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METHODS, MODELS, & THEORIES

Optimization of Productivity and Worker Well-Being by Using a Multi-
Objective Optimization Framework

Aitor Iriondo Pascuala , Dan H€ogberga , Dan L€amkullb , Estela Perez Luquea , Anna Syberfeldta ,
and Lars Hansona,c

aSchool of Engineering Science, University of Sk€ovde, Sk€ovde, Sweden; bAdvanced Manufacturing Engineering, Volvo Car Corporation,
G€oteborg, Sweden; cGlobal Industrial Development, Scania CV AB, S€odert€alje, Sweden

OCCUPATIONAL APPLICATIONS
Worker well-being and overall system performance are important elements in the design of
production lines. However, studies of industry practice show that current design tools are
unable to consider concurrently both productivity aspects (e.g., line balancing and cycle
time) and worker well-being related aspects (e.g., the risk of musculoskeletal disorders).
Current practice also fails to account for anthropometric diversity in the workforce and does
not use the potential of multi-objective simulation-based optimization techniques.
Accordingly, a framework consisting of a workflow and a digital tool was designed to assist
in the proactive design of workstations to accommodate worker well-being and productiv-
ity. This framework uses state-of-the-art optimization techniques to make it easier and
quicker for designers to find successful workplace design solutions. A case study to demon-
strate the framework is provided.

TECHNICAL ABSTRACT
Rationale: Simulation technologies are used widely in industry as they enable efficient cre-
ation, testing, and optimization of the design of products and production systems in virtual
worlds. Simulations of productivity and ergonomics help companies to find optimized solu-
tions that maintain profitability, output, quality, and worker well-being. However, these two
types of simulations are typically carried out using separate tools, by persons with different
roles, with different objectives. Silo effects can result, leading to slow development proc-
esses and suboptimal solutions.
Purpose: This research is related to the realization of a framework that enables the concur-
rent optimization of worker well-being and productivity. The framework demonstrates how
digital human modeling can contribute to Ergonomics 4.0 and support a human factors
centered approach in Industry 4.0. The framework also facilitates consideration of anthropo-
metric diversity in the user group.
Methods: Design and creation methodology was used to create a framework that was
applied to a case study, formulated together with industry partners, to demonstrate the
functionality of the noted framework.
Results: The framework workflow has three parts: (1) Problem definition and creation of the
optimization model; (2) Optimization process; and (3) Presentation and selection of results.
The case study shows how the framework was used to find a workstation design optimized
for both productivity and worker well-being for a diverse group of workers.
Conclusions: The framework presented allows for multi-objective optimizations of both
worker well-being and productivity and was successfully applied in a welding gun use case.
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1. Introduction

Simulation is used widely in industries such as the
automotive industry because it enables efficient cre-
ation, testing, and optimization of the design of prod-
ucts and production systems in virtual worlds, rather
than having to create, test, and optimize prototypes in

the physical world (Fisher et al., 2011; Kuhn, 2006;
Oppelt & Urbas, 2014). Use of simulation saves time
and money and allows more thorough investigation of
the solution space. Thus, simulation is used for the
design of workstations from a productivity perspective
(Ore et al., 2016; Wang & Chatwin, 2005). Simulation
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is also used in the design of workstations to assess
worker well-being by using digital human modeling
(DHM) tools (Scataglini & Paul, 2019).

However, simulations to optimize productivity and
simulations to assess worker well-being are typically
carried out by persons with different roles (production
engineers address productivity issues, while ergono-
mists consider worker well-being), with different
focuses or objectives, and using different tools. This
can cause silo effects, leading to slow development
processes and suboptimal solutions. Yet, productivity
and worker well-being often go hand-in-hand, since
improving working conditions often improves prod-
uctivity (Eklund, 1995; Falck et al., 2010; Vink et al.,
2006; Widana et al., 2018).

Sometimes, however, the objectives of productivity
and well-being may be at odds. Companies need to
find and realize solutions in their production facilities
that maintain profitability, output, and quality, as well
as worker well-being. Simulation tools can help them
to do this. Previous studies have identified central ele-
ments of DHM tools and suggested structured proc-
esses to apply DHM tools in design and development
processes (Green, 2000; Hanson et al., 2006; Reed
et al., 2006), at the design level of a workstation
(Battini et al., 2011), and applied optimization techni-
ques to find design solutions that improve well-being
and productivity (Dalle Mura & Dini, 2019; Harari
et al., 2019; Sana et al., 2019). However, few frame-
works can provide an overall optimization perspective,
using one tool to consider both productivity and well-
being, where also anthropometric diversity of workers
is considered.

Accordingly, we set out to develop a simulation-
based optimization framework that can assist design-
ers, engineers, and ergonomists to find workstation
design solutions that are optimized both for worker
well-being and system performance. The framework
developed here is applied in an industrial case study
consisting of a manual welding operation. The case
study also shows how this framework takes into
account worker anthropometric diversity. The case
study is meant to demonstrate how DHM tools in
general, and the developed framework in particular,
can contribute to Ergonomics 4.0, and hence support
a human factors centered approach in Industry 4.0
(Ga�sov�a et al., 2017; Kadir et al., 2019).

2. Framework Design

In information systems research, the design and cre-
ation methodology defines the steps involved in

developing and evaluating an artifact, which may be a
construct, model, method, instantiation, or framework
(March & Smith, 1995). This methodology is applied
here to the development of a framework to enable
concurrent optimization of ergonomics and productiv-
ity, using a simulation-based, multi-objective opti-
mization approach. The process of developing the
framework included analyzing the available elements
in DHM tools, the data that can be extracted from
simulations, the interaction of DHM tools with opti-
mization algorithms, and the typical workflow of a
user when improving a workstation design. The cre-
ated framework is described and tested in a case study
to assess its functionality and its ability to render valid
optimization results.

2.1. Optimization Framework

The proposed framework (Figure 1) involves a work-
flow using DHM tools to effect multi-objective, simu-
lation-based optimizations of worker well-being and
productivity. This workflow can be used with manual
optimization methods, and automatic methods for the
flow can be employed either by a user performing
design improvements manually or a user supported by
optimization algorithms. The workflow of the frame-
work can be divided into three parts: (1) Problem def-
inition and creation of the optimization model; (2)
Optimization process; and (3) Presentation and selec-
tion of results.

Problem Definition and Creation of the
Optimization Model
The first step in the workflow of the framework is to
define the problem (Figure 1). The problem may be a
productivity issue, a well-being issue, or both, and it
must be possible to represent it in a DHM tool. After
defining the problem, the requirements of the
expected result are refined so that worker well-being
and productivity targets are defined. In addition, there
must be a way to assess the results. Thus the condi-
tions that show the optimization targets have been
met must also be defined. These targets have to be
measurable in the simulation results of the DHM tool,
such as results from ergonomics evaluation methods
and cycle times, and meet the needs of the engineers/
ergonomists.

The next step is to collect data to define the opti-
mization process and create the model in the DHM
tool. The optimization variables, constraints, and
objectives of the well-being and/or productivity factors
are defined based on this data. The DHM model is
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created containing the computer-aided design (CAD)
environment, the human models, and the sequence of
actions. The CAD environment is made up of differ-
ent elements depending on the case (Green, 2000;
Hanson et al., 2006). For example, in an industrial
case, the CAD environment can contain the factory
layout, the resources/tools needed for production, and
the product. The human models are defined so that
diversity in the user group is represented. In an indus-
trial case, this corresponds to representing diversity in
the workforce. The action sequence represents the
motions of the simulation. In an industrial case, this
would represent the actions that the workers perform
to complete the tasks, as well as other motions in the
CAD environment, such as conveyor belts and robots.

Optimization Process
Once the model is created, a process is started to per-
form the optimization, following an iterative gener-
ation-evaluation pattern. The simulation method
defines the different settings for the subsequent

simulations, such as collision avoidance and the
motion generation solver (e.g., quasi-static or
dynamic), and triggers the simulation (Figure 1). The
simulation data are then extracted and assessed using
the previously defined target requirements. These
requirements could be related to productivity (e.g.,
cycle time) and/or well-being (e.g., the risk of work-
related musculoskeletal disorders). The assessments
are then used as input to the optimization method to
calculate the current values of the optimization objec-
tives. In manual optimizations, the optimization
method and the requirements specification will define
whether the optimization is finished. In the automatic
method, only the optimization method (the optimiza-
tion algorithm) will determine when optimization
ends, according to the defined configuration in the
optimization model. If the results do not meet the
required optimization criteria, the optimization
method provides new variable values. This causes
modifications of the simulation, and further iterations
are run until the optimization is finished.

Figure 1. Proposed framework for optimization in DHM tools.
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Presentation and Selection of Results
Once the optimization is finished, the results are pre-
sented (Figure 1). In some cases, there may be more
than one valid optimization solution. The user then
starts an iterative process of selecting solutions using
a decision support tool and checking the solution
results to evaluate whether the desired solution has
been attained. The optimization objectives are shown
in the decision support tool to help obtain a good bal-
ance between worker well-being and productivity tar-
gets. Once a solution has been chosen, the
optimization process is finished, and a final solution
has been defined as the result of the framework. If no
desired solution is found, the findings need to be
reappraised. This can lead to modifications of the pre-
vious steps, including changes in the problem defin-
ition, requirements specification, data collection,
optimization definition, or model definition.

3. Case Study

The case study represents a manual welding task
within manufacturing at Volvo Cars. The task involves
using one or more of three welding guns for seven
welding locations. The guns can be grasped at differ-
ent locations, and the workers need to assume differ-
ent postures when welding the seven spots. Because
the guns are supported by a lifting device, the workers
are not affected by the weight of the guns. The weld-
ing guns are not fixed in a single position; hence,
each spot can be welded by holding the guns at differ-
ent angles. In addition, the task is performed by dif-
ferent workers, so the welding posture can change due
to the anthropometry of each worker. The task is
repetitive, and the workers need to perform it over
a full workday. There is thus a risk of developing
work-related musculoskeletal disorders (WMSDs),
particularly in the upper limbs. By optimizing worker
well-being and productivity, the risk of WMSDs and
the cycle time of the welding operation can be mini-
mized. To achieve this, a model was created in a
DHM tool and an optimization model was defined.

3.1. Model Creation

The virtual model was modeled in the DHM tool IPS
IMMATM (H€ogberg et al., 2016) by representing the
welding gun workstation with imported CAD geome-
tries. A family of 14 manikins (7 female, 7 male) was
created based on key anthropometric variables to rep-
resent the anthropometric diversity of the workers at
the factory. The welding process for each welding gun
at each welding spot was simulated for the manikin
family. Table 1 shows the values for the stature and
elbow height of the manikins. These measurements
were considered relevant for the type of work carried
out at the workstation.

3.2. Ergonomics and Productivity Evaluation

To evaluate the productivity of the welding worksta-
tion, the cycle time of the welding sequence was
measured from the simulation. The cycle time was
calculated by considering the actions of the workers
performing the sequence. These actions include both
value-adding operations (i.e., the time to weld a weld-
ing spot) and non-value-adding operations (e.g.,
changing the welding gun, changing the welding side,
and moving between welding spots).

The Rapid Upper Limb Assessment (RULA)
method (McAtamney & Nigel Corlett, 1993) was used
to evaluate the risk of WMSDs. RULA was considered
appropriate since the work stresses mainly involve
postural stresses on the upper limbs, as the weight of
the welding guns is supported by a lifting device. The
workers also do not need to exert much force to per-
form the welding operations. For each posture
assessed, RULA gives a risk score from 1 to 7, which
results in four action levels. A score of 1 to 2 is
acceptable, a score of 3 to 4 suggests changes may be
required, 5 to 6 indicates changes will soon be
required, and 7 indicates that changes are required
immediately.

3.3. Mathematical Modeling of Optimization

The optimization model considers both worker well-
being and productivity objectives, that is, it is a multi-
objective optimization model. The indices, parameters,
variables, and objectives of the optimization model are
shown in Table 2.

Two optimizations were defined: (1) Multi-object-
ive optimization of the average of the RULA scores
for all the manikins and the cycle time; and (2)
Multi-objective optimization of the RULA scores for
each manikin and the cycle time.

Table 1. Anthropometric measures of manikins.
Female Male

Manikin
number Stature (mm) Elbow height (mm)

Stature
(mm)

Elbow height
(mm)

1 1629 984 1755 1091
2 1656 1020 1780 1134
3 1668 963 1794 1068
4 1800 1094 1936 1221
5 1602 949 1731 1047
6 1590 1006 1717 1114
7 1457 875 1574 961
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Optimization 1: Multi-Objective Optimization of the
Average Ergonomic Risk Score for All the Manikins
and the Cycle Time
In the first optimization, the mean RULA score of the
14 manikins was calculated as a mean value for all the
manikins using all welding spots. The risk of WMSDs
is therefore calculated by a single objective:

MIN ER ¼
PM

m¼1

PSQ

sq¼1
ERmsgw

SQ

M
(1)

Optimization 2: Multi-Objective Optimization of the
Ergonomic Risk Score for Each Manikin and the
Cycle Time
In the second optimization, each manikin’s RULA
score was represented as an objective. This results in
14 objective functions. The objective function of each
manikin is calculated as the mean of the RULA scores
of all welding spots (ERmsgw

) for that manikin:

MIN ERm ¼
PSQ

sq¼1
ERmsgw

SQ
(2)

The productivity optimization objective is calcu-
lated in the same way in both optimizations. The cycle
time is calculated as the sum of the welding time at
each welding spot and the time to change welding
gun, welding spot, and welding side:

MIN CT ¼
XSQ

sq¼1

TW þ
XSQ

sq¼2

PGsq � TGþ
XSQ

sq¼2

PSsq � TS

þ
XSQ

sq¼2

PFsq � TF þ
XSQ

sq¼2

PNsq � TN

(3)

After the optimization is performed, a filter is
applied to indicate solutions that resulted in a max-
imum RULA score greater than 4 for any manikin in

any welding posture, even if the mean RULA score
was equal to or lower than 4.

3.4. Optimization Method

Evolutionary algorithms were used as the optimization
method. The first optimization has two optimization
objectives. NSGA-II was used because of its efficiency
in multi-objective optimizations (Deb et al., 2002). The
second optimization is a many-objective optimization
due to the high number of objectives (14 for equation
2, and one for equation 1). NSGA-III was used as the
optimization algorithm because of its demonstrated
efficiency in many-objective optimizations (Deb & Jain,
2014). The parameters used in both optimizations of
its efficiency are presented in Table 3.

3.5. Results of the Welding Gun Case Study

The first step in applying this framework for the weld-
ing gun optimization case study was to define the
parameters and indices. The times were measured by
recording the operators while they performed welding
operations in the workstation. The welding gun work-
station indices and parameters are shown in Table 4.

The distance between welding spots is defined by
their position (Figure 2). The welding spots are div-
ided into two groups: [1, 6, 7] and [2, 3, 4, 5]. The
welding spots are numbered so that each group con-
tains adjacent welding spots.

Every combination of welding guns, welding spots,
and welding sides was simulated in the DHM tool IPS

Table 2. Indices, parameters, variables, and objectives of the optimization model.
Indices Parameters
w ¼ 1:::W Welding spots TW Welding time (s)
g ¼ 1:::G Welding guns TG Time to change welding gun (s)
s ¼ 1:::S Welding sides TS Time to change welding side (s)
m ¼ 1:::M Manikins TF Time to move to a far position (s)
sq ¼ 1:::SQ Welding sequence TN Time to move to a near position (s)
Variables PGsq Previous gun: 1 if different, 0 if same
Xw Welding spot sequence PSsq Previous side: 1 if different, 0 if same
Yw Welding gun used in each welding spot PFsq1 if previous spot is far, 0 if near
Zw Welding side in each welding spot PNsq1 if previous spot is near, 0 if far
Objectives ERmsgw

RULA score for a manikin on a side with a welding gun in a welding spot
CT Cycle time of welding process (s)
�ERm Average RULA score per manikin in the welding process
ER Average RULA score of all manikins in the welding process

Table 3. Optimization algorithm configuration.
Optimization algorithm

Optimization algorithm (1) NSGA-II
(2) NSGA-III

Population size 150
Child population size 150
Tournament size 2
Mutation probability 0.2
Crossover probability 0.9
Maximum iterations 25,000
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IMMATM (Figure 3), resulting in 588 simulations (14
manikins x 3 guns x 2 sides x 7 welding spots). After
performing the 588 simulations, the RULA scores of
each of the 14 manikins for every welding gun in
every welding spot on each side were extracted from
IPS IMMATM (Table 5). As the position for certain
welding guns on certain sides collided with the work-
station, those 294 positions were considered unavail-
able (marked with an “X” in Table 5).

The indices and parameters for the use case define
the size of the design space of the optimization:

W!

W � W � 1ð Þð Þ! � G � Sð ÞW ¼ 7!
7� 6ð Þ! � 2 � 3ð Þ7

¼ 1:41 � 109 (4)

The number of possible combinations shows that it
is impossible to evaluate all the combinations in a real-
istic time, making this optimization problem a non-
polynomial hard (NP-hard) problem (Vavasis, 2009).

Optimization 1: Multi-Objective Optimization of the
Mean RULA Scores for All the Manikins and the
Cycle Time
In the first optimization, there were two objective
functions, which therefore form a two-dimensional
solution space. The results of the first optimization
are shown in Figure 4.

A filter function marked in red all solutions that
had at least one welding posture for any manikin with
a RULA score higher than 4 in Figure 4. These solu-
tions are judged inappropriate due to the high risk of
WMSDs. The solutions that correspond to the non-
dominated solutions, that is, those that define the
Pareto front, are marked in green in Figure 4, and
correspond to the best solutions of the optimization.
These solutions are shown in Table 6.

The results of the Pareto front (Table 6) show that
there is a compromise between worker well-being and
productivity. Therefore, to reduce the RULA mean
risk score of the manikins, it is necessary to increase
the cycle time of the welding process. This is due to
the number of gun welding changes and side changes
the worker would need to perform to reduce the
RULA scores, leading to an increase in the cycle time
for the operation.

Table 4. Indices and parameters values for the optimization
in the case study.
Indices
W Welding spots 7
G Welding guns 3
S Welding sides 2
M Manikins 14
SQ Welding sequence 7
Parameters
TW Welding time (s) 3
TG Time to change welding gun (s) 18
TS Time to change side (s) 8
TF Time to move the gun to a far position (s) 4
TN Time to move the gun to a near position (s) 2

Figure 2. Positions of the welding spots.

Figure 3. IPS IMMATM manikins welding different spots with
different welding guns.
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Optimization 2: Multi-Objective Optimization of the
RULA Scores for Each Manikin and the Cycle Time
In the second optimization, there were 15 optimiza-
tion objectives (RULA scores of 14 manikins and cycle
time), therefore the solution space is a 15-dimensional
space. As a result, the number of Pareto front solu-
tions is higher since some solutions will be optimal
for certain manikins, forming a 15-dimensional
Pareto front.

Due to the complexity of illustrating a 15-dimen-
sional Pareto front, the results from Optimization 2
are presented in the same space as the results from
Optimization 1, that is with the mean RULA score for
all manikins and cycle time as the two dimensions
(Figure 5). This allows comparison of the results of
Optimization 1 and 2. Non-dominated solutions from
Optimization 2 are marked with small green dots in
Figure 5. For comparison, the three non-dominated

solutions from Optimization 1 are marked with larger
green dots in Figure 5. These three solutions from
Optimization 1 were also found in Optimization 2.

Assessment of Results
The results obtained in both optimizations show that
in this case the optimum is a compromise between
well-being and productivity. Three optimal solutions
with RULA scores lower than 3.09, and cycle times
lower than 85 s were found (Table 6). Production
engineers and ergonomists would need to come to a
consensus about which of these three solutions should
be chosen, based on the requirements specification
and the decision support tool (Figure 1).

The inclusion of considerations of well-being shows
that the number of objectives can grow considerably if
the RULA score of each manikin is added as an opti-
mization objective. However, considering the mean

Table 5. RULA scores for each of the 14 manikins at every welding spot and side. “X” represents a colliding position.

Spot number

Gun 1 Gun 2 Gun 3

Side 1 Side 2 Side 1 Side 2 Side 1 Side 2

1 {2,3,4,3,2,3,3,3,2,2,3,3,3,3} X {2,3,3,3,2,4,2,3,2,2,2,3,3,3} X {4,3,3,4,3,3,3,4,4,3,4,3,4,4} {3,3,3,3,3,3,3,3,3,3,3,3,3,3}
2 {3,3,3,3,3,3,3,3,3,3,3,3,3,3} X {2,3,3,3,2,3,3,3,2,2,3,3,3,2} X {3,3,3,3,3,3,3,3,3,3,3,3,4,2} {3,3,3,3,3,3,3,2,3,3,3,3,4,4}
3 {3,3,3,3,3,2,2,3,3,2,3,3,3,3} X {3,3,3,3,3,3,3,3,3,3,3,3,3,3} X {3,3,3,3,3,3,3,3,3,3,3,3,4,4} {3,3,3,3,3,3,3,2,4,3,4,3,4,4}
4 X X X X {4,3,4,3,4,3,3,3,4,3,4,3,4,3} {3,3,3,3,3,3,3,3,3,3,3,3,4,4}
5 X X X X {3,3,3,3,4,3,3,3,3,3,3,3,4,3} {3,3,3,3,3,3,3,3,3,3,3,3,4,3}
6 X X X X {4,3,4,3,4,3,3,3,4,3,4,3,5,4} {3,3,3,3,3,3,3,3,4,3,3,3,4,4}
7 {3,3,4,3,3,3,3,3,4,3,4,3,4,4} X {3,3,3,3,3,3,3,3,1,3,1,4,1,5} X {3,3,3,2,3,3,2,2,3,2,3,2,3,2} X

Figure 4. Pareto front of Optimization 1 for two objectives: mean RULA score of all manikins and cycle time.

Table 6. Solutions of the Pareto front of Optimization 1.
Result selected CT (s) ER Sequence

Lowest CT 47 3.09 W7G3S1 W1G3S1 W3G3S1 W2G3S1 W5G3S2 W4G3S2 W6G3S2
Compromise between CT and ER 63 2.89 W4G3S2 W5G3S2 W6G3S2 W7G3S1 W1G2S1 W2G2S1 W3G2S1
Lowest ER 85 2.86 W4G3S2 W5G3S2 W6G3S2 W7G3S1 W1G2S1 W2G2S1 W3G1S1

(W¼Welding spot, G¼Welding gun, S¼Welding side).
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RULA score of all manikins as a single optimization
objective, Optimization 1 reaches the same optimal
solutions as Optimization 2 (Figure 5). This result
indicates that it can be efficient to define well-being
objectives on a manikin family level, as long as there
is a filter function that indicates solutions that are
considered inappropriate at the individual manikin
level. Adding filters that remove inappropriate design
solutions thus supports the consideration of diversity
when using the optimization tool for workplace
optimization.

4. Discussion

The framework presented here supports multi-object-
ive optimizations of well-being and productivity and
is capable of being used with various DHM tools. The
optimizations can be performed manually, by a user
making design improvements, or automatically using
optimization algorithms. Using optimization algo-
rithms to find optimized workstation designs allows
the solution space to be explored by a strategic search
through feasible solutions without manually process-
ing each of all possible configurations.

Because the results from the framework are sensi-
tive to the validity of the virtual model, the model
must appropriately represent the real world to obtain
reliable results. Digitalization of the real-world indus-
try and the workers can thus improve the validity of
the simulation models. Such digitalization is one of
the objectives of Industry 4.0 and Ergonomics 4.0
(Ga�sov�a et al., 2017; Kadir et al., 2019). The most
mature digitalization level is a digital twin of the

factory, including both the environment and the
workers. A digital twin can increase the validity of the
results by creating more accurate models using new
technologies such as motion capture systems to cap-
ture human motions and 3D scanning to capture the
environment (Greco et al., 2020; Havard et al., 2019).

The results from applying the framework in the
welding gun case study show that the framework can
be used to enable concurrent optimization of well-
being and productivity. Consideration of cycle time
together with RULA scores allowed analysis of the
impact of different configurations of the welding
sequence. The results show that the optimum is a
compromise between RULA scores and cycle time
owing to the need to change both welding sides and
guns in the welding sequence.

The framework also supports consideration of the
anthropometric diversity of the workers, helping
workstation designers accommodate the diversity of
the workforce. It thus assists in finding optimized and
sustainable design solutions. Further development is
required to consider more aspects of diversity in the
workforce in addition to body size, for example, diver-
sity in muscle strength, joint range of motion (ROM),
and age (Brolin et al., 2016).

There are many ergonomic evaluation methods
that can be used to study, analyze, and evaluate the
risk of WMSDs. Examples of methods commonly
available in DHM tools include RULA (McAtamney &
Nigel Corlett, 1993), REBA (Hignett & McAtamney,
2000), OWAS (Karhu et al., 1977), and the NIOSH
Lifting Equation (Waters et al., 1993). Examples of
DHM tools are Jack (Raschke & Cort, 2019), RAMSIS

Figure 5. Pareto front of Optimization 2 for RULA scores of all manikins and cycle time (green dots), shown in a 2-dimensional
plot of mean RULA scores of all manikins and cycle time.
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(Bubb et al., 2006), SAMMIE (Marshall et al., 2010),
and IPS IMMATM (Hanson et al., 2012, 2019). We
used IPS IMMATM with a built in RULA tool
(Bogojevic & S€oderlund, 2020). It is important to
remember, though, that observation-based methods
such as RULA can result in overstated or understated
risk ratings in DHM tools, since joint angles are
exactly measured. This can sometimes result in dra-
matic changes in risk ratings based on slight changes
in joint angles when they are near the angle thresh-
olds (Berlin & Adams, 2017). Furthermore, it is cru-
cial that the ergonomic evaluation method used is
applicable to the type of work being carried out.
RULA was considered an appropriate evaluation
method in this study, since the work stresses mainly
concerned postural stresses on the upper limbs. The
workers also did not need to exert much force to per-
form the welding operations.

The optimization objectives used for assessing
worker well-being do not limit the assessment options
for the user, allowing the user to analyze the results
with different ergonomic evaluation methods, in add-
ition to the one used in the optimization (Iriondo
Pascual et al., 2020). In addition, objectives to avoid
both median and maximum workload can be added
to avoid both continuous and extreme postures that
increase the risk of WMSDs.

The decision support tool helps users by adding fil-
ters to avoid extreme results and showing optimal
results. The optimizations can be run with multiple
objectives for the manikins or can consider all the
manikins in a single objective, allowing further studies
of anthropometric diversity and the impact of work-
station design on the well-being of the workers. Using
evolutionary algorithms like NSGA-II and NSGA-III
allows the solution space to be explored without eval-
uating all possible solutions, which would be impos-
sible for large numbers of combinations.

The optimization results also showed that in some
situations there can be a compromise between worker
well-being and productivity. However, considering
optimal solutions of the Pareto front will ensure that
the solutions are better for both well-being and prod-
uctivity, and avoid the selection of non-optimal solu-
tions. The current framework assists users with a
decision support tool to include human factors in the
typical design processes of production, which is a
requirement in contemporary production planning
processes (Village et al., 2014). In the future, the
framework will be further developed based on optimi-
zations for other types of use cases and by working
with stakeholders in industry.
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