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ABSTRACT 
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Oscillations in cytoplasmic Ca2+ concentration ([Ca2+]i) is the key signal in glucose-stimulated 
β-cells governing pulsatile insulin release. The glucose response of mouse β-cells is often 
manifested as slow oscillations and rapid transients of [Ca2+]i. In the present study, 
microfluorometric technique was used to evaluate the role of amino acids, glucagon, 
ryanodine and caffeine on the generation and maintenance of [Ca2+]i oscillations and 
transients in individual murine β-cells and isolated mouse pancreatic islets. The amino acids 
glycine, alanine and arginine, at around their physiological concentrations, transformed the 
glucose-induced slow oscillations of [Ca2+]i in isolated mouse β-cells into sustained elevation. 
Increased Ca2+ entry promoted the reappearance of the slow [Ca2+]i oscillations. The [Ca2+]i 
oscillations were more resistant to amino acid transformation in intact islets, supporting the 
idea that cellular interactions are important for maintaining the oscillatory activity. Individual 
rat β-cells responded to glucose stimulation with slow [Ca2+]i oscillations due to periodic 
entry of Ca2+ as well as with transients evoked by mobilization of intracellular stores. The 
[Ca2+]i oscillations in rat β-cells had a slightly lower frequency than those in mouse β-cells 
and were more easily transformed into sustained elevation in the presence of glucagon or 
caffeine. The transients of [Ca2+]i were more common in rat than in mouse β-cells and often 
appeared in synchrony also in cells lacking physical contact. Depolarization enhanced the 
generation of [Ca2+]i transients. In accordance with the idea that β-cells have functionally 
active ryanodine receptors, it was found that ryanodine sometimes restored oscillatory activity 
abolished by caffeine. However, the IP3 receptors are the major Ca2+ release channels both in 
β-cells from rats and mice. Single β-cells from ob/ob mice did not differ from those of lean 
controls with regard to frequency, amplitudes and half-widths of the slow [Ca2+]i oscillations. 
Nevertheless, there was an excessive firing of [Ca2+]i transients in the β-cells from the ob/ob 
mice, which was suppressed by leptin at close to physiological concentrations. The enhanced 
firing of [Ca2+]i transients in ob/ob mouse β-cells may be due to the absence of leptin and 
mediated by activation of the phospholipase C signaling pathway. 
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To 

      me’, sumon 

 Did you know freedom exists 
  in a school book 
 Did you know madmen are 
  running our prison 
 … … … … …… … … … 
 We’re perched headlong 
  On the edge of boredom 
 We’re reaching for death 
  On the end of a candle  
 We’re trying for something  
  That’s already found us 
 
 Jim Morrison; An American Prayer 
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ABBREVIATIONS 
 
ADP  adenosine 5´-diphosphate 

ATP  adenosine 5´-triphosphate 

cADPR  cyclic adenosine 5´-diphosphate ribose 

cAMP  cyclic adenosine 3´5´-monophosphate 

[Ca2+]i  cytoplasmic Ca2+ concentration 

EGTA  Ethylene glycol-bis(β-aminoethyl ether)-

N,N,N’,N’-tetraacetic acid 

ER  endoplasmic reticulum 

FKBP  FK506 binding protein 

GSIS   glucose-stimulated insulin secretion 

Hepes  N-(2-hydroxyethyl)piperazine-N´-(2-ethanesulfonic 

acid) 

IP3  inositol 1,4,5-trisphosphate 

IP3R  inositol 1,4,5-trisphosphate receptor 

JAK-STAT  janus kinase signal transducer and activator of 

transcription 

KATP channel  ATP-sensitive potassium channel 

MOPS  3-(N-morpholino)propanesulfonic acid 

NAD+  nicotinamide adenine dinucleotide 

NAD(P)H  nicotinamide adenine dinucleotide phosphate 

Ob-R  leptin receptor 

Ob-Rb  long isoform of leptin receptor 

PI  phosphoinositide 

PLC  phospholipase C 

RyR  ryanodine receptor 

SERCA  sarco-endoplasmic reticulum Ca2+ ATPase 

TRP   transient receptor potential 

VDCC   voltage dependent Ca2+ channel 

 



 



 

INTRODUCTION 

The pancreatic β-cells are ‘fuel sensors’ that integrate the signals from different 
nutrients, incretins, peptide hormones and neurotransmitters and release insulin 
in a pulsatile manner. This pattern of insulin secretion, under physiological 
conditions, keeps the blood glucose concentration at around 5 mM in fasting 
mammals, including humans. Among the factors affecting insulin secretion, 
glucose is the most important physiological stimulus and considered as the 
primary regulatory signal because of its ‘initiator’ property and being required 
for the potentiating effect of other signals (Hedeskov, 1980). Until recently the 
exact sequence of biochemical events involved in glucose-stimulated insulin 
secretion (GSIS) from the pancreatic β-cells has not been identified. 
Nevertheless, it is well established that an increase in the cytoplasmic Ca2+ 
concentration ([Ca2+]i) is a crucial step (Hellman et al., 1971; Wollheim & 
Sharp, 1981; Hellman et al., 1994).  

The most widely accepted model of GSIS schematizes that glucose after 
entering β-cells through a high capacity glucose transporter, is metabolized and 
provides a complex cascade of stimulatory signals for insulin secretion. The 
glucose-phosphorylating enzyme, glucokinase, is central for glucose 
metabolism in pancreatic β-cells. It is conceptualized as the ‘glucose sensor’ in 
β-cells, and is rate limiting, since increased glucose phosphorylation by 
glucokinase enhances glycolysis, glucose oxidation and eventually increases 
the rate of ATP generation (Matschinsky et al., 1998). The increased ATP 
production raises the ATP/ADP ratio and causes closure of ATP-sensitive K+ 
(KATP) channels resulting in membrane depolarization, opening of the voltage 
dependent Ca2+ channels (VDCCs) and subsequent entry of Ca2+ from 
extracellular space (Ashcroft & Rorsman, 1989). Glucose has a dual action on 
[Ca2+]i in both stimulating the entry and sequestration of the ion (Gylfe, 1988). 
When the entry of Ca2+ is suppressed by lowering of its extracellular 
concentration or by blocking the VDCC, the net effect of glucose is a lowering 
of [Ca2+]i (Gylfe, 1988; Hellman et al., 1994). However, glucose can also 
temporarily increase [Ca2+]i by promoting mobilization of Ca2+ from the 
endoplasmic reticulum (ER; Roe et al., 1993; Liu et al., 1996; Jijakli & 
Malaisse, 1998). The rise of [Ca2+]i acts as the primary intracellular messenger 
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that couples physiological or pharmacological secretagogues to exocytosis of 
the insulin-containing granules. A characteristic feature of the [Ca2+]i response 
to glucose is its oscillatory nature observed both in individual β-cells 
(Grapengiesser et al., 1988; Wang & McDaniel, 1990) and in intact pancreatic 
islets (Valdeolmillos et al., 1989; Liu et al., 1998). Studies on individual β-cells 
have revealed that glucose induces slow oscillations of [Ca2+]i with frequencies 
of 0.05-0.5/min (Hellman et al., 1992) and these oscillations explain the 
pulsatile nature of insulin release (Bergsten et al., 1994; Gylfe et al., 2000), the 
impairment of which is an early phenomenon in the development of both type 1 
(Bingley et al., 1992) and type 2 (O'Rahilly et al., 1988) diabetes. 

 

Entry of Ca2+ into the β-cells 

Patch clamp studies have characterized two types of voltage-dependent Ca2+ 
channels in pancreatic β-cells with properties similar to those of L- and T-type 
channels in other cells (Ashcroft & Rorsman, 1989). In the mouse β-cells the 
voltage-activated Ca2+ current has been reported to be carried only by the 
L-type Ca2+ channels (Rorsman et al., 1988), whereas rat (Satin & Cook, 1988; 
Ashcroft et al., 1990) and human β-cells (Misler et al., 1992) and the 
rat-derived RINm5F cells (Findlay & Dunne, 1985) exhibit both L- and T-type 
Ca2+ currents. The L-type channel is distinguished from T-, N-, P- and R-type 
Ca2+ channels by its sensitivity to the high-affinity, voltage-dependent blocking 
properties of dihydropyridines, phenylalkylamines, such as methoxyverapamil; 
and benzothiazepines (Hockerman et al., 1997). Opening of L-type Ca2+ 
channels is greatly enhanced by dihydropyridine Ca2+ channel agonists like Bay 
K8644 whereas other types of Ca2+ channels are not significantly affected 
(Tsien et al., 1988). T-type Ca2+ channels are activated by depolarization to 
potentials positive to -50 mV and inactivates rapidly at -40 mV. The channel 
remains partially inactivated at the resting potential of -70 mV (Ashcroft & 
Rorsman, 1989; Sala & Matteson, 1990). Recent studies have shown that rat 
β-cells also exhibit ω-conotoxin sensitive N-type (Ramanadham & Turk, 1994) 
and ω-agatoxin sensitive P-type (Ligon et al., 1998) Ca2+ currents and proposed 
that they have a physiological role in excitation-secretion coupling. However, 
the predominant Ca2+-current in pancreatic β-cells is carried by L-type channels 
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(Rorsman et al., 1994). Both glucose-induced rise of [Ca2+]i (Arkhammar et al., 
1989; Grapengiesser et al., 1989a; Ramanadham & Turk, 1994) and insulin 
release (Wollheim & Pozzan, 1984; Al Mahmood et al., 1986; Ohta et al., 
1993) are consequently blocked by inhibitors of this Ca2+ channel.  

Apart from the regulation by voltage, the L-type Ca2+ channels are modulated 
by glucose metabolism (Smith et al., 1989), guanine nucleotides (Béguin et al., 
2001), protein phosphorylation (Jones & Persaud, 1998) and by Ca2+ itself 
(Rorsman & Trube, 1986). The α1 subunit of VDCC contains plausible sites for 
phosphorylation by protein kinases A and C (Wheeler et al., 1994). In β-cells 
phosphorylation by cAMP-dependent protein kinase A increases Ca2+ influx by 
potentiating the activation and inhibiting the inactivation of L-type Ca2+ 
channels (Ämmälä et al., 1993; Kanno et al., 1998). A store-operated pathway 
may also contribute to the influx of Ca2+ into β-cells (Liu & Gylfe, 1997; Miura 
et al., 1997), perhaps through the members of the TRP (transient receptor 
potential) family of channel proteins (Sakura & Ashcroft, 1997). 

 

Intracellular Ca2+ transport 

In many cell types, including pancreatic β-cells, the average Ca2+ concentration 
is in the millimolar range whereas the resting [Ca2+]i is maintained around 100 nM. 
Most of the cellular Ca2+ therefore remains either bound to membrane surfaces 
and cytosolic components or is accumulated within membrane-bound 
organelles (Meldolesi et al., 1988). The major Ca2+ sequestrating organelles 
include endoplasmic reticulum, mitochondria and secretory granules (Hellman 
& Gylfe, 1986). There are scattered reports about a Ca2+ accumulating capacity 
of the Golgi complex (Pinton et al., 1998), lysosomes (Haller et al., 1996), 
endosomes (Gerasimenko et al., 1998) and nucleus (Brini et al., 1993). In 
pancreatic β-cells, the free Ca2+ in the ER is in the range of 200-500 µM 
(Tengholm et al., 1999; Maechler et al., 1999) and is maintained as a result of 
the steady-state balance of Ca2+ uptake and release. The uptake of Ca2+ is 
mediated by pumps, which belong to sarco-endoplasmic reticulum Ca2+ 
ATPases (SERCA). Ca2+ release can be triggered by the inositol 
1,4,5-trisphosphate (IP3) receptors and ryanodine receptors (RyR). 
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Role of SERCA pumps 

The SERCA pump is an intrinsic membrane protein encoded by three genes 

SERCA-1, -2, and -3 (Carafoli & Brini, 2000). In pancreatic β-cells the 

SERCA-2b and SERCA-3 isoforms are co-expressed (Váradi et al., 1996) and 

play major roles in Ca2+ homeostasis (Roe et al., 1994a; Worley, III et al., 

1994). These pumps maintain a high free Ca2+ concentration within the ER 

lumen in equilibrium with Ca2+ bound to the ubiquitous luminal proteins, 

calreticulin and binding protein BiP (Meldolesi & Pozzan, 1998). Inhibition of 

the SERCA pump may result in multiple changes in cell function, including 

alterations in signaling, gene expression, Ca2+ entry, cell proliferation and 

apoptosis which can be attributed to a rise of [Ca2+]i and/or depletion of 

intracellular Ca2+ pools (Hussain & Inesi, 1999). Refilling of the ER store by 

SERCA pumps is a key factor that controls the frequency of [Ca2+]i oscillations 

depending on intracellular release. Recent studies have demonstrated that the 

loss of SERCA activities and the defects of SERCA-3 gene expression in 

β-cells are associated with human diabetes (Váradi et al., 1999) and altered 

patterns of glucose-induced [Ca2+]i changes in db/db mice (Roe et al., 1994b), 

Goto-Kakizaki (Váradi et al., 1996) and neonatal streptozotocin rats (Levy et 

al., 1998; Marie et al., 2001). 

In certain cell types, evidence has been provided that SERCA pumps are also 

present in organelles other than the ER (Lanini et al., 1992; Kovàcs et al., 

1997; Lee et al., 1997; Misquitta et al., 1999; Rojas et al., 2000). However, 

such expression has so far not been reported in pancreatic β-cells, in which the 

SERCA isoforms are restricted to the ER membrane (Prentki et al., 1984a; 

Wolf et al., 1988). Acting specifically on the SERCA pumps, thapsigargin, a 

plant extract from the root of Thapsia garganica, induces specific emptying of 

the ER stores (Thastrup et al., 1990; Kijima et al., 1991). Recent studies have 

demonstrated that interaction of SERCA 2b with the ER proteins, calreticulin 

and calnexin regulates Ca2+ homeostasis including oscillations of [Ca2+]i in 

nonmuscle cells (John et al., 1998; Roderick et al., 2000). 
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Role of IP3 receptors 

Release of Ca2+ from intracellular stores in response to activation of 
phospholipase C (PLC) is mediated by the interaction of IP3 with its receptors 
(IP3R) (Berridge & Irvine, 1984). At least three closely related subtypes (1, 2, 
3) of the IP3Rs, which assemble into both homo- and heterotetrameric 
complexes (Nucifora, Jr. et al., 1996), are expressed in pancreatic β-cells from 
rats (Lee et al., 1998), mice (Lee & Laychock, 2001) and insulinoma cell lines 
(De Smedt et al., 1994). The ER is the organelle in which IP3Rs are most 
abundantly expressed (Blondel et al., 1993), however, in some cell types, IP3Rs 
have been localized to the nucleus (Humbert et al., 1996), secretory granules 
(Blondel et al., 1994a) and plasma membrane (Tanimura et al., 2000). IP3Rs 
have been ambiguously demonstrated on the secretory granules membrane in 
pancreatic β-cells (Blondel et al., 1994b; Ravazzola et al., 1996; Nucifora, Jr. 
et al., 1996; Srivastava et al., 1999), but it seems unlikely that Ca2+ release 
from this organelle is involved in agonist-stimulated insulin secretion (Prentki 
et al., 1984a; Prentki et al., 1984b; Pouli et al., 1998; Scheenen et al., 1998). 
Mobilization of Ca2+ through IP3Rs is regulated in a complex way by IP3 
(Marchant & Taylor, 1998), [Ca2+]i, the Ca2+ concentration in the ER (Taylor, 
1998), nucleotides (Maes et al., 2000), phosphorylation by protein kinases 
(Nakade et al., 1994; LeBeau et al., 1999) and various other modulators. In 
spite of the structural similarity between different IP3R isoforms, they exhibit 
distinct functional properties (Hagar & Ehrlich, 2000), and the expression of 
each isoform is species and tissue specific (Newton et al., 1994; De Smedt et 
al., 1994) either with a single or a combination of IP3R subtypes. Whereas the 
type 1 receptor is most abundant in mouse islets (Lee & Laychock, 2001), type 
3 dominates in rat islets (Blondel et al., 1993; Lee et al., 1998). The relative 
expression of various isoforms in β-cells is transcriptionally regulated by 
glucose (Lee et al., 1999), carbachol (Lee & Laychock, 2001) and cAMP (Lee 
& Laychock, 2000). Recent studies have demonstrated that the type 1 and type 
3 receptors bind IP3 with different affinities and are modulated differentially by 
Ca2+, ATP and other regulators, suggesting that each IP3R subtype plays a 
distinct role in β-cell signal transduction and insulin secretion. For example, 
type 3 IP3R channel activity does not exhibit the bell-shaped dependence on 
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[Ca2+]i as the type 1 isoform; instead its open probabilty increases 
monotonically with increased Ca2+ (Hagar et al., 1998). Thus, Ca2+ release via 
type 3 IP3R results in a positive feedback cycle, that leads to ‘all or none’ Ca2+ 
signaling. However, when composed of heterotetramers, the IP3Rs tend to 
adopt the responses of the most sensitive and/or modulatable subunits 
(Miyakawa et al., 1999; Swatton et al., 1999). 

 

Role of ryanodine receptors 

The ryanodine receptors are encoded by three separate genes, ryr-1, ryr-2, and 
ryr-3 (Sutko & Airey, 1996). Of the three isoforms only type 2 RyRs (RyR2s) 
are expressed on the ER membrane of pancreatic β-cells (Islam et al., 1998; 
Holz et al., 1999). Unlike IP3 receptors, RyR2s are homotetramers of four 
RyR2 polypeptides (Franzini-Armstrong & Protasi, 1997), each of which binds 
one FK506 binding protein (FKBP12.6; Noguchi et al., 1997) that stabilizes the 
channel (MacKrill, 1999) and facilitates coupled gating (Marx et al., 1998).  In 
addition to endogenous regulators including Ca2+, Mg2+, ATP and cyclic ADP 
ribose (cADPR), several pharmacological modulators, especially ryanodine, 
caffeine and the immunosuppressant drug FK506 influence the RyR-channel 
function (Shoshan-Barmatz & Ashley, 1998). Phosphorylation of RyRs is the 
underlying physiological mean, that increases the agonist responsiveness of the 
channel (Hain et al., 1995). Ligands, known to open RyR channels (µM Ca2+, 
caffeine), stimulate the binding of low concentrations of ryanodine (< 10 µM) 
to the high affinity site, which locks the channel in a partially open 
subconductance state (Buck et al., 1992). As the concentration of ryanodine is 
increased, the affinity of RyRs for ryanodine decreases. Ryanodine (≥ 70 µM) 
produces a unidirectional transition from ½ to a ¼ conductance fluctuation, 
whereas ≥ 200 µM ryanodine causes complete closure of the channel 
enlightening the fact that ryanodine has an allosteric negative interaction 
among the four binding sites on RyRs (Buck et al., 1992). 

Cyclic ADPR, the natural modulator of RyRs, is synthesized from NAD+ by the 
enzyme ADP-ribosyl cyclase and its mammalian homologues, CD38 and 
CD157 (Lee, 1999), which are expressed in various cell types including β-cells 
(Koguma et al., 1994; Kajimoto et al., 1996). Autoantibodies against CD38 
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have been detected in patients with both type 1 and type 2 diabetes (Ikehata et 
al., 1998; Pupilli et al., 1999; Antonelli et al., 2001). In Japanese type 2 
diabetic patients, mutation in the CD38 gene with a reduction of the enzyme 
activity has been described (Yagui et al., 1998). When CD38 cyclase activity in 
mouse β-cells is inactivated by ADP-rybosylation, glucose-induced increase of 
cADPR, [Ca2+]i and insulin secretion are impaired (An et al., 2001). More 
intriguingly, CD38 knockout mice exhibit a similar aberration in glucose 
effects on β-cells (Kato et al., 1999). The expression of CD38 is also decreased 
in animal models of diabetes such as GK rats (Matsuoka et al., 1995) and ob/ob 
mice (Takasawa et al., 1998). Despite all these experiments, the original 
proposal of cADPR as a Ca2+-mobilizing second messenger in β-cells 
(Takasawa et al., 1993) could not be confirmed by others (Islam et al., 1993; 
Rutter et al., 1994; Willmott et al., 1995; Webb et al., 1996; Malaisse et al., 
1997; Tengholm et al., 1998), and different opinions have been expressed 
whether the RyRs play any significant role for Ca2+ release from intracellular 
stores. Recently, it has been suggested that activation of RyRs require cAMP-
dependent phosphorylation (Islam et al., 1998; Lemmens et al., 2001) and they 
mediate a distinct ‘context-dependent’ Ca2+ signaling for insulin release (Islam 
& Lemmens, 2001). 
 

Ca2+ signals in terms of slow oscillations and rapid transients 

Glucose stimulation of individual β-cells produces changes in [Ca2+]i kinetics, 
which are manifested as slow oscillations and rapid transients (Grapengiesser et 
al., 1991). The slow oscillations usually appear at glucose concentrations of 
7-20 mM with different thresholds for the individual cells (Hellman et al., 
1992). The oscillations have typical frequencies of 0.05-0.5/min, starting from 
a basal level of 60-90 nM with amplitudes of 300-500 nM. The initial β-cell 
response to glucose is a brief lowering of [Ca2+]i, due to sequestration of Ca2+ in 
intracellular compartments (Gylfe, 1988; Roe et al., 1994a; Aizawa et al., 
1995), followed by a rise due to influx of Ca2+ (Grapengiesser et al., 1989a). 
The slow [Ca2+]i oscillations are elicited not only by glucose but also by leucine 
(Grapengiesser et al., 1989b), isoleucine (Martin & Soria, 1995), α-keto-
isocaproate (Martin et al., 1995) and tolbutamide (Grapengiesser et al., 1990) 
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and depend on extracellular Ca2+. Blocking of VDCCs or lowering of 
extracellular Ca2+ to 0.8 mM results in disappearance of the oscillations 
(Hellman et al., 1992). Parallel measurements of electrical activity and [Ca2+]i 
show that the oscillations of [Ca2+]i in isolated β-cells occur in synchrony with 
bursts of action currents and reflect variations in Ca2+ influx (Dryselius et al., 
1999). Using the activity of KATP channels as an indicator of the ATP 
concentration, it was found that this metabolite fluctuates with a frequency 
similar to that of the slow oscillations even in the presence of sub-stimulatory 
glucose concentrations (Dryselius et al., 1994). Further evidence that cyclic 
variations of β-cell metabolism underlie rhythmical depolarization, resulting 
[Ca2+]i oscillations is that there is a close correlation between changes in the 
ATP/ADP ratio and mitochondrial respiration and that the glucose-induced rise 
in the ATP/ADP ratio and mitochondrial NAD(P)H fluorescence precede the 
increase of [Ca2+]i  (Deeney et al., 2000). 

Under certain condition, glucose induces transients of [Ca2+]i due to brief 
periods of Ca2+ influx (Eberhardson & Grapengiesser, 1999). However, the 
rapid transients observed during glucose stimulation usually reflects 
mobilization of Ca2+ from intracellular stores (Grapengiesser et al., 1989a; Liu 
et al., 1996). These transients are superimposed on the slow oscillations 
(Grapengiesser et al., 1991) and mimic those obtained when the β-cells are 
exposed to agents promoting the formation of cAMP and IP3 (Gylfe et al., 
2000). The [Ca2+]i transients are synchronized in β-cells lacking physical 
contact, suggesting that diffusible factors, possibly nitric oxide and ATP, are 
involved in their generation (Grapengiesser et al., 1999; Hellman et al., 2001). 
It has been demonstrated that [Ca2+]i transients, occurring together with the 
glucose-induced oscillations, are often sufficiently pronounced to activate a 
hyperpolarizing K+ current temporarily interfering with the slow oscillations 
(Dryselius et al., 1999). By inducing such [Ca2+]i transients, nitric oxide 
released from nonadrenergic, noncholinergic (NANC) neurons, may entrain the 
slow oscillations into a rhythm common to the islets in a pancreas (Hellman et 
al., 2000; Hellman et al., 2001). In addition, ATP, coreleased with insulin into 
the intercellular space, may mobilize intracellular Ca2+ by a purinergic IP3-
mediated mechanism and provide positive feedback in both autocrine and 
paracrine fashion (Gylfe, 1991). 
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Characteristics of ob/ob mice 

In mice a recessive mutant gene, ob, produces obesity leading to 
hyperinsulinemia and hyperglycemia (Ingalls et al., 1950), generally referred to 
as the obese-hyperglycemic syndrome (Hellman, 1965). The syndrome was 
discovered at the Jackson Laboratory, USA in 1949 and the mice were found to 
be homozygous for an autosomal recessive mutation (Ingalls et al., 1950). 
Marked obesity, hypoactivity, hyperphagia, transient hyperglycemia, severe 
hyperinsulinemia and insulin resistance are the cardinal features of the obese 
hyperglycemic syndrome when the ob gene is expressed in the C57BL/6J or 
similar strains (Westman, 1968; Dubuc, 1976; Coleman, 1978). The islets of 
ob/ob mice are characterized by > 90% of insulin containing β-cells with 
decreased proportions of glucagon-, somatostatin- and pancreatic polypeptide-
containing α, δ and PP cells, respectively (Gepts et al., 1960; Hellman, 1961; 
Baetens et al., 1978). In 3-5 months old obese mice the total islet volume can 
be up to 8-10 times larger than in lean mice (Hellman et al., 1961). The greatly 
increased total islet volume in the ob/ob mice is mainly dependent on an 
increased number of large islets (Hellman et al., 1961). 

In an elegant experiment, Coleman (1978) showed that parabiosis of an ob/ob 
mouse with a normal one suppressed weight gain in the obese mouse, whereas 
parabiosis with a db/db mouse caused profound weight loss and death of the 
ob/ob one. Taken together, these results suggest that the obese mouse does not 
produce sufficient satiety factor to turn off its eating drive whereas the db/db 
mouse lacks a functional receptor for this factor (Coleman, 1978; Friedman & 
Halaas, 1998). The search for the precise nature of the defect in the ob/ob 
mouse come to an end in 1994, when Zhang et al., (1994), cloned the ob gene 
and confirmed Coleman’s hypothesis. The ob gene was isolated by positional 
cloning and found to encode a highly conserved 167-amino acid secretory 
protein, that was unique in the GenBank database (Zhang et al., 1994). Mouse 
and human ob genes have been localized to chromosome 6 and 7q31.3, 
respectively, and the product of the ob gene was named leptin from the Greek 
word leptos, meaning thin, as it markedly attenuated body weight by reducing 
food intake and body fat when injected into ob/ob or normal mice (Zhang et al., 
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1994; Halaas et al., 1995). The recent official nomenclature for the ob gene in 
mice is Lepob and for the ob/ob mice on the C57BL/6J background strain is 
B6.V-Lepob (Doolittle, 1998; Jax mice web site, 2001). 

Leptin is a pleotropic hormone, circulating as 16-kDa protein (Halaas et al., 
1995). It is synthesized and secreted primarily, but not exclusively, by white 
adipose tissue (Ahima & Flier, 2000). In C57BL/6J ob/ob mice, a Cys-to-Thr 
substitution in the ob gene of the chromosome 6 results in a stop codon at 
position 105, which produces a truncated protein, that is apparently degraded in 
the adipocyte (Zhang et al., 1994). Thus, the ob/ob mice lack circulating leptin; 
and experimental studies indicate that leptin replacement corrects almost all of 
the abnormalities in the obese hyperglycemic syndrome (Friedman & Halaas, 
1998; Ahima & Flier, 2000). Leptin mediates its intracellular signaling through 
binding to the specific receptor (Ob-R), which belongs to the class I cytokine 
receptor family (Tartaglia, 1997). Multiple splice variants of Ob-R mRNA 
encode at least six leptin receptor isoforms (Lee et al., 1996; Ahima & Flier, 
2000). However, only the long isoform, Ob-Rb contains intracellular motifs 
required for activation of the JAK-STAT signal transduction pathway (Bjørbæk 
et al., 1997). 
 

Insulin secretion in rats and mice  

Glucose-induced insulin release from the isolated perfused pancreas from rats 
and mice is characterized by a sharp first peak followed by a second phase of 
sustained secretion (Lenzen, 1979). However, insulin secretion from isolated 
islets is much more pronounced in rats than in mice (Lenzen, 1979; Cosimi et 
al., 1994). A rising second phase of insulin secretory response to glucose is 
observed in rats. In contrast, the second phase is rather flat and only minimally 
elevated above the basal value in mice (Berglund, 1980; Ma et al., 1995). The 
disparity in glucose-induced insulin release in rats and mice is probably 
coupled to differences in cAMP and inositol phosphate accumulation in islets 
(Ma et al., 1995; Zawalich et al., 2000). 
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SPECIFIC  AIMS 
 
The aims of the present study were to - 

1. study how the glucose-induced slow oscillations of [Ca2+]i are affected by 
amino acids in individual mouse pancreatic β-cells and intact islets. 

2. compare the Ca2+ handling of individual rat β-cells with that in mouse 
β-cells. 

3. evaluate the role of the ryanodine receptors in β-cells from rats and mice. 

4. analyze how the obese-hyperglycemic syndrome is reflected in the Ca2+ 
handling by individual mouse β-cells. 

5. study the effects of leptin on the firing of [Ca2+]i transients in β-cells from 
ob/ob mice. 
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METHODOLOGY 
 

Animals 

Experiments were performed with obese hyperglycemic mice (ob/ob), their 
lean heterozygous (ob/+) or homozygous (+/+) littermates, NMRI mice and 
Wistar rats. The ob/ob mouse colony was established in Sweden about 40 years 
ago from breeding couples obtained from Jackson Laboratory, Bar Harbor, 
Maine USA. The islets from these mice consist of >90% β-cells (Hellman, 
1961) and are known to respond adequately to glucose and other nutrient 
stimuli of insulin release (Hahn et al., 1974). Female NMRI and C57BL/6J 
mice and male Wistar rats were purchased from B&K Universal AB, 
Sollentuna, Sweden.  

The animals were fed a standard pellet diet, R36 (Lactamin, Stockholm, 
Sweden) and tap water ad libitum. They were kept at 21oC in 12 hours 
light/dark cycles. The animals were allowed to breathe CO2 until 
unconsciousness and killed by decapacitation for isolation of islets. All the 
experiments were approved by the ethics committee for animal research at 
Uppsala University. 
 

Preparation of pancreatic islets and single cells 

Islets of Langerhans were isolated by collagenase digestion and either kept in 
culture or dissociated into single cells by shaking in a Ca2+-deficient medium 
(Lernmark, 1974). The isolated islets were cultured for 1-4 days in RPMI 1640 
medium containing 11 mM glucose and supplemented with 10% fetal calf 
serum, 100 IU/ml penicillin, 100 µg/ml streptomycin and 30 µg/ml gentamicin. 
The single β-cells were suspended in identical RPMI 1640 medium. The cells 
were allowed to attach to circular 25 mm cover glasses and kept in culture for 
1-4 days at 37oC in an atmosphere of 5% CO2 in humidified air. Unless 
otherwise stated subsequent experimental handling of cells was performed with 
a basal medium buffered with 25 mM Hepes and containing 3 mM glucose, 0.5 
mg/ml bovine serum albumin, 125 mM NaCl, 4 or 5.9 mM KCl, 1.2 mM 
MgCl2 and 1.3 mM CaCl2. NaOH was used for adjusting the pH to 7.4. 
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Measurements of cytoplasmic Ca2+ in single β-cells and small aggregates 
 

Loading with fura-2  

The cells were loaded with fura-2 during 30-40 min incubation at 37oC with 0.5 
µM of its acetoxymethyl ester in basal medium containing 3 mM glucose. The 
cover slip with the attached cells was then rinsed and mounted as bottom of an 
open chamber containing 160 µl medium (Sykes & Moore, 1959). The 
chamber wall was a broad silicon rubber ring (9 mm inner diameter) pressed to 
the cover slip by the threaded chamber mount and a thin stainless steel ring. 
Cannulas, fixed to this ring, were connected to a two-channel peristaltic pump 
allowing a steady superfusion of a 2.5 mm layer at a rate of 0.75 ml/min. The 
chamber was placed on the stage of an inverted microscope within a climate 
box maintained at 37oC. The microscope was equipped with an epifluorescence 
illuminator and a 40X or 100X UV fluorite objective. 
 

Selection criteria for β-cells   

Selection of pancreatic β-cells for analyses was based on their large size (>10 
µm in diameter) and low nuclear/cytoplasmic volume ratio compared to the 
islet cells secreting glucagon, somatostatin and pancreatic polypeptide 
(Hellman, 1959; Pipeleers, 1987; Berts et al., 1995; Liu et al., 1999). It was 
checked by immunostaining that these selection criteria were appropriate in the 
present study. 
 

Photomultiplier recordings 

A 75 W xenon arc lamp combined with 10-13 nm half-bandwidth interference 
filters were used for excitation. A filter changer of a time-sharing multichannel 
spectrophotofluorometer provided excitation light flashes of 1 ms every 10 ms 
at 340 and 380 nm, respectively. To minimize the UV exposure of the cells, a 
quartz neutral density filter was placed between the illuminator and the filter 
changer. The emission was recorded at 510 nm with a photomultiplier using a 
30 nm half-bandwidth filter. The electronically separated fluorescence signals 
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were transferred via an analog/digital converter to a personal computer using 
the software Genie (Advantech Co. Ltd, Taipei). 
 

Digital image analyses 

Imaging of [Ca2+]i was performed with a Magiscan analysis system (VisiTech 
International, Sunderland, UK) using the Tardis program. Images of fura-2 
loaded cells were collected at 510 nm with an intensified CCD camera after 
dual-wavelength excitation (Gylfe et al., 1991). Pairs of 340 and 380 nm 
images, consisting of 16 accumulated video frames divided by 8, were captured 
during 2.8 sec followed by a 4 sec delay. Ratio frames were calculated after 
background subtraction. 

 

Calibration of cytoplasmic Ca2+ measurement        

[Ca2+]i was calculated according to Grynkiewicz et al., (1985), using the 
equation:  
 

[Ca2+]i = Kd . 
sF

F0  . 
R - R

R - R
max

min  

 
where Kd is the dissociation constant of fura-2, R is the 340/380 nm 
fluorescence excitation ratio of fura-2, Rmax and Fs are the 340/380 nm 
fluorescence excitation ratio and the 380 nm fura-2 fluorescence respectively, 
at saturating Ca2+ concentrations. Rmin and F0 are the corresponding values in a 
medium lacking Ca2+. The Kd value employed was 224 nM (Grynkiewicz et al., 
1985). Calibration for measurement of [Ca2+]i was performed in droplets of 
solutions mimicking the intracellular ionic milieu. Rmin and F0 were estimated 
at 37oC in a buffer (pH 7.0) containing 115 mM KCl, 20 mM NaCl, 10 mM 
MOPS (3-[N-Morpholino]propanesulfonic acid), 1.2 mM MgCl2, 5 mM EGTA 
(Ethylene glycol-bis[β-aminoethyl ether]-N,N,N’,N’-tetraacetic acid) and 100 
µM fura-2 pentapotassium salt. Rmax and Fs were determined using a similar 
solution containing 10 mM CaCl2 to ensure saturation of fura-2. The test 
substances were checked for possible interference with fura-2 measurements.  
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Measurements of cytoplasmic Ca2+ in intact islets 

The islets were loaded with fura-2 during 45 min incubation at 37oC with 2 µM 
of its acetoxymethyl ester together with 0.02% (w/v) Pluronic F-127. After 
loading the islets were allowed to attach to cover glasses coated with 
poly-L-lysine and [Ca2+]i was measured with a photomultiplier (see above). 
The analyses were restricted to islets responding to 11 mM glucose with slow 
oscillations of [Ca2+]i. Measurements were made in an optical plane close to the 
lower surface of the islets. The fluorescence excitation ratio remained 
unaffected during glucose stimulation of islets lacking the fura-2 indicator. The 
[Ca2+]i values have therefore been given without compensation for 
autofluorescence, which was <15%. 
 

Statistical evaluation 

Results are presented as mean values ± standard error of means. In the 
photomultiplier recordings each experiment refers to analyses of individual 
β-cells or islets on separate cover slips. In the image analyses, unless otherwise 
stated, each experiment refers to the average number of transients (> 50 nM) 
found in 4-12 cells from the same cover slip. Transients occurring within 3 
successive ratio frames were considered synchronized. A given protocol was 
tested with cells from at least 5 animals. Statistical analyses were performed 
with Student’s t-test and chi-square test with Yates’ correction. 
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RESULTS  AND  DISCUSSION 
 

Effects of amino acids on glucose-induced slow [Ca2+]i oscillations (I) 

The periodic variations of circulating insulin due to pulsatile release of the 
hormone are explained by the [Ca2+]i oscillations in the pancreatic β-cells. It 
was therefore investigated how the slow [Ca2+]i oscillations are affected by 
various amino acids. Individual ob/ob and NMRI mouse β-cells with 
glucose-induced slow [Ca2+]i oscillations were exposed to glycine, alanine and 
arginine at concentrations close to the physiological range. Each of these amino 
acids transformed the oscillations into sustained elevation of [Ca2+]i when 
added at concentrations as low as 0.1 or 0.5 mM. However, in intact pancreatic 
islets much higher concentrations of the amino acids were required to transform 
the slow [Ca2+]i oscillations into sustained elevation. Even at the highest amino 
acid concentration tested (10 mM), the glucose-induced [Ca2+]i oscillations 
continued in about 45% of the islets. 

 

Role of electrogenic transport 

The sustained elevation of [Ca2+]i in response to glycine and alanine is probably 
due to the depolarizing effect of the Na+, cotransported with the amino acids 
via the transport systems A, ASC and GLY (Christensen, 1990). It is evident 
from electrophysiological studies that alanine has a depolarizing action on 
primary (Henquin & Meissner, 1981) as well as clonal β-cells (Dunne et al., 
1990). The failure of glycine to influence [Ca2+]i and insulin release (Tengholm 
et al., 1992), and of alanine to modulate electrical activity and [Ca2+]i (Henquin 
& Meissner, 1986; Dunne et al., 1990) in the absence of Na+ indicates that 
influx of this cation is a major component in the mechanism of action of the 
amino acids in pancreatic β-cells. Indeed, Na+ entry in response to veratridine 
triggers transients of [Ca2+]i due to opening of the voltage-dependent Ca2+ 
channels (Eberhardson & Grapengiesser, 1999). An increase of the cytoplasmic 
Na+ concentration can also elevate [Ca2+]i by mobilizing Ca2+ from intracellular 
stores and inhibiting the outward transport of Ca2+ by the Na+/Ca2+ exchanger 
(Hellman et al., 1982; Charles & Henquin, 1983). 
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The glucose-induced oscillations of [Ca2+]i were transformed into sustained 
elevation by the positively charged amino acid, arginine. There is convincing 
evidence that the electrogenic transport of arginine by the murine cationic 
amino acid transporter accounts for the depolarization, which results in the 
increase of [Ca2+]i and potentiation of insulin release (Blachier et al., 1989; 
Smith et al., 1997; Sener et al., 2000). In a transgenic β-cell line, NIT-1, 
arginine-induced increase in [Ca2+]i was found to be Na+-independent but 
required the influx of Ca2+ (Weinhaus et al., 1997). It seems unlikely that 
generation of nitric oxide or metabolites of arginine contribute to the 
[Ca2+]i-elevating effect of arginine in pancreatic β-cells (Yada, 1994; Smith et 
al., 1997). 

 

Role of Ca2+ permeability 

Previous studies have revealed that the glucose-induced slow oscillations of 
[Ca2+]i are critically dependent on the rate of Ca2+ entry (Eberhardson et al., 
1996). The present study supports such a role demonstrating that both a rise of 
extracellular Ca2+ (10 mM) or addition of the Ca2+ channel agonist BAY K8644 
re-establishes the slow [Ca2+]i oscillations suppressed by the amino acids. 
Enhanced Ca2+ influx through VDCC may trigger a temporary rise of [Ca2+]i, 
which overshoots the [Ca2+]i level in the presence of amino acids. This rise of 
[Ca2+]i could activate an outward hyperpolarizing K+ current (Dryselius et al., 
1999) and/or inhibit the inward Ca2+ current by direct inhibition of the voltage-
dependent channels (Rorsman & Trube, 1986), thereby terminating the influx 
of Ca2+. However, since the [Ca2+]i rhythmicity seems to be determined by 
oscillations in metabolism (Dryselius et al., 1994), it can be anticipated that 
increased influx of Ca2+ somehow restores the influence of metabolism on 
[Ca2+]i oscillations. Such an effect could result from the increase of [Ca2+]i in 
the submembrane space causing an enhanced consumption of ATP for removal 
of the ion by the Ca2+ATPase and the Na+/Ca2+ exchanger. The subsequent 
lowering of the ATP/ADP ratio may be sufficient to open K+

ATP channels and 
induce repolarization (Grapengiesser, 1998). 
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Role of islet cell interactions 

The slow [Ca2+]i oscillations in β-cells situated in islets were more resistant to 
transformation into sustained elevation of [Ca2+]i by the amino acids. The 
[Ca2+]i oscillations in a syncytium of islet cells are determined not only by the 
individual β-cells but also by synchronizing signals from adjacent β-cells and 
structural and functional coupling among β-cells and glucagon producing 
α-cells (Gylfe et al., 1991; Hellman et al., 1994; Grapengiesser et al., 1999; 
Göpel et al., 1999). It is likely that these interactions make it possible for the 
β-cells to overcome the suppression of the oscillatory activity otherwise 
obtained in the presence of low concentrations of glycine, alanine or arginine. 

 

Glucose induction of slow [Ca2+]i oscillations                                         
and rapid transients in rat and mouse β-cells (II, III) 

With the development of sensitive fluorescent Ca2+-indicators it became 
possible to demonstrate that the glucose-induced increase of [Ca2+]i in 
pancreatic β-cells is usually manifested as well-shaped slow oscillations in 
[Ca2+]i (Grapengiesser et al., 1988; Liu et al., 1998). In mouse pancreatic 
β-cells, the pattern of glucose-induced oscillatory [Ca2+]i changes appears 
consistent in different studies (Hellman et al., 1992; Jonkers et al., 1999). 
However, in rat β-cells heterogeneous responses to glucose have been reported 
(Wang & McDaniel, 1990; Pralong et al., 1990; Herchuelz et al., 1991; Theler 
et al., 1992; Yada et al., 1992). The differences in [Ca2+]i responses between 
rats and mice may be related to technical factors. Rat islets seem more sensitive 
to manipulation during isolation and the β-cells do not readily attach to cover 
glasses necessitating the use of poly-L-lysine, which may have some toxic 
effect. A systematic improvement of the technique with gentle handling of cells 
and minimizing the exposure to UV-light during the measurements made it 
possible to increase the percentage of both mouse and rat β-cells responding to 
glucose with [Ca2+]i oscillations as high as 80%.  

Under basal conditions [Ca2+]i usually remained stable at 60-90 nM when  
single rat pancreatic β-cells were exposed to 3 mM glucose. After raising the 
glucose concentration to 11 mM there was an initial decrease in [Ca2+]i by 21% 
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followed by a sharp rise with a latency period of 2.38 ± 0.32 min (n = 44). The 
initial peak was in most cases more pronounced than subsequent oscillations in 
[Ca2+]i. The oscillations in the rat β-cells originated from the [Ca2+ ]i level of 
about 107 nM with a frequency of about 0.23/min and amplitude of about 343 
nM (n = 44). Occasionally the exposure to 11 mM glucose caused a 
monophasic increase in [Ca2+]i characterized by a sharp rise followed by a 
return to near basal levels or to a sustained elevation, sometimes with 
superimposed rapid transients. Stimulation of single pancreatic β-cells from 
mice resulted in similar response patterns. However, the [Ca2+]i oscillations in  
mouse β-cells had a slightly higher frequency (Table 1).  

The glucose-induced oscillations were sometimes superimposed with transients 
of [Ca2+]i. Blocking the voltage-dependent Ca2+ entry with methoxyverapamil 
made it possible to study the transients without disturbance from the slow 
oscillations of [Ca2+]i (Liu et al., 1996). Using this approach, both in rats and 
mice, it was found that the [Ca2+]i transients were coordinated in time even in 
β-cells lacking physical contact. The frequency of [Ca2+]i transients in rat 
β-cells tended to be higher than seen under similar conditions in mouse β-cells. 
 
 
 
Table 1. Characteristics of glucose-induced slow [Ca2+]i oscillations in single 

β-cells from rats (Wistar) and mice (C57BL/6J). 
 

Characteristics  Rat β-cells  Mouse β-cells  P value 

 

Frequency (oscill/min) 0.23 ± 0.01 0.31 ± 0.02 < 0.001 

Amplitude (nm) 343 ± 14 349 ± 26 > 0.05 

Half-width (min) 1.60 ± 0.10 1.27 ± 0.10 > 0.05 

The oscillations were induced by 11 mM glucose in individual pancreatic β-cells. 
Data are presented as mean values ± SEM. 
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Glucagon modulation of glucose-induced  
slow [Ca2+]i oscillations in rat and mouse β-cells (II, III) 

In pancreatic β-cells, glucagon binds with high affinity to its receptors (Moens 

et al., 1996; Huypens et al., 2000) and raises the cAMP concentrations, which 

modulate both the β-cell handling of Ca2+ and its effects on insulin release. 

Cyclic AMP exerts multiple effects on pancreatic β-cells, such as increase of 

Ca2+ influx through VDCC (Ämmälä et al., 1993; Kanno et al., 1998), 

mobilization of Ca2+ from intracellular stores (Holz et al., 1995; Liu et al., 

1996), increased Ca2+ sensitivity of the secretory machinery (Ämmälä et al., 

1993; Renström et al., 1997) as well as modulation of KATP (Yaekura et al., 

1996; Gromada et al., 1997) and nonselective cation channels (Holz et al., 

1995). In the present study, the addition of 10 nM glucagon usually resulted in 

a rapid transformation of the oscillations into a sustained elevation. It is 

noteworthy that the sustained elevation of [Ca2+]i in rat β-cells was preceded by 

a temporary lowering. However, in mouse β-cells the oscillations often 

persisted in the presence of glucagon. The complexity of the cAMP action in 

rat β-cells may be due to dual effects of the nucleotide on [Ca2+]i in stimulating 

both the entry of Ca2+ and its removal from the cytoplasm (Yaekura et al., 

1996; Yaekura & Yada, 1998). The finding that the oscillations were more 

readily transformed into sustained elevation of [Ca2+]i in rat than in mouse 

β-cells is consistent with a reported less negative resting membrane potential 

compared with mouse β-cells (Antunes et al., 2000). It is also likely that rat 

β-cells have a greater production of, and sensitivity to, cAMP (Ma et al., 1995). 

Thams et al., (1988) have proposed that both glucose and carbachol potentiate 

cAMP formation in the presence of endogenous glucagon in mouse islets. It has 

also been demonstrated that the compounds that elevate cAMP concentrations, 

and initiate PLC activity, act synergistically on the insulin secretory process 

both in rat and mouse islets (Zawalich, 1988; Zawalich & Zawalich, 2001). 

Thus, the differential modulatory action of glucagon on [Ca2+]i oscillations in 

rat and mouse β-cells might also reflect differences in glucose-stimulated 

PLC-mediated inositol phosphate accumulation (Zawalich et al., 2001). 
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Glucagon modulation of glucose-induced [Ca2+]i transients (III) 

Glucose stimulation of mouse β-cells is known to involve generation of brief 

transients of [Ca2+]i, a phenomenon particularly obvious when the IP3 receptors 

are sensitized by cAMP (Liu et al., 1996). In rat pancreatic β-cells glucagon 

lacked effect on [Ca2+]i when added to a K+-rich medium containing 3 mM 

glucose. However, in a similar medium containing 20 mM glucose addition of 

glucagon produced [Ca2+]i transients with a frequency of 0.50 ± 0.11/min 

(n=17) in 57% of the cells. The observation that the generation of [Ca2+]i 

transients is glucose-dependent corroborates previous data in mouse β-cells 

(Liu et al., 1996). There are reports indicating permissive effects of glucose on 

glucagon-induced increase of [Ca2+]i (Grapengiesser et al., 1991), cAMP 

formation (Schuit & Pipeleers, 1985), and insulin release (Schauder et al., 

1977). Moreover, IP3-induced Ca2+ mobilization is dependent on the glucose 

concentration (Gylfe, 1991), and it has recently been shown that the Ca2+ 

accumulation in the ER is maximally stimulated by 20 mM glucose, an effect 

mediated by a rise of ATP (Tengholm et al., 1999). Elevation of [Ca2+]i by K+ 

depolarization accelerates the ER sequestration of Ca2+ in response to glucose 

(Tengholm et al., 2001). In the present study, the frequency of transients was 

higher in β-cells depolarized with K+ than in those where [Ca2+]i was kept low 

by blocking the voltage-dependent entry of the ion with methoxyverapamil. 

The observation that rise of [Ca2+]i stimulates the firing of transients is coherent 

with the reports that type 3 is the predominant subtype of the IP3 receptors in 

rat β-cells (Blondel et al., 1993; Lee et al., 1998) and that this isoform of the 

IP3 receptors provides a positive feedback on Ca2+ mobilization with rise of 

[Ca2+]i (Hagar et al., 1998). Depolarization per se can increase the production 

of IP3 in β-cells independent of Ca2+ influx (Liu et al., 1996) and it is also 

known that cAMP sensitizes the IP3 receptors by phosphorylation (Nakade et 

al., 1994; LeBeau et al., 1999). Such a crosstalk between the cAMP and IP3 

signaling pathway, the effects of glucose on Ca2+ sequestration in the ER and of  

[Ca2+]i on the IP3 receptors are important determinants for the generation of 

[Ca2+]i transients in pancreatic β-cells. 
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To study the contribution of the intracellular Ca2+ stores in the generation of 
transients, thapsigargin was used. This compound specifically inhibits the 
SERCA pump, causing a rapid Ca2+ depletion of the ER (Thastrup et al., 1990; 
Inesi & Sagara, 1994). Since the IP3 receptors are preferentially localized in the 
ER (Blondel et al., 1993; Hagar et al., 1998), it was not surprising that the 
transients disappeared after addition of thapsigargin to rat β-cells. Although 
low concentrations of caffeine act as phosphodiesterase inhibitor and mimic the 
effect of glucagon in raising cAMP and inducing [Ca2+]i transients (Liu et al., 
1996), the IP3 receptors from various cell types are inhibited by high 
concentrations of the drug. Caffeine, at high concentrations, competes for the 
ATP binding sites of both IP3R1 and IP3R3 (Maes et al., 2000) and inhibits 
agonist-induced formation of IP3 (Toescu et al., 1992; Combettes et al., 1994). 
This compound is known to interfere with IP3-mediated mobilization of Ca2+ 
also in mouse β-cells (Lund & Gylfe, 1994; Liu et al., 1996). When added at 
high concentrations, caffeine increases the mean open time of the ryanodine 
receptor channels (Shoshan-Barmatz & Ashley, 1998) and enhances their 
sensitivity to Ca2+ (Sitsapesan & Williams, 1997). The present finding that, 20 
mM caffeine abolishes the [Ca2+]i transients in individual rat β-cells suggests 
that the IP3 receptor is primarily responsible for glucose-induced generation of 
these transients. 
 

Role of ryanodine receptors for  
glucose induction of slow [Ca2+]i oscillations (II, III) 

Both caffeine and ryanodine act on the Ca2+-induced Ca2+ release mechanism in 
different cell types (Endo, 1977; Iino, 1989; Friel & Tsien, 1992) including 
pancreatic β-cells (Lemmens et al., 2001). Although multiple effects have been 
attributed to caffeine (Tung et al., 1990; Lund & Gylfe, 1994; Islam et al., 
1995; Sei et al., 2001), this compound has been used extensively for studying 
ryanodine receptors (Shoshan-Barmatz & Ashley, 1998). There are several 
reports that caffeine mobilizes Ca2+ from intracellular stores in pancreatic 
β-cells from rats (Willmott et al., 1995), ob/ob mice (Islam et al., 1998), 
RINm5F (Chen et al., 1996), HIT-T15 cells (Li et al., 1996) and INS β-cell 
lines (Gamberucci et al., 1999). However, depending on the concentration, 
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caffeine can either stimulate or inhibit intracellular Ca2+ release (Wakui et al., 
1990; Liu et al., 1996). Caffeine has been reported to inhibit the Ca2+ 
oscillations induced by agonists in different cell types, including Xenopus 
oocytes (Parker & Ivorra, 1991), pancreatic acinar cells (Sjödin & Gylfe, 2000) 
and isolated hepatocytes (Combettes et al., 1994). In the present study caffeine 
negatively modulated the slow [Ca2+]i oscillatory activity in a dose-dependent 
and reversible manner. The glucose-induced oscillations in rat pancreatic 
β-cells persisted in the presence of 2 mM and 10 mM caffeine although their 
amplitudes were sometimes attenuated by 10 mM caffeine. Increase of the 
caffeine concentration to 20 mM resulted in a disappearance of the oscillations 
with sustained elevation of [Ca2+]i at 20 ± 3 nM above the oscillatory nadirs. 
Similar results were obtained when caffeine was added in different 
concentrations to individual mouse (C57BL/6J) β-cells. These findings are 
consistent with the report that caffeine has direct effects on the Ca2+ entry into 
the β-cells additional to those mediated by an increase of cAMP (Islam et al., 
1995; Li et al., 1996) or related to the IP3-mediated Ca2+ signaling (Lund & 
Gylfe, 1994; Li et al., 1996). Direct effects of caffeine on Ca2+ influx has been 
demonstrated in many other cell types like lymphocytes (Sei et al., 2001), 
clonal rat pituitary cells (Karhapää & Törnquist, 1997), hepatocytes (Combettes 
et al., 1994), vascular smooth muscle cell line (Otun et al., 1991), and cardiac 
(Zahradnik & Palade, 1993) and smooth muscle cells (Guerrero et al., 1994). In 
the pancreatic β-cells caffeine lowered the [Ca2+]i also in a K+-rich medium 
containing 3 or 20 mM glucose, supporting the idea that the effects of caffeine 
is due to suppression of the voltage-dependent Ca2+ entry rather than 
interference with glucose metabolism. 

The plant alkaloid ryanodine binds to the Ca2+ release channels in pancreatic 
β-cells from rats, mice and humans as well as in clonal β-cell lines (Islam et al., 
1998; Holz et al., 1999). Different opinions have been expressed regarding the 
functional importance of ryanodine receptors for mobilizing Ca2+ from 
intracellular stores in pancreatic β-cells (Takasawa et al., 1993; Rutter et al., 
1994; Islam et al., 1998; Holz et al., 1999; Tengholm et al., 2000). When rat 
and mouse β-cells were exposed to 5-20 µM ryanodine, the glucose-induced 
slow [Ca2+]i oscillations remained unaffected. However, the addition of 
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ryanodine sometimes re-established oscillations inhibited by caffeine. The 
current finding, that ryanodine reverses the effects of caffeine, is consistent 
with the idea that ryanodine acts only on the open state of the Ca2+ release 
channel (Iino et al., 1988; Teraoka et al., 1991), locking it in an open sub-
conductance state (Buck et al., 1992; Cheek et al., 1993). The present data 
therefore provide some evidence for conditional modulation of ryanodine 
receptors in β-cells. 

 

β-cell handling of Ca2+ in obese-hyperglycemic mice (I, II) 

Obese-hyperglycemic mice have been extensively used in the studies of β-cell 
metabolism and the stimulus-secretion coupling mechanism, including the 
regulation of [Ca2+]i (Hellman, 1970; Hellman & Gylfe, 1986). These mice are 
characterized by especially large and numerous pancreatic islets (Hellman et 
al., 1961; Leckström et al., 1999) with a high proportion of β-cells (Hellman, 
1961). It has been proposed that the increased number of β-cells represents the 
normal adaptation to hyperglycemia (Hellman, 1970).  The manifestation of the 
obese-hyperglycemic syndrome depends critically on background strain, age, 
diet and nutritional state (Coleman, 1978; Flatt et al., 1992). The Swedish 
colony of non-inbred ob/ob mice have a similar syndrome as that observed with 
the ob gene on the inbred C57BL/6J strain (Westman, 1968; Coleman, 1978). 
The islets from the Swedish ob/ob mice have been reported to respond 
adequately to various stimulators and inhibitors of insulin release, including 
glucose (Lernmark & Hellman, 1969; Hahn et al., 1974). It has also been 
demonstrated that a regular pattern of pulsatile insulin release is generated by 
isolated ob/ob islets in response to slow oscillations of [Ca2+]i (Bergsten et al., 
1994).  

In the present study, the effects of glucose and amino acids on [Ca2+]i were 
tested in single β-cells from ob/ob and lean mice. There were no differences in 
the frequency, amplitude and half-width of the glucose-induced oscillations in 
the two types of mice. However, after addition of 10 mM caffeine, the slow 
[Ca2+]i oscillations were usually transformed into sustained increase of [Ca2+]i 
in β-cells from the obese but not from lean mice. The observation that 10 mM 
caffeine transforms the oscillations into sustained elevation in ob/ob mice is 
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consistent with the report that caffeine has effects on the Ca2+ entry into the 
β-cells additional to those mediated by an increase of cAMP (Islam et al., 
1995). 

The transients of [Ca2+]i, sometimes observed to be superimposed on the slow 
oscillations when the β-cells were stimulated with glucose, became more 
pronounced in the presence of glucagon. Since the cAMP concentrations in β-
cells within intact islets are elevated by endogenously released glucagon 
(Schuit & Pipeleers, 1985), such transients are probably representative for the 
physiological situation. In a glucagon-containing medium, glucose was more 
effective in triggering [Ca2+]i transients in β-cells from ob/ob than in those from 
lean mice. Also after blocking the Ca2+ entry with methoxyverapamil it was 
found that the generation of [Ca2+]i transients was higher in β-cells from ob/ob 
mice both in control situation and in the presence of glucagon, caffeine, 
carbachol or ryanodine. It is possible that the excessive firing of [Ca2+]i 
transients in the ob/ob mouse β-cells is related to an increased activity of PLC 
(Zawalich & Zawalich, 1996; Chen & Romsos, 1997) and a hypersensitivity to 
cAMP (Black et al., 1986; Fournier et al., 1994).  
 

Effects of leptin on glucose-induced [Ca2+]i transients (II) 

The pancreatic β-cells express several isoforms of the leptin receptor, including 
the full-length receptor Ob-Rb (Kieffer et al., 1996; Emilsson et al., 1997), 
implying that leptin can modulate β-cell handling of Ca2+ (Fehmann et al., 
1997) and insulin secretion (Kieffer & Habener, 2000). The exaggerated insulin 
secretory response to muscarinic receptor agonists in ob/ob mice is thought to 
be mediated by a phopholipase C-activated pathway, which is suppressed by 
leptin in lean mice (Zawalich & Zawalich, 1996; Chen & Romsos, 1997). The 
present study provides additional arguments for a direct interaction of leptin 
with pancreatic β-cells, in demonstrating that this hormone suppresses the 
firing of [Ca2+]i transients. The leptin effect was evident already at 1 nM, a 
concentration close to that in circulating blood of normal rodents (Poitout et al., 
1998). The leptin suppression of the [Ca2+]i transients may not only be due to a 
decreased PLC activity but also to an interference with cAMP sensitization of 
the IP3 receptor. Leptin has been reported to reduce the cAMP concentration 
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due to an increased phosphodiesterase 3B activity both in an insulinoma cell 
line and rat pancreatic β-cells (Zhao et al., 1998). Whereas leptin inhibits 
cAMP-induced release of insulin without affecting the secretory response to 
PLC activation in insulinoma cells (Ahrén & Havel, 1999), it has been reported 
to constrain the PLC-mediated insulin secretion from ob/ob mouse islets (Chen 
et al., 1997). 
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CONCLUSIONS 

 

1. Glucose-induced slow oscillations of [Ca2+]i in isolated mouse β-cells are 
transformed into sustained elevation by glycine, alanine and arginine at 
concentrations as low as 0.1 mM. After stimulating Ca2+ entry, the 
oscillatory activity often reappears in β-cells exposed to the amino acids. 
The slow [Ca2+]i oscillations are more resistant to amino acid transformation 
into the sustained elevation in intact islets than in isolated β-cells, 
supporting the idea that islet cell interactions are important for maintaining 
the oscillatory activity. 

2. Individual rat β-cells respond to glucose stimulation with slow [Ca2+]i 
oscillations, due to periodic entry of Ca2+, as well as with transients evoked 
by mobilization of intracellular stores. The [Ca2+]i oscillations in rat β-cells 
have a slightly lower frequency than those in mouse β-cells and are more 
easily transformed into sustained elevation. The [Ca2+]i transients are more 
frequent in rat than in mouse β-cells and often appear in synchrony also in 
cells lacking direct physical contact. 

3. In accordance with the idea that β-cells have functionally active ryanodine 
receptors, ryanodine sometimes restores oscillatory activity abolished by 
caffeine. However, there is little doubt that the IP3 receptor is the major 
Ca2+ release channels both in mouse and rat β-cells. 

4. Single β-cells from ob/ob mice do not differ from those of lean controls 
with regard to frequency, amplitudes and half-widths of the slow [Ca2+]i 
oscillations. Nevertheless, there is an excessive firing of [Ca2+]i transients in 
the β-cells from the ob/ob mice. 

5. Leptin at a concentration as low as 1 nM suppresses the firing of [Ca2+]i 
transients in β-cells from ob/ob mice. The excessive β-cell firing of [Ca2+]i 
transients in ob/ob mice may be due to absence of leptin and mediated by 
activation of the phospholipase C signaling pathway. 
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