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We present a worst-case approach to topology optimization (TO) for maximum stiffness under boundary
displacement parametrized by a matrix-valued scaling function times an uncertain vector giving its
direction. The objective function in the TO problem is the minimum of the potential energy maximized
over the set of boundary displacements, which in the absence of prescribed loads means maximizing the
reaction loads arising from enforcing the boundary displacement. It is shown that the TO problem can be
cast as the minimization of the maximum eigenvalue of a matrix depending on solutions to a small num-
ber of (linear elastic) state problems. Numerical solution of this potentially non-smooth problem using
algorithms for smooth optimization, a non-linear semi-definite programming reformulation, and a
non-smooth bundle method is discussed and tested.
� 2021 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Topology optimization (TO) has become a popular tool for
design of mechanical structures [10,13,24]. Topology-optimized
structures are usually highly efficient under the conditions they
are optimized for but may perform less than optimally, even
poorly, under other conditions. To obtain structures that perform
acceptably over a wide range of relevant scenarios it is thus neces-
sary to account explicitly for uncertainty when formulating a TO
problem. Among the many sources of uncertainty in mechanical
design we have here chosen to consider boundary displacements.
More precisely, we treat TO for maximum stiffness in linear elastic-
ity with partially prescribed displacement on parts of the boundary
of the design domain (partially prescribed meaning that the loca-
tion is assumed known but the direction of the displacement is
uncertain). To achieve a robust structure which is a stiff as possible
we seek a design which minimize the minimum (average) reaction
load obtained as the boundary displacement vary in an uncertainty
set (see problem (6) below). This approach is related to some ear-
lier work on worst-case load-uncertainty, see for example
[56,33,58], but prescribing displacements rather than loads make
the derivation and analysis somewhat different. In addition we also
show well–posedness of the continuum problem and demonstrate
numerical solution using a non-smooth method.

Previous work on TO, and other forms of structural optimiza-
tion, under uncertainty have treated uncertain loads [5–7,47,8,9,2
8,37,56,18,33,29,65,19,63,65,58,44,22,62], geometry [50,31,41]
and material properties [1,11,2,3,43,35,36,66,34,20,52,27], using
both worst-case-oriented and stochastic methods [9]. Unlike
stochastic methods, such as reliability-based design optimization
[39], worst-case-oriented methods assume nothing about the
probability distribution of the uncertain data, save for the data
being confined to a bounded uncertainty set. In practise, detailed
and accurate probability distributions may be difficult to obtain,
so this speaks in favour of using worst-case oriented methods. In
addition, such methods guarantee structural performance for all
data in the uncertainty set, whereas a corresponding stochastic
method can only give the same guarantee with a certain probabil-
ity. On the other hand, worst-case-oriented methods assume the
ability to compute the worst response and this amounts to solving
a non-convex optimization problem to global optimality – in gen-
eral a very difficult task. When using worst-case oriented methods
one is thus limited to problems with special structure, for example
where computing the worst response can be formulated as an
eigenvalue problem [58], where the uncertainty set is finite with
a very small number of elements [50], or where the problem actu-
ally admits a convex formulation [27]. The problem treated in the
present work belongs in the first category, for the objective in our
TO problem can be cast as that of finding a maximum eigenvalue.

In the following we first present the problem in the infinite-
dimensional continuum setting and show existence of a solution
for a general description of the uncertain data. This description is
then specialized in Section 2.2, whereafter we proceed with the
finite element (FE) discretization, and eventually end up with the
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non-smooth problem (19) of minimizing the maximum
eigenvalue-function of a matrix depending on the displacement.
One way to handle non-smoothness numerically which appears
popular at least in the engineering literature, is to simply ignore
it and just apply a smooth optimization solver; this approach is
tested below. In addition, we also try solving a smooth, non-
linear semidefinite programming formulation and present some
preliminary results from applying a simple non-smooth bundle
method.

2. Continuum formulation

We present here the continuum version of the problem1, formu-
lated initially as the minimization of the maximum of the negative of
the potential energy over the uncertainty set. (Depending on the
reader’s background it may be helpful to at least initially compare
with the corresponding finite element matrix problem derived in
Section 3, where starting with problem (17) one can use (13)–(16)
to arrive at (19)).

The design domain X � Rd; d ¼ 1;2 or 3, is an open, bounded
and connected domain with Lipschitz boundary @X with a subset
Cu; jCuj > 0, on which the displacement is prescribed. We follow
the density-based approach to TO [13] and let the design be
described by a function q, ideally only taking values 0 (no material)
or 1 (material) in each point in the design domain. The design is
restricted to the weakly⁄ sequentially compact set H � L1 Xð Þ. To
ease notation we do not consider prescribed (non-zero) surface
or body loads and assume that all d components of the displace-
ment is prescribed on Cu.

Since there are no prescribed loads, the potential energy of the
system is just one half of the strain-energy, i.e.,

P q;vð Þ ¼ 1
2
a q;v;vð Þ; ð1Þ

where, assuming small deformations and a linearly elastic material,

a q;u;vð Þ ¼
Z
X
E qð Þe uð Þ : e vð ÞdV ;

in which e uð Þ ¼ ruþruTð Þ=2 and: is the Frobenius inner product.
The set of admissible displacements is given by

V u0ð Þ ¼ v 2 H1 Xð Þ j v ¼ u0 on Cu

n o
;

where u0 2 H1=2 Xð Þ. We make the non-restrictive assumptions that
the constitutive tensor E �ð Þ is such that a q; �; �ð Þ is coercive on V 0ð Þ
for every admissible design; that P �;vð Þ is weakly⁄ sequentially
continuous on H; and that it is monotone increasing in the sense
that if q2 > q1 at a point in X, then at that point,

E q2ð Þe : e > E q1ð Þe : e; ð2Þ
for every symmetric d� d-matrix e. In practice, the weak⁄ continu-
ity can be ensured by using any of the standard regularization tech-
niques in TO [16,42,30]. The monotonicity property, which is
natural to assume, together with suitable constraints in H, ensures
that implicit penalization schemes such as SIMP or RAMP will work
as intended [45]; see Section 2.1.1.

We first consider the problem of minimizing the potential
energy, i.e. minv2V u0ð ÞP q;vð Þ. Since the strictly convex function
P q; �ð Þ is radially unbounded for every q 2 H and V u0ð Þ is weakly
closed this problem has unique solution u, characterized by the
existence of a reaction load k 2 H�1=2 Xð Þ such that equilibrium
(principle of virtual work) and the boundary conditions hold,
i.e. u solves
1 See for example [17] for the functional analytic background.

2

a q;u;vð Þ ¼ hk;viCu
; 8v 2 H1 Xð Þ ð3Þ

u 2 V u0ð Þ

where if k happens to live in L2 Cuð Þ, the duality pairing

hk;viCu
¼
Z
Cu

kTv ds:

Now consider the following design problem for a given function u0:

min
q2H

� min
v2V u0ð Þ

P q;vð Þ
� �

¼ min
q2H

� 1
2

k qð Þ;u0iCu
;

� ð4Þ

where the equality follows by substituting (3) into (1). From this
follows then the interpretation that we maximize a weighted aver-
age of the reaction load at the boundary. In the numerical examples
in Section 5 we refer to (the approximation of) 1

2 k qð Þ;u0iCu

�
and its

worst-case counterpart as ‘‘compliance”.

2.1. The worst-case problem

Introducing uncertain boundary displacements, confined to a
set D � H1=2 Xð Þ, leads to the following version of (4):

min
q2H

max
u02D

� min
v2V u0ð Þ

P q;vð Þ
� �

¼ min
q2H

max u0 ;vð Þ2W u0ð Þ �P q;vð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�c qð Þ

; ð5Þ

where the equality follows by noting that �min �ff g ¼ max f , and
the set W u0ð Þ ¼ D� V u0ð Þ. A solution q� (if any) to problem (5) is
robust in the sense that, by definition of maximum (or supremum
if the max is not achieved),

�P q�; ~vð Þ 6 c q�ð Þ ¼ max
u0 ;vð Þ2W u0ð Þ

�P q�;vð Þ 8 ~u0; ~vð Þ 2 W ~u0ð Þ;

i.e., no response will be worse than c q�ð Þ for any of the data in W .
Using (3), problem (5) can be re-written as

min
q2H

max
u02D

� 1
2

k qð Þ;u0iCu

� ð6Þ

Since, using (3), � k qð Þ;u0iCu
¼ � k qð Þ;u qð ÞiCu

¼ �a q;u qð Þ;u qð Þð Þ 6 0
��

,
we see that the inner maximization problem in (6) consists essen-
tially in trying to minimize the reaction load. This implies that the
set D must be such that u0 is bounded away from the zero-
function (the trivial solution); essentially D should provide a lower
bound on (some norm of) u0. This may seem counter-intuitive at
first, but a u0 which minimizes the reaction loads gives, loosely
speaking, a direction in which the structure is the least stiff.

2.1.1. Existence, convexity and monotonicity
We show here three easy-to-prove but important properties of

problem (5).

1. As for the existence of a solution to (5), recall that H is weakly⁄

sequentially compact, so existence of a solution follows if we
can show that c is weakly⁄ sequentially lower semi-
continuous on this set. Following [15, p. 261] we note that the
epigraph
epi cð Þ¼ q;að Þ 2 H� R ja P c qð Þf g
¼ q;að Þ 2 H� R ja P �P q;vð Þ; 8 u0;vð Þ 2 W u0ð Þf g
¼ \ u0 ;vð Þ2W u0ð Þ q;að Þ 2 H� R ja P �P q;vð Þf g;

where the first equality is direct from the definition of epigraph,
the second comes from the definition of c and the third from the
fact that W u0ð Þ does not depend on q. Now since P �;vð Þ is
(weakly⁄) continuous, �P �;vð Þ is lower semi-continuous, hence
its epigraph is closed. Then epi cð Þ, being the intersection of
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closed sets, is closed, whence it follows that c is weakly⁄ sequen-
tially lower semi-continuous on H.

2. If P is affine in its first argument, then
c qð Þ ¼ max
u0 ;vð Þ2W u0ð Þ

�P q;vð Þ

is convex (in q) by virtue of being the supremum of a set of
affine functions. In practice one is more interested in the non-
convex case, but we consider in the beginning of Section 5 some
convex instances as well.

3. Finally, from inequality (2) follows that
Fig. 1. Design domain with uncertain boundary displacement on the right side. The
top and bottom side of the domain are unconstrained (traction-free).
P q1;vð Þ ¼
Z
X
E q1ð Þe vð Þ : e vð ÞdV <

Z
X
E q2ð Þe vð Þ : e vð ÞdV

¼ P q2;vð Þ
so that

q2 > q1 a:e in X ) max
u0 ;vð Þ2W u0ð Þ

�P q1;vð Þ

> max
u0 ;vð Þ2W u0ð Þ

�P q2;vð Þ;

i.e. adding material results in a smaller objective value in (5).
This means that Assumption 1 in [45] holds, and we can expect
the usual SIMP or RAMP penalization schemes to work in the
sense of yielding close to binary-valued solutions for sufficiently
large values of the penalization parameters (in practise regular-
ization such as filters [16] always leaves some regions of inter-
mediate q-values).
Remark 1. A common stochastic approach to TO under
uncertainty is to minimize a linear combination of the expected
value and the standard deviation of the chosen response.
Depending on the relative weight put on the standard deviation,
such an objective may fail to be monotone in the above sense –
in the words of Toriis [59] it lacks ‘‘physical consistency” – and
implicit penalization schemes will then not work as
intended. �.

2.2. Parametrization of the uncertain data

Having shown that problem (5) is well-posed in the sense of
having at least one solution, we now turn to the question of com-
putational tractability. In practise, the choice of the uncertainty set
is limited by the requirement that a global maximizer can be found
in reasonable time; if not, we don’t have a worst-case approach
(though optimized designs would still likely be more robust than
if uncertainty is not accounted for at all).

We shall herein take the boundary displacements to be of the
form

u0 xð Þ ¼ Q xð Þd on Cu; ð7Þ
where Q : Cu ! Rd�s is a fixed, piecewise continuous matrix-valued
function. The vector d, which does not depend on position x, is sub-
jected to the constraint kdk P 1, where k � k is the Euclidean norm.
Fig. 1, in which d ¼ 2 and s ¼ 2, shows a simple example of how Q
could be defined. In the figure,

Q x; yð Þ ¼ 0 if x ¼ 0; y 2 0;H½ �
I if x ¼ L; y 2 0;H½ �;

�
where I is a 2� 2 identity matrix. That Q is taken as the zero-matrix
on the left side means that we are confident that the domain is
rigidly attached to something whose movement is negligible.

With boundary displacement on the form (7), problem (5) is
specialized to
3

min
q2H

max
d:kdkP1

� min
v2V dð Þ

P q;vð Þ
� �

¼ min
q2H

� max
d:kdkP1

�1
2
a q;u

	 þQ
	
d;u

	 þQ
	
d

� �
ð8Þ

where V dð Þ ¼ v 2 H1 Xð Þ j v ¼ Q xð Þd on Cu

n o
and the equality is

obtained by writing the solution to the innermost problem as
u ¼ ~uþ ~Qd, where the function ~Q is such that ~Qd ¼ Qd on Cu and
~u 2 V 0ð Þ satisfies

a q;u
	
;v

� 	
¼ �a q;Q

	
d;v

� �
; 8v 2 V 0ð Þ: ð9Þ
3. FE-discretization

Given a mesh Xef gme¼1, where m ¼ m hð Þ and h is the largest
diameter of an element, such that X ¼ [Xe, and ~Hh � H, we con-
sider the following FE discretized version of (8):

min
q2H

	
h

max
d:kdkP1

�1
2
ah q;u

	
h þ Q

	
hd;u

	
h þ Q

	
hd

� �
; ð10Þ

where uh ¼ ~uh þ ~Qdh, and u
	
h 2 Vh 0ð Þ solves

ah q;u
	
;v

� 	
¼ �ah q;Q

	
hd;v

� �
; 8v 2 Vh 0ð Þ; ð11Þ

in which ah q; �; �ð Þ, with the subscript h being motivated by for
example numerical quadrature, is assumed to be (for sufficiently
small h) coercive on the Lagrange FE-approximation space
Vh 0ð Þ � V 0ð Þ. With

~uh ¼
X

i:xi2XnCu

Ni xð Þui and ~Qhd ¼
X

i:xi2Cu

Ni xð ÞQ xið Þd|fflfflffl{zfflfflffl}
�d0i

; ð12Þ

where xi is the position of node i and Ni are the basis functions of
Vh, we find that the vector d collecting the n degrees of freedom
of uh can be written as

d ¼ Ad
	
þBd0; ð13Þ

where ~d contains the degrees of freedom of u
	
h; A 2 R

n� n� pð Þ and

B 2 R
n�p have full rank and satisfy ATBT ¼ 0 and BTB ¼ I; and, with

the d0i-s defined in (12) and numbering the nodes on Cu as 1;2; . . .,

d0 ¼
d01

d02

..

.

0
BB@

1
CCA ¼

Q x1ð Þ
Q x2ð Þ

..

.

0
BB@

1
CCAd ¼ Qd: ð14Þ
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Here and onwards, Q 2 R
p�s is a matrix containing values of the

function Q (recall Section 2.2) sampled at the nodes on Cu.
Using (13), the matrix version of (11) can now be written as

~K~d ¼ �K̂d0; ð15Þ
where the stiffness matrix (sometimes called the reduced stiffness

matrix) ~K ¼ ATKA, the ‘‘thin” n� pð Þ � p matrix K̂ ¼ ATKB, and K
has entries Kij ¼ ah q;Ni;Nj


 �
. It follows from the positive definite-

ness of ah q; �; �ð Þ that K is positive definite on the null-space of the
constraints. Since A has full rank it then follows that ~K is positive
definite, hence invertible, so that

~d ¼ �~K�1K̂d0: ð16Þ
Letting q 2 Hh collect the degrees of freedom of the approximate
design q 2 ~Hh, and using (13), (15) and (16), the matrix version
of (10) can now be formulated as

min
q2Hh

max
d:kdkP1

� 1
2
dTKd ¼ min

q2Hh

max
d:kdkP1

� 1
2

�A~K�1K̂d0 þ Bd0

� 	T
K �A~K�1K̂d0 þ Bd0

� 	
¼ min

q2Hh

max
d:kdkP1

� dT

0
1
2

�A~K�1K̂d0 þ B
� 	T

K �A~K�1K̂ þ B
� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�H qð Þ

d0;

ð17Þ
where, for every admissible design, the matrix H qð Þ is clearly sym-
metric and positive definite. Using (14) we thus obtain

min
q2Hh

max
d:kdkP1

� dTQTH qð ÞQd ¼ min
q2Hh

max
d:kdk¼1

� dTQTH qð ÞQd; ð18Þ

where the equality follows from �H qð Þ being negative definite (the
objective is thus monotone decreasing in kdk so that a maximizer
must have the smallest allowable norm). This problem may, using
the standard variational characterization of eigenvalues, and intro-
ducing M ¼ �QTHQ , be recast as

min
q2Hh

kmax M qð Þð Þ; ð19Þ

where kmax M qð Þð Þ, and the associated eigenvector(s), solves

M qð Þd ¼ kd; kdk ¼ 1: ð20Þ
To solve problem (19) we need to construct the matrix

M ¼ M qð Þ. To this end we recall the definition of H from (17)
and write

M ¼ �QT �A~K�1K̂ þ B
� 	T

K �A~K�1K̂ þ B
� 	

Q ¼ �WTKW ; ð21Þ

where

W ¼ �A~K�1K̂ þ B
� 	

Q ¼ �A~K�1K̂Q þ BQ ¼ A ~W þ BQ ;

in which the matrix ~W satisfies

~K qð Þ ~W ¼ �K̂ qð ÞQ : ð22Þ
The cost for evaluating M qð Þ in (19) is thus essentially that of solv-
ing s linear systems with the same stiffness matrix. Note that each
column i of ~W can be interpreted as a (reduced) displacement vec-

tor for the load �K̂Q �i, where Q �i is the i:th column of Q .

Remark 2. We have here described the theory in terms of a
‘‘reduced” stiffness matrix ~K . In practise one can of course also
work with a ‘‘full-size” matrix, handling the Dirichlet conditions by
for example zeroing rows and columns of the prescribed degrees of
4

freedom and placing ones in the corresponding diagonal position of
the stiffness matrix (this is the approach used for the 3D examples
below). Note also that the use of Lagrange FEs is not required for
our approach. �
3.1. Retrieving the worst-case displacement

The worst-case boundary displacement(s) for a given design is
d0;worst ¼ Qdmax, where dmax ¼ dmax qð Þ is an eigenvector associated
with the maximum eigenvalue in (20). In case the multiplicity of
this eigenvalue is greater than one, the eigenvectors are not unique
and there are infinitely many d0:s that give the same worst
response. Given d0;worst , the worst-case displacement is obtained

using (13) as dworst ¼ A~dworst þ Bd0, where ~dworst satisfies
~K~dworst ¼ �K̂d0;worst .

4. Numerical solution

For the numerical solution of problem (19) we shall, in Sections
4.1, 4.2 and 4.3, consider three methods.

Common to the considered methods is the use of first-order
sensitivity information, a necessity in TO [51]. To this end, note
that since M is smooth in q, the maximum-eigenvalue function
is Lipschitz-continuous, hence admits a subdifferential given by
[46, Theorem 3]

@kmax ¼ s 2 R
nd j si ¼ PT @M

@qi
P : U; U ¼ UT 2 R

t�t ; trU ¼ 1; U 
 0
� �

;

ð23Þ
in which the vectors s are subgradients, nd is the number of design
variables, and t is the multiplicity of the maximum eigenvalue. The
columns of P 2 Rs�t are (orthonormal) eigenvectors associated with
kmax. In the case t ¼ 1, giving U ¼ 1; @kmax reduces to the usual gra-
dient whose i:th component is

rkmax½ �i ¼ pT @M
@qi

p;

where p is the associated eigenvector. Recalling (21) one finds after
some calculations that

@M
@qi

¼ �WT @K
@qi

W;

so that, with u ¼ Wp,

rkmax½ �i ¼ �uT @K
@qi

u: ð24Þ

For definiteness we now take the approximate design to be
element-wise constant, with elemental values collected in
q 2 Rm, and subjected to an upper bound cV on its total volume.
Here V is the volume of the design domain and c 2 0;1ð Þ. The set
of admissible designs in (19) is thus given by

Hh ¼ q 2 R
m j0 6 qe 6 1; e ¼ 1; :::;m;

Xm
e¼1

qeVe 6 cV

( )
: ð25Þ

The system of constraints defining Hh in (25) satisfies Slater’s
constraint qualifier [4, Def. 5.38] whence a solution q to (19) must
satisfy [21]

@kmax qð Þ þ j
Xm
e¼1

qeVe � cV

 !
þ
Xm
e¼1

ceqe þ ceþm qe � 1ð Þ�  2 0

for some jP 0 and ce; ceþm P 0; e ¼ 1; . . . ;m. If kmax happens to be
differentiable at a solution then this reduces to the standard
Karush-Kuhn-Tucker optimality conditions.
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4.1. NLP-formulation

The first approach to a numerical solution is to simply ignore
the potential non-differentiability and treat (19) as a standard,
smooth optimization problem using (24) for the derivatives. A
motivation for this could be that while theoretical analyses
[48,57] suggest that non-smoothness is in fact expected to occur
precisely at optimal solutions, this is only so if there is enough free-
dom in choosing the design. Since this freedom depends not only
on the number of elements in q and explicit constraints, but also
on the shape of the design domain, loads and other boundary con-
ditions, it may be argued that in general in TO there isn’t enough
freedom to obtain non-smoothness (for example, depending on
the aspect ratio of the design-domain it may be impossible to
obtain a design performing equally well for every possible loading
direction).

4.2. Non-linear semidefinite programming

Introducing an auxiliary variable z, problem (19) may be recast
as the following smooth, non-linear semi-definite programming
(SDP) problem (c.f. [58]):

min
q2Hh ;z60

z

s:t: zI �M qð Þ 
 0;
ð26Þ

where I is an identity matrix and ‘‘
 0” means that the matrix to the
left should be positive semi-definite. Unfortunately, to the best of
our knowledge, the only software tailored for this type of problem
is PenLab/PENNON [26], which requires exact second-derivative
information and whose development appears to have ceased. An
alternative is to reformulate (26) as a smooth NLP, for example
based on Cholesky- [58] or LDL-factorizations [61,14]. Using the fact
that a matrix is positive semi-definite if and only if it admits a Cho-
lesky factorization we consider the following version of (26):

min
q2Hh ; z60; L2Ls

z

s:t: zI �M qð Þ ¼ LLT;
ð27Þ

where Ls is the space of real-valued, lower triangular s� s-matrices
with non-negative diagonal entries. Unfortunately we now have a
set of non-affine equality constraints, so the feasible set will always
be non-convex even if the original problem is convex (which it is
not in TO). On the other hand, every local minimum in (27) is a local
minimum in (26) and vice versa (cf. [58]), so the non-convexity is
not necessarily a practical issue.

Another drawback of formulation (27) is that it cannot be
solved efficiently with the Method of Moving Asymptotes (MMA)
[54], arguably one of the most popular optimization methods for
TO. Therefore we use below the code IPOPT [64]. An advantage of
this is that unlike the standard MMA, IPOPT is a globally conver-
gent method, meaning that convergence to a stationary point is
guaranteed under mild assumptions.

4.2.1. Sequential linear SDP
Inspired by sequential convex programming methods such as

MMA one may consider solving a sequence of convex approxima-
tions of (26). One way to achieve a convex approximating problem
is to make a linear approximation of each component function in
the matrix inequality in (26) (MMA-type approximations of the
component functions would yield a non-convex matrix constraint),
leading to a linear, hence convex matrix inequality. In detail, defin-
ing A xð Þ � zI �M qð Þ and linearizing around a point xk ¼ zk;qk


 �
gives the convex problem
5

min
Dx¼ Dq;Dzð Þ

zk þ Dz

s:t:
A xk

 �þXmþ1

i¼1

@A
@xi

xk

 �

Dxi 
 0

qk þ Dq 2 Hh; zk þ Dz 6 0:

8><
>:

ð28Þ

(In practise one has to impose, for example, ‘‘move limits” on Dx to
ensure convergence.) Linear SDP-problems of the type (28) can be
solved by specialized software such as SeDuMi [53], SDPT3 [60] or
MOSEK. Unfortunately these codes are not efficient for the kind of
large-scale problems one has in TO, hence this a approach is not
considered in the numerical examples below.

4.3. Non-smooth optimization

A third option is to actually treat (19) using methods designed
for non-smooth optimization. Such methods can, roughly speaking,
be divided into two classes [38]: subgradient and bundle methods.
Inspired by [40,67] we consider here a so-called proximal bundle
method, many details of which are described in [32, Chapter 15].

The basic idea of our bundle method is to solve a sequence,
k ¼ 1;2; . . ., of approximating problems of the form

min
q2Hh

f k qð Þ þ lk

2
kq� qkk2

n o
; ð29Þ

where the parameter lk > 0 is used to vary the cost of moving from
the current, so-called stability center qk. The model function f k,
approximating the maximum-eigenvalue function
f ¼ f qð Þ ¼ kmax M qð Þð Þ, should be such that (29) is simple to solve.
Here we take

f k qð Þ ¼ f qkð Þ þmax
i2Jk

�bik þ sTi q� qkð Þ� 
;

where si is one of the subgradients from @kmax qið Þ defined in (23)
and Jk � 1; . . . ; kf g. The so-called subgradient locality measure bik

is defined as [38]

bik ¼ max jf qkð Þ � f qið Þ þ sTi qi � qkð Þj; ckqk � qik
� �

; ð30Þ
where c P 0 is user-specified parameter (which can be taken as
zero in the convex case).

The bundle method tested herein can be described as follows:

1. Given c P 0;M > 0; ‘max > 0, initial guess q0, and s0 2 @kmax q0ð Þ,
set k ¼ 0. Then

2. Solve (29) for a given lk. Denote by q̂ the solution to this
problem.

3. If stopping criteria satisfied, STOP (with q̂ as the solution).
Otherwise go to Step 4.

4. If f q̂ð Þ � f qkð Þ 6 �Mjf qkð Þ � f k q̂ð Þj, set stability center qkþ1 ¼ q̂

and k ¼ kþ 1 and go to Step 2. Otherwise set qkþ1 ¼ qk and
go to Step 5.

5. If jJkj ¼ ‘max, remove the two elements with the largest bik from
the bundle and update Jk.

6. Add si 2 @kmax q̂ð Þ and bik to the bundle. Then set k ¼ kþ 1 and
go to Step 2.

In Step 4 of this algorithm we check whether the actual
decrease of f is sufficiently large compared to the predicted change
(we use here the absolute value because for non-convex problems
f qkð Þ � f k q̂ð Þ may become negative). If so, we trust the model and
just move the stability center. If not, we ‘‘refine” the model by add-
ing, in Step 6, one more element to the bundle and solve the
approximating problem again.



Carl-Johan Thore Computers and Structures 259 (2022) 106696
The choice of the stabilization parameter lk in Step 2 can have a
significant impact on the performance of the algorithm – setting it
too small can lead to short steps and slow convergence, but setting
it too large can lead to non-convergence. The strategy used in our
numerical example is to start with a ‘‘small” (relative to kmax q0ð Þ)
value which is increased by 10 percent if the objective value at
the new trial point q̂ is greater that the objective value at the cur-
rent stability center, i.e. if the objective, contrary to our desire,
increases. In the numerical examples we set l0 ¼ 10�4kmax q0ð Þ.
We note for potential future work that various procedures for
adaptive updating of lk have been proposed [49,38].

Besides evaluating the original objective function, the most
computationally costly part of the algorithm is the solution of
problem (29). This problem can be reformulated as the smooth,
quadratic optimization problem

min
q;rð Þ2Hh�R

r þ lkkq� qkk2

s:t: r P f qkð Þ � bik þ sTi q� qkð Þ; 8i 2 Jk;
ð31Þ

from which we derive the Lagrange dual problem

max
kP0

� bT
kþ

Xm
i¼1

min
06qi61

1
2lkq2

i � lkqkiqi þ kTA�iqi

� �
s:t: AT

�nk ¼ �1;

ð32Þ

which is solved numerically to obtain solutions to (29). In (32),
A and b are defined by the volume constraint in Hh and the explicit
linear constraints in (31). The gradient of the objective function in
the dual problem, call it ~L, with respect to k is

r~L ¼ �bþ
Xm
i¼1

A�iqi kð Þ;

where qi kð Þ ¼ min 1;max 0;� lkqki þ kTA�i

 �

=lk

� �� �
is the unique

solution to the i:th minimization problem in (32). Together with
Step 5 in the above algorithm which limits the size of the bundle,
this dual method becomes efficient also for large-scale problems.
Fig. 2. L-shaped design domain. The upper part is fixed and non-zero displacement
is prescribed on the upper edge at the tip.
5. Numerical examples

Some numerical examples are given here to show the effect of
accounting for uncertain boundary displacement and give an indi-
cation as to how the numerical solution methods discussed in Sec-
tion 4 works. As mentioned in connection with problem (4), we
will refer to objective function values as ‘‘compliance”.

For purpose of comparison, to see that the robust formulation
leads to designs which differ in some meaningful way from non-
robust designs, we solve some problems with a fixed d0 such that
kd0k ¼ 1. For such data problem (18) reduces to

min
q2Hh

max
d:kdk¼1;d¼d0

dTM qð Þd ¼ min
q2Hh

f TH qð Þf ; ð33Þ

where f ¼ Qd0.
In the following we use SIMP [12] for penalization and a linear

density filter [16] with radius R for regularization. Assuming an
isotropic material, the global stiffness matrix is written as
K qð Þ ¼Pm

e¼1 Emin þ ~qe qð Þq E� Eminð ÞKe

 �

, where ~qe qð Þ is a filtered
variable, the SIMP parameter q P 1 and Ke is an element stiffness
matrix. The constant Emin is introduced to avoid singular stiffness
matrices and is set to 10�9 in the examples. The Young’s modulus
E is set to 10, the Poisson’s ratio to 0.3 and the maximum volume
fraction of solid material in (25) to c ¼ 0:4. In all the examples we
use as initial guess q0 a constant, feasible design. For the 2D (plane
stress) examples, the displacement is approximated using bi-
linear, square FEs.
6

The optimization problems are solved using MMA [55], IPOPT
[64] or the bundle method described in Section 4.3. Unless explic-
itly stated, we use default settings for IPOPT and MMA. For IPOPT
we used a limited-memory BFGS approximation of the Hessian
(of the Lagrangian) with 60 correction pairs. The dual problem
(32) in the bundle method is solved using the active-
set algorithm of the Matlab (R2021a) function fmincon with
default settings. The 2D state problems are solved using the sparse
direct solver CHOLMOD [23].
5.1. Example 1

Figure 2 shows the set-up, based on an L-shaped design domain,
for the first example. The thickness of the domain (into the paper)
is 0:1L, with L set to 1 throughout. A mesh consisting of 36834 FEs
is used. Non-zero displacement, with Q ¼ I2x2, is prescribed on the
upper edge of the tip over a small length of 0:01L. The problems in
this subsection are solved using MMA.

For reference we show in Fig. 3 some designs obtained for fixed
d:s, i.e. solutions to problem (33). In this case, to make sure that
what we see is not an effect of ending up in a poor stationary point,
we have set the SIMP parameter to q ¼ 1 to get a convex problem
(we also do not use the density filter in this case). The blue arrows
in the left plot indicates the direction used in the optimization and
the red the worst (the one which maximizes the objective func-
tion) direction for the optimized design. The right column in
Fig. 3 shows how the compliance varies if the direction of d is chan-
ged, with the minimum attained for the direction used in the opti-
mization (the compliance is p-periodic in the angle, so strictly
speaking it is only necessary to check it for angles in ½0;pÞ).

Figure 4 shows an optimized design with uncertain boundary
displacement whose direction is allowed to vary as indicated by
the circle in Fig. 2. The design was obtained by applying MMA to
the eigenvalue formulation (19). One notices that the design is
quite similar to the design in the top of Fig. 3, the main differences
showing near the loading and at the upper legs, but looking at how
the compliance varies (Fig. 4, right), the robust design has a slightly
smaller variability. Compared to the design in the bottom row of
Fig. 3 the difference in variability is even more significant.

The stopping criteria for the optimizations illustrated in Fig. 3
and Fig. 4 was a maximum of 1000 MMA iterations. The iteration
history in Fig. 5, which is essentially flat after 100 iterations, indi-



Fig. 3. Designs optimized for a fixed d (blue arrows). Top row: d ¼ 0;�1ð Þ. Bottom row: d ¼ 2=
ffiffiffi
5

p� 	
�1=2;�1ð Þ. Blue arrows indicate the fixed direction used in the

optimization and red arrows shows the worst direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Left: Design optimized under uncertainty. The load arrow shows the worst-case direction. Right: Compliance for the designs in Fig. 3 and Fig. 4 (Robust).
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Fig. 5. Iteration history for the design in Fig. 4.
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cate that in practise one could probably have used much fewer
iterations in this particular case.
5.2. Example 2

We here consider the same setup as before, but now with SIMP
parameter q ¼ 3 to approximate TO, and the filter radius set to
Fig. 6. Topology optimized design under uncertainty together with compliance variation
formulation with IPOPT. Bottom: SDP formulation with IPOPT (here ‘‘Compliance” in th

8

R ¼ 0:01L (increasing the filter radius leads, as expected, to designs
with larger gray regions and fewer structural members which still,
however, exhibits the robust behaviour of essentially constant
compliance for all angles illustrated in the following figures).
5.2.1. Eigenvalue and SDP formulations
Figure 6 shows designs obtained using MMA (top) and IPOPT

(middle) on the eigenvalue formulation (19), and IPOPT (bottom)
on the SDP formulation (27). It is interesting to note that unlike
for the case q ¼ 1 (see Fig. 4) we get here designs, at least the mid-
dle and bottom ones, which have essentially the same compliance
for every loading direction, meaning that the maximum eigenvalue
has multiplicity 2. It is perhaps a bit surprising that this is seen
here but not for q ¼ 1 since theoretical analyses [48,57] indicate
that the more degrees of freedom one has whenminimizing a max-
imum eigenvalue, the more likely one is to see multiplicity greater
than 1 at an optimal solution.

Looking at the iteration histories in Fig. 6 it should be noted that
an MMA iteration requires evaluating the objective and constraints
exactly once, whereas IPOPT may evaluate these functions several
times during an iteration when performing a line search – this is a
price one has to pay to have a globally convergent method. Critical
to the performance of our optimization problem is the number of
times the equilibrium Eqs. (22) are solved. For the top design in
Fig. 6, using MMA on the eigenvalue formulation, the number of
equilibrium solves is 2000; for the middle design, using IPOPT on
the eigenvalue formulation, the number is 7022; and for the bot-
and iteration history. Top: Eigenvalue formulation with MMA. Middle: Eigenvalue
e iteration history is the value of the z-variable in (27)).
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tom design, using IPOPT on the SDP formulation this number is
2325.

The highly oscillatory behaviour exhibited by MMA (Fig. 6, top
right), which may be contrasted with the smooth convergence in
Fig. 5, can be avoided by adjusting the parameters
asyinit;asydecr and asyincr [55], or potentially switching to
the globally convergent version of MMA [54]; either way one
expects the number of equilibrium solves required to reach an
optimum (or at least stationary point) to go up (we in fact tested
GCMMA [55], with default settings, on this problem, but stopped
after 18000 equilibrium solves with a design still having mostly
intermediate q-values). The relatively smooth convergence history
for IPOPT on the eigenvalue formulation (Fig. 6, middle right), sug-
gests that it might be possible to improve the performance by set-
ting looser stopping criteria. This is not the case for IPOPT on the
SDP formulation (Fig. 6, bottom right), where, as suggested by
the oscillatory convergence history, setting a much looser stopping
criteria frequently led to premature stopping at designs with large
regions of intermediate q-values.
Fig. 7. Designs obtained using the bundle method. Left: Designs. Middle: Compliance var
at the trial point q̂ (which may or may not be accepted as the next stability center) and
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5.2.2. Non-smooth formulation
Figure 7 shows results from using the bundle method of

Section 4.3 to solve the same problem as in Fig. 6. As for the param-
eters in the algorithmwe first set c ¼ 0:1=m andM ¼ 0:25 and take
as stopping criteria a maximum of 1000 bundle iterations
(similarly to MMA, one bundle iteration requires evaluating the
objective and constraints exactly once). The three designs in
Fig. 7 are obtained using the maximum number of elements in
the bundle set to ‘max ¼ 1 (top), ‘max ¼ 30 (middle) and ‘max ¼ 60
(bottom). As can be seen, setting ‘max ¼ 1 (in which case we don’t
really have a ‘‘bundle”) yields a design with large regions of inter-
mediate q-values, whereas ‘max ¼ 30 or ‘max ¼ 60 results in nice
looking, close to binary-valued designs, with ‘max ¼ 60 giving a
slightly better optimal value. The two designs differ a bit from
those in Fig. 6 (middle and bottom), but are quite similar in terms
of compliance.

In addition to lk and ‘max, our bundle method has two more
parameters: M and c. Intuitively, decreasing M makes it easier to
satisfy the check whether to update the stability center in Step
iation for the optimized design. Right: Convergence history showing the compliance
the stability center qk .
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4 in the algorithm, hence the method should become less ‘‘con-
servative”. As for c, entering in (30), setting it too large might
lead to a poor model of the objective function. Our experience
is however that the method is not highly sensitivity to (reason-
ably large) variations of these parameters, though the non-
convexity of the problem implies that slight differences may
be seen in optimized designs. Fig. 8 shows designs with
‘max ¼ 30 and varying M and c. In all cases, the convergence-
behaviour is similar to the one illustrated by the middle right
plot in Fig. 7, i.e. smooth with rapid changes in the beginning.
Some differences are seen between the designs but the optimal
values are very similar: �0.045802 (left), �0.045384 (middle)
and �0.045795 (right).

5.3. Example 3

To illustrate that the proposed TO problem formulation works
also for larger 3D problems and how uncertainty might affect such
designs we give in Fig. 9 two optimized designs from a 3D-version
Fig. 9. 3D designs (tresholded at q ¼ 0:7). Left: Design optimized for a fixed direction 0;ð
design. Worst loading direction �0:077; 0; �0:997ð Þ as red arrows. (For interpretation of
of this article.)

Fig. 8. Designs obtained using the same settings as in Fig. 7 (middle) but with var
M; cð Þ ¼ 0:25;5=mð Þ.
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of the problem with the L-shaped domain using a mesh with
700000 eight-noded, tri-linear elements and a total of 2188053
degrees of freedom. The SIMP-parameter was set to q ¼ 3, the filter
radius to R ¼ 0:015 and Q ¼ I3x3 over the middle part of the tip of
the L. The multiplicity of the maximum eigenvalue in the robust
design on the right is 2 (of 3).

Figure 10 shows (images taken from the software FreeCAD) stl-
versions of the two designs. It is clear, that the robust and non-
robust designs are quite different, with the robust design having
a more box-like appearance to counter loading from all directions,
whereas the non-robust design is clearly more adapted only to the
downwards bending applied in the optimization.

The total runtime for the robust design was roughly 9.5 h for
800 MMA iterations on two 16-core Intel 6130 CPUs using the con-
jugate gradient method with an algebraic multi-grid precondi-
tioner implemented in the code AMGCL [25]. Smoothed
aggregation was used for coarsening and incomplete LU-
factorization without fill-in for relaxation. Near null-space vectors
of the stiffness matrix were provided for improved performance.
0;�1Þ as blue arrows. Worst loading direction 0; �1; 0ð Þ as red arrows. Right: Robust
the references to color in this figure legend, the reader is referred to the web version

ying M and c. Left: M; cð Þ ¼ 0:05;0:1=mð Þ. Middle: M; cð Þ ¼ 0:75;0:1=mð Þ. Right:



Fig. 10. Slightly smoothed stl-versions of the 3D designs from Fig. 9. Top and bottom left: Design optimized for a fixed direction. Top and bottom right: Robust design.
A clipping plane at y ¼ 0:3 has been inserted in the lower plots to show internal holes.

Carl-Johan Thore Computers and Structures 259 (2022) 106696
6. Concluding remarks

We have presented and showed well-posedness of a worst-
case approach for TO under uncertain boundary displacement
in a formulation leading to an optimization problem with a max-
imum eigenvalue as the objective function. For the numerical
solution we tested three different approaches: (i) ignoring poten-
tial non-smoothness and applying a standard NLP-solver; (ii)
reformulating the problem as a smooth, non-linear SDP problem;
and (iii) applying a non-smooth bundle method. The first strat-
egy actually worked in the sense of not leading to nonsensical
designs (in particular IPOPT yielded a perfectly acceptable design
in Fig. 6 (middle)), but just ignoring non-smoothness is not guar-
anteed to work in all cases. Between the SDP formulation and
the bundle method, the latter (or other non-smooth methods)
is perhaps more interesting for future work as it can potentially
11
be applied to a broader class of problems not admitting SDP for-
mulations. We note that our version of the bundle method is
extremely simple, so robustness- and performance-wise we have
only established a lower bound on what can be achieved with
this type of algorithms.
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