, our findings suggest an inverse association
between dAGEs and CRC risk. More research is required to verify these findings and better differen-
tiate the role of dAGEs from that of endogenously produced AGEs and their precursor compounds
in CRC development.

Keywords: advanced glycation end-products; dietary glycation compounds; colorectal cancer; di-
etary exposure

1. Introduction

Colorectal cancer (CRC) is the third most common cancer globally, and the second
leading cause of cancer-related deaths [1]. The incidence of CRC follows a geographical
distribution pattern, with the highest figures observed in Western countries [2], most
likely attributable to the “modern” lifestyle and diet rich in energy-dense processed foods
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with poor nutritional value [3–5]. The Western diet is a substantial source of advanced
glycation end-products (AGEs), an expansive group of molecules produced by irreversible
non-enzymatic combination of reducing sugars and proteins, lipids, or nucleic acids [6].
The typical Western diet can also promote endogenous formation of AGEs by supplying
reducing sugars and AGE precursors such as reactive dicarbonyls, i.e., methylglyoxal,
glyoxal, glycolaldehyde, and glyceraldehyde [7]. Dietary AGEs (dAGEs) are known for
their pro-inflammation and pro-oxidation properties in the colon and have been reported
in diverse colonic pathologies, such as inflammatory bowel diseases [8]. Around 70–90%
of AGEs ingested are unabsorbed [9,10] and remain in the gastrointestinal tract where they
can interact directly with colon epithelial cells. The human colon is, therefore, potentially
exposed to AGEs from the diet, but also from the systemic milieu by way of circulating
AGEs [11,12].

AGEs have been hypothesized to be associated with CRC development [13], mostly
due to their ability to promote tumor cell growth in vitro [13]. A body of mechanistic
evidence has linked AGEs to CRC through stimulation of the pro-inflammatory response
via the activation of the receptor of AGEs (RAGE) [14], an increase in colonic barrier
permeability—allowing closer interaction of AGEs with colonic epithelium—and conse-
quential leakage of bacterial toxins into the systemic circulation [15]. Notwithstanding
these numerous plausible mechanisms, no previous epidemiological studies have investi-
gated the relationship between dAGEs and CRC, probably due to the lack of detailed food
composition databases for these compounds. The development of food composition tables
for estimating dietary AGEs is recent, and few tables exist, mainly for Japanese foods [16]
and more recently for European foods [17]. Due to the large number of different AGEs, the
tables developed focused on the major compounds, specifically Nε-(carboxymethyl)lysine
(CML). The European food composition table provides data on CML and, additionally,
on two other major dAGEs: Nε-(carboxyethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-
imidazolon-2-yl)-ornithine (MG-H1).

Considering the potential direct interaction of dAGEs with the colonic epithelium
and their numerous CRC-promoting effects, we hypothesize a positive CRC risk associ-
ation with higher dAGEs consumption. We evaluated our hypothesis using information
on dietary intake of CML, CEL, and MG-H1 in the prospective European Prospective
Investigation into Cancer and Nutrition (EPIC) cohort.

2. Materials and Methods
2.1. Study Participants

We used data from the EPIC study, a large prospective cohort with over half a million
participants (n = 521,324) from 10 European countries (Denmark, France, Germany, Greece,
Italy, the Netherlands, Norway, Spain, Sweden, and the United Kingdom) [18]. In brief,
participants aged between 35 and 75 years were recruited from 1992 to 2000 in 23 partici-
pating centers. Anthropometric measures, socio-demographic information, and lifestyle
and dietary intake data were collected at recruitment from all participants. Standing height,
weight, and waist and hip circumferences were measured, with self-reporting exceptions
in France, Norway, and Oxford. Body mass index (BMI, in kg/m2) was calculated.

2.2. Ethical Considerations

Ethical approval for the EPIC study was obtained from the Ethical Committee of the
International Agency for Research on Cancer (IARC) and local ethical committees. All
participants provided written consent to participate in the study.

2.3. Dietary Assessment and dAGEs Estimation

Usual diet was collected at baseline using a combination of country- or center-specific
questionnaires that have been validated to reflect local contexts [19,20]. Dietary data were
collected during interviews in Greece, Spain, and Naples and Ragusa (Italy), whereas
in other EPIC centers self-administrated questionnaires were used. Quantitative dietary
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questionnaires were used in Germany, Greece, the Netherlands, and Northern Italy; semi-
quantitative food frequency questionnaires were employed in Denmark, Norway, Naples,
Umea, and the UK; and in Malmo a combination of a non-quantitative food-frequency
questionnaire and a food record was utilized.

To estimate intakes of individual AGEs, we used the database for protein-bound
AGEs developed for 190 food items selected from the Dutch cohort of EPIC and the Dutch
National Food Consumption survey [17]. These foods were matched to the EPIC food list
by name and descriptors, especially considering preparation and processing to expand the
EPIC Nutrient Database (ENDB) with extra food components, a procedure used for other
nutrients/anti-nutrients and described in detail elsewhere [21,22]. For complex foods with
multiple ingredients, the foods were decomposed into specific ingredients or food items to
generate EPIC dAGEs composition data for each food item. Thereafter, for each participant,
daily intakes of CML, CEL, and MG-H1 were estimated. ∑dAGEs was calculated as the
sum of individual dAGEs (CML+CEL+MG-H1) and used to picture overall AGEs intake
patterns. The main food contributors of dietary CML and MG-H1 were (from highest to
lowest contribution): cereals and cereal products, meats and meat products, cakes, and
biscuits (Supplementary Figure S1) [23]. For CEL, the main contributors were meat and
meat products, cereal and cereal products, cakes, and biscuits. Dairy products, fish and fish
products, and non-alcoholic drinks were also relevant dietary sources of the three dAGEs.

We excluded participants from Greece (n = 26,048) due to data use restrictions, those
diagnosed with cancer at baseline (n = 25,184), those with missing follow-up information
(n = 4148) or dietary questionnaire data (n = 6259), those in the highest or lowest 1% of
energy intake versus energy requirements (n = 9573), and a participant who withdrew
from EPIC. Our final dataset included 450,111 participants, among whom 318,686 were
women (71%).

2.4. Identification of CRC Cases

Cancer cases were ascertained from cancer registries in Denmark, Italy, the Nether-
lands, Norway, Spain, Sweden, and the United Kingdom, or by using a combination of
sources, including health insurance records, oncology and pathology records, or, in the
specific cases of France and Germany, through active follow-up of the participants and
their relatives. CRC cases were first incident, and histologically confirmed by a pathol-
ogist. We used the International Classification of Diseases for Oncology (ICD-O, codes
C18–C20) to define the cases. Colon cancers were defined as tumors that occurred in the
cecum, appendix, ascending colon, hepatic flexure, transverse colon, splenic flexure, or the
descending or sigmoid colon (C18.0–C18.7), and overlapping and/or unspecified origin
tumors (C18.8 and C18.9). Rectal cancers were defined as tumors that occurred at the
recto-sigmoid junction (C19) or rectum (C20).

2.5. Statistical Analyses

Daily intakes of CML, CEL, and MG-H1 were natural log-transformed and their stan-
dardized residuals were computed by regressing the ln-transformed values on participant
energy intake and center. Ln-transformed dAGEs were divided into quintiles, with the
first quintile used as the reference in all our analyses. Cox proportional hazards regression
models stratified by age at recruitment (one-year categories), sex, and center were used
to compute hazard ratios (HRs) and 95% confidence intervals (CIs) for the association
between individual dAGEs and CRC risk. Time at entry was age at recruitment, while exit
time was set as the age at which any of the following first occurred: CRC diagnosis, death,
emigration, or last date at which follow-up was considered complete. To test the trends of
the associations, we ran Cox models using median values of each category as a continuous
variable. Analyses were also conducted using continuous variables for dAGEs (per ln(SD)
increment). No deviation from the proportional hazards assumption was observed after
assessing Schoenfeld residuals. Three main models were run. Model 1 was stratified
by age (1-year categories), sex, and center. Model 2 was additionally adjusted for BMI
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(continuous), height (continuous), and lifestyle factors, including education (none; primary;
technical and professional; secondary, higher), physical activity (inactive; moderately in-
active; moderately active; active), smoking status and intensity (never; current smokers,
cigarettes/day: 1–15, 16–25, >26; former smokers who quit: <=10, 11–20, >20 years; oc-
casional), and total energy intake (kcal/day, continuous). Model 3 was further adjusted
for the Mediterranean diet score to consider the diet as a whole, and because this score
has also been specifically associated with CRC risk [24]. We considered missing data as
a separate category for physical activity (1.9%), education (2.3%), and smoking (3.3%).
Restricted cubic splines were used to model possible nonlinear trends [25,26]. Linearity
of the associations was tested using the likelihood ratio test, comparing the model with
only the linear term with the model including both the linear and the cubic spline terms.
There was no indication of nonlinear associations in any of our analyses. Analyses (using
Model 3) by anatomical subsites of the colorectum were also run for rectal and colon
cancer, and, specifically, for proximal and distal colon cancers. Potential differences in
the associations by tumor sites, i.e., rectal vs. colon or proximal colon vs. distal colon,
were tested using competing risk analyses [27,28]. Stratified analyses by country, BMI, sex,
and years of follow-up were conducted and multiplicative interactions were included in
the model to evaluate potential heterogeneity. To model the possible impact of reverse
causation, we ran sensitivity analyses by excluding the first 2 years of follow-up.

All the analyses were carried out using Stata 14.0 (StataCorp., College Station, TX,
USA). We considered two-sided p-values below 0.05 as statistically significant.

3. Results

Table 1 summarizes selected baseline characteristics of the study participants by
quintiles of ∑dAGEs. Participants in the highest quintile consumed more processed meats,
cakes, biscuits, cereals and cereal products, and legumes and less fruit. They also tended to
consume less sugar, confectionery, and alcohol.

In minimally adjusted models (Model 1), CML (HR comparing highest to lowest quin-
tile, HRQ5vs.Q1 = 0.83, 95% CI = 0.77–0.90, p for trend <0.001) and MG-H1 (HRQ5vs.Q1 = 0.84,
95% CI = 0.77–0.90, p for trend <0.001) showed inverse associations with CRC, whereas
no significant association was observed for CEL (HRQ5vs.Q1 = 0.92, 95% CI = 0.85–1.00,
p for trend = 0.064) (Table 2). The significance of the associations was attenuated after full
adjustment (Model 3), with HR (95% CI) of 0.97 (0.94–0.99) and 0.97 (0.95–1.00) for CML
and MG-H1, respectively.

Analyses by tumor subsites showed no significant heterogeneity between colon and
rectal cancers, although the association with rectal cancer was statistically significant for
CML (HR per ln(SD) increment: rectal cancer HRln(SD) = 0.93, 95% CI = 0.88–0.97) and
MG-H1 (rectal cancer HRln(SD) = 0.94, 95% CI = 0.90–0.99) (Table 3). No significant differ-
ence in the association between the individual dAGEs and CRC risk was observed by sex
(Supplementary Table S1). In stratified analyses, dAGEs–CRC risk did not differ by country,
and tended to be restricted to participants with BMI <30 kg/m2 (Supplementary Table S2).
When the follow-up time of cases was considered, dAGEs–CRC showed a gradient in the
association between higher CRC risk observed and lower follow-up. Excluding participants
with follow-up less than 2 years did not materially change the results (not shown).
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Table 1. Selected characteristics of the study participants (by quintiles of dietary AGEs), EPIC cohort study, 1992–2014.

Quintiles of ∑AGEs Intake

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

Recruitment and follow-up
Age at recruitment, years 50.9 ± 9.9 50.5 ± 9.7 50.2 ± 9.7 50.1 ± 9.7 51.5 ± 9.7

Follow-up, years 14.1 ± 4.2 14.1 ± 4 14.1 ± 3.9 14.1 ± 3.8 14.2 ± 4.1
Anthropometry

BMI, kg/m2 25.2 ± 4.2 25.3 ± 4.2 25.3 ± 4.2 25.3 ± 4.2 25.1 ± 4.2
Socio-demographic and lifestyle *

Education status, %
None 3.3 3.5 3.5 3.7 3.6

Primary school 25.5 24.9 24.9 24.8 25.0
Technical or professional 23.0 24.0 23.9 23.3 22.7

Secondary school 20.6 20.6 21.3 22.3 21.0
Higher education 24.7 24.4 24.3 24.2 25.1
Smoking status, %

Never 38.2 41.4 43.0 44.1 46.0
Current, 1–<16 cigarettes/day 12.8 12.3 11.9 11.5 9.58

Current, 16–<=20 cigarettes/day 8.1 6.75 6.1 5.5 4.19
Current, >20 cigarettes/day 2.4 1.57 1.3 1.2 0.88

Former, quit <=10 years 9.7 9.89 9.7 9.7 9.15
Former, quit 11–<20 years 8.1 8.42 8.4 8.4 8.56

Former, quit >20 years 7.8 7.83 8.1 8.0 9.22
Current, pipe-cigar-occasional 9.5 8.46 8.5 8.6 9.31

Physical activity status, %
Inactive 21.2 19.8 19.2 18.6 19.0

Moderately inactive 33.3 33.7 33.3 32.9 33.4
Moderately active 25.2 26.7 27.0 27.5 27.0

Active 18.5 18.0 18.4 18.5 19.0
Daily dietary intake
Energy intake, kcal 2052 ± 775 2084 ± 639 2091 ± 585 2092 ± 548 2063 ± 512

Red meat, g 44.4 ± 40.3 44.6 ± 37 43.3 ± 35.2 42.0 ± 34.1 38.9 ± 33.1
Processed meat, g 30.6 ± 30.7 33.1 ± 30 34.1 ± 30.2 34.1 ± 30.1 34.7 ± 32.6

Fibre, g 20.1 ± 8.1 22.0 ± 7.4 23.1 ± 7.2 23.9 ± 7.3 25.1 ± 7.9
Dairy products, g 345 ± 271 332 ± 237 326 ± 229 324 ± 224 341 ± 226

Fish and shellfish, g 36.7 ± 37.2 38.6 ± 37.1 38.4 ± 36.7 37.6 ± 35.9 38.2 ± 34.7
Cakes and biscuits, g 29.0 ± 34.9 39.3 ± 40.5 45.0 ± 43.4 49.2 ± 45.8 47.9 ± 46.5

Cereal and cereal products, g 171 ± 101 207 ± 105 224 ± 106 237 ± 108 260 ± 121
Fruits, nuts, and seeds, g 242 ± 220 235 ± 183 231 ± 169 228 ± 160 225 ± 156

Vegetables, g 205 ± 146 198 ± 127 193 ± 122 190 ± 121 200 ± 128
Legumes, g 10.2 ± 18.7 13.2 ± 21.7 14.8 ± 23.7 16.2 ± 25.7 16.8 ± 27.2

Potatoes and other tubers, g 100 ± 86.3 96 ± 75.1 92.0 ± 69.8 89 ± 68.3 93 ± 69.2
Egg and egg products, g 17.6 ± 18.7 18.2 ± 17 18.2 ± 16.5 18.1 ± 16.6 17.8 ± 17.1

Fat, g 79.9 ± 35.5 81.3 ± 29.8 81.1 ± 27.6 80.6 ± 26.5 78.4 ± 25.9
Sugar and confectionery, g 50.3 ± 76.3 44.3 ± 45.4 41.8 ± 38.7 39.8 ± 36.2 37.6 ± 33.4

Alcohol, g 18.9 ± 25 13.1 ± 16.5 10.9 ± 14.1 9.3 ± 12.5 8.3 ± 11.3
Mediterranean diet score, %

Low 32.8 26.2 23.9 22.8 21.2
Medium 44.6 46.5 47.1 47.9 49.3

High 22.6 27.3 28.9 29.3 29.6

Abbreviation: AGE, advanced glycation end-products; EPIC, European Prospective Investigation into Cancer and Nutrition;
mean ± standard deviation is presented, unless otherwise stated; quintiles were calculated using total energy, center-standardized
residuals, and log-transformed ∑AGEs values. * Percentages do not add up to 100% because of missing values.
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Table 2. Hazard ratios and 95% confidence intervals (CI) for colorectal cancer risk associated with individual dietary AGEs
(quintiles and continuous), EPIC cohort study, 1992–2014.

Dietary AGE N Cases Median Intake Model 1 Model 2 Model 3

CML, mg/day
Quintile 1 1391 1.90 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.)
Quintile 2 1259 2.41 0.93 (0.86–1.00) 0.94 (0.87–1.02) 0.98 (0.90–1.06)
Quintile 3 1210 2.75 0.91 (0.85–0.99) 0.94 (0.87–1.01) 0.98 (0.91–1.07)
Quintile 4 1120 3.16 0.85 (0.79–0.92) 0.88 (0.81–0.95) 0.93 (0.86–1.01)
Quintile 5 1182 4.02 0.83 (0.77–0.90) 0.87 (0.80–0.94) 0.92 (0.85–1.00)
p for trend <0.001 <0.001 0.023

per ln(SD) increase 0.94 (0.91–0.96) 0.95 (0.92–0.97) 0.97 (0.94–0.99)
CEL, mg/day

Quintile 1 1214 1.37 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.)
Quintile 2 1271 1.71 1.00 (0.92–1.08) 1.00 (0.92–1.08) 1.02 (0.95–1.11)
Quintile 3 1219 1.93 0.95 (0.88–1.03) 0.95 (0.88–1.03) 0.99 (0.91–1.07)
Quintile 4 1268 2.21 0.99 (0.91–1.07) 1.00 (0.92–1.08) 1.04 (0.96–1.13)
Quintile 5 1190 2.85 0.92 (0.85–1.00) 0.92 (0.85–1.00) 0.97 (0.89–1.05)
p for trend 0.064 0.072 0.630

per ln(SD) increase 0.97 (0.95–1.00) 0.97 (0.95–1.00) 0.99 (0.96–1.01)
MG-H1, mg/day

Quintile 1 1388 13.0 1.00 (Ref.) 1.00 (Ref.) 1.00 (Ref.)
Quintile 2 1250 16.7 0.94 (0.87–1.01) 0.94 (0.87–1.02) 0.98 (0.90–1.06)
Quintile 3 1183 19.3 0.91 (0.84–0.99) 0.93 (0.86–1.00) 0.97 (0.90–1.06)
Quintile 4 1120 22.5 0.88 (0.81–0.95) 0.89 (0.82–0.97) 0.94 (0.87–1.03)
Quintile 5 1221 29.9 0.84 (0.77–0.90) 0.86 (0.80–0.94) 0.92 (0.85–1.00)
p for trend <0.001 <0.001 0.033

per ln(SD) increase 0.94 (0.92–0.97) 0.95 (0.93–0.98) 0.97 (0.95–1.00)

Abbreviations: AGE, advanced glycation end-product; CML, Nε-carboxy-methyllysine; CEL, Nε-carboxy-ethyllysine; EPIC, European
Prospective Investigation into Cancer and Nutrition; MG-H1, Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine; Model 1 is stratified by
age (1-year categories), sex, and center; Model 2 is additionally adjusted for BMI, height, education, physical activity, smoking, and energy
intake; Model 3 is Model 2 additionally adjusted for the Mediterranean diet score.

Table 3. Hazard ratios and 95% confidence intervals (CI) for the risk of colorectal cancer in anatomical subsites associated
with dietary AGEs (quintiles and continuous), EPIC cohort study, 1992–2014.

Median
Intake

Colon Cancer Rectal Cancer

All Proximal Colon Distal Colon

N
Cases HR (95% CI ) N

Cases HR (95% CI ) N
Cases HR (95% CI ) N

Cases HR (95% CI )

CML, mg/day
Quintile 1 1.90 873 1.00 (Ref.) 399 1.00 (Ref.) 397 1.00 (Ref.) 518 1.00 (Ref.)

Quintile 2 2.41 774 0.95
(0.86–1.05) 357 0.95

(0.82–1.10) 317 0.87
(0.75–1.02) 485 1.02

(0.90–1.17)

Quintile 3 2.75 786 1.01
(0.91–1.11) 366 1.01

(0.87–1.17) 319 0.92
(0.79–1.08) 424 0.95

(0.83–1.09)

Quintile 4 3.16 759 0.99
(0.89–1.09) 345 0.95

(0.82–1.11) 351 1.04
(0.89–1.21) 361 0.81

(0.70–0.94)

Quintile 5 4.02 805 0.98
(0.89–1.09) 389 0.99

(0.85–1.15) 342 0.97
(0.83–1.13) 377 0.81

(0.70–0.93)
p for trend 0.989 0.944 0.564 <0.001

per ln(SD) increase 0.99
(0.96–1.02)

1.00
(0.95–1.05)

0.99
(0.94–1.04)

0.93
(0.88–0.97)

CEL, mg/day
Quintile 1 1.37 763 1.00 (Ref.) 336 1.00 (Ref.) 357 1.00 (Ref.) 451 1.00 (Ref.)

Quintile 2 1.71 830 1.06
(0.95–1.17) 380 1.10

(0.94–1.27) 365 1.00
(0.86–1.16) 441 0.99

(0.86–1.13)

Quintile 3 1.93 789 1.01
(0.91–1.12) 348 1.02

(0.87–1.19) 353 0.98
(0.84–1.14) 430 0.94

(0.82–1.08)



Nutrients 2021, 13, 3132 8 of 13

Table 3. Cont.

Median
Intake

Colon Cancer Rectal Cancer

All Proximal Colon Distal Colon

N
Cases HR (95% CI ) N

Cases HR (95% CI ) N
Cases HR (95% CI ) N

Cases HR (95% CI )

Quintile 4 2.21 828 1.08
(0.97–1.19) 402 1.18

(1.01–1.37) 323 0.92
(0.79–1.07) 440 0.99

(0.86–1.14)

Quintile 5 2.85 787 1.01
(0.91–1.12) 390 1.12

(0.96–1.31) 328 0.93
(0.79–1.08) 403 0.89

(0.77–1.03)
p for trend 0.697 0.083 0.194 0.166

per ln(SD) increase 1.00
(0.97–1.04)

1.03
(0.99–1.09)

0.97
(0.92–1.02)

0.96
(0.92–1.00)

MG-H1, mg/day
Quintile 1 13.0 861 1.00 (Ref.) 384 1.00 (Ref.) 386 1.00 (Ref.) 527 1.00 (Ref.)

Quintile 2 16.7 806 1.00
(0.91–1.10) 367 1.02

(0.88–1.19) 352 0.98
(0.84–1.13) 444 0.95

(0.83–1.09)

Quintile 3 19.3 770 1.01
(0.91–1.11) 351 1.02

(0.87–1.18) 342 1.01
(0.86–1.17) 413 0.93

(0.81–1.07)

Quintile 4 22.5 735 0.98
(0.89–1.09) 348 1.03

(0.89–1.20) 306 0.92
(0.78–1.08) 385 0.89

(0.77–1.02)

Quintile 5 29.9 825 0.99
(0.90–1.10) 406 1.06

(0.91–1.23) 340 0.94
(0.81–1.10) 396 0.81

(0.71–0.94)
p for trend 0.793 0.457 0.326 0.003

per ln(SD) increase 0.99
(0.96–1.02)

1.03
(0.98–1.07)

0.96
(0.92–1.01)

0.94
(0.90–0.99)

Abbreviations: AGE, advanced glycation end-product; CI, confidence interval; CML, Nε-carboxy-methyllysine; CEL, Nε-carboxy-
ethyllysine; EPIC, European Prospective Investigation into Cancer and Nutrition; HR, hazard ratio; MG-H1, Nδ-(5-hydro-5-methyl-
4-imidazolon-2-yl)-ornithine; models were adjusted for body mass index, height, education, physical activity, smoking, energy intake and
Mediterranean diet score and stratified by age (1-year categories), sex, and center; p for heterogeneity between colon and rectal cancer was
0.391, 0.849, and 0.825 for CML, CEL, and MG-H1, respectively; p for heterogeneity between proximal and distal colon cancer was 0.878,
0.793, and 0.804 for CML, CEL, and MG-H1, respectively.

4. Discussion

In this large prospective study, we found that dietary intakes of CML and MG-H1, but
not CEL, were inversely associated with the risk of CRC. Our analyses did not identify any
heterogeneity in these findings by anatomical subsite of the tumor within the colorectum,
by sex, or by follow-up time.

Our findings were contrary to our initial hypothesis that dAGE exposure could pro-
mote CRC development. This hypothesis was based on considerable experimental evidence
suggesting cancer-promoting characteristics for these compounds. Three main mecha-
nisms have been postulated: first, AGEs may bind to the RAGE receptor in colonocytes
and, subsequently, promote and sustain inflammation and oxidative stress [29,30]; second,
they may modify the composition of the microbiome towards microbial genera that are
deleterious to gut health [31]; and finally, they may increase gut permeability, thereby
allowing bacterial translocation and increased exposure of colonocytes to toxic bacterial
compounds [32]. In in vitro enterocyte models, cells treated with AGEs have shown higher
expression of RAGE and an increase in inflammatory factors, such as IL-8, IL-1β, and
nuclear factor-kappa B (NF-κB) [13,33], suggesting that dAGEs may produce similar effects
in the gut. Nevertheless, a main condition for this to occur in vivo is that CML, CEL, and
MG-H1 need to reach the colon untransformed, in a protein-bound form which could be
recognized by RAGE and be able to interact with the cell surface of colonocytes. This is be-
cause several studies have reported that free AGEs or those attached to single amino acids
are not as recognizable by RAGE as protein-bound AGEs [34,35]. A recent study using a
dynamic in vitro model showed that protein-bound dAGEs can survive intestinal digestion
and remain in the gastrointestinal tract [36]. Zenker et al. [37], using a model with casein,
have shown in a recent study that unglycated proteins could also interact with RAGE. This
provides additional evidence supporting the complexity of the AGEs, particularly their
interactions in the gastrointestinal milieu. It is evident that more knowledge is needed on
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the role of the microbiome and intestinal conditions in the conservation or degradation of
protein-bound dAGEs, and how this may affect RAGE-specific inflammation.

Recent growing evidence suggested that the human gut microbiome can metabolize
dAGEs, possibly as much as 40% for ingested CML [38]. CML has been shown to be
metabolized by the microbiome into several sub-products, including biogenic amines and
fatty acids, notably N-carboxymethylcadaverine, N-carboxymethylaminopentanoic acid,
N-carboxymethyl-∆1-piperideinium ion, and 2-amino-6-(formylmethylamino)hexanoic
acid [39,40]. Less is known about the specific actions of these catabolic products within the
colorectum, or the possible downstream molecules that can be produced from them. It is
possible that these compounds may not be recognized by RAGE, and, hence, not induce an
inflammatory response within the gut. Nevertheless, dAGEs have been associated with
reduced diversity and richness of the gut microbiome, which is thought to be conducive to a
CRC-promoting environment [15]. Thus, the possible microbial metabolism of dAGEs may
not entirely negate their deleterious properties. It is also noteworthy that the three dAGEs
that we assessed are thought to bind to a single domain of RAGE (V domain), whereas
other AGE compounds, such as pentosidine, which are much less abundant in the diet,
could bind to additional domains (V and C1 domains) [41], potentially triggering a stronger
inflammatory response. This suggests that future studies should also consider studying
the potential deleterious properties of other less abundant dAGEs and their possible CRC
risk associations.

We are unsure why we observed inverse CRC risk associations with CML and MG-
H1, whereas CEL demonstrated no association. One possible explanation may relate
to the different dietary sources for these compounds. In EPIC, CML and MG-H1 share
very similar food sources (e.g., mostly cereals and cereal products), while CEL is derived
to a greater extent from meats [23,42]. Cereals and cereal products are major sources
of dietary fiber, which has been previously associated with lower CRC risk and could
partially explain the inverse association observed with CML and MG-H1 [43]. Another
potential explanation for the differential CRC risk associations for these compounds may
be the chemical pathways through which they are produced. Although the three AGEs
are all likely derived from reducing sugars, their main precursors are reactive dicarbonyl
compounds, particularly glyoxal (GO) and methylglyoxal (MGO). CML originates from
GO, whereas CEL and MG-H1 are mainly produced from MGO [44]. In addition, CEL
and MG-H1 (the two MGO-derived AGEs) differ in their amino acid content, as CEL is
produced from lysine, while MG-H1 derives from arginine [45]. Interestingly, reactive
dicarbonyl compounds are thought to possess a glycating potential that may be thousands
of times higher compared to that of sugars such as glucose or fructose [46] and, hence, the
CRC risk association of these dietary compounds and their precursors may also warrant
further study.

The importance of studying dAGEs in CRC development lies in several potential
public health measures that may be taken to control their exposures at wider population
levels. For example, dAGEs may be directly targeted through adoption of specific cooking
methods (e.g., steaming) to reduce the dAGE content of specific processed foods, or possibly
with anti-glycation dietary compounds (e.g., polyphenols) [47] to counter any possible
adverse effects [48,49].

Although, to date, no large prospective studies have explored the association between
dAGEs and CRC development, the role of circulating AGEs in CRC development has been
explored in three separate case-control studies nested within prospective cohorts, with
discordant findings. Two of the three studies reported inverse associations with CRC [50,51],
whereas one reported a positive association in male smokers [52]. It is noteworthy that,
among these previous studies, two [50,52] estimated AGEs using ELISA, which is now
recognized as providing biased AGE estimation [53]. Nevertheless, taken together with
our study, these observations suggest that the role of AGEs in CRC development is likely to
be quite complex, and further studies of other AGE compounds beyond the three studied
here are also warranted.
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The strengths of our study include its large study population, its prospective design,
and the large number of CRC cases, which allowed us to run extensive analysis and control
for a comprehensive number of confounders. In addition, our study followed the recent
“quality control” recommendations for studies on AGEs, i.e., the study of several specific
AGEs and the use of a validated food composition database to estimate individual dAGE
exposures [54]. However, our study was limited by the single collection of dAGEs and
other covariates at baseline; thus, potential changes in diet or covariates during follow-up
could not be accounted for. AGE levels in the foods are influenced by cooking methods,
i.e., frying, baking, or broiling, and conditions, such as cooking temperature, humidity, and
pH [55]. Hence, it is possible that country-specific differences in cooking conditions and
varying geographical and/or individual preferences for doneness of similar foods items
could have impacted our dietary AGE estimation. Additionally, it is possible that residual
confounding cannot be completely ruled out.

In conclusion, we found inverse associations between the intake of CML and of
MG-H1, but not of CEL, and the risk of CRC in the large EPIC prospective cohort. Our
findings corroborate some previous findings from circulating AGEs, suggesting that the
three AGEs included in our study may not be CRC-promotive, as has previously been
suspected. Our study provides additional evidence of the complexity of AGEs and their
interaction in CRC and calls for additional studies to confirm our findings and to explore
the link between CRC and other dAGEs not studied herein.
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10.3390/nu13093132/s1, Supplementary Table S1: Hazard ratios and 95% confidence intervals
(CI) for colorectal cancer risk associated with AGEs intake, by sex, EPIC cohort study, 1992–2014;
Supplementary Table S2: Stratified analysis for colorectal cancer risk associated with AGEs intake
by BMI, years of follow-up and by EPIC country; Supplementary Figure S1: Dietary contribution of
individual advanced glycation end-products in the European Prospective Investigation into Cancer
and Nutrition (EPIC).
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