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How much carbon can be added to soil by sorption?
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Abstract Quantifying the upper limit of stable soil

carbon storage is essential for guiding policies to

increase soil carbon storage. One pool of carbon

considered particularly stable across climate zones

and soil types is formed when dissolved organic

carbon sorbs to minerals. We quantified, for the first

time, the potential of mineral soils to sorb additional

dissolved organic carbon (DOC) for six soil orders.

We compiled 402 laboratory sorption experiments to

estimate the additional DOC sorption potential, that is

the potential of excess DOC sorption in addition to the

existing background level already sorbed in each soil

sample. We estimated this potential using gridded

climate and soil geochemical variables within a

machine learning model. We find that mid- and low-

latitude soils and subsoils have a greater capacity to

store DOC by sorption compared to high-latitude soils

and topsoils. The global additional DOC sorption

potential for six soil orders is estimated to be 107 � 13

Pg C to 1 m depth. If this potential was realized, it

would represent a 7% increase in the existing total

carbon stock.

Keywords Sorption � Additional sorption potential �
Saturation � Soil organic carbon � Mineral association

Introduction

Carbon (C) inputs to soil, much of it in the form of

DOC, are expected to increase from CO2 fertilization

(Drake et al. 2011; Jiang et al. 2020; Palmroth et al.

2006) and improved management practices (Cardinael

et al. 2018; Maillard et al. 2017; Poeplau and Don
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2015) such as those outlined in the ‘4 per 1000’

initiative, which aims at removing atmospheric CO2

by increasing soil C sequestration with an emphasis on

long-term storage (Minasny et al. 2017). In addition,

warming soils are likely to experience increased

decomposition of particulate organic matter, leading

to some increase in DOC production (Bengtson and

Bengtsson 2007; Fu et al. 2019; Reynolds and Fenner

2001). This additional DOC can be lost through

decomposition or runoff, or can sorb to mineral

particles as it percolates down the soil column (Kaiser

and Kalbitz 2012) thereby increasing the size of the

total soil C pool with long-term storage characteristics.

Currently, there is no existing global-scale estimate of

how much additional C can be stored in soils through

sorption of DOC. This lack of knowledge prevents an

understanding of the upper limit of stable carbon

storage in soils to inform policies aiming to increase

soil C concentrations.

Different soil C pools and stabilization mechanisms

exist, but a pool of C considered to be particularly

stable is the mineral-associated fraction, measured

using density or size fractionation (Cotrufo et al. 2019;

Kleber et al. 2015; Poeplau et al. 2018). During the

1970s and 1980s, soil organic matter was thought to be

stable to the extent that it contained chemically

recalcitrant compounds (Kogel-Knabner 1986;

Kogel-Knabner et al. 1988). Over the next three

decades, researchers demonstrated that those so-called

recalcitrant compounds can in fact be degraded under

the appropriate conditions (Gleixner et al. 2002; Rasse

et al. 2006), and identified other mechanisms that

stabilize soil organic matter and prevent it from being

respired: interaction with minerals (Gleixner et al.

2001; Torn et al. 1997), physical protection within

aggregates (Tisdall and Oades 1982), and environ-

mental limitations of microbial activities (Schmidt

et al. 2011).

One key mechanism driving interactions with

minerals is sorption, the formation of chemical

associations between soil minerals and organic com-

pounds. Sorption can protect organic C from decom-

position, even if some of the compounds in organic C

are labile or young in age (Eusterhues et al. 2003;

Kaiser et al. 2002; Kiem and Kogel-Knabner 2002;

Kögel-Knabner et al. 2008; Porras et al. 2018; Schmidt

et al. 1999). Sorption is now considered to be one of

the dominant mechanisms leading to a mineral-

associated C pool (Cotrufo et al. 2013; Schmidt et al.

2011) and its importance is beginning to be recognized

and explicitly incorporated in soil C models (Ahrens

et al. 2015; Robertson et al. 2019; Sulman et al. 2018).

Laboratory batch isotherm experiments measure

the equilibrium partitioning of C between the solid and
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solution phases, controlled by solution ionic strength,

chemical composition, mineral surface area, and soil

properties such as pH and mineralogy. While some

simulation models represent these organo-mineral

associations with a linear equation (Camino-Serrano

et al. 2018; Nakhavali et al. 2017), the non-linear

Langmuir equation is more realistic (Abramoff et al.

2018; Ahrens et al. 2015; Robertson et al. 2019; Tang

and Riley 2015; Wang et al. 2013) because of its

ability to capture the asymptotic behavior observed in

laboratory sorption experiments. The Langmuir equa-

tion assumes direct and reversible association of a

solute, here DOC, with a surface that has a limited

saturation capacity (Langmuir 1918). Given measure-

ments of Q, the amount of sorbed DOC, this empirical

equation allows the prediction of the maximum

sorption potential, denoted Qmax, as given by:

Q ¼ Qmax � k � DOC
1 þ k � DOC ð1Þ

where k is the equilibrium constant, which represents

the relative tendency of the forward (at high values of

k) or reverse (at low values) reactions. The original

Langmuir Eq. (1) assumes a zero intercept, that the

amount of sorbed DOC is zero when the DOC

concentration in solution is zero. This is theoretically

true in a completely reversible system, but does not

account for the presence of native organic matter,

some of which is released into solution during batch

experiments at low DOC concentrations. To correct

for this observed non-zero intercept, Lilienfein et al.

(2004) introduced the intercept b, representing the

amount of DOC released into the solution if the DOC

concentration is 0 mg/L, and which has been used by

subsequent batch experiment studies on native soils

(Kothawala et al. 2009; Mayes et al. 2012). If we use

the parameter b to account for the amount of DOC that

leaves the native soil when no DOC is added, then any

new DOC sorbed (Q) when DOC is added is additional

to the organic C that already exists in the soil sample.

Therefore, the maximum sorption potential (Qmax) is

also additional to the organic C that already exists in

the soil sample. Therefore, we rename Qmax as Qsp, to

represent the interpretation of Qsp as the additional

sorption potential that could be realized given that

some mineral surface sites are already occupied in the

native soil.

Q ¼
Qsp � k � DOC
1 þ k � DOC � b ð2Þ

In this study, Qsp, k, and b are parameters fitted to

laboratory batch experiments where different amounts

of DOC are added to a well-mixed soil sample.

Sorption of DOC is a nano-to-micro-scale process,

but there is evidence that sorption potentials are

related to macro-scale differences in climate and soil

properties. For example, Mayes et al. (2012) found

relationships between sorption potential measured by

batch experiments and clay fraction, pH, and soil

order. Kothawala et al. (2009) also found a relation-

ship between sorption potential and clay fraction. Soil

texture, especially clay and silt fraction, are a

commonly-used proxy for mineral surface availability

in empirical models of soil C sequestration (Angers

et al. 2011; Hassink, 1997; Wiesmeier et al. 2018), as

well as in process-based models of soil C cycling

(Sulman et al. 2018). Changing the pH balance of soil

(e.g., via root exudation) has direct effects on sorption

to mineral surfaces (Keiluweit et al. 2015).

Soil order is not a measurable quantity like the clay

fraction but rather is a taxonomic classification that

synthesizes important functional information, such as

the dominant or typical mineralogy, weathering pro-

cess, environmental conditions, and vegetation cover.

Sorption may also be affected by climate, either

through indirect controls on mineral weathering

(Gislason et al. 2009), direct control of temperature

on sorption dynamics (Abramoff et al. 2019; Conant

et al. 2011), or the influence of precipitation on DOC

infiltration down the soil column (Kaiser and Guggen-

berger 2005). Climate may also have indirect effects

on ecosystem properties affecting DOC production

and availability such as net primary production and

average decomposition rates.

In this paper, we estimate the potential for

additional DOC sorption from a new compilation of

equilibrium batch sorption experiments (Feng et al.

2014; Jagadamma et al. 2012; Kaiser et al. 1996;
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Kothawala et al. 2009; Mayes et al. 2012). We fitted

the Langmuir equation parameters from those exper-

iments to estimate the additional DOC sorption

potential. We trained a machine learning model on

the relationship between DOC sorption potential and

widely-measured climate and geochemical variables.

We then used this relationship to estimate the global

DOC sorption potential (Qsp) for six soil orders

(Alfisols, Entisols, Inceptisols, Mollisols, Spodosols,

Ultisols), using data from 14,631 soil profiles dis-

tributed globally. Defining the potential contribution

of DOC sorption to total soil organic C (SOC) stock is

a first step to estimate the potential for soils to accrue

stable C and to improve soil C models.

Methods

Compilation of batch experiment data

We compiled a database of published sorption exper-

iments, where DOC was experimentally adsorbed to

mineral soils using standard batch experiments (Feng

et al. 2014; Jagadamma et al. 2012; Kaiser et al. 1996;

Kothawala et al. 2009; Mayes et al. 2012). We selected

these experiments based on the similarity of their

methodology, as the methods of Feng et al. (2014) and

Jagadamma et al. (2012) are based on Mayes et al.

(2012), which is based on Kothawala et al. (2009),

which is based on Kaiser et al. (1996). Thus, this

database is not the result of meta-analysis, but rather

represents a limited group of sorption experiments

with similar methods. Soils were not fractionated but it

is assumed that sorption to minerals occurs in the

mineral fraction. DOC was added to mineral soil and

allowed to equilibrate for 18–48 h, filtered, and

analyzed for total C concentration before and after

adsorption. To develop a relationship between the

additional sorption potential (Qsp), equilibrium con-

stant (k), and soil geochemical variables, we used five

studies with a total of 402 samples from 111 locations

in North America and Europe, across six soil orders

(Alfisols, Entisols, Inceptisols, Mollisols, Spodosols,

Ultisols) representing 62% of the Earth’s ice-free land

surface (Feng et al. 2014; Jagadamma et al. 2012;

Kaiser et al. 1996; Kothawala et al. 2009; Mayes et al.

2012). Samples from other soil orders were present in

the original studies, but we included in this analysis

only the soil orders for which there were more than 10

samples, Alfisols (N = 109), Entisols (N = 13), Incep-

tisols (N = 87), Mollisols (N = 71), Spodosols

(N = 30), and Ultisols (N = 66). We also obtained

reported Qsp and k estimates from published literature

as well as raw sorption data from the studies. We used

published values where available (N = 275) and

refitted values (N = 127) where only raw data were

available. We refitted the available isotherm data to

the Langmuir Eq. (1) (Kothawala et al. 2009; Mayes

et al. 2012). Some studies adjusted for the amount of

DOC released into solution when the initial DOC

concentration is 0 mg/L, b from Eq. (2), measured

using solution blanks, before fitting the model without

b (Jagadamma et al. 2012; Mayes et al. 2012). Other

studies fitted or explicitly reported b. Where b was

fitted in the original study, we refitted the Langmuir

equation in the same way, estimating Qsp, k, and b. We

summarize reported estimates of b (N = 186) in the

Results section, but we did not attempt to extrapolate

this quantity for several reasons. First, this value is

generally used to control for DOC release from native

soil occurring at 0 mg/L. The DOC released from

native soil under these conditions may not have been

protected by sorption and therefore does not neces-

sarily represent the desorption potential. Second, soil

C models that use the Langmuir equation to represent

sorption do not typically include this parameter.

Lastly, preliminary analysis with a Random Forest

model found that of the predictors in the laboratory

experiment dataset b was primarily related to the

organic carbon concentration rather than climatic or

geochemical predictors.

The parameters Qsp and k were fitted using non-

linear regression in R (package drc; Ritz et al. 2015).

Across the five studies, 140 of the reported Qsp

estimates and 86 of the reported k estimates had

corresponding raw data that we were able to fit.

Refitted values were correlated with those reported in

the literature with minimal bias for Qsp (slope = 0.81,

R2 = 0.74, P\ 0.05) and k (slope = 0.96, R2 = 0.83,

P\ 0.05; Figure S1). Differences between reported

and refitted values are likely due to differences in the

method used for curve fitting. During refitting, we

identified and removed one outlier that was greater

than three standard deviations from the mean.

In all studies but one, DOC was extracted from the

soil organic horizon, leaf litter, or from stream water,

while in Jagadamma et al. (2012), DOC solutions

prepared using five C compounds were reacted with
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each sample: glucose, L-alanine, oxalic acid, salicylic

acid, and sinapyl alcohol (Jagadamma et al. 2012). For

our database, we averaged the parameters derived

from each compound for each sample.

Additional soil characteristics that were measured

for[ 90% of the samples collected were percent clay,

pH (CaCl2), dithionite-extractable iron (Fe; mg/kg),

and organic carbon content (mg/kg). A subset of the

samples measured exchangeable calcium (Ca2?;

cmol ? /kg), oxalate- and pyrophosphate-ex-

tractable Fe, as well as dithionite-, oxalate-, and

pyrophosphate-extractable aluminum (Al). Dithionite

extraction was developed to extract Fe oxides because

dithionite can reduce Fe3? to Fe2? but cannot dissolve

Al oxides, and thus, any interpretation of Al dithionite

extraction should consider that unlike the oxalate

extraction, dithionite extraction was not developed to

measure Al (McKeague and Day 1966).

We extracted mean annual temperature (MAT) and

mean annual precipitation (MAP) for 1979–2000 from

WorldClim Version 2 (Fick and Hijmans 2017) at 30-s

resolution for each location where soil was collected

for batch experiments. Some batch experiments

directly reported MAT and MAP at the locations

where soil was collected. Reported values for MAT

were correlated with extracted values with minimal

bias (slope = 0.94, R2 = 0.89, N = 133), while

reported values for MAP were slightly lower than

extracted values (slope = 0.72, R2 = 0.65, N = 131).

Data analysis

Data interpolation for missing values

Many samples did not have measurements for every

variable (0–86% missing; Figure S2), but many of the

variables where measurements were not reported by

the experiments were correlated with related variables

where measurements were more complete (e.g.,

different types of metal extractions, different texture

measurements; Figure S3). We estimated missing data

using multiple imputation by chained equations.

Missing data were assumed to have a multivariate

normal distribution. Although a multivariate normal

distribution may predict some values below zero, all of

the interpolated values were positive so we did not

alter this assumption. Some of the measured values

used for imputation were greater than three standard

deviations from the mean, but because all were

reasonable values for the measurements they repre-

sented, we did not remove or transform any data as

outliers. Multiple values were drawn from this distri-

bution for each missing datum by Markov-Chain

Monte Carlo, conditional on the other data in the data

set. We used the classification and regression tree

(CART) method to estimate the missing value from

the available data (Van Buuren and Groothuis-Oud-

shoorn 2011). The distributions of the estimated

values were reasonably well-matched to the distribu-

tions of the measured values, though some of the most

common values were over-represented (Figure S4).

For the predictors carried forward into the global-scale

analysis (i.e., percent clay, pH, and soil order), only

6% of data were missing.

Training for machine learning

We trained Random Forest machine-learning algo-

rithms (Liaw and Wiener 2002) to quantify the relative

importance of different climate and soil characteristics

in our observational dataset for predicting Qsp and

k for measured samples (Fig. 1: Exploration). Then,

we built another Random Forest model of Qsp and

k using a subset of predictors (MAT, MAP, percent

clay, pH, and soil order) which are available at global

scales (Fig. 1: Training). For each Random Forest

model, we log-transformed Qsp and k to improve

model performance. Model performance was evalu-

ated using R2 from permutation cross-validation,

where the model is trained on 80% of the data and

tested on the remaining 20%, and this procedure is

repeated 99 times (package ‘rfUtilities’; Evans and

Murphy 2018). Importance is defined as the mean

increase in node purity (a measure minimizing the

homogeneity of classes or labels) when the predictor is

used to split regression trees in the model. We grew

500 trees for each model, and the number of variables

tried at each split was set at the largest integer smaller

than or equal to the number of predictors divided by

three (Breiman 2001). We tested other values of the

number of variables to try at each node, but the method

above provided the best model fit. We used the

‘forestFloor’ package (Welling et al. 2016) in R

Statistical Language to derive partial feature contri-

butions for the predictors included in the Qsp and

k Random Forest regression models. Partial feature

contributions show the partial response of the
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dependent variable to changes in the independent

variable across its range.

Estimating the DOC sorption potential at global

scales

We used the model generated in the training step to

estimate the spatial distribution of Qsp and k at global

scales using climatic and geochemical predictors from

profile and gridded data in Table 1 (Fig. 1: Prediction).

We estimated Qsp (mg/kg) and k (L/mg) for 14,631

soil profiles from the World Soil Information Service

(WoSIS) database (Batjes et al. 2017) (Table 1). We

analyzed the whole soil profile from surface to 1 m

depth, and repeated the analysis for 13,609 topsoil

profiles (0–30 cm) and 13,993 subsoil profiles

(30 cm–1 m) that reported depth-specific clay and

pH values.

Both Qsp and k were mapped globally using 10 km

gridded fields of MAT and MAP, percentage clay, pH,

soil order, bulk density, and SOC stock to 1 m

(Table 1; Hengl et al. 2017). For each 10 km grid

cell, Qsp and k were estimated in the same way as

described above for WoSIS profiles. To estimate a

global Qsp in Pg carbon for 6 soil orders, we converted

Qsp from concentrations to stocks using the bulk

density and volume of coarse fragments following

(Hengl et al. 2017; Tifafi et al. 2018) for each grid cell.

Estimating uncertainty

We estimated the uncertainty in the global-scale Qsp

by accounting for predictor error and model error

(Fig. 1: Uncertainty). To estimate predictor error we

used four additional gridded predictor datasets (Alter-

nate MAT, MAP, %Clay and pH; Table 1). We

substituted each alternate dataset for the standard

predictor dataset to generate four additional predic-

tions. To estimate model error, we generated 5

Random Forest models from fivefold cross validation.

The overall error is estimated from the standard

deviation of the Qsp estimate from the 20 (4

datasets 9 5 models) additional predictions.

Results

Influential variables controlling sorption in batch

experiments

Our Random Forest models (Liaw and Wiener 2002)

were used to identify the key climate and geochemical

variables that influence Qsp per unit soil mass (mg/kg)

from the laboratory experiment measurements (Fig. 1:

Exploration). According to this model, the most

influential variables were dithionite-extractable Fe,

mean annual temperature (MAT) and clay percentage

(R2 = 0.46, Fig. 2a). The equilibrium constant k (L/

mg) was most strongly related to organic carbon

Exploration Training Prediction Uncertainty

Training
Dataset

17 predictors
Qsp and k

Random Forest

Figure 2

Training
Dataset

5 predictors
Qsp and k

Figure 3

Soil profile
Predictors
Table 1

Profile-level
Prediction

Figure 4a,d

Gridded
Predictors
Table 1

Gridded
Prediction

Figure 4b,c,e

4 Alternate
Predictors
Table 1

5 Random Forest
Models

From 5-fold cross
validation

Standard
Deviation of 20
(4x5) Predictions

Random Forest

Fig. 1 Diagram of analyses performed. First, 17 predictors

from the batch sorption experiments were used to explore the

relationship between sorption parameters (Qsp and k) and

environmental variables. Then, 5 predictors available at global

scales were used to train a Random Forest model for global

estimation of Qsp and k. Next, soil profile-level predictors from

WoSIS and gridded predictors from SoilGrids were used to

predict Qsp and k. Lastly, we estimated the uncertainty due to

model and predictor error by creating 20 new predictions using

alternate datasets and models

123

132 Biogeochemistry (2021) 152:127–142



content, pH, MAT, soil order, and mean annual

precipitation (MAP) (R2 = 0.32, Fig. 2b).

For global estimation of Qsp, we built a Random

Forest model with only the five predictors in Fig. 2

that were available at global scales (Fig. 1: Training).

Percent clay had the highest mean increase in node

purity for the globally-applied Qsp model (R2 = 0.38,

Table S1), with a positive relationship between Qsp

and percent clay (Fig. 3a). There were also positive,

mostly monotonic relationships between Qsp and

MAT, and between Qsp and MAP. Qsp had a threshold

relationship with pH, with a low Qsp in very acidic

soils (pH\ 4) and no relationship above that thresh-

old (Fig. 3a). Soil order influenced Qsp, with Alfisols,

Mollisols, and Ultisols tending to have higher Qsp

relative to the other soil orders (Fig. 3a). The most

Table 1 Description of profile and gridded data used for estimating Qsp at global scales and alternate gridded data for uncertainty

quantification of global totals of Qsp

Data type Variable Source Unit Resolution References

Profile % Clay WoSIS % – (Batjes et al. 2017)

pH WoSIS – – (Batjes et al. 2017)

Soil Order WoSIS – – (Batjes et al. 2017)

Bulk Density WoSIS kg dm-3 – (Batjes et al. 2017)

SOC stock WoSIS t/ha – (Batjes et al. 2017)

Gridded MAT (1970–2000) WorldClim V2 8C 30 s (Fick and Hijmans 2017)

MAP (1970–2000) WorldClim V2 mm 30 s (Fick and Hijmans 2017)

% Clay SoilGrids % 10 km (Hengl et al. 2017)

pH SoilGrids – 10 km (Hengl et al. 2017)

Soil Order SoilGrids – 10 km (Hengl et al. 2017)

Bulk Density SoilGrids kg dm-3 10 km (Hengl et al. 2017)

SOC stock SoilGrids t/ha 10 km (Hengl et al. 2017)

Alternate MAT (1973–2013) CHELSA 8C 30 s (Karger et al. 2017, 2018)

Alternate MAP (1973–2013) CHELSA mm 30 s (Karger et al. 2017, 2018)

Alternate % Clay GSDE % 5 min (Shangguan et al. 2014)

Alternate pH GSDE – 5 min (Shangguan et al. 2014)

The reported resolution is the original resolution of the dataset, all data were rescaled to 10 km

(a) (b)Fig. 2 The mean increase in

node purity when the

predictor variable is used to

split regression trees in the

model for 17 predictors of

a additional sorption

potential (Qsp) in mg/kg and

b the equilibrium constant

(k) in L/mg. The most

influential variables are

shown from the top to the

bottom of the graph
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important parameter for estimating k, measured by

mean increase in node purity, was pH (R2 = 0.32,

Table S1), which also had a threshold effect with low

k in very acidic soils (pH\ 4) and a negative

relationship between k and pH at pH[ 4 (Fig. 3b).

There were non-monotonic relationships between

k and MAT, MAP, and percent clay (Fig. 3b). Of the

six soil orders, Spodosols and Ultisols were most

likely to have higher values of k (Fig. 3b).

We could not use a measure of reactive or

extractable Fe and Al to predict Qsp at global scales

because of the lack of sufficient gridded or multi-site

data. Nevertheless, dithionite-extractable Fe was the

most important predictor of Qsp in our Random Forest

model based on the sorption batch experiment data

(Fig. 2a). Although many Fe and Al measurements in

measured profiles were missing and had to be imputed,

the correlations between extractable metals and Qsp

were more strongly positive than any other single

predictor in the dataset (Figure S3). This finding, and

the wealth of research about the importance of

extractable Fe and Al for predicting C storage and

mineral stabilization (Kaiser and Guggenberger 2000;

Kalbitz and Kaiser 2008; Kramer and Chadwick 2019;

Rasmussen et al. 2007; Schrumpf et al. 2013; Torn

et al. 1997), suggests a strong need for a global dataset

of those extractable metals.

The addition of other soil properties to the Random

Forest model of Qsp, especially extractable Fe and Al

content, increased the variance explained by 8%. It is

possible that adding other soil properties such as C, N,

and other nutrient contents, bulk density, cation

exchange capacity, base saturation, and soil moisture

would increase the variance explained for the sorption

potential. However, these variables were either not

available or mostly missing in the training dataset, and

would have had to have been estimated from map-

based products, which may well represent the average

value at large scales but not field-scale measurements.

Soils in particular are very heterogeneous, and some

regionally or globally-applied models of soil organic

C concentration (R2 = 0.23 in Hengl et al. 2014,

improved to R2 = 0.64 in Hengl et al. 2017), SOC

stock (R2 = 0.54 in Sanderman et al. 2017), SOC stock

without land use (R2 = 0.34 in Sanderman et al. 2017),

or dissolved organic C (R2 = 0.36 in Langeveld et al.

2020) explain less variance than models more related

to plant processes such as mycorrhizal fungi type (R2

� 0.5–0.8 in Steidinger et al. 2019) or gross primary

production (R2 = 0.7 in Tramontana et al. 2015).

These limitations may be overcome with additional

soil property measurements at the level where other

measurements are collected, or a better understanding

of soil spatial heterogeneity.

The amount of DOC released into solution when the

initial DOC concentration is 0 mg/L, b from Eq. (2),

has a median value of 0.08 (0.01, 0.77) g C kg soil-1

and is positively correlated with organic carbon

content (q = 0.69), which is an order of magnitude

lower than the amount that can be added to soil (i.e.,

Qsp). Since this value is related to the amount of total

C, it may include some desorbed C but may also

include C released from particulate organic matter

such as litter.

Influential variables controlling global-scale

patterns of sorption

A map of carbon storage potential (Qsp) concentration

in g C kg soil-1 was generated by applying the global-

scale Random Forest model to predictors of Qsp for

14,631 soil profiles from the World Soil Information

Service (WoSIS) database (Fig. 4a; Batjes et al. 2017),

and for each grid cell of the globe using the SoilGrids

data products (Fig. 4b; Hengl et al. 2017). Across a

global range of soil profiles (N = 14,631), the median

potential of additional C storage from DOC sorption,

Qsp, was 1.1 g C kg soil-1 (0.43 to 1.9 for the 95%

Confidence Intervals; CI). DOC sorption potential

values were summed to estimate a global additional

sorption potential of 107� 13 Pg C across 6 soil orders

to 1 m depth, that is, a 7% increase in the current

global SOC stock of these soil orders (1615 Pg;

Table 2).

The additional DOC sorption potential Qsp was

highest in low- and mid-latitude soils with high clay

content, and lowest in high-latitude soils dominated by

organic matter (Fig. 4a–c). We found that high Qsp

values prevail in parts of eastern North America, the

bFig. 3 Partial feature contributions of percent clay, pH, Soil

Order, mean annual temperature (MAT), and mean annual

precipitation (MAP) for predicting a the additional sorption

potential (Qsp) and b the equilibrium constant (k). Symbol colors

reflect the position on the x-axis of the most important variable,

a Clay (%) and b pH, respectively. For example in (a), sites with

values of pH 3 are mostly red symbols, indicating that they also

have low values of Clay
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Amazon, central Africa, and Indonesia. These areas

have a high percent clay, higher MAT, and moderately

acidic pH (Figure S5a–c). High k occurred in areas

where pH was between 4 and 5 (Figs. 3b, 4d, e).

Across the individual WoSIS profiles, Alfisols,

Mollisols, and Ultisols had higher average Qsp relative

to other soil orders (Figure S6a). In the same profiles,

Spodosols and Ultisols were estimated to have higher

average values of k (Figure S6b). Although we

–60 oS

–30 oS

0

30 oN

60 oN

90 oN

–180 oW –120 oW –60 oW 0 60 oE 120 oE 180 oE

0.05 0.10
k (L /m g)

–60 oS

–30 oS

0

30 oN

60 oN

90 oN

–180 oW –120 oW –60 oW 0 60 oE 120 oE 180 oE

1 2
Q sp  (g /kg)

–60 oS

–30 oS

0

30 oN

60 oN

90 oN

–180 oW –120 oW –60 oW 0 60 oE 120 oE 180 oE

0.05 0.10
k  (L /m g)

–60 oS

–30 oS

0

30 oN

60 oN

90 oN

–180 oW –120 oW –60 oW 0 60 oE 120 oE 180 oE

1 2
Q sp  (g /kg )

–60oS

–30oS

0

30oN

60oN

90oN

0.5 1.0 1.5 2.0
Qsp (g/kg)

(a) (b)

(d) (e)

(c)

Fig. 4 a, b Additional sorption potential (Qsp) and d,

e equilibrium constant (k) across a global range of soil profiles

(N = 14,631) representing 6 soil orders. In a, d median values

from each profile are binned hexagonally, and in b, e values are

estimated using the SoilGrids gridded global data products.

c The additional sorption potential (Qsp) by latitude, estimated

using SoilGrids gridded global data products. The black line is

the median Qsp and the gray shading represents the 5th and 95th

percentile range

Table 2 Summary of estimated quantities per volume of soil, the number of profiles used to estimate the quantity, the depth

increment, and the global estimate for 6 soil orders

Quantity Median value (95% CI)

in g C/kg soil

Depth

increment

Number

of profiles

Global estimate

(uncertainty) in Pg

Qsp 1.1 (0.43, 1.9) 0–1 m 14,631 107 (� 13)

Existing SOC stock 0–1 m 1615

k 0.034 (0.014, 0.078) 0–1 m 14,631 –

Qsp topsoil 0.99 (0.43, 1.6) 0–30 cm 13,609 –

Qsp subsoil 1.14 (0.44, 1.98) 30 cm–1 m 13,993 –

k topsoil 0.033 (0.014, 0.076) 0–30 cm 13,609 –

k subsoil 0.035 (0.014, 0.076) 30 cm–1 m 13,993 –

CI confidence intervals
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excluded Gelisols and Histosols from this analysis

because they were poorly represented in the laboratory

sorption experiments, high-latitude profiles from other

soil orders were estimated to have consistently low

Qsp, implying that most mineral sites are already

occupied by organic C. Treating grid cells as inde-

pendent, there is a weak, negative correlation (q =

0.27) between Qsp in units of stock and total organic

carbon stock (kg m-2), suggesting that soils with high

initial organic C stocks will have less capacity to

accrue more C via sorption. The negative influence of

organic matter on sorption of various chemical species

has been observed in previous sorption experiments

(Johnson and Todd 1983; Klotzbücher et al. 2020;

Redman et al. 2002).

We subset the soil profiles from the WoSIS

database to look at the difference in additional DOC

sorption potential between two soil depths represent-

ing topsoils (0–30 cm, N = 13,609) and subsoils

(30–100 cm, N = 13,993). We found that Qsp was

higher in the subsoil (Figure S7a), while k was not

different between topsoil and subsoil (Figure S7b).

Subsoils therefore are found to have a greater capacity

to sorb additional DOC, likely because mineral

concentrations and therefore available mineral surface

area increase with depth, while soil C concentrations

decrease with depth (Figure S7c). We did not have

sufficient data to extend our analysis to soils deeper

than 1 m, but acknowledge there is substantial C

stored at depths[ 1 m that, like soils at 30–100 cm,

are likely to have higher mineral surface area relative

to topsoils (Batjes et al. 1996; Jobbágy and Jackson

2000).

Discussion

This study provides an estimate of the potential

additional C that could be sorbed to minerals in soils

spanning six soil orders and a range of climate

conditions globally. Our best estimate of 107 Pg C

should be interpreted as the maximum of additional C

that can potentially be sorbed as DOC. Our estimated

sorption potential for six soil orders is similar in

magnitude to the 116 Pg estimated SOC stock lost

from human agricultural activity over the last

12,000 years (Sanderman et al. 2017). Although we

do not know the land use history of our soils, and

disturbed soil may have a different DOC sorption

potential compared to undisturbed soil, this result

suggests that it may be possible to compensate at least

partially the loss of SOC due to soil degradation on a

global scale, from the potential of soil to sorb more

DOC. The inferred 7% increase in SOC stocks shows

that if the DOC sorption potential could be realized for

all soils, disturbed and undisturbed, it would sustain

the ‘4 per 1000’ goal for 12 years.

Theoretically, some increase in soil C sequestration

may be realistically achieved by increasing DOC

concentration in the soil. This could be accomplished

by increasing plant inputs, reducing DOC consump-

tion by microorganisms, and changing soil moisture

and water flow which affect local DOC concentration

and leaching. The latter options are more complicated

to manipulate, whereas land management options that

increase C inputs into the soil are well-established;

e.g., cover-crops, organic fertilizer amendments,

moderate grazing or agroforestry (Cardinael et al.

2018; Maillard et al. 2017; Poeplau and Don 2015).

These options may be particularly useful in the

croplands of eastern North America and managed or

converted forests of the tropics, which have high

additional sorption potential (Fig. 4a, b). It would also

be possible to increase soil C sequestration by

changing the environmental conditions known to

affect k, such as pH, keeping in mind that making

modifications to pH may affect many other aspects of

soil quality. Although beyond the scope of this study,

the chemical composition of DOC (Jagadamma et al.

2012) and seasonality of inputs may also affect the

sequestration potential. Nevertheless, DOC is gener-

ally highly reactive if not sorbed and any change in

environmental conditions inducing DOC desorption

may drastically increase soil CO2 emissions.

We do not argue that the sorption potential

estimated in this study is fully realizable. In fact, the

DOC sorption potential in field conditions is likely

lower than that measured and extrapolated from batch

experiments. Batch experiments, like most soil labo-

ratory experiments, homogenize the soil before adding

DOC, which disrupts soil structure and preferential

flow paths that would limit the access of soil minerals

to DOC in situ (Kaiser and Guggenberger 2005).

Therefore, the sorption potential that we estimate here

is a maximum assuming that mineral sites in soil are

equally accessible to DOC, a condition which is rarely

satisfied in the field.
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On the other hand, batch sorption experiments may

underestimate the C sequestration potential of DOC

because they only consider DOC sorption which

occurs on a fast timescale. Batch sorption experiments

are brought to equilibrium over a period of 24–48 h.

This equilibration is sufficient to associate DOC with

soil minerals under saturated conditions but does not

account for microbial turnover or structural changes,

such as aggregation, that occur over longer periods of

time. Also, soils contain a wide range of forms of

organic matter, interacting with minerals along dif-

ferent pathways (Kaiser and Guggenberger 2007;

Masiello et al. 2004; Mikutta et al. 2011; Weng et al.

2017). For example, microbial growth, consumption

of DOC, and subsequent turnover into necromass can

contribute to mineral-associated C as well as total

SOC (Kallenbach et al. 2016). Therefore, a larger

increase of SOC than that observed in the batch

sorption experiments might be possible due to mech-

anisms that operate over longer timescales.

Though DOC sorption is a fast process, the rate of C

sequestration by this mechanism is still limited by the

amount of nitrogen and phosphorus required to

sequester C as soil organic matter. Recent discussions

have pointed out that it would require 593 Tg N year-1

(assuming a soil C:N of 15) and 35–75 Tg P year-1 to

achieve the ‘4 per 1000’ goal of sequestering 8.9 Pg C

year-1, the rate of anthropogenic emissions (Davies

et al. 2020; Spohn 2020). The amount of N required is

greater than global natural and anthropogenic nitrogen

fixation combined, 413 Tg N year-1 (Fowler et al.

2013), and the amount of phosphorus required is a

substantial proportion of global phosphate rock mined

each year, 240 Tg P year-1 (USGS 2020). As a result,

soil C sequestration that draws on coupled nutrients

cycles is likely only achievable at a rate well below

that of anthropogenic emissions.

Our results also have implications for models. Soil

decomposition models that use Langmuir sorption to

represent all interactions in the mineral fraction

typically have k constants orders of magnitude higher,

e.g., 2.5 � 10–1 (Abramoff et al. 2018; Robertson et al.

2019) and 9 � 103 m3/g C (Ahrens et al. 2015), than

the values estimated from the 402 batch sorption

experiments in this study (10–4 to 10–2 m3/g C),

suggesting that processes other than sorption con-

tribute to C accumulation in the mineral fraction

(Abramoff et al. 2018; Wang et al. 2013) and that

models may over-tune sorption as a process to create C

storage. Mineral-associated C is itself operationally-

defined, with many potential mechanisms of physical

and chemical fractionation used (Poeplau et al. 2018).

As a result, mineral-associated C may not only form

upon direct sorption but also coprecipitation (Mikutta

et al. 2011), organic-organic interactions (Kleber et al.

2007), or occlusion within aggregates (Rasmussen

et al. 2005; Six and Paustian 2014). These additional

mechanisms can reduce the amount of mineral-asso-

ciated C that is in contact with aqueous DOC, and

therefore reduce the amount that can be readily

exchanged (Kleber et al. 2007; Zhuang et al. 2008).

Models are emerging that attempt to partition these

varied processes into categories that can be more

directly measured (Abramoff et al. 2018; Robertson

et al. 2019).

According to our results, a greater proportion of soil

C can be sorbed to minerals in highly weathered soils,

(e.g., Ultisols), relative to less weathered soils (e.g.,

Inceptisols; Figure S6a). Presumably this is due to the

increased prevalence of mineral surfaces per volume

of soil in highly weathered soils relative to less

weathered soils. However, we did not consider how

the types of clay minerals found in soils with different

weathering status may affect our predictions. For

example, clay minerals commonly found in highly

weathered soils (e.g., kaolinite) can have low reactiv-

ity (Doetterl et al. 2018) which may reduce their

effective sorption potential per volume of soil relative

to less weathered soils. Of the soil orders not included

in this analysis, some are expected to have relatively

high sorption potential, because they are characterized

by the presence of secondary minerals (Andisols and

Oxisols), or by high clay content (Vertisols). Others

we would hypothesize to have low sorption potential

due to environmental limitations on weathering

(Aridisols), or strong environmental controls on C

storage (Gelisols, Histosols). Future work to expand

measurements in these soil orders could answer

questions about the role of weathering and clay

minerals while also contributing to a complete

estimate of the global sorption potential.

Our study points to important gaps in our under-

standing of stabilized organic C. How much of the

theoretical potential of stable C storage is realizable?

For example, Sanderman et al. (2017) found that

human agricultural activity has created a C deficit of

116 Pg globally, but suggests that only part of this

amount is recoverable through management. What is
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the importance of sorption relative to other mecha-

nisms for soils under different climatic or management

regimes? Resolving these knowledge gaps will be

necessary if soils are to contribute to the resolution of

the global C imbalance due to burning of fossil fuels.
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(2020) Sorption competition with natural organic matter as

mechanism controlling silicon mobility in soil. Sci Rep

10(1):1–11. https://doi.org/10.1038/s41598-020-68042-x

Kogel-Knabner I (1986) Estimation and decomposition pattern

of the lignin component in forest humus layers. Soil Biol

Biochem 18(6):589–594

Kogel-Knabner I, Wolfgang Z, Hatcher PG (1988) Chemical

composition of the organic matter in forest soils: the humus

layer. Z Pflanzenernahr Bodenk 151:331–340
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Tifafi M, Guenet B, Hatté C (2018) Large differences in global

and regional total soil carbon stock estimates based on

soilgrids, HWSD, and NCSCD: intercomparison and

evaluation based on field data from USA, England, Wales,

and France. Glob Biogeochem Cycles. https://doi.org/10.

1002/2017GB005678

Tisdall J, Oades J (1982) Organic matter and water-stable ag-

gregates in soils. J Soil Sci 33:141–163. https://doi.org/10.

1111/j.1365-2389.1982.tb01755.x

Torn MMS, Trumbore SSE, Chadwick OAO, Vitousek PPM,

Hendricks DDM (1997) Mineral control of soil organic

carbon storage and turnover. Nature 389:3601–3603.

https://doi.org/10.1038/38260

Tramontana G, Ichii K, Camps-valls G, Tomelleri E, Papale D

(2015) Uncertainty analysis of gross primary production

upscaling using random forests, remote sensing and eddy

covariance data. Remote Sens Environ 168:360–373.

https://doi.org/10.1016/j.rse.2015.07.015

USGS (2020) Phosphate Rock Data Sheet. Mineral Commodi-

ties Summary 2020. Retrieved from https://www.usgs.gov/

centers/nmic/phosphate-rock-statistics-and-information

Van Buuren S, Groothuis-Oudshoorn KMICE (2011) Multi-

variate imputation by chained equations. J Stat Softw

45(3):1–67

Wang G, Post WM, Mayes MA (2013) Development of

microbial-enzyme-mediated decomposition model

parameters through steady-state and dynamic analyses.

Ecol Appl 23(1):255–272. https://doi.org/10.1890/12-

0681.1

Welling SH, Refsgaard HHF, Brockhoff PB, Clemmensen LKH

(2016) Forest floor visualizations of random forests. ArXiv

E-Prints.

Weng Z, Van Zwieten L, Singh BP, Tavakkoli E, Joseph S,

Macdonald LM et al (2017) Biochar built soil carbon over a

decade by stabilizing rhizodeposits. Nat Clim Change

7(5):371–376. https://doi.org/10.1038/nclimate3276

Wiesmeier M, Lungu M, Cerbari V, Boincean B, Hubner R,

Kogel-Knabner I (2018) Rebuilding soil carbon in degra-

ded steppe soils of Eastern Europe. Land Degrad Dev.

https://doi.org/10.1002/ldr.2902

Zhuang J, Mccarthy JF, Perfect E (2008) Soil water hysteresis in

water-stable microaggregates as affected by organic mat-

ter. Soil Water Manag Conserv 72(1):212–220. https://doi.

org/10.2136/sssaj2007.0001S6

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

142 Biogeochemistry (2021) 152:127–142

https://doi.org/10.5194/bg-2018-430
https://doi.org/10.5194/bg-2018-430
https://doi.org/10.1073/pnas.1706103114
https://doi.org/10.1038/nature10386
https://doi.org/10.5194/bg-10-1675-2013
https://doi.org/10.1002/2013MS000293
https://doi.org/10.1002/2013MS000293
https://doi.org/10.1016/j.soilbio.2013.06.014
https://doi.org/10.1016/j.soilbio.2013.06.014
https://doi.org/10.1111/gcb.15154
https://doi.org/10.1038/s41586-019-1128-0
https://doi.org/10.1038/nclimate2438
https://doi.org/10.1002/2017GB005678
https://doi.org/10.1002/2017GB005678
https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
https://doi.org/10.1038/38260
https://doi.org/10.1016/j.rse.2015.07.015
https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information
https://www.usgs.gov/centers/nmic/phosphate-rock-statistics-and-information
https://doi.org/10.1890/12-0681.1
https://doi.org/10.1890/12-0681.1
https://doi.org/10.1038/nclimate3276
https://doi.org/10.1002/ldr.2902
https://doi.org/10.2136/sssaj2007.0001S6
https://doi.org/10.2136/sssaj2007.0001S6

	How much carbon can be added to soil by sorption?
	Abstract
	Introduction
	Methods
	Compilation of batch experiment data
	Data analysis
	Data interpolation for missing values
	Training for machine learning
	Estimating the DOC sorption potential at global scales
	Estimating uncertainty


	Results
	Influential variables controlling sorption in batch experiments
	Influential variables controlling global-scale patterns of sorption

	Discussion
	Author contributions
	Data and code availability
	References




