
ONLINE GRAPH BASED LATENCY
ESTIMATION OF MICROSERVICE

APPLICATIONS IN A FAAS
ENVIRONMENT

Klas af Geijerstam

Master esis, 30 credits
Master Of Science Programme in Computing Science

2021





Abstract

Function-as-a-Service (FaaS) is an increasingly common platform for many kinds
of applications and services, replacing the need to maintain and setup hardware
or virtual machines to host functionality in the cloud. e billing model for FaaS
is commonly based on actual usage, which makes the ability to estimate the per-
formance and latency of an application before invoking it valuable. is thesis
evaluates if previously dened algorithms for oine latency estimation, can be
adapted to work with online data. Performing online estimation of latency po-
tentially enables cheaper estimations, as no extra executions are neccessary, and
latency estimation of applications and functions that can not be executed spu-
riously. e experiments show that for a set of test applications, the previously
dened algorithms can achieve greater than 95% accuracy, and that a non-graph
based estimation using exponential moving average can achieve greater than 98%
accuracy.





Acknowledgements

I want to thank Jakub for being a great friend and an invaluable collaborator on the theoretical
parts of this thesis. I also want to thank Desireé for her never ending patience withme, and for
all the support she has given me. Finally, I want to thank Jerry Eriksson for being a constant
force for good during my time at Umeå University.





Contents

1 Introduction 1

1.1 Background 1

1.2 Purpose 1

1.3 Researchestions 1

1.4 Method used 2

1.5 Delimitations 2

2 Related work 2

3 eoretical background 3

3.1 Function as a service (FaaS) 3

3.2 Apache OpenWhisk 3

3.3 Containers 3

3.4 Microservices 4

3.5 Probabilistic graph representation of applications 4

3.6 Graph transformation 4

3.7 Exponential moving average 9

4 Method 9

4.1 Test environment 9

4.2 Choice of Method 10

4.3 Data Collection 10

4.4 Experiments 11

5 Results 11

5.1 Experiment 1 11

5.2 Experiment 2 12

6 Discussion 12

6.1 Interpretation of Results 12

6.2 Scientic Explanations 14

6.3 Limitations 14



6.4 Conclusion and Recommendations 14

7 Future work 15

References 17



1 Introduction

Function-as-a-Service or FaaS is a relatively new technology and platform that introduces a
novelmodel to develop and create everything from event-triggered tasks to complexmicroser-
vice applications. e technology allows the creation of horizontally scalable data pipelines
with lile to no eort in seing up an execution environment and other resources.

e billing model for public FaaS providers such as Amazon AWS and Google Cloud Func-
tions are primarily based on usage, compared to traditional service rental which is typically
a subscription model with a time based rate. is makes the ability to estimate the runtime
performance and latency of functions and applications a useful tool in determining the cost
of running an application in a FaaS environment.

1.1 Background

Previous work has dened algorithms to estimate cost, execution time and resource usage
of microservice applications running in a FaaS environment with a high accuracy. e algo-
rithms primarily rely on pre-recorded data of individual functions of an application as a base
to calculate the estimated metrics for the application as a whole. Latency estimation can, and
has, played an important role in the scheduling of FaaS functions and applications, primarily
with a focus on minimizing cost and execution time (latency). Latency estimation has also
played an important role in the denition of Service-Level-Agreements (SLA) for FaaS, where
there is a need to be able to estimate execution time beforehand to meet the set SLA.

1.2 Purpose

Pre-recording data can be both time-consuming and costly, as the application and its functions
have to be executed repeatedly to gather data, and the user is typically billed for computa-
tion/execution time. Spuriously executing an application or function to gather performance
metrics can also be very dicult due to functions requiring input that cannot easily be pre-
dicted or generated, or the fact that functions and applications can rely on, and update, an
external state.

1.3 Researchestions

is study aims to answer three research questions. How is the accuracy of latency estimation
of the previously dened algorithm by Lin et al.[5] when fed with online data, compared to
the accuracies originally achieved with oine data? How does the achieved accuracy com-
pare to an estimation based on pure Exponential-Moving-Average (EMA)? Aer how many
executions can a dynamically generated graph model be accurate enough to allow for a 95%
accuracy in latency estimation?

e hypothesis is that pure-EMA should perform beer than the graph model, as the graph
model is still dependent on EMA for model-generation, and the added complexity of the graph
model is not expected to result in beer accuracy.

1



1.4 Method used

e algorithm by Lin et al. was adapted to work with online data. OpenWhisk was used to
create a FaaS environment in which FaaS-applications could be executed and instrumented,
and the applications dened in previousworkwere re-implemented toworkwithOpenWhisk.

1.5 Delimitations

is study uses applications previously dened by Lin et al.[5] to get comparable results.
ese applications consist of articially created workloads of dierent kinds, like memory or
network intensive operations. e functions of the applications do not transfer data between
invocations in the form of parameters, a simplication made for the sake of testing, but it
reduces how well the applications can model real-world applications and workloads.

2 Related work

Previous studies have looked at estimating cost and latency of microservice applications cre-
ated in a FaaS environment, typically with a focus on one specic type of application. K. Ram
Srivatsa et al.[4] looked at measuring runtime performance of machine learning applications,
and using thesemetrics to improve scheduling and resource utilization in a FaaS environment.
Ram Srivatsa et al. found that homogeneity in dierent applications could be used to improve
the throughput of a FaaS system, as functions with similar workloads could be scheduled on
nodes optimal for their task.

Spillner et al.[9] evaluated how well a FaaS platform could be utilized for computationally
intensive tasks. Many of the computationally intensive tasks, such as calculating digits of 𝜋
or numbers of the bonacci sequence that were part of the tests performed by Spillner et al.
are present in the test applications of this study.

Cordingly et al.[1] investigated how performance and cost of FaaS applications could be pre-
dicted with purpose-built machine learning algorithms. e models were trained on perfor-
mance metrics gathered from applications running in AWS Lambda and Google Cloud func-
tions. Cordinly et al. found that the accuracy of their model diered depending on many
aspects, such as memory allocation and workload. e mean maximum error achieved was a
3.49% error in performance and cost estimation.

In “Modeling and Optimization of Performance and Cost of Serverless Applications”[5], C.Lin
and H.Khazaei introduced a series of algorithms that procecesses a graph representation of a
microservice into a form that simplies estimation of the execution time (latency) of microser-
vice applications. e graph model represent functions or services as nodes, and functions
invoking other functions as edges. eweight of the edge is a number between 0 and 1, which
is the probability that a function calls the target function of the edge. e application graph is
allowed to contain branches, parallel sections and cycles/self-cycles. e algorithms proposed
by Lin et al. process such a probability-graph into a directed acyclic graphwith a single simple
path between the start node and the end node, from which the estimated end-to-end latency
of invoking the application can be calculated. e algorithm created by Lin et al. achieved a
98% accuracy in estimating the performance of an application.

2



e graph-model used by the Lin et al. is pre-generated by augmenting a perfect represen-
tation of the application with function latencies recorded by executing each function of the
application multiple times. is gives the algorithm a near perfect model of the application,
as well as a very good estimate of the expected latency of each function in the application.

3 eoretical background

e following section describes and explains key concepts important to this thesis, and the
related work.

3.1 Function as a service (FaaS)

Traditional services of cloud providers include server rental, VM-rental and managed ser-
vices, such as database and webserver hosting. During the recent years a new service and
architecture has emerged, namely Funcion-as-a-Service (FaaS). When developing an applica-
tion to run in a FaaS environment, the user creates functions conforming to a runtime and
format specic to the used FaaS platform[9]. e functions are most commonly invoked by
triggers or events, and can be chained to create more complex applications.

One of the main advantages of FaaS over traditional services is that the application becomes
inherently scalable, as the provider can always deploy the function to another container or
virtual machine when needed. e billing model is primarily based on the execution time
and memory allocation of the funcion, compared to that of traditional services like VM-rental
where the user is charged at a xed rate during the subscribed time.

3.2 Apache OpenWhisk

OpenWhisk is an open-source FaaS platform that can be deployed on self-hosted infrastructure[6],
and it is also the main driver for IBM cloud functions[3]. As OpenWhisk can be deployed on
owned infrastructure it is an ideal environment for experiments and modications, allowing
control over hardware and resource allocation much more granulary than what is possible
with public FaaS providers such as AWS Lambda or Google Cloud Functions. It has success-
fully been used in previous work, both in performance evaluations[8] and as a modiable
FaaS platform[10].

OpenWhisk utilizes Docker to create isolated execution environments, called invokers, to
execute functions. e invokers are specialized containers initialized with an environment
specic for the function that is to be invoked, oen paired with a language-specic le that
lists dependencies of the functions, like a requirements le for Python or a TOML-le for a
Rust function.

3.3 Containers

A container is a lightweight isolated execution environment not unlike a virtual machine.
A container runtime does not have to virtualize the entire machine, as it is instead dened
by using isolation support from the host kernel. is results in much beer performance[7]

3



compared to pure virtual machines, as the host machine does not have to virtualize hardware,
at a cost of reduced isolation. Most if not all FaaS frameworks build upon containerization,
and in the end virtualization[9].

A common platform for containerization is Docker[2] which also is the host environment used
for invokers in OpenWhisk. Docker provides a standardised environment to build, create and
maintain containers and is the de-facto standard for containerization today.

3.4 Microservices

Amicroservice architecture is an application architecture where dierent parts of an applica-
tion or system, that would traditionally be kept in a single service, is split into many smaller
logical services. is allows for beer scalability as each service can be scaled horizontally
and replacedwith lile theoretical impact on the other services of the application. Amicroser-
vice architecture also simplies development as the services can be developed in parallel, and
existing services can be replaced by new services implementing the same API as an existing
service.

3.5 Probabilistic graph representation of applications

An application can be represented as a graph, where the nodes of the graph represent the
functions of the application, and edges represent a function calling another. An application
can contain loops, branches and parallel sections, which can very naturally be represented by
edges in a directed graph.

Weighting the edges of the graphwith a probability allows the graph to represent applications
with branches and loops, where branches are formedwith edges with a probability of less than
1.0, and loops as cycles. e sum of the outgoing edges for a node with a branch should have a
summed probability of 1, and nodes that start a parallel section a summed edge weight greater
than 1. An example of an application containing a branch and a cycle can be seen in Figure 1,
where the cycle consist of nodes 𝑓 1, 𝑓 2, 𝑓 4 and node 𝑓 4 contains a branch between 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡

and 𝑓 1.

3.6 Graph transformation

Lin et al. developed a graph-transformation algorithm to transform a probabilistic graph
representation of an application into a single-path non-probabilistic graph. e algorithm
removes cycles, self-cycles, branches and cycles, subseqently transforming the graph into the
aforementioned single-path format, examples of which can be seen in Figure 2 . e end to
end latency of the application can easily be extracted from the single-path graph by summing
the latency of the path between the start node and the end node in the graph.

Self-cycles

e algorithm removes self-cycles (somtimes called loops) by removing edges that introduce
self-cycles in two steps. e rst step increases the estimated latency of the function contain-
ing the self-cycle with the estimated amount of iterations of the self-cycle (given by Equa-

4



f4

end_point

0.90

f1

0.10

f2

1.00

entry_point

1.00

1.00

Figure 1: Graph representing an application with 3 steps. e edges are weighted by the
probability of the function invoking another function. e edge between f4 and f1
indicates a 10% probability of f4 invoking f1.

0.5F1 F2
0.5

0.3

0.7

F1

1.0

F2

1.0

F3

1.0F1

0.2

0.8

F2

F3

1.0

1.0

F1

1.0

F2

1.0

F3

F4

Self-loop Branch

F4

Cycle Parallel

Figure 2: e four structures that are removed by the graph processing algorithm.

5



f1

f2

1.00

f3

1.00

entry_point

1.00

f4

0.10

end_point

0.90

1.00 1.00

f1

f2

1.00

f3

1.00

entry_point

1.00

f4

1.00

1.00 1.00

end_point

1.00

f1

f2

1.00

f3

1.00

P1

1.00

entry_point

1.00

f4

B1

1.00

end_point

1.00

1.00

B1

f1

P1

1.00

entry_point

1.00

f4

B1

1.00

end_point

1.00

1.00

Figure 3: Transforming a graph. e transformation is based on the lemost graph. In the
rst step the branch is removed, in the second the parallel section, and lastly any
un-connected nodes are removed.

6



0.7F1
200ms

F2
50ms

0.3
1.0F1'

286ms
F2
50ms

Figure 4: Example of removing a self-cycle/loop. e estimated cycle-count of the self cycle is
calculated using Equation 1. e latency of 𝐹1 is increased by 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 (𝐹1) ∗𝐶𝑦𝑐𝑙𝑒𝑠 .
e edge that introduces the self-cycle is removed.

tion 1), multiplied with the latency of the function. e second step distributes the probabil-
ity of the edge that introduces the self-cycle over any other outgoing edges from the node
according to Equation 2.

In Equation 1, 𝑃 (𝑢, 𝑣) is the probability of a transition from function 𝑢 to function 𝑣 . e
weight of the edge that introduces the self-cycle is distributed according to Equation 2. e
edge is subseqently removed. An example of this operation can be seen in Figure 4, where
the self-cycle from 𝑓 1 to 𝑓 1 is removed.

𝑃 (𝑢, 𝑣)
1 − 𝑃 (𝑢, 𝑣) (1)

Cycles

Any cycles in the application graph are removed by calculating the estimated cycle-count
of the cycle (by Equation 1), and then multiplying with the total latency of the cycle. is
latency is added to the latency of the source node of the cycle, and the edge that introduces
the cycle is removed. e probability of the removed edge is distributed over the remaining
edges proportionally to the probability of the edge by using the formula in Equation 2, where
𝑃 (𝑢, 𝑣) is the probability of a transition from function 𝑢 to function 𝑣 , and 𝑅 is the probability
of the removed edge. An example of a removal of a cycle, and the redistribution of the edge
probabilities can be seen in Figure 5, where the edge that introduces a cycle is removed (𝑓 2,𝑓 1)
and the latency of 𝑓 1 is updated with the total latency of the cycle (200𝑚𝑠 + 150𝑚𝑠).

𝑃 ′(𝑢, 𝑣) = 𝑃 (𝑢, 𝑣)
1 − 𝑅

(2)

Branches

Branches in the application graph are removed in three steps. e rst step calculates the
estimated latency for each branch path. e second step creates a new “B” node that stores

7



1.0
F1

200ms

0.2

0.8

F2
150ms

F3
50ms

1.0F1'
288ms

1.0

F2
150ms

F3
50ms

Figure 5: Removal of a cycle. e cost of the cycle (200𝑚𝑠 + 150𝑚𝑠) is multiplied with the
estimated cycle count. e latency of 𝐹1 is thus adjusted according to Equation 1
and the cycle latency of 350ms.

0.3

0.7

F1
200ms

1.0

F2
55ms

1.0

F3
150ms

F4
100ms

1.0
F1

200ms
1.0

F4
100ms

B1
{{0.3, 55ms},

{0.7, 150ms}} 

Figure 6: Figure shows the removal of a branch structure and how a B node is introduced to
represent the branches.

the latency and probability of each path, to which the source node of the branch is then
connected. e last step removes the edges that creates the branch. e dierence between
a B node and a normal node is that a B node stores multiple latencies, one for each branch
path, whereas a normal node only stores one. e latencies are stored as tuples, the latency
and the probability.

e latency of a B node is calculated as the sum of each path multiplied with the probability
of the path. A B node storing the paths (100𝑚𝑠, 0.3), (50𝑚𝑠, 0.7) would have the estimated
latency of 100 ∗ 0.3 + 50 ∗ 0.7 = 65𝑚𝑠 .

Parallel structures

e algorithm processes parallel structures in two steps. In the rst step, the algorithm nds
the parallel path with the highest latency. As parallel sections, by denition, are executed
simultaneously, only the latency-wise longest section aect the end to end latency of the
application. e second step introduces a new “P” node, of which latency is set to the total
latency of the parallel path with the highest total latency. e parallel paths are then removed,
and the newly created P node is connected to the origin node of the parallel section, and the

8



1.0

1.0

F1
200ms

1.0

F2
150ms

1.0

F3
200ms

F4
50ms

1.0
F1

200ms
1.0

P1
200ms

F4
50ms

Figure 7: e gure shows how a parallel section is removed. e parallel section is replaced
with a P node, with the weight (latency) of the total latency of the longest parallel
path.

end node of the parallel section, an example of this operation can be seen in Figure 7.

e purpose of changing the node to a P node is purely to visualize that it represents a parallel
section in the processed graph, as it stores latency just as a normal node does.

3.7 Exponential moving average

Exponential moving average is a weighed average, with exponentially reduced weighting of
older values. In its pure form it never removes a value, albeit innitively old values have an
innitively low weight. Since the exponential moving average is performed in epochs for
this study, there is however no such values present, as only values up to the epoch-size are
considered.

4 Method

emethod was designed with comparability to the work of Lin et al. in mind, to ensure that
the research questions could be answered with as much condence as possible. Two experi-
ments were devised to answer the three research questions. One experiment was designed to
answer two of the research questions both relating to accuracy in latency estimation, and one
experiment to answer the representational accuracy of the model used for the graph-based
estimations.

4.1 Test environment

Functions were dened as OpenWhisk Python functions, and deployed as such. e applica-
tions were created by dening relationships between functions in a JSON format specically
created for the experiments, as this functionality was missing from OpenWhisk. To facilitate
the creation of applications in OpenWhisk, an application management function was created
that allows OpenWhisk functions to invoke other OpenWhisk functions via the OpenWhisk
REST-ful endpoints. Launching an application thus consist of uploading the functions of the
application to OpenWhisk, and then submiing the JSON le specifying the application to
the application management function.

9



e graph processing algorithm were reimplemented from the original Python implemen-
tations created by Lin et al. in Rust. A REST service, from here on called “logger”, was
created with the Actix-web framework to allow interaction between external services, like
OpenWhisk and the graph-based estimation algorithm. OpenWhisk was modied to send
latency metrics to the logger via the REST-ful API of the logger. e graph-based estimation
algorithm was not implemented in OpenWhisk as to introduce as lile change as possible
in OpenWhisk to limit the possibility of the estimation algorithms to aect the running and
scheduling of invokers.

e logger builds a graph representation of the nodes dynamically as calls and latencies are
submied to the service by OpenWhisk. Graph-node latencies are created by running EMA
on all recorded latencies for each node and edges and their respective probabilities derived
from the number of times a function is invoked, and how many times it invokes another
function.

4.2 Choice of Method

e graph processing algorithm was largely based on the previous work of Lin et al., but
modied to work in an online seing. One modication were performed, related to robust-
ness, as online generation of a graph model does not guarantee perfect data. e issue with
dynamically generating a graph model is that the probabilities of edges part of branches and
cycles can be less or greater than 1.0, which the algorithm can not handle as the experiments
performed by Lin et al. works on a complete model with perfect probabilities. To alleviate
this a smoothing function was introduced that identies sections of the graph with imperfect
probabilities, and smoothes these to give a sum of 1.0, thus allowing the algorithm to properly
process the graph.

Lin et al. used AWS Lambda as the platform for executing functions and applications. e
modications needed for the experiments in this study was deemed dicult to implement in
a satisfactory way in AWS. is resulted in OpenWhisk being selected as the FaaS platform,
as it satised the requirements and had been successfully used in previous work[10].

EMA was chosen as the averaging method as it reduces the time extreme values aect the
estimated latency of a function. EMA should also perform beer in a scenario where the
usage paern of a function or application changes over time, as the more recent records are
given an exponentially greater weight.

4.3 Data Collection

Initial tests showed that the total execution time of an application, from start to nish, con-
sisted of a substantial amount of waiting due to scheduling in OpenWhisk. erefore, only
the pure execution times of functions were recorded, to minimize the risk of any ineciencies
in scheduling in OpenWhisk to impact the result. is was possible due to the usage of the
REST service, which allowed a custom instrumentation of the functions in OpenWhisk.

10



4.4 Experiments

e experiments were designed to give results that could answer the three research questions.
One experiment was designed to allow both estimation methods to be compared in terms of
accuracy, over a multitude of dierent alpha-values for EMA. e second experiment was
created to visualize how the graph representation of the system changes over time, to give
insight into how the graph model changes over time.

Experiment 1: Graph representation accuracy

Experiment 1 uses a subset of the applications used by Lin et al. e purpose of the experiment
is to determine how the graph representation of the application changes over time. As the
graph based estimation of the runtime of an application is entirely dependent on the graph
model used, it should be of vital importance that themodel used for estimation is accurate. e
application was run 100 times, and plots of the graph representation extracted and generated
every 10 runs.

Experiment 2: Accuracy of latency estimation

Experiment 2 uses the same application as Experiment 1. e purpose of the experiment
is to compare the accuracy of global EMA and the graph based latency estimation with the
actual latency. An epoch length of ten is used for both the EMA estimation, as well as for the
graph based estimation. Both the graph estimation as well as the EMA estimation was run
using multiple alpha-values as to ensure that a sub-optimal alpha-value does not impact the
accuracy of either approaches. e result of the experiment should give insight into how the
accuracy of the graph-based estimation is aected by using online data instead of oine data,
and how the accuracy of the graph-based estimation compares to the pure EMA estimation.

5 Results

e results from the two experiments were collected and then aggregated into three gures.
e result of the rst experiment showcases how the perception of the running application is
changed over time in the logger. e result of the second experiment is collected and presented
to make the accuracy comparison of the tested approaches easily comparable.

5.1 Experiment 1

e result of experiment 1 shows that the graph representation of the application is fairly
accurate aer only 10 runs. e number of invocations of a function was recorded alongside
the latencies and probabilities of edges, from which a graphical snapshots was generated, as
can be seen in Figure 8. e latency accuracies derived from the graph models are included
in Experiment 2.

Multiple applications were tested in the same way with only minor dierences in represen-
tational accuracy over the recorded runs. For brevity, only one plot is included in the result.

11



entry_point: 0

f1: 13

f2: 13

1.00

f3: 11

0.85

f5: 2

0.15

f4: 32

1.00 1.00 1.00

0.06

0.19

f6: 24

0.75

end_point: 24

1.00

entry_point: 0

f1: 74

f2: 74

1.00

f3: 51

0.69

f5: 23

0.31

f4: 186

1.00 1.00 1.00

0.10

0.20

f6: 129

0.69

end_point: 129

1.00

entry_point: 0

f1: 143

f2: 143

1.00

f3: 101

0.71

f5: 42

0.29

f4: 369

1.00 1.00 1.00

0.09

0.22

f6: 253

0.69

end_point: 253

1.00

1.001.001.00

entry_point

f1

1.00

f5

f4

1.00

0.20

f3

0.80

f2

1.00

1.00

end_point

0.10

0.20

f6

0.70

1.00

1.00

10 50 100 Truth

Figure 8: e graph representation of the application aer 10, 50 and 100 runs. e rightmost
graph is the actual representation of the graph. Each node has a number represent-
ing the number of invocations that function has seen.

5.2 Experiment 2

e result of experiment 2 was derived into two plots. One plot compares the accuracy be-
tween the pure EMA and the graph based latency estimation, as can be seen in Figure 9. e
result shows that both the EMA and the graph based approach produces latency predictions
relatively close to that of the actual latency, with a slightly higher accuracy achieved by EMA.
e highest accuracy was achieved by pure-EMA with an alpha-value of 0.3, which achieved
a 1.1% mean error. Figure 10 shows the mean error over all runs for both the EMA estimation
and the graph based estimation.

6 Discussion

6.1 Interpretation of Results

e results show that, for the tested applications, the algorithm dened by Lin et al. can
achieve a good accuracy for latency estimation and prediction with online data, where the
best overall result giving a mean error of less than 3%. is result is slightly worse than that
of Lin et al., which achieved a mean error of 2%. e pure-EMA estimation produced slightly
beer predictions, with a mean error less than 2% for all tested alpha values. e result show
that the alpha value of the EMA algorithm can have a noticeable impact on the accuracy of
both the pure EMA estimation, and the graph based estimation. Generally, the result show
that a greater alpha value increases the responsiveness of the estimation, but does not result
in a beer mean accuracy.

e result also show that an application only has to be invoked a few times for the system to
get a semi-accurate representation of the application, even if the application representation
might be boosted by the presence of cycles and parallel sections in the application. For pure-
EMA, a 95% accuracy could be achieved aer 10 executions, depending on the application
under test. e graph based approach achieved a steady > 95% accuracy for most applications

12



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Actual

EMA 0.1

EMA 0.3

EMA 0.5

EMA 0.7

EMA 0.9

GRAPH 0.1

GRAPH 0.3

GRAPH 0.5

GRAPH 0.7

GRAPH 0.9

La
te

nc
y

Figure 9: Estimation with EMA and graph compared to actual latency. e Y axis is the
latency in miliseconds and the X axis is time. Estimation starts at 0 as there is no
initial data.

EM
A 0

.1

EM
A 0

.3

EM
A 0

.5

EM
A 0

.7

EM
A 0

.9

GRAPH 0
.1

GRAPH 0
.3

GRAPH 0
.5

GRAPH 0
.7

GRAPH 0
.9

0

1

2

3

4

5

6

M
ea

n 
er

ro
r 

(%
)

Figure 10: Mean error (in percent) of global EMA and graph based estimation of latency.

13



in the same amount of runs, but only on lower alpha values.

6.2 Scientic Explanations

e result of experiment 2 visualizes the accuracy between the two estimation approaches,
over a set of dierent alpha-values. Noteworthy of the data shown in Figure 10 is that for the
visualized test, there was a clear decay in accuracy as the alpha-value was increased for the
graph-based estimation, but with no such paern visible for the pure-EMA estimation. is
could have its explanation in that the graph-based estimation consistently underestimated
the latency of the application, and a lower alpha-value allowed the initial spike in latency
to reduce the impact of the underestimation. e reason why there is no apparent optimal
alpha-value could be due to the length of the tests, where the relatively short tests in the test
environment might not be long enough to achieve any visible trends.

Additional tests showed that for dierent applications, and with dierent distributions of
latencies, there was no clear best alpha value. For some applications, the mean error was
reducedwith a higher alpha-value, while a lower alpha-value improved the accuracy for some.

6.3 Limitations

e slightly worse accuracy of the graph estimation could come down to a suboptimal im-
plementation of the graph algorithm, and the result indicates that the graph algorithm con-
sistently underestimates the latency of the applications, which is an indication that there are
improvements to be made. Adjusting the graph estimation with the mean error gives a much
beer result, and gives a result much closer to that of the pure EMA.

is study did not include an analysis of how the application structure aects the accuracy
of the two estimation methods used. Applications containing edges with low probabilities
would require more invocations for all nodes and edges to be recorded, and could thus be
more dicult to estimate dynamically.

6.4 Conclusion and Recommendations

e purpose of the work of Lin et al. is not to estimate the latency of applications, but to use
the estimations over dierent memory congurations to assign memory congurations that
allow an application to execute within some bound, be it cost or time. In doing this, there
might be a point to treat the application as a graph. For pure latency estimation or prediction
the result of this study indicates that there is no real benet in using the graph model over a
plain estimation, as the plain EMA produced beer results.

Another point in favour of using pure EMA for estimation could be both implementation
complexity and resources required for estimation. e graph-based estimation used in this
study utilizes EMA to generate the base graph, which is then processed and used for latency
estimation. And, as the implementation requires one run of EMA for each node, the compu-
tational cost is higher for the graph approach even before graph processing can begin. Even if
the accuracy of the pure EMA was equal to that of the graph approach, the pure EMA would
thus be a more favourable choice in that it requires less resources in its estimation.

14



e experiments show that there was no optimal value found for the alpha-value for neither
pure-EMA nor for the graph-based estimation. e structure of the application as well as the
distribution of measured extreme values seemed to impact the accuracy over the tested alpha
values.

e experiments showed that when using application-invocations as a metric, applications
containing high-probability cycles and parallel sections got a more accurate representation
during fewer runs, due to the fact that each function was invoked more times per application
invocation. However, when using total execution time or cost as the total metric, such an
application is more expensive to execute a xed number of times.

7 Future work

Future work could look at if there is a connection between the structure of the application,
and howwell the performance of the application can be estimated with the dened algorithm.
is could provide insights into how the algorithm could be improved or modied based on
the application type or structure. e pure-EMA based approach should not be aected by
the structure of the application, but it could be included for reference.

e functions and applications in this study does not transfer data between each other, which
is common in real world applications. Adapting the algorithms to utilize knowledge about
input could be investigated, as it could aect the accuracy of the algorithms and provide a
new angle of optimization of the algorithms. e experiments found that the system could
achieve an accurate representation of applications with many cycles and parallel sections
with fever invocations than an application with fewer cycles and prallel sections. Since one
motivation of using online data instead of oine data for estimation is cost, a runtime based
execution cuto could be investigated as an alternative to the xed number of executions used
in this study. is could allow for a more even cost distribution in estimating applications of
dierent structures and complexities.

Future work could also investigate what role pure-EMA could have as a drop-in replacement
for the algorithms proposed by Lin et al., with the same purpose of determining the best cost
under a cost constraint or the lowest cost under a performance constraint, as the result of this
study shows promising results in terms of accuracy for the pure-EMA approach.

15



16



References

[1] Robert Cordingly, Wen Shu, andWes J Lloyd. Predicting performance and cost of server-
less computing functions with saaf. In 2020 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud
and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/Pi-
Com/CBDCom/CyberSciTech), pages 640–649. IEEE, 2020.

[2] Docker. Docker. https://docker.com. Accessed: 2021-05-28.

[3] IBM. Ibm cloud functions. https://cloud.ibm.com/docs/openwhisk. Ac-
cessed: 2021-05-28.

[4] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, Jason Mars,
and Lingjia Tang. Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks. In Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–16, 2019.

[5] Changyuan Lin and Hamzeh Khazaei. Modeling and optimization of performance and
cost of serverless applications. IEEE Transactions on Parallel and Distributed Systems,
32(3):615–632, 2020.

[6] OpenWhisk. Apache openwhisk. https://openwhisk.apache.org. Accessed:
2021-05-28.

[7] Amit M Potdar, DG Narayan, Shivaraj Kengond, and Mohammed Moin Mulla. Perfor-
mance evaluation of docker container and virtual machine. Procedia Computer Science,
171:1419–1428, 2020.

[8] Sebastián evedo, Freddy Merchán, Rafael Rivadeneira, and Federico X Dominguez.
Evaluating apache openwhisk-faas. In 2019 IEEE Fourth Ecuador Technical Chapters Meet-
ing (ETCM), pages 1–5. IEEE, 2019.

[9] Josef Spillner, Cristian Mateos, and David A Monge. Faaster, beer, cheaper: e
prospect of serverless scientic computing and hpc. In Latin American High Performance
Computing Conference, pages 154–168. Springer, 2017.

[10] Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An ecient scheduler for server-
less functions. In Proceedings of the 5th International Workshop on Serverless Computing,
WOSC ’19, page 19–24, New York, NY, USA, 2019. Association for Computing Machin-
ery.

17

https://docker.com
https://cloud.ibm.com/docs/openwhisk
https://openwhisk.apache.org


18



19




	Introduction
	Background
	Purpose
	Research Questions
	Method used
	Delimitations

	Related work
	Theoretical background
	Function as a service (FaaS)
	Apache OpenWhisk
	Containers
	Microservices
	Probabilistic graph representation of applications
	Graph transformation
	Exponential moving average

	Method
	Test environment
	Choice of Method
	Data Collection
	Experiments

	Results
	Experiment 1
	Experiment 2

	Discussion
	Interpretation of Results
	Scientific Explanations
	Limitations
	Conclusion and Recommendations

	Future work
	References

