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Abstract

We consider topology optimization of Stokes flow with traction boundary conditions using finite elements with low-order
elocity-approximation and an element-wise constant hydrostatic pressure. The finite element formulation is stabilized using a
enalty on the jump in pressure between adjacent elements. Convergence of solutions to the finite element-discretized topology
ptimization problem is shown, and several optimization problems are solved using a preconditioned conjugate gradient solver
or the finite element matrix problem. Stable convergence to high-quality designs without an excessive number of linear solver
terations is observed, and it is seen that the finite element formulation is not particularly sensitive to the choice of the pressure
ump penalty parameter, thus making it a practically useful method.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Topology optimization (TO) in fluid flow problems is a research area which receives a lot of academic and
ndustrial interest [1]. In this article we consider TO problems where the flow is governed by the Stokes–Brinkman

odel proposed by Borrvall and Petersson [2]. In contrast to most work on TO with this model we consider problems
here traction and not velocity is prescribed on the potential inlet and/or outlet regions of the design domain. An

dvantage of prescribing traction rather than velocity is that there is then no need to specify the exact location of
hose regions a priori. For example, in a coupled elasticity and flow TO problem it might be useful to be able to

vary the location of the inlets and outlets during the optimization process to achieve a good compromise between
efficient flow and high stiffness.

A drawback of traction boundary conditions is that it precludes the use of certain computationally attractive
low-order finite elements (FEs) such as the Crouzeuix–Raviart P1–P0 element. (While the mass matrix in the
Stokes–Brinkman system ensures, with a non-zero lower bound on the coefficient, coercivity also in the discrete
setting, the element can exhibit locking-type phenomena [3, Section 5].) The purpose of this work is therefore
to investigate the performance of a stabilized FE method [4–7] which enables the use of low-order velocity and
element-wise constant hydrostatic pressure approximations. The method, originally proposed by Hughes and Franca
[4], penalizes jumps in the pressure between adjacent FEs resulting in satisfaction of a discrete inf–sup condition.
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It is simple to implement, the main complications being the need for neighbourhood data for the FE mesh; gives
a sparse, symmetric contribution to the system matrix; works with iterative linear solvers; and has only one free
parameter, the selection of which appears not to be particularly tricky as we shall see. An interesting property of
the method is that, as pointed out in [7], at least for P1–P0 elements one obtains Hdiv-stability which may be helpful
to improve stability also in “grey” regions of the design domain where Darcy-like flow might occur. Finally, the
method works for any FE for which a discrete Korn’s inequality is satisfied, giving a lot of freedom for the choice
of velocity approximation; we show below the use of both P1–P0 and Q1–P0 elements in 2D and 3D.

Higher order stable elements such as the Taylor–Hood P2–P1 lead (for a given mesh density) to a much larger
number of degrees of freedom which is problematic for large-scale (3D) TO problems. Adding to that, stabilization
may anyway be needed to handle the low permeability limit [8], and in the case of Navier–Stokes flow (to which
the method studied herein is also applicable) to handle high-speed flows. For two-dimensional problems, the non-
conforming, stable P1–P0 element due to Kouhia and Stenberg [9] is an attractive alternative to the tested method: it
is as simple to implement as the conforming (but unfortunately useless) P1–P0 element, and introduces no additional
parameters into the FE problem. Unfortunately, it does not have a counterpart in 3D. As for alternative stabilization
methods, Ref. [10] could be considered.

The first article on TO in flow problems using stabilized FE methods appears to be due to Guest and Prévost
[11] who solved problems similar to [2] but using a different design-parametrization interpolating between Darcy
and Stokes flow. Since then, several publications have mentioned the use of stabilization; Refs. [12–16] for example
use Galerkin/least squares stabilization to allow for equal-order velocity and pressure approximation. We have not,
however, found any publications on TO in flow problems where stabilization is a central theme treated in detail.

2. The continuum problem

The flow in the design domain Ω (a bounded, connected set with Lipschitz boundary) is governed by a state
problem of the (weak) form: Find (u, p) ∈ V × L2(Ω ) such that

a(ρ; u, v) + (−p, divv) + (q, divu) = ℓ(v), ∀(v, q) ∈ V × L2(Ω ), (1)

here the design ρ ∈ L∞(Ω , [0, 1]), V = {v ∈ H1(Ω ) | vΓu = 0}, with Γu ⊂ ∂Ω such that |Γu | > 0, and (·, ·)
enotes the L2(Ω ) inner product. The functional a is defined as

a(ρ; u, v) =

∫
Ω

α(ρ)u : v dV +

∫
Ω

2µε(u) : ε(v) dV, (2)

here ε(u) =
1
2 (∇u + ∇uT) and µ > 0 is the viscosity. The function α : [0, 1] → [0, α], α < ∞, is defined a.e.

in Ω as

α(ρ) = α − α(1 − ρ)
1 + q

1 − ρ + q
, (3)

here q > 0. This function is chosen such that large values of α give large resistance to flow in solid parts (ρ ≈ 1)
of the design domain. The load-functional is defined by

ℓ(v) =

∫
Γt ≡∂Ω\Γu

t : v dA,

with traction t ∈ L2(Γt ).
The design problem is to maximize the “fluid compliance”, i.e.

sup
ρ∈H

ℓ(u(ρ)), (4)

where u(ρ) is part of the solution to (1), and

H =

{
ρ ∈ L∞(Ω ) | 0 ≤ ρ ≤ 1 a.e. in Ω ,

∫
Ω

ρ dV = γ |Ω |

}
,

in which γ ∈ (0, 1) is the allowed fraction of solid material in the design domain. One physical interpretation of
(4) is that we seek to maximize the (t-weighted) average velocity at the inlet and/or outlet. Since supρ∈H ℓ(u(ρ)) =

−2 infρ∈H −
1
2ℓ(u(ρ)) and the minimization problem is of the same form as the second of (32) in [2], existence of

a solution follows from Theorem 3.2 in that reference.
2



C.-J. Thore Computer Methods in Applied Mechanics and Engineering 386 (2021) 114177

T

i
[

(
t
n
m

[
fi
v
m
a

m
T
o
u

R
m
p
d
a
t
h
t

3

b

Remark. It was recently shown [17], for the case of pure homogeneous Dirichlet boundary conditions, that an
optimal ρ satisfies ρ ∈ H1(supp u); i.e., ρ is at least somewhat smooth in those parts of Ω where ∥u∥ > 0 (∥ · ∥

denoting the Euclidean norm). This makes precise the intuitively plausible idea that unlike for elasticity, designs
with infinitely small features cannot be optimal for Stokes flow. □.

3. Finite element discretization

Given a family of conforming, shape-regular meshes {Th}h > 0, Th = {Ke}e=1,...,m , on Ω we introduce dense,
conforming finite-dimensional approximation spaces V h ⊂ V , Lh ⊂ L2(Ω ) (where Lh is the space of element-wise
constant functions) and Hh ⊂ H for the velocity, hydrostatic pressure and design, respectively. The discretized
version of the design problem is

sup
ρh∈Hh

ℓ(uh(ρh)), (5)

where uh(ρh) is part of the solution to

a(ρh; uh, v) + (−ph, divv) + (q, divuh) + J (ph, q) = ℓ(v), ∀(v, q) ∈ V h × Lh . (6)

he pressure jump penalty function J is defined as

J (p, q) = δ
∑

K

h∂K

∫
∂K\∂Ω

[p][q] dA, (7)

n which the parameter δ ≥ 0, ∂K is the boundary of element K , and h∂K is the length or area of ∂K . The term
p] = p|Ke − p|K f is the jump in p over the common boundary ∂Ke ∩ ∂K f of two elements Ke and K f .

The presence of the pressure jump penalty parameter δ which must be specified by the user is a drawback
shared by most FE stabilization methods) of the method which must be carefully considered; for example, while
he method is stable for arbitrarily large δ:s, choosing too large values relative to h, or the local mesh size in a highly
on-uniform mesh, can change the physics of the problem – essentially enforcing a constant-pressure solution – so
uch that it leads to strange, non-physical optimized designs; see Fig. 3.
The issue of selecting the stabilization parameter for this kind of method was discussed by Norburn and Silvester

6]. They noted that if a good value of δ is found on a sufficiently fine mesh, then this value is likely to work on
ner meshes as well. This hypothesis is corroborated by our numerical experiments. As for the selection of a good
alue to start with, it was suggested [6] to minimize the condition number of the Schur complement of the system
atrix. A somewhat indirect way of doing this is to try to solve the linear system with an iterative linear solver

nd adjust δ by looking at the number of iterations required to achieve a certain accuracy; see Fig. 3.
Kechkar and Silvester [5] proposed a local version of our method applicable to meshes formed from macroele-

ents. For such meshes, the sum in (7) can be restricted to the edges/faces internal to the macroelements.
heoretically [5, Theorem 3.1], this method is less sensitive to “large” values of δ, but a drawback is the existence
f a critical lower value δ0 > 0 below which the method becomes unstable. This is in contrast to the global method
sed here which is stable for any δ > 0.

emark. Many research papers (see Introduction) on TO with Stokes or Navier–Stokes flow use stabilization
ethods to allow for equal-order approximation of velocity and hydrostatic pressure. However, since the hydrostatic

ressure is only an auxiliary variable (the actual pressure on a surface element with normal n is more accurately
escribed by ∥σ n∥, where σ = −p I + 2µε(u)) it does not seem necessary in general to require that it be
pproximated to the same accuracy as the velocity for problems of the type studied herein (Fig. 5 shows that
here is at least one case in which one can get a correct design even with a highly unstable approximation of the
ydrostatic pressure). The main appeal of equal-order methods would instead seem to be ease of implementation,
hough a detailed numerical comparison with the method studied herein would make for interesting future work. □

.1. Finite element convergence

As for the relation between the design problem (4) and its FE-discretized version (5) we show here, inspired
y [2], that every sequence of FE-solutions admits a subsequence converging (weakly∗ as h → 0) to a solution to
3
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the original problem (4). This implies that every sequence of FE-solutions converges to the set of solutions to (4),
and if this problem happens to have a unique solution that the entire sequence converges to this solution.

For the convergence proof we make use of the following lemma:

emma 1. Let {(uh, ph)} be a sequence of solutions to the FE-problem (6) converging weakly to a limit (u, p).
Then

(q, div u) = lim
h→0

[(qh, div uh) + J (ph, qh)] = 0, ∀q ∈ L2(Ω ). (8)

Proof. Since Lh is dense in L2(Ω ) there exists, by definition, for every q ∈ L2(Ω ) and ε > 0 a qh = qh(q) ∈ Lh
such that ∥q −qh∥L2(Ω) < ε for small enough h. Furthermore, since H 1(Ω ) is dense in L2(Ω ), there exists for every

∈ L2(Ω ) and ε > 0 a function q̃ = q̃(q) ∈ H 1(Ω ) such that ∥q − q̃∥L2(Ω) < ε. Combining these two facts we
nd that for every ε > 0,

∥qh − q̃∥L2(Ω) = ∥qh − q̃ + q − q∥L2(Ω) ≤ ∥qh − q∥L2(Ω) + ∥q − q̃∥L2(Ω) ≤
ε

2
+

ε

2
= ε (9)

or h small enough.
Choosing v = 0 in (6) gives

(qh, div uh) + J (ph, qh) = 0, ∀qh ∈ Lh .

hen for every q ∈ L2(Ω ) and ε > 0, we have, for qh such that qh → q and small enough h,

|(q, div u)| = |(q, div u) − (qh, div uh) − J (ph, qh)| ≤

|(q, div u − div uh) + (q − qh, div uh)| + |J (ph, qh)| ≤
ε

3
+

ε

3
+ |J (ph, qh)|, (10)

here the second inequality follows from the weak convergence of uh to u and the strong convergence of qh to q
ogether with the boundedness of {div uh}.

To bound the jump penalty term in (10) we write it as

|J (ph, qh)| = |J (ph, qh − q̃) + J (ph, q̃)| = |J (ph, qh − q̃)|,

here J (ph, q̃) = 0 since q̃ ∈ H 1(Ω ) can have no jumps. Using Cauchy–Schwartz then gives

|J (ph, qh − q̃)| ≤ δ
∑

K

h1/2
∂K ∥ph∥L2(∂K ) h1/2

∂K ∥[qh − q̃]∥L2(∂K ) ≤

δ

(∑
K

h∂K ∥ph∥
2
L2(∂K )

)1/2 (∑
K

h∂K ∥[qh − q̃]∥2
L2(∂K )

)1/2

. (11)

scaled trace inequality [18, (10.3.8)] applied to each edge/face, together with the shape regularity of the mesh
allowing us to bound the element diameter in terms of h∂K ) and the fact that ph and qh are element-wise constant
ive the estimates

∥[ph]∥2
L2(∂K ) ≤ cK h−1

∂K

∑
K̃∈T∂K

∥ph∥
2
L2(K̃ )

∥[qh − q̃]∥2
L2(∂K ) ≤ cK h−1

∂K

∑
K̃∈T∂K

(
∥qh − q̃∥

2
L2(K̃ )

+ h∂K ∥∇q̃∥
2
L2(K̃ )

)
, (12)

here T∂K consists of K and the elements sharing an edge/face with K and the constant cK depends on the shape
nd number of edges/faces of K . Substituting in (11) gives

|J (ph, qh)| = |J (ph, qh − q̃)| ≤

δ

⎛⎝∑
K

cK

∑
K̃∈T∂K

∥ph∥
2
L2(K̃ )

⎞⎠1/2⎛⎝∑
K

cK

∑
K̃∈T∂K

(
∥qh − q̃∥

2
L2(K̃ )

+ h2
∂K ∥∇q̃∥

2
L2(K̃ )

)⎞⎠1/2

≤

δc∥p ∥ 2

(
∥q − q̃∥

2
+ h2

∥∇q̃∥
2

)1/2

h L (Ω) h L2(Ω) L2(Ω)

4
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for a constant c. Since {ph} is a convergent, hence bounded sequence in L2(Ω ); qh tends strongly to q̃ in L2(Ω )
according to (9); and ∥∇q̃∥L2(Ω) is bounded since q̃ ∈ H 1(Ω ), it follows that |J (ph, qh)| tends to zero as h → 0.

eturning to (10) we see then that |(q, div u)| ≤ ε for small enough h. □

We can now prove the following:

heorem 2. Every sequence {ρ∗

h } of solutions to (5) has a subsequence converging weakly∗ in L∞(Ω ) to a solution
∗ to (4).

roof. Let {ρh} be a sequence of feasible points in (5). Since ρh ∈ Hh ⊂ H for all h and the latter set is weakly∗

ompact in L∞(Ω ) we can extract a subsequence converging weakly∗ to some ρ ∈ H. From [7, Theorem 2] (which
s valid also in our setting since α(ρ) ≥ 0) we get, denoting the left-hand side in (6) by Bh(·, ·) and using the
on-negativity of J (q, q), the existence of γ > 0 such that

γ (∥uh∥H1(Ω) + ∥ph∥L2(Ω)) ≤ sup
(v,q)∈V h×Lh

Bh((uh, ph), (v, q))
(∥v∥

2
H1(Ω)

+ ∥q∥
2
L2(Ω)

)1/2
≤

sup
(v,q)∈V h×Lh

ℓ(v)
∥v∥H1(Ω)

= sup
v∈V h

ℓ(v)
∥v∥H1(Ω)

< ∞, (13)

here the last inequality follows from the continuity, hence boundedness of ℓ. This shows that any sequence of
E-solutions (uh, ph) = (uh(ρh), ph(ρh)) is bounded, hence admits a subsequence converging weakly to a limit in

V × L2(Ω ).
Now consider a weakly∗ convergent sequence of solutions {ρ∗

h }, with limit ρ∗, to the FE-discretized design
roblem (5) such that {(uh(ρ∗

h ), ph(ρ∗

h ))} converges weakly. There holds, by definition, that

ℓ(uh(ρ∗

h )) ≥ ℓ(uh(ρh)) ∀ρh ∈ Hh . (14)

he density of Hh implies that there exists for every ρ ∈ H a ρh(ρ) ∈ Hh tending strongly in L2(Ω ) to ρ.
ubstitution in (14) gives

ℓ(uh(ρ∗

h )) ≥ ℓ(uh(ρh(ρ))) ∀ρ ∈ H. (15)

e now proceed by first showing that the limit of the right-hand side is ℓ(u(ρ)) and then that the limit of the
eft-hand side is bounded above by ℓ(u(ρ∗)).

The velocity uh = uh(ρh(ρ)) in (15) is part of the solution to

a(ρh(ρ); uh, vh) + (−ph, div vh) + (qh, div uh) + J (ph, qh) = ℓ(vh), ∀(vh, qh) ∈ V h × Lh . (16)

he density of V h and Lh implies that there are functions vh(v) ∈ V h and qh(q) ∈ Lh tending strongly to v and q,
espectively. Substitution into (16) gives, for every (v, q) ∈ V × L2(Ω ),

a(ρh(ρ); uh, vh(v)) + (−ph, div vh(v)) + (qh(q), div uh) + J (ph, qh(q)) = ℓ(vh(v)). (17)

o see that the limiting state (u, p) satisfies (1), so that u = u(ρ), we now consider an arbitrary subsequence {ρh̃(ρ)}
uch that ρh̃(ρ) tends to ρ pointwise a.e. (as allowed by [19, Theorem 4.9]) and such that {(uh̃(ρh̃(ρ)), ph̃(ρh̃(ρ)))}
onverges weakly and uh̃(ρh̃(ρ)) converges strongly in L2(Ω ) (as allowed by the Rellich–Kondrachov theorem
19, Theorem 9.16]). Since we have already established (8), the main difficulty is the convergence of a(ρh(ρ);

uh, vh(v)) to a(ρ; u, v). To this end, consider the design-dependent term in the definition (2) of a (the other term is
reated similarly, and more simply since there is no design-dependence). Adding and subtracting terms give (omitting
rguments to ease notation)⏐⏐⏐⏐∫

Ω

α(ρh̃)uh̃ : vh̃ dV −

∫
Ω

α(ρ)u : v dV
⏐⏐⏐⏐ =⏐⏐⏐⏐∫

Ω

α(ρh̃)(uh̃ − u) : vh̃ dV +

∫
Ω

α(ρh̃)u : (vh̃ − v) dV +

∫
Ω

(α(ρh̃) − α(ρ))u : v dV
⏐⏐⏐⏐ ≤

α∥uh̃ − u∥L2(Ω)∥vh̃∥L2(Ω) + α∥u∥L2(Ω)∥vh̃ − v∥L2(Ω) +

∫
|(α(ρh̃) − α(ρ))u : v − 0| dV
Ω

5
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using Cauchy–Schwartz. Since α < ∞, the first two terms tend to zero by the strong convergence of uh̃ and vh̃ .
s for the third term we note that (α(ρh̃) − α(ρ))u : v tends to zero point-wise a.e. due to the continuity of α(·)

nd the almost everywhere boundedness of u : v. Since we also have

|(α(ρh̃) − α(ρ))u : v| ≤ 2α|u : v| ∈ L1(Ω ), (18)

onvergence to zero of the third term follows from Lebesque’s dominated convergence theorem. Recalling (8) and
sing the continuity of ℓ we find that the limiting state (u, p) of the subsequence of solutions to (17) satisfies

a(ρ; u, v) + (−p, div v) + (q, div u) = ℓ(v), (v, q) ∈ V × L2(Ω ); (19)

.e., (u, p) = (u(ρ), p(ρ)). Since our subsequence was arbitrary and (19) has a unique solution it follows that the
hole sequence {uh(ρh(ρ))} converges weakly to u(ρ). Then the continuity of ℓ and (15) gives

lim sup
h→0

ℓ(uh(ρ∗

h )) ≥ ℓ(u(ρ)), ∀ρ ∈ H. (20)

To conclude the proof we need to show that the left-hand side in (20) is bounded above by ℓ(u(ρ∗)); i.e.
hat ℓ(uh(·)) is weakly∗ sequentially upper semi-continuous. To this end we first choose v = uh = uh(ρ∗

h ) and
= ph = ph(ρ∗

h ) in (6) to get

a(ρ∗

h ; uh, uh) + (−ph, div uh) + (ph, div uh) + J (ph, ph) = ℓ(uh),

nd thus

ℓ(uh) = −ℓ(uh) + 2ℓ(uh) = −a(ρ∗

h , uh, uh) + 2ℓ(uh)  
−2Π (ρh ,uh )

−J (ph, ph). (21)

s shown in [2, Theorem 3.1], Π is sequentially lower-semi-continuous, hence −Π is sequentially upper
emi-continuous, for weak∗

× weak convergence. Using this fact and the non-negativity of J (ph, ph) (21) gives

lim sup
h→0

ℓ(uh) ≤ −2Π (ρ∗, u).

ince, by Lemma 1, the limiting velocity u is divergence-free we get

lim sup
h→0

ℓ(uh(ρ∗

h )) ≤ −2Π (ρ∗, u) ≤ −2 inf
v∈V div

Π (ρ∗, v) = ℓ(u(ρ∗)),

here V div = {v ∈ V | (div u, q) = 0, ∀q ∈ L2(Ω )}, and thus from (20) that

ℓ(u(ρ∗)) ≥ lim sup
h→0

ℓ(uh(ρ∗

h )) ≥ ℓ(u(ρ)), ∀ρ ∈ H;

.e. ρ∗ solves (4). □

emark 3. Papadopoulos and Süli [17, Theorem 4] recently showed that if a local isolated minimum exists, there
s a sequence of solutions converging to it in a stronger sense than showed here. Their proof assumed a stable FE

ethod but can probably be modified to hold also for stabilized methods. □

.2. Matrix problem

The matrix problem corresponding to the FE-discretized state problem (6) is(
M(ρh) + K G

GT
−K p

)(
u
p

)
=

(
f
0

)
, (22)

here the (sparse, symmetric and positive semi-definite) matrix K p, arising from the pressure-jump penalty term

J (p, q), is in our implementation assembled by an outer loop over the elements and an inner loop over all ne

6
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Fig. 1. Design domain with boundary conditions. Inflow on the right. Outflow on the bottom left. The size of the domain is 3 × 1 × 1,
t = 1, and n is the outward normal.

Fig. 2. Top: An optimized design with superimposed flow field. Mesh with 90 × 30 P1/P0 elements. Top middle: Normalized hydrostatic
pressure field. Bottom middle: Normalized convergence history (since MMA solves minimization problems we maximize by minimizing the
negative of the compliance). The jump at iteration 100 is due to the change of q from 0.01 to 0.1. Bottom: Number of CG iterations.
7
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Fig. 3. From the top and down: Optimized designs with δ = 0.01, 1 and 10. Only in the last case do we get a non-physical result. Bottom
lot shows the number of linear solver iterations in each case. The graphs for δ = 0.01 and 1 are identical and thus visually indistinguishable.

nternal edges/faces. Formally this can be written as

K p = δ

m∑
e=1

ne∑
i=1

cT
ei h∂K

∫
∂Ki \∂Ω

(
1 −1

−1 1

)
dA cei ,

here cei ∈ Rm contains zeros expect for a one in position e and a minus one in the position corresponding
o the neighbour across the i :th edge/face. In practice we assemble the matrix by first constructing it in triplet
ormat and then converting it to compressed sparse column format [20]. Setting up this matrix requires information
bout the immediate neighbours of all elements in the mesh, data which is readily obtainable from many codes
Lo [21, p. 33] suggests algorithms for triangular and tetrahedral meshes, which are also readily adapted to
uadrilateral and hexahedral meshes).

Regarding (22) we note that it is only M(ρh) (stemming from the first term in (2)) which depends on the design,

ence all the other matrices need only be computed once at the beginning of the optimization process. The fact that

8
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Fig. 4. Data for a 90 × 30 Q1–P0 mesh with δ = 0.01.

K p does not depend on the design implies that the expressions for the derivatives of the objective function in (5)
re the same as in [2] since we are using an element-wise constant approximation of the design.

. Numerical examples

The overall framework for solving (5) is implemented in Matlab (R2021a) with The Method of Moving
symptotes (MMA) [22] as optimization solver. The MMA-solver parameters are set to default values, except
syinit = 0.1, asyincr = 1.1 and asydecr = 0.3. The maximum number of MMA iterations for a given set of
roblem parameters was set to 100.

Following [2], the linear system (22) is solved by applying a preconditioned conjugate gradient (CG) algorithm
n the symmetric positive definite system for the pressure p obtained by eliminating the velocities from (22). (The
D-examples below can actually be solved faster by a direct linear solver applied directly to (22), but for practical-
cale problems iterative solvers are necessary, and so it is of interest to see how they perform already on small
roblems.) This approach was implemented using the code AMGCL v.1.4.0 [23] following [24] with OpenMP for
arallelization. In the preconditioning step (c.f. [24, (8a), (8b)]), the velocity was solved for using algebraic multigrid
9
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Fig. 5. Data for a 90 x 30 Q1–P0 mesh with δ = 0 and a direct linear solver.

with smoothed aggregation and an incomplete LU factorization (ilu0) for coarsening and relaxation, respectively.
Near null-space vectors for the velocity block were provided. For the pressure we used a diagonal preconditioner
(spai0). The stopping criterion for the linear solver is of the form ∥Ax − b∥ < 10−10

∥b∥. The mixed-precision
approach suggested in [24] to speed up the linear solves did not work satisfactorily in our examples, so double
precision was used for both solvers in the preconditioning step.

Aside from mesh data, the design problem (5) has five user-specified parameters. We set α = 104, µ = 1,
γ = 0.7, and vary the pressure jump penalty parameter δ in (7) in the examples below. To reduce the risk of

btaining poor local minima/stationary points we use continuation on the penalty parameter q in (3), starting with
= 0.01 and then at MMA iteration 100 switching to q = 0.1 (in fact, starting with q = 0.1 in the examples

elow yielded designs with slightly curved channels which are clearly not globally optimal for Stokes flow).
The numerical examples are based on a version of the pipe bend problem from [2, Section 4.3]. The setup is

hown in Fig. 1. The inlet is located at x = 0, 0.8 ≤ y ≤ 0.9 and the outlet at 2.7 ≤ x ≤ 2.9, y = 0.
In the first example, shown in Fig. 2, we use conforming P1–P0 triangular elements, i.e. the velocity is

pproximated as a continuous, element-wise linear function and the hydrostatic pressure as element-wise constant.
s is well-known, this element locks without stabilization; this is also observed here, where setting δ = 0 makes

22) impossible to solve. However, setting δ = 0.01 yields smooth convergence and a sensible final design, which
ppears likely to be a global optimum, despite some oscillations in the hydrostatic pressure field around the inflow
n the pressure plot of Fig. 2. The runtime for this example was approximately 1 min on a six-core laptop running
t around 3.7 GHz.

As mentioned above, the presence of the pressure jump penalty parameter δ which must be specified by the
ser is a drawback of the method. Fortunately, it appears that the problem is not very sensitive to this choice and
hat poor choices can be detected easily at the beginning of the optimization process. Fig. 3 shows some designs
or different δ. We note in particular that the solution process and the final design are essentially unaffected by
ncreasing δ by a factor 100 from 0.01 to 1. Looking at the number of CG iterations, one notices that they increase
10
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s
o

e
n
i
D
t

Fig. 6. From the top and down: Design (1 − ρh threshold at 0.5), streamline plot of the flow field, and the hydrostatic pressure field (in a
cut-up view showing regions around the inlet and outlet with some streamlines superimposed) for a tetrahedral P1–P0 mesh with δ = 0.01.

significantly when going from δ = 1 to δ = 10. Since this difference is seen already for the initial design, this
uggests that a strategy for selecting δ can be based on the number of CG iterations taken in the beginning of the
ptimization process.

Fig. 4 shows results when using 4-noded Q1–P0 elements with a bi-linear approximation of the velocity. This
lement is popular in the TO-literature, and both quad and hex-meshes are frequently used in the industry, so it is
ice to see that the stabilization method works well for this element. We remark that, although we do not recommend
t, it is actually also possible to use the Q1–P0 element with δ = 0 and a direct linear solver (Ma57 [25]); see Fig. 5.
espite a pressure field which exhibits checkerboards in the entire design domain, we achieve smooth convergence

o a very reasonable design. However, our iterative linear solver fails to converge at all.
11
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Fig. 7. Data for a tetrahedral P1–P0 mesh with δ = 0.01.

Figs. 6 and 7 show results from a 3D version of the setup seen in Fig. 1 using 4-noded tetrahedral P1–P0 elements.
he inflow region is defined by x = 0, 2.4 ≤ y ≤ 2.7 and 0.8 ≤ z ≤ 0.9, and the outflow by 2.7 ≤ x ≤ 2.9,
.1 ≤ y ≤ 0.2 and z = 0. The mesh was obtained by splitting each of the elements in a 150 × 50 × 50 8-noded
exahedral mesh into six tetrahedra, giving a total of 2250000 tetrahedral elements and a total number of (velocity
nd pressure) degrees of freedom (DOFs) of around 3.4 · 106. The optimized design in Fig. 6 has a straight channel
onnecting inflow to outflow, suggesting global optimality. Again we see smooth convergence in the optimization
rocess (Fig. 7) and a reasonable amount of CG iterations, despite some oscillations in the pressure at the inflow,
nd to a lesser degree at the outflow, seen in Fig. 6 (bottom). The runtime for this example was roughly 6 h on
ne compute node on a cluster equipped with two 2 Intel Xeon Gold 6130 processors, giving a total of 32 physical
ores. As expected, the biggest part of the runtime was spent on solving the linear system (22).

Fig. 8 shows data for two different meshes using 8-noded Q1–P0 elements with element-wise bi-linear velocity
nd element-wise constant pressure. The runtime for the 150 × 50 × 50 mesh was roughly 5.4 h, dominated by
he solution of the linear system which took around 90 s to solve once. The runtime for the 210 × 70 × 70 mesh,
ith roughly 4 million velocity and pressure DOFs, was around 14 h, and solving the linear system once took

round 230 s. We remark that the ratio between the number of nodes and the number of faces is much larger in the
etrahedral mesh used in Fig. 6 than in the hexahedral meshes, so K p is much sparser for the latter meshes.
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eplications of results
A complete description of the mathematical model and values for all its parameters are provided in the article.
12



C.-J. Thore Computer Methods in Applied Mechanics and Engineering 386 (2021) 114177

R

Fig. 8. Data for two different meshes with hexahedral Q1–P0 elements and δ = 0.01.

eferences

[1] J. Alexandersen, C.S. Andreasen, A review of topology optimisation for fluid-based problems, Fluids 5 (1) (2020) 29.
[2] T. Borrvall, J. Petersson, Topology optimization of fluids in Stokes flow, Internat. J. Numer. Methods Fluids 41 (1) (2003) 77–107.
[3] R.S. Falk, M.E. Morley, Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27 (6) (1990)

1486–1505.
[4] T.J.R. Hughes, L.P. Franca, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various

well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech.
Engrg. 65 (1) (1987) 85–96.

[5] N. Kechkar, D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (197)
(1992) 1–10.

[6] S. Norburn, D. Silvester, Stabilised vs. stable mixed methods for incompressible flow, Comput. Methods Appl. Mech. Engrg. 166 (1–2)
(1998) 131–141.

[7] E. Burman, P. Hansbo, A unified stabilized method for Stokes’ and Darcy’s equations, J. Comput. Appl. Math. 198 (1) (2007) 35–51.
[8] K.A. Mardal, X.-C. Tai, R. Winther, A robust finite element method for Darcy–Stokes flow, SIAM J. Numer. Anal. 40 (5) (2002)

1605–1631.
[9] R. Kouhia, R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput.

Methods Appl. Mech. Engrg. 124 (3) (1995) 195–212.
[10] P.B. Bochev, C.R. Dohrmann, M.D. Gunzburger, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J.

Numer. Anal. 44 (1) (2006) 82–101.
[11] J.K. Guest, J.H. Prévost, Topology optimization of creeping fluid flows using a Darcy–Stokes finite element, Internat. J. Numer. Methods

Engrg. 66 (3) (2006) 461–484.
[12] C.S. Andreasen, A.R. Gersborg, Ole O. Sigmund, Topology optimization of microfluidic mixers, Internat. J. Numer. Methods Fluids

61 (5) (2009) 498–513.
[13] S. Kreissl, K. Maute, Levelset based fluid topology optimization using the extended finite element method, Struct. Multidiscip. Optim.

46 (3) (2012) 311–326.
[14] N. Aage, B.S. Lazarov, Parallel framework for topology optimization using the method of moving asymptotes, Struct. Multidiscip.
Optim. 47 (4) (2013) 493–505.

13

http://refhub.elsevier.com/S0045-7825(21)00508-9/sb1
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb2
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb3
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb3
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb3
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb4
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb4
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb4
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb4
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb4
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb5
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb5
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb5
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb6
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb6
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb6
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb7
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb8
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb8
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb8
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb9
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb9
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb9
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb10
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb10
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb10
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb11
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb11
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb11
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb12
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb12
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb12
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb13
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb13
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb13
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb14
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb14
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb14


C.-J. Thore Computer Methods in Applied Mechanics and Engineering 386 (2021) 114177
[15] J. Alexandersen, O. Sigmund, N. Aage, Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection,
Int. J. Heat Mass Transfer 100 (2016) 876–891.

[16] K Yaji, S Yamasaki, S Tsushima, T Suzuki, Kikuo K Fujita, Topology optimization for the design of flow fields in a redox flow
battery, Struct. Multidiscip. Optim. 57 (2) (2018) 535–546.

[17] I Papadopoulos, E Süli, Numerical analysis of a topology optimization problem for Stokes flow, 2021, arXiv:2102.10408.
[18] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2008.
[19] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer Science & Business Media, 2010.
[20] T. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.
[21] D.S.H. Lo, Finite Element Mesh Generation, CRC Press, 2014.
[22] K. Svanberg, MMA and GCMMA, versions september 2007, 2007, URL https://people.kth.se/∼krille/.
[23] D. Demidov, AMGCL: An efficient, flexible, and extensible algebraic multigrid implementation, Lobachevskii J. Math. 40 (5) (2019)

535–546.
[24] D. Demidov, L. Mu, B. Wang, Accelerating linear solvers for Stokes problems with C++ metaprogramming, J. Comput. Sci. 49 (2021).
[25] I. Duff, MA57—A code for the solution of sparse symmetric definite and indefinite systems, ACM Trans. Math. Software 30 (2004)

118–144.
14

http://refhub.elsevier.com/S0045-7825(21)00508-9/sb15
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb15
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb15
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb16
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb16
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb16
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://arxiv.org/abs/2102.10408
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb18
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb19
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb20
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb21
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
https://people.kth.se/~krille/
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb23
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb23
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb23
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb24
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb25
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb25
http://refhub.elsevier.com/S0045-7825(21)00508-9/sb25

	Topology optimization of Stokes flow with traction boundary conditions using low-order finite elements
	Introduction
	The continuum problem
	Finite element discretization
	Finite element convergence
	Matrix problem

	Numerical examples
	Declaration of competing interest
	Acknowledgements
	Replications of results

	References


