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Abstract—Low-power wireless networks transmit at low
output power and are hence susceptible to cross-technology
interference. The latter may cause packet loss which may
waste scarce energy resources by requiring the retransmis-
sion of packets. Jamming attacks are even more harmful
than cross-technology interference in that they may totally
prevent packet reception and hence disturb or even disrupt
applications. Therefore, it is important to recognize such
jamming attacks. In this paper, we present JamSense.
JamSense extends SpeckSense, a system that is able to
detect multiple sources of interference, with the ability
to classify jamming attacks. As SpeckSense, JamSense
runs on resource-constrained nodes. Our experimental
evaluation on real hardware shows that JamSense is able
to identify jamming attacks with high accuracy while not
classifying Bluetooth or WiFi interference as jamming
attacks.

I. INTRODUCTION

The Internet of Things (IoT) is expected to enable
applications of utmost societal value, such as energy-
efficient buildings, smart cities, intelligent grids, and
next-generation healthcare. To fulfil this promise, IoT
networks need to be able to support applications that
require sensor data and actuation commands to be deliv-
ered in a timely fashion with high reliability. Wireless
networks are, however, exposed to cross-technology in-
terference and different jamming attacks. This is a par-
ticular challenge for IoT networks that typically operate
wirelessly on low power. Hence, they only can transmit
with low output power, which makes them susceptible
to such interference and attacks.

While there is a whole body of work that has been
dedicated to detecting interference, the detection of dif-
ferent jamming attacks has received much less attention.
Both heavy interference and jamming attacks lead to
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high packet loss and hence degrade the performance of
the application if not being dealt with. The difference
between the two is that cross-technology interference
stems from other operational networks while jamming
is usually caused by an attacker that deliberately aims to
disrupt or disturb an application.

One of the challenges is that the battery-powered IoT
devices must often last for years. In addition to operating
with low transmit output power, they cannot afford
power-hungry algorithms for interference and jamming
detection. Therefore, in this paper, we opt for a tool
that can detect and classify both heavy interference and
different jamming attacks using simple algorithms that
can be deployed on resource-constrained IoT devices.

Towards this end, we extend SpeckSense [8] with the
ability to differentiate between different jamming attacks
such as proactive and reactive jamming [20]. SpeckSense
features an interference detector that distinguishes be-
tween WiFi and Bluetooth interference using an unsu-
pervised learning technique. In addition, it distinguishes
between moderate and heavy traffic and identifies WiFi
beacons.

As SpeckSense and other approaches to interference
classification [3], [22], JamSense is based on fast RSSI
sampling. After RSSI sampling, JamSense detects jam-
ming using clustering techniques. Finally, the created
clusters are examined to identify the type of jamming in
particular based on the jamming’s temporal properties.

We implement JamSense on Nordic’s nRF52840 plat-
form, a resource-constrained IoT platform with an IEEE
802.15.4 radio [15]. We perform experiments in a small-
scale testbed where we expose JamSense to both jam-
ming attacks and external interference. Our results show
that we can identify jamming attacks with high accuracy.
In addition, we show that we do not misclassify exter-
nal interference from Bluetooth and WiFi as jamming



attacks. We also show that when JamSense runs in an
environment where we do not expect any attacks, it
only rarely identifies attacks keeping the number of false
positives very low.

Contributions. We make the following contributions in
this paper:

e We provide mechanisms to detect and differentiate
the most common jamming attacks in low-power
wireless networks.

o We integrate these mechanisms into an existing tool,
SpeckSense, for interference detection that runs on
resource-constrained IoT nodes.

o We demonstrate the capabilities of JamSense via
experiments on real hardware. In particular, we
show that JamSense identifies jamming attacks with
high accuracy while not classifying Bluetooth or
WiFi interference as jamming attacks.

II. JAMMING ATTACKS ON LOW-POWER WIRELESS
NETWORKS

Jamming attacks can disturb or disrupt communication
between nodes by preventing the sender from transmit-
ting packets, or by preventing the reception of pack-
ets [20]. Although there exists a large number of radio
jamming attacks, the most common jammers are the
constant, deceptive, random, and reactive jammers [4],
[11], [12], [16], [17], [20]. All of these jammers have
shown to be effective in that they prevent transmission
or reception of most, if not all packets [20]. These
jammers are based on the same low power radios used
by IoT devices. They are attractive to hackers because of
their affordability and power efficiency, in comparison to
bulky, high-power radio transmitters.

A. Proactive jammers

A proactive jammer sends out interference signals
regardless of the data communication that happens in the
network. It transmits random or specific chosen bits on
a chosen channel to occupy it, thereby preventing other
nodes from transmitting or receiving on this channel.
There are three main types of proactive jammers.

1) Constant jammer: A constant jammer sends out
a continuous radio signal in the wireless medium. It
transmits random bits on a chosen channel and does not
obey the rules of the MAC protocol in operation [19].

2) Deceptive jammer: A deceptive jammer is similar
to a constant jammer in that it sends out a continuous
flow of radio signals. In contrast to a constant jammer,
it transmits packets instead of random bits. Its goal is to

trap the victim into a receiving mode where it is unable
to do anything else.

3) Random jammer: A random jammer alternates
between sleeping and transmits states. It emits radio
signals for a certain time ¢, and then sleeps for a certain
time t,. By doing so, it saves energy and becomes harder
to detect than a constant jammer. The variables ¢; and
ts can be fixed random values. The jamming itself can
be conducted using either bits or packets [19].

B. Reactive jammer

A reactive jammer is a jammer that is reactive in that it
reacts to its environment before it takes action. This type
of jammer starts transmitting radio signals only when it
senses activity on a channel that the victims are using.
This way, the jammer targets the reception of packets,
which makes it harder to detect [9].

A common implementation of a reactive jammer is the
start-of-frame delimiter jammer [5] that we call SFD-
jammer. The beginning of an 802.15.4 frame consists
of a preamble and a start-of-frame delimiter (SFD).
The purpose of the preamble and SFD is to alert a
receiver that there is a packet to be received and to
keep synchronization between devices that are commu-
nicating. When the SFD-jammer notices a preamble and
an SFD on the channel, it quickly turns from reception
to transmission mode to transmit an interference packet
in order to corrupt the payload of the packet that is
being transmitted to the receiving node. This results in
the packet getting dropped by the receiving node. By
doing so, the SFD-jammer not only keeps itself more
concealed to the environment by only attacking packets
that are being transmitted but it also saves energy by not
sending jamming signals on random noise.

III. DESIGN AND IMPLEMENTATION

interference
classication

Sampler jamming detection

RSSI Interference and /

Jamming
classification

Fig. 1: High-level architecture of JamSense.

The high-level architecture of JamSense follows the
one of SpeckSense [8]. It consists of several modules
shown in Figure 1. First, JamSense samples the RSSI
values. After the RSSI sampling, JamSense detects inter-
ference and jamming using clustering methods. Finally,
JamSense classifies both interference and jamming.



A. RSSI Sampler

Like many other approaches for interference detec-
tion, including SpeckSense [8], we employ an RSSI
sampler. The RSSI sampler captures the energy in the
channel, which will typically increase during a period of
interference. The RSSI-sampler reads RSSI values at a
frequency of 25.6 kHz. As in SpeckSense, we quantize
the RSSI to avoid accounting for smaller variations in
the RSSI, and to save memory. In order to further save
memory space, we run-length encode the quantized RSSI
readings. The RSSI sampler stores a power level and its
duration into a 2D vector. The power level depends on
the strength of the RSSI. We define 20 different power
levels. For example, the RSSI sequence: -93, -92, -56,
-57, -55, -29, -28, -70, -70, -70, -94. would lead to the
following sequence of 2D vectors: (1, 2), (10, 3), (17,
2), (7, 3), (1, 1) since, e.g., -93 and -92 are mapped to
the same power level (power level 1).

To avoid saturation, e.g., in the case of a constant
jammer getting stuck sampling, we set a maximum
number for the duration with an empirically chosen
value. After having produced a certain amount of 2D
vectors, these are sent to the detection module.

B. Jamming detection

In order to identify the different jamming attacks,
we use a K-means clustering algorithm. The K-means
clustering algorithm takes the 2D vectors created by the
RSSI-sampler and randomly initializes centroids from
the 2D vectors. Each 2D vector will be assigned to
the nearest cluster centroid, which results in k clusters.
The K-means clustering algorithm will recalculate the
positions of the centroids until a stop condition is met.

For the assignment of 2D vectors to clusters, the algo-
rithm uses the Euclidean distance. The cluster centres are
updated by recalculating the average of the samples. The
Euclidean distance algorithm is weighted higher towards
the power level in order to emphasize and give more
weight to 2D vectors that have a short duration and high
power level.

Cluster assignment and the update of the centroids
are repeated until a termination condition is met. The
cluster assignment terminates when distance is below a
threshold of 0.001 which we empirically determined by
observing when the algorithm does not further increase
the accuracy of the clusters. The other termination condi-
tion is that the number of clusters exceed the maximum
k. The k in this algorithm is not known in advance as
there can be a different number of interference sources.
k is therefore calculated in real-time and is tested with

different values of k. k starts at a value of 1 and is
increased by one as long as the cost of difference of the
algorithm is less than the termination threshold (0.001).

C. Jamming Classification

To classify the different jamming attacks, we execute
a cluster sampler process. After the K-means clustering
algorithm has been executed and has created several clus-
ters, we sort the clusters after duration and compare with
the jamming attacks’ pre-determined thresholds, which
are duration and power level. If a cluster’s attributes are
inside the pre-determined threshold, we save that cluster
as a cluster sample.

When five cluster samples have been collected within
a certain time duration, their average and each cluster’s
difference to the average is calculated. If the difference
is smaller than a certain threshold, meaning that the
sample values are close enough to each other, JamSense
concludes that the cluster sample is not a random attack
but either a constant or deceptive jamming attack as
these attacks are consistent. If the difference is larger
than the threshold, JamSense classifies the attack as a
random jammer, as random jammers are inconsistent. If
five samples are not collected during a certain time, and
the characteristics of an SFD jamming attack has been
detected once, it is most likely a reactive SFD jamming
attack.

Figure 2 and 3 visualize how JamSense classifies
the constant, deceptive and SFD-jammer. The power
level 11 is selected as the minimum power level where
interference prevents the reception of a packet. The
constant and deceptive jamming attacks have the same
characteristics regarding power level and duration. They
differ in how they are transmitting bits: Constant jam-
mers send random bits while deceptive jammers transmit
packets containing a preamble and an SFD. In order
to differentiate between these two jamming attacks, we
check whether we receive a preamble and an SFD or
not. We determine the thresholds experimentally. They
have been shown to work well in our experiments.
Future work could use more advanced machine-learning
methods to define the thresholds.

D. Interference detection

The detection of unintentional interference closely
follows SpeckSense [8]. If there are no alerts for a jam-
ming attack, JamSense runs its interference detection to
detect WiFi or Bluetooth interference. The RSSI values,
which have been quantized and run-length encoded, are
extracted into bursts. A burst is a consecutive sequence
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Fig. 2: JamSense clustering a constant and deceptive jamming attack

with the help of the K-means algorithm. Constant and deceptive

jamming attacks show a long duration because of the continuous

radio signal they create.
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Fig. 3: JamSense clustering a reactive jamming attack with the help
of its K-means algorithm. The duration of the SFD-jamming attack is
very short (note the different x-axis compared to the previous figure)
because it is only active for a short time when it senses activity on
a channel.

where the channel is active, i.e., the power level is greater
than one. A burst is created when the channel stops being
idle by taking the weighted mean power level and the
total duration of the sequence. For example, from the 2d-
vectors (3,3) (4,1) (2,1) we compute the following burst:
(w, (3+1+1)) = (3,5). The bursts are then

(3+1+1) _ ) _
handed over to the interference classification module.

E. Interference classification

For classifying the WiFi and Bluetooth interference,
we use the same K-means cluster algorithm for identi-
fying the jamming attacks. There are, however, a few
differences: the Euclidean distance algorithm is not
weighted as we are not focusing on emphasizing short
durations and high power levels since these are relevant
only for jamming attacks. A non-weighted Euclidean
distance algorithm yields better results for identifying
WiFi and Bluetooth.

Furthermore, the K-means clustering algorithm clus-
ters a group of bursts. The interference classification
is done by comparing the average burst size and burst
power level to pre-determined thresholds that have been
profiled earlier. SpeckSense also identifies different types
of channel activity by calculating and comparing inter-
burst separation and average clusters created by the
interference. We do not include this feature as our aim
is to identify jamming attacks and heavy interference—
not whether it is WiFi from web browsing or WiFi from
video streaming.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate several important prop-
erties of JamSense. Towards this end, we perform ex-
periments on real hardware in a small-scale testbed. We
implement JamSense on Nordic’s nRF52840 platform, a
resource-constrained loT platform that features an IEEE
802.15.4 radio. This low-power radio is also used by
other studies dealing with interference and jamming [3],
[8], [22]. JamSense is implemented using the Contiki-
NG operating system [2]. Our unoptimized implementa-
tion fits within 74 KB of program memory. The overall
RAM usage is contained within 20 KB out of the 256
KB that are available on the platform.

1.5m 1.5m

. Node

7
3 (\(@) Jammer

U JamSense

Fig. 4: Setup of the classification experiment. Two nodes commu-
nicate with UDP while the jammer executes the different jamming
attacks.

A. Classification of Jamming attacks

Motivation. This experiment is carried in order to test
the capability of JamSense to correctly identify the
different jamming attacks.

Setup. The setup consists of four different nodes as
shown in Figure 4. Node 1 and Node 4 communicate
with each other by sending UDP packets. Node 2
performs the different jamming attacks while Node 3
runs JamSense to identify the attacks. We perform each
jamming attack 1000 times.
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Fig. 5: Accuracy of JamSense for detecting and identifying the
different jamming attacks.

Result. Figure 5 shows the accuracy with which Jam-
Sense identifies the different attacks. The figure shows
that JamSense is able to identify all attacks with high
accuracy. In particular the identification of the constant
and deceptive jamming attacks has very high accuracy.
The reason for that is that their characteristics differ
substantially from the other jamming attacks in that they
have a longer and consistent duration compared to the
SFD and random jammer. The SFD-jammer is harder to
detect because it only jams for a very short duration.
Hence, JamSense is sometimes not able to detect it.
While the other jamming attacks have a consistent du-
ration, the proactive random jammer does not. However,
in the worst case, since the jamming duration is random,
it may have the same features as the constant jammer or
the SFD-jammer. In that case, JamSense is not able to
identify this jammer correctly.

B. Identifying Bluetooth Interference

0 BT-interference

JamSense

im

Fig. 6: Setup for JamSense identifying Bluetooth interference created
by wireless headphones

Motivation. We build on SpeckSense [8] that is able
to detect Bluetooth interference. The purpose of this
experiment is to show that JamSense does not confuse
Bluetooth interference with any jamming attacks.

Setup. Figure 6 shows the setup of the experiment.
In this experiment, a node running JamSense is placed
1 meter apart from a Bluetooth wireless headset. The
wireless headset is turned on and Bluetooth interference

is created. We evaluate if JamSense correctly identifies
Bluetooth interference by running it 4000 times.
Results. Figure 8 shows that JamSense is able to identify
the Bluetooth interference in 87% of the cases. In the
other cases, JamSense is just not able to identify the
Bluetooth interference but it does not misclassify it
as a jamming attack. This is important to avoid false
alarms. We receive the same result when we position
the Bluetooth interferer 30 centimetres or 2 meters away
from JamSense.

C. Identifying WiFi Interference

(@) WiFi-interference
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Fig. 7: JamSense identifying deterministic WiFi interference created
by Jamlab-NG.

Motivation. The goal of this experiment is similar to the
previous one. In this experiment, however, we investigate
whether JamSense identifies WiFi interference without
confusing it with a jamming attack.

Setup. As shown in Figure 7, one node running Jam-
Sense is placed 1 meter from a Raspberry Pi 3 Model B
that runs JamLab-NG [13]. JamLab-NG is a widely used
tool that creates deterministic WiFi interference. For
JamLab-NG we use the default values for the periodic
interval that is 13 ms and the frame length of 600 bytes.
We use the standard settings of 802.11g and a bit rate
of 1 Mbps.

Result. The results in Figure 9 show a successful classi-
fication rate of 86 %. In the remaining cases, JamSense
does not classify the WiFi interference correctly. This
happens since JamSense does not detect the WiFi inter-
ference and not because it misclassifies the interference
as a jamming attack.

D. Identifying Simultaneous Interference Sources

Motivation. JamSense extends SpeckSense by identify-
ing jamming attacks in addition to identifying Bluetooth
and WiFi interference. This experiment evaluates if Jam-
Sense is able to identify and distinguish between multiple
interference sources simultaneously as SpeckSense does
while making sure that WiFi and Bluetooth interference
do not get classified as jamming attacks.

Setup. Figure 8 shows the setup of the experiment. We
place a Bluetooth wireless headset and a node running
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Fig. 8: JamSense identifying Bluetooth and WiFi interference simul-
taneously.

JamLab-NG 1 meter from JamSense [14]. The JamLab-
NG settings are set to the same settings as in the previous
experiment: a Tx power of 15 mW, a periodic interval
of 13 ms, and a frame length of 600 bytes.
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Fig. 9: Accuracy of JamSense identifying Bluetooth and WiFi inter-
ference individually and simultaneously.

Result. Figure 9 shows a successful classification rate of
85 % in detecting Bluetooth and an 88 % success rate in
identifying WiFi, similar to the individual experiments
described above. When JamSense is unsuccessful in
identifying the interference, it is because of failure to
detect WiFi and Bluetooth interference. This means that
also when several interferers are active at the same time,
JamSense does not confuse them with a jamming attack.

E. Exploring False Positives

1 JamSense

Fig. 10: JamSense listening to the environment when no jamming
attacks are active in order to evaluate if JamSense returns false
positives.

Motivation. We perform this experiment to evaluate
if JamSense returns false positives when there are no

jamming attacks. From an applicant point of view, it
is important to avoid false positives in order to prevent
unnecessary alarms.

Setup. JamSense runs in an apartment building consist-
ing of four stories with eight households for 10 hours.
We do not expect any jamming attacks. There are of
course other private WiFi access points that create WiFi
traffic and there might be Bluetooth traffic from devices
we are not aware of.

Result. During the 10 hours of operating, JamSense
returned one false positive while it was active 27740
times. The false positive was the identification of an
SFD-jammer. We have not fine-tuned JamSense to avoid
such false positives. We believe that with some more
tuning or using more advanced methods to set thresholds,
we could avoid such false positives. We also note that
this is a false positive from a single resource-constrained
node. An alarm system would likely be based on input
from several nodes over a longer duration than one single
identification of an attack.

V. RELATED WORK

In this paper, we extend SpeckSense [8], a tool for in-
terference detection for low-power wireless networks to
also classify different jamming attacks. Like many other
approaches, SpeckSense is based on active sampling of
RSSI values.

Zacharias et al. aim at identifying the main interfer-
ence source (rather than multiple interferers as Speck-
Sense) using fast RSSI sampling [22]. Based on a fixed
RSSI threshold, they extract temporal features such as
channel idle and busy times that they use to identify the
interferer.

Grimaldi et al. propose an SVM-based approach to
classify between 802.11 and microwave interference as
well as channels without interference [3]. Also, their
approach is based on RSSI sampling, albeit with a lower
sampling rate. Yi et al. use deep learning to differentiate
between different interferers [21]. Also, their method is
based on raw RSSI samples that constitute the input to
their deep neural network. Their approach uses a more
powerful Raspberry Pi rather than a resource-constrained
platform.

In contrast to active RSSI sampling, SoNIC samples
the RSSI only during the reception of a packet [6]. The
authors perform this sampling to determine the symbols
of the received payload that suffered transmission errors.
They identify the source of interference based on those
corrupted symbols. Hithnawi et al. [7] do not only detect
but also mitigate interference using a larger number of



features that include corrupted symbols. Similar, Barac et
al. also look at symbol error density to infer the wireless
link conditions [1]. Towards this end, they make use of
additional symbols for forward error correction.

In addition to providing interference detection, Jam-
Sense also differentiates between different jamming at-
tacks. Xu et al. propose to identify jammers based on
signal strength, carrier sensing time and packet delivery
ratio [20]. They also propose strategies to defend against
jammers but do not evaluate their jammer identification
strategies. Kasturi et al. aim at using machine learn-
ing techniques for classifying three types of jammers,
namely constant, reactive and random jammers [10].
They train their classifiers with data collected in the ns-3
simulator and use the same simulator and data for the
evaluation of their algorithms. While we also opt for
the classification of jamming attacks, we implement our
algorithms on real, resource-constrained hardware. Also,
Wang and Wyglinski try to identify jammers [18] by
combining statistical data of packets send and delivery
ratio. As Kasturi et al. they evaluate their work in
simulation only.

VI. CONCLUSIONS

Low-power wireless networks are exposed to inter-
ference and jamming attacks which lead to packet loss,
higher energy consumption and even disrupted appli-
cations. In this paper, we have presented JamSense, a
novel tool that is able to detect and identify the four
most popular jamming attacks with high accuracy. Jam-
Sense is implemented on resource-constrained devices.
Our evaluation on a small-scale testbed has shown that
JamSense identifies constant and deceptive jammers with
an accuracy above 95% and deceptive and SFD-jammers
with an accuracy of around 90%. In addition, JamSense
maintains the capability of classifying cross-technology
interference from WiFi and Bluetooth that it inherits
from SpeckSense with an accuracy above 85% without
classifying such interference as jamming attacks.
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