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Abstract

The thesis focuses on machine learning methods for Earth Observation (EO) data, more
specifically, remote sensing data acquired by satellites and drones. EO plays a vital
role in monitoring the Earth’s surface and modelling climate change to take necessary
precautionary measures. Initially, these efforts were dominated by methods relying on
handcrafted features and expert knowledge. The recent advances of machine learning
methods, however, have also led to successful applications in EO. This thesis explores
supervised and unsupervised approaches of Deep Learning (DL) to monitor natural re-
sources of water bodies and forests.

The first study of this thesis introduces an Unsupervised Curriculum Learning (UCL)
method based on widely-used DL models to classify water resources from RGB remote
sensing imagery. In traditional settings, human experts labeled images to train the
deep models which is costly and time-consuming. UCL, instead, can learn the features
progressively in an unsupervised fashion from the data, reducing the exhausting efforts
of labeling. Three datasets of varying resolution are used to evaluate UCL and show its
effectiveness: SAT-6, EuroSAT, and PakSAT. UCL outperforms the supervised methods
in domain adaptation, which demonstrates the effectiveness of the proposed algorithm.

The subsequent study is an extension of UCL for the multispectral imagery of Aus-
tralian wildfires. This study has used multispectral Sentinel-2 imagery to create the
dataset for the forest fires ravaging Australia in late 2019 and early 2020. 12 out of the
13 spectral bands of Sentinel-2 are concatenated in a way to make them suitable as a
three-channel input to the unsupervised architecture. The unsupervised model then clas-
sified the patches as either burnt or not burnt. This work attains 87% F1-Score mapping
the burnt regions of Australia, demonstrating the effectiveness of the proposed method.

The main contributions of this work are (i) the creation of two datasets using Sentinel-
2 Imagery, PakSAT dataset and Australian Forest Fire dataset; (ii) the introduction of
UCL that learns the features progressively without the need of labelled data; and (iii)
experimentation on relevant datasets for water body and forest fire classification. This
work focuses on patch-level classification which could in future be expanded to pixel-
based classification. Moreover, the methods proposed in this study can be extended to the
multi-class classification of aerial imagery. Further possible future directions include the
combination of geo-referenced meteorological and remotely sensed image data to explore
proposed methods. Lastly, the proposed method can also be adapted to other domains
involving multi-spectral and multi-modal input, such as, historical documents analysis,
forgery detection in documents, and Natural Language Processing (NLP) classification
tasks.
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Chapter 1

Introduction

“I am just a guest born in this world,
to know the secrets that lie beyond it.”

Jalāl ad-Dı̄n Muhammad Rūmı̄

Earth Observation (EO) aims at acquiring information about the surface of Earth
(like physical, chemical, and biological details) via spaceborne, airborne, and ground-
based technologies. spaceborne data covers the Remote Sensing (RS) imagery captured
from satellites, airborne covers imagery captured from aircraft or Unmanned Aerial Vehi-
cles (UAV), ground-based data covers CCTV footage, and geo-referenced meteorological
data. EO also includes numerical data gathered from thermometers, wind gauges, ocean
buoys, altimeters or seismometers, images from Radio Detection and Ranging (RADAR)
and Light Detection and Ranging (LiDAR), information from ocean-based instruments
decision-based tools based on processed information like maps, and many more. EO
data plays a crucial role in monitoring natural resources, modeling climate change, and
depicting land-cover and use changes. Land-cover represents the surface of Earth covered
with natural resources, and land-use illustrates the built-ups and constructions [1]. The
term EO is considered differently from place to place, creating confusion. In Europe, EO
is mainly used in reference to satellite-based RS data [2]. The term EO has a broader
coverage representing all kinds of geo-referenced data to monitor the Earth’s surface.

EO is emerging with significant importance because of the dramatic impact of mod-
ern human civilization on the Earth’s eco-system and global environment. EO data is
extremely useful for estimating and evaluating the negative impacts on the Earth like
deforestation, water scarcity, overpopulation, burning fossil fuels, and pollution. Such in-
fluences have precipitated climate change, poor air quality, soil erosion, and undrinkable
water. EO data is used in many applications designed for the environment to mitigate
adverse effects. Some of the specific EO applications include [3]:

• Weather forecasting.
• Measuring land use and land-cover change, like rural development, urban planning,

and deforestation.

3
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• Managing and mitigating natural disasters, like wildfires, floods, earthquakes, and
tsunamis.
• Monitoring natural resources, like air, fresh water supply, oceans, soil, forestry, and

agriculture.
• Addressing emerging diseases and other health risks.
• Predicting and responding to climate change

1.1 Motivation

This work mainly focuses on the issues of freshwater analysis and wildfire detection.
Water and forests are the primary resources of the existence of life on this planet and
have a significant ecological and economical importance [4, 5]. The United Nations 2020
report [6] stated that water consumption is increasing in line with population growth.
According to the report increase in population, enhancement in agriculture, economic
expansion are the primary causes of water scarcity and deforestation. Wildfire is another
calamity that is destroying green forests to a great extent. Different continents have
lost their forests because of gigantic wildfires. Australia is, more than any other, a fire
continent [7] which has faced massive fires between late 2019 and early 2020, burning
5.2 million hectares of forests 1. Similar challenges exist globally; for instance, at least
70 large wildfires have been recorded across the US in 2021 2. There has been about
270 massive fires fuelled by southern European heatwaves ravaged in 53 provinces across
Turkey 3. The 2021 wildfire in California has burnt 13,000 acres in 3 days 4. In July
2021, hundreds of fires lighted up in Central Africa 5. Recently in 2021, it has been a
month now that the La Palma, the Canary Islands, is going through continuous volcanic
eruption burning everything around including crucial natural resources’ like forests 6.

The World Health Organization 7 and World Wildlife Fund for Nature (WWF) [8]

1“Fires in Victoria destroy estimated 300 homes, former police chief to lead Bushfire Recovery Vic-
toria”, ABC News, Jan. 2020, https://www.abc.net.au/news/2020-01-06/bushfires-in-victoria-
destroy-at-least-200-homes/11844292

2“At least 70 large wildfires burning in US west as fears mount over conditions”, The Guardian,
Guardian News and Media, 2021, https://www.theguardian.com/us-news/2021/jul/17/us-west-
wildfires-bootleg-fire-oregon

3“Information bulletin: Turkey wildfires – 10.08.2021 - Turkey”, ReliefWeb, Turkish Red Cres-
cent, 2021, https://reliefweb.int/report/turkey/information-bulletin-turkey-wildfires-
10082021

4Tim Stelloh and Elisha Fieldstadt, “California wildfire balloons to 13,400 acres, jumps major high-
way”, NBCNews.com, NBCUniversal News Group, 2021, https://www.nbcnews.com/news/us-news/
wildfire-closes-major-california-highway-prompts-evacuations-n1281298

5“Fires in Central Africa”, Aeronautics and Space Administration (NASA), Aug. 2021, https://
modis.gsfc.nasa.gov/gallery/individual.php?db date=2021-08-02

6Philip Whiteside, “La Palma Volcano: Eruption on Canary Island shows no sign of slowing, officials
say”, Sky News, Oct. 2021, https://news.sky.com/story/la-palma-volcano-eruption-on-canary-
island-shows-no-sign-of-slowing-officials-say-12436618

7“Wildfires”, World Health Organization, 2020, https://www.who.int/health-topics/
wildfires#tab=tab 1

https://www.abc.net.au/news/2020-01-06/bushfires-in-victoria-destroy-at-least-200-homes/11844292
https://www.abc.net.au/news/2020-01-06/bushfires-in-victoria-destroy-at-least-200-homes/11844292
https://www.theguardian.com/us-news/2021/jul/17/us-west-wildfires-bootleg-fire-oregon
https://www.theguardian.com/us-news/2021/jul/17/us-west-wildfires-bootleg-fire-oregon
https://reliefweb.int/report/turkey/information-bulletin-turkey-wildfires-10082021
https://reliefweb.int/report/turkey/information-bulletin-turkey-wildfires-10082021
https://www.nbcnews.com/news/us-news/wildfire-closes-major-california-highway-prompts-evacuations-n1281298
https://www.nbcnews.com/news/us-news/wildfire-closes-major-california-highway-prompts-evacuations-n1281298
https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2021-08-02
https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2021-08-02
https://news.sky.com/story/la-palma-volcano-eruption-on-canary-island-shows-no-sign-of-slowing-officials-say-12436618
https://news.sky.com/story/la-palma-volcano-eruption-on-canary-island-shows-no-sign-of-slowing-officials-say-12436618
https://www.who.int/health-topics/wildfires#tab=tab_1
https://www.who.int/health-topics/wildfires#tab=tab_1
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report stated that wildfire and volcanic eruptions had affected 6.2 million people world-
wide and almost 3000 deaths from suffocation, injuries, and burning in the last two
decades. Even more alarmingly, the frequency of wildfires are increasing over time due to
climate change. The weather is turning hotter and dryer with every passing year drying
the ecosystem and leading to large wildfires. Wildfires are drastically deteriorating air
quality by releasing massive quantities of carbon dioxide, carbon monooxide, and fine
particulate matter polluting the air. The polluted air has significant effects on the res-
piratory system and creates cardiovascular problems. It also has a significant influence
on mental health and psycho-social well-being. It also leads to the loss of wildlife, crops,
properties, and resources.

Water scarcity, also known as the water crisis, implies the lack of freshwater resources
in line with the standard demand. Many factors raise water stress like deforestation,
increase in demand by humans, and climate change, including floods and droughts. The
World Wildlife Fund for Nature (WWF) [9] reported that 70% of the Earth’s surface
is covered with water, out of which only 3% is freshwater. Two-third of the freshwater
is frozen in glaciers or not in a usable state. This situation makes almost 1.1 billion
people deprived of fresh water, and 2.7 billion people face water shortage at least for a
month every year. Adding to it, 2.4 billion population suffer from inadequate sanitation
resulting in exposure to diseases like cholera, typhoid fever, and many other water-borne
diseases. About two million human beings, mainly kids, are dying every year because of
water-borne illnesses. Natural sources like rivers and lakes are drying up with the change
in weather conditions from climate change.

The highlighted issues and dependencies raise the need for efficient systems for moni-
toring and managing natural resources such as water and forests. Typically, the monitor-
ing systems for EO analysis mainly rely on rich RS spatial and temporal data giving an
aerial view of the Earth’s surface. This thesis uses RS data to depict the burnt regions
from wildfires and detect freshwater from aerial imagery using deep learning techniques.

1.2 Remote Sensing

RS data, often referred to as EO data, is a significant source of aerial imagery for ob-
serving the Earth’s surface. Aerial (airborne) and satellite (spaceborne) imagery are the
two main types of RS data. Unmanned Aerial Vehicles (UAV) are the primary capturing
sources of airborne imagery. These crafts and drones capture the Earth’s surface from low
elevation and capture high spatial resolution aerial imagery when required. The spatial
resolution may vary from a few meters to a sub-meter Ground Sample Distance (GSD)
pixel resolution. The capturing process at low elevation and flexibility with capturing
time helps mitigate the limitations of law regulation and weather conditions such as cloud
cover [10, 11]. UAVs are mainly equipped with conventional cameras that provide only
visual bands, i.e., red, green, blue, and sometimes Near Infrared (NIR). UAV-based air-
borne imagery is comparatively cheaper and faster to capture than spaceborne imagery.
airborne imagery has actively been used for land-cover and land-use detection [12, 13],
and natural disasters analysis like floods and earthquakes [14]. The high resolution of
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airborne imagery is quite helpful for detailed land feature analysis of any specified area.
Multiple commercial and open-source satellite missions have been launched since the

last century for capturing spaceborne imagery. LandSat (launched in 1972 by the Na-
tional Aeronautics and Space Administration - NASA) and Sentinel (launched in 2015
by European Space Agency - ESA) are the most successful open-source multi-spectral
satellite projects. Landsat is an older project having multiple satellites launched over
time from Landsat-1 to Landsat-9. Landsat-9 [15], a joint effort of NASA and the U.
S. Geological Survey is recently released on 27th September 2021, and its data will be
publicly available from early 2022 [16]. Landsat-9 shares the same orbit as Landsat-8.
Landsat missions provide EO data of several decades with a trade-off of spatial resolu-
tion, i.e., 30 meters per pixel for visual, NIR, and Short Wavelength Infrared (SWIR)
bands. In comparison, the Sentinel-2 mission provides better spatial resolution, i.e., 10
meters for visual and NIR bands, and 20 meters for SWIR bands (see Table 1.1 ). It
can be seen in the table that Landsat-8/9 has lesser multi-spectral bands and spatial
resolution than Sentinel-2. Moreover, Sentinel-2 provides better revisit time and wider
swath [17]. See Table 1.2 for overall comparison of Landsat-8/9 and Sentinel-2A/2B.

Considering the advantages of Sentinel-2 over Landsat-8/9, this thesis has used Sentinel-
2 imagery to create the dataset for Pakistani water bodies, PakSAT, and Australian wild-
fire dataset. Furthermore, this work used two publicly available datasets, EuroSAT [18]
and SAT-6 [19] to keep the research open-source and reproducible.

1.3 Related Work

Numerous statistical thresholding methods are used in RS to classify various categories
of land-use and land-cover from space data. Such as, Normalized Difference Vegetation
Index (NDVI) [20] to mainly extract vegetation. Normalized Difference Water Index
(NDWI)[21] and Modified Normalized Difference Water Index (MNDWI) [22] for water
bodies segmentation. Normalized Burned Ratio (NBR) [23], the Mid-InfraRed Burn
Index (MIRBI) [24], and the Modified Burned Area Index (BAIM) [25] for detecting
burnt regions. These methods have been introduced for EO multispectral imagery but
require handcrafted features and domain knowledge. Furhtermore, these approaches are
sensitive to noise like cloud cover and require exhaustive prepossessing of massive corpus
of data, making the task more challenging.

In the recent past, some researchers have also used machine learning techniques based
on pattern recognition to detect burnt regions and water bodies on the surface of Earth
from RS data. Example of ML algorithms are region-growing [26, 27], Support Vector
Machine (SVM) [28, 29], Decision Tree (DT) [30, 31], Random Forest (RF) [32, 33], and
Gradient Boosting [34] which have been experimented for detection tasks in RS. Despite
improvements over time in the algorithms, there are still some limitations of the models
that needs to be addressed and are beyond the capacity of the methods. More specifically,
tools used to monitor land-use and land-cover would be better if they could handle larger
spatial and temporal data, better estimation for uncertainty, and efficiently mapping the
desired category on the earth surface [35]. It is raising the need of scalable method that
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Parameters Landsat-8/9 Sentinel-2A/2B

Spectral resolution (Count of Bands) 11 13
Spatial resolution (meters/pixel) 30-60 10-60
Revisit (Time Global Median Average in days) 8 3.7
Swath (km) 185 290

Table 1.2: Shows the comparison of Landsat-8/9 and Sentinel 2A/2B satellites.

is adaptable to inter and intra class variations. Deep Learning (DL) models have the
capability to address the stated limitations [36].

DL is emerging as the state of the art solution for learning variation and complex
features in the data and across various domains [37, 38]. Computer-vision problems
like object detection, localization, and recognition are successfully being addressed with
Convolutional Neural Networks (CNN) [39]. In RS, CNNs are widely being used in
emerging applications of land use such as segmentation of buildings, roads [40] and small
objects [41], land-cover classification [42], cloud-cover detection [43], and reconstruction
of missing information in the data [44]. DL models are also used for effective utilization
of Spatio-temporal data [45, 46]. Knopp et al. [47] used CNN-based U-Net to segment
the burnt regions from mono-temporal Sentinel-2 data. Pinto et al. [48] combined U-Net
and Long-Short Term Memorys (LSTM) neural networks to map and date the burnt
regions using multispectral imagery. Fang et al. [49] used ResNet for identifying global
water reservoirs.

Inspired by the excellent performance of supervised deep models, they still carry some
limitations. i) In the absence of labeled data, they need a collection of data and expert
knowledge to label the data, which is a time-consuming and tedious task. ii) Supervised
models are domain-specific. Their performance dramatically decreases when applied to
different domain data of the same problem. Recently, Generative Adversarial Neural
network (GAN) are being used in a semi-supervised manner to address the problem
of cross-domain adaptation in semantic segmentation ofRS imagery [50, 51]. Some
researchers have explored the concept of Curriculum Learning (CL) to train supervised
deep models [52] efficiently. The focus of our work is to overcome the stated issues of
supervised approaches by introducing an unsupervised DL solution using the concept of
CL for the classification of water bodies [53] and mapping burnt regions [54] using RS
data.

1.4 Scope and Delimitation

The aim of this thesis is to investigate DL models in an unsupervised way to overcome
the limitations of supervised architectures of data labeling and better domain adapta-
tion. Unsupervised learning has a broad spectrum and an emerging field of Artificial
Intelligence. Therefore, it is difficult for one thesis to cover this topic without delimita-
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tion. This thesis primarily considers the domain of RS for exploring unsupervised deep
learning. It considers the geo-referenced RS imagery as a case study and mainly focuses
on the patch-based classification of RS imagery. This work has used publicly available
satellite data. Publicly available satellite data has comparatively lower resolution than
commercial satellites leading to decreased intraclass variation. Currently, this work is
designed for two-class classification, which will be extended to multi-class in future work.
The research questions that arose and were addressed during this research are presented
below.

Q1 How well do supervised methods work with RGB aerial imagery?

Q2 Is it possible to reach similar performance in RS tasks to supervised methods using
unsupervised approaches?

Q3 Can unsupervised approach be extended to multispectral satellite imagery?

Chapter 3 explains in more detail the emergence and evolution of proposed questions
throughout the research process and how they are addressed.

1.5 Outline

This thesis is divided into two main parts where Part I is composed of five chapters
to provide a broader perspective and context of Part II. Paart II is composed of two
different published research papers carrying more detailed in-site of technical work and
results proposed in this thesis.

The remainder of this thesis is structured as follows. Chapter 2 describes the method-
ology that was followed to address the formulated research questions. It gives the techni-
cal details of the work. Chapter 3 describes how the methodology was evaluated, and the
results of those evaluations. Chapter 4 presents the titles, abstracts, publication details,
and contribution(s) of authors of two papers of this thesis. Chapter 5 concludes Part I
of the thesis by giving a summary of the work and motivation for future directions.

Part II is composed of two published papers. Paper A, “UCL: Unsupervised Curricu-
lum Learning for Water Body Classification from Remote Sensing Imagery”, is a journal
publication representing the concept of unsupervised curriculum learning for classifying
water bodies from airborne and spaceborne RGB imagery and its detailed evaluation
on three different datasets from three different continents. Paper B, “Burnt Forest Es-
timation from Sentinel-2 Imagery of Australia using Unsupervised Deep Learning”, is
a conference publication that used multi-spectral spaceborne imagery to do the unsu-
pervised classification of burnt wildfire regions of Australia faced in late 2019 and early
2020.
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Chapter 2

Methodology

“If we knew what it was we were doing, it would not
be called research, would it?.”

Albert Einstein

This chapter explains the research methodology used to address the designed research
questions. It starts with explanation and formulation of research questions. It further
explains the general research method used in the research when formulating the research
questions and addressing them. The later section explains the detailed description of the
technical approach used in this work which contains the datasets, unsupervised architec-
ture, and implementation details.

2.1 Research Method

Deep Learning (DL) models are state-of-the-art methods capable of automatically learn-
ing the complex and prominent features from the data without any hand-crafting. How-
ever, they still have some limitations. Most of them are supervised models and need a
huge labeled corpus that requires the efforts of data gathering and expert domain knowl-
edge for labeling. These models are very domain-specific as trained to learn fine details
from the data labeled by domain experts. The stated limitations could be addressed using
clustering techniques to generate the pseudo-labels, which could remove the requirement
of domain experts’ knowledge and ease the tedious task of data labeling. Clustering
techniques could be the right choice to generate pseudo-labels but have their trad-offs.
The generated clusters are based on the prominent features present in the data, which
may not address the outliers as no additional information from experts is used. The
models using the pseudo-labels may be less domain-specific as they are not overfitted to
the domain expert knowledge but only to the prominent features in the data.

This research keeps in mind the strengths of DL models and clustering techniques
that could address some of the limitations of DL models. This research integrates both
algorithms to introduce an unsupervised DL architecture. The proposed idea is inspired
by the computer vision domain [55, 56, 57] which combines the benefits of transfer learn-
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ing and latent space representation to enable cross-domain adaptation. Another source
of inspiration is the concept of Curriculum Learning (CL) [58] where training samples
are fed to the learning model in order of their difficulty. This difficulty is defined by
the complexity of the samples’ features. Where easy samples are fed in the initial iter-
ations, and the complexity gradually increases in the subsequent iterations. It has been
demonstrated that feeding the learner in this manner speeds up the learning as the DL
model has to learn complex examples gradually. One of the significant challenges of CL
is how to define the difficulty level in the samples. Different heuristics have been used in
different domains for successfully defining the complexity of the samples (e.g., [52]). In
this research, proximity is used from cluster centroids as a selection criterion for repre-
senting “easy” samples, called “reliable samples”. The proposed research methodology
comprises the DL model, clustering mechanism, and selection operation inspired by Cur-
riculum Learning.

2.1.1 Research Questions

This research is composed of three primary research questions. Before jumping into the
unsupervised domain for RS data, it was essential to have some technique as a benchmark
for the comparison. As DL models are state-of-the-art for learning the complex features
from the data, this inspired to the first research question:

Q1 How well do supervised methods work with RGB aerial imagery?

CNN-based DL models are considered state-of-the-art in learning complex features from
images. This encouraged the use of these models as a benchmark to evaluate the RS
datasets, see Paper A. The state-of-the-art pre-trained CNN-based DL models are de-
signed from visual bands, i.e., red, green, and blue. So, to address this question, initial
experiments are designed to consider only red, green, and blue bands of RS Imagery.
As supervised models used labeled datasets, it is shown that they outperform the other
techniques in terms of accuracy, which do not use domain knowledge in the training pro-
cess. However, accuracy on the data set used for training purposes is not the only metric
to evaluate models. There are other factors, too, for example, domain adaptation. This
gave rise to the second research question of this work:

Q2 Is it possible to reach similar performance as supervised methods using unsuper-
vised approaches?

The proposed unsupervised curriculum learning based architecture is evaluated on the
datasets and are compared with the supervised methods used as a benchmark in this
study. It is shown in Paper A that the proposed unsupervised model was able to learn
the RS features to classify the patches. In contrast, the supervised methods achieved
higher accuracy. However, the performance of supervised models decreased dramatically
when applied to other datasets of the same problem statement. In comparison, the
proposed unsupervised architecture was able to perform better than supervised models
in cross-domain adaptation.
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One thing should not be ignored, i.e., the more the data, the better the performance
of DL models. Here, the RS data from the satellite has multispectral bands. This brought
inline the third research question of this thesis:

Q3 Can the unsupervised approach be extended to multispectral satellite imagery?

The pre-trained state-of-the-art CNNs are based on three-channel input. However, satel-
lite imagery is composed of multispectral bands. This inspired researchers to to use the
other bands of the satellite imagery along with visual bands in the proposed unsupervised
architecture. In Paper B, 12 out of 13 bands of the Sentinel-2 satellite are integrated
to match the requirement of pre-trained models of three-channel input. The proposed
unsupervised technique is fine-tuned for multispectral imagery to classify burnt regions
from Sentinel-2 data. The 12 bands are selected based on their relevance to the problem
being addressed, i.e., classifying burnt regions from Australian Sentinel-2 imagery.

Both research papers have explored and addressed the raised research questions in
a limited setup, proving the hypothesis with simple binary classification rather than
exploring other aspects, like multi-class classification and other domains having multi-
model input, which will be considered future directions of this work.

2.2 Technical Approach

This section covers some of the technical details of the research carried out for this thesis
and explains the choices made in this work. It describes the details of datasets created
and used in this study and a bit of insight of the introduced unsupervised curriculum
learning based approach and its implementation details.

2.2.1 Datasets

The two papers of this work have used four datasets. Paper A has used three datasets
for water bodies classification from RS data. Two of the datasets, EuroSAT [18] and
SAT-6 [19] are open-source. EuroSAT is composed of Sentinel-2 Imagery with a patch
size of 64× 64. It has been captured from different cities of 34 European countries. It
comprises ten different classes, out of which two were of water categories, “sea and lake”
and “rivers”. The SAT-6 dataset is composed of aircraft image patches of California. It
has a patch size of 28× 28 with a high spatial resolution ( 1-meter per pixel). It has six
different categories, and only one category is of water bodies. Both of the datasets were
pre-processed into two classes of water and not water categories to carry equal ratios of
samples. The third dataset used in Paper A, PakSAT, is a newly introduced dataset
designed for water body segmentation. It is composed of Sentinel-2 image patches of
Pakistan having size 64× 64. Hence, Paper A has used three different datasets having
RS imagery. Paper B has used the Australian Wildfire dataset to classify burnt regions
of Australia from late 2019 to early 2020. This dataset is newly introduced in this work
using Sentinel-2 Imagery having patch size 64× 64. Further details of the datasets used
and produced are provided in Paper A and B.
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Figure 2.1: Proposed unsupervised deep learning based approach.

2.2.2 Unsupervised Curriculum Learning

Unsupervised Curriculum Learning (UCL) is composed of three different techniques in-
spired from the literature. The widely used CNN model, VGG-16, is used for feature
extraction from the RS data. The clustering mechanism used to generate pseudo-labels
plays a vital role in making the proposed approach unsupervised. A sample selection
criterion is applied to extract reliable samples from the generated clusters is inspired by
the concept Curriculum Learning.

The proposed pipeline of UCL is shown in Figure 2.1. In preprocessing, the huge
tiles of RS imagery are broken down into smaller patches suitable for the DL model.
The proposed unsupervised curriculum learning based pipeline can be described in three
phases; 1) the dDL model for extracting features from the corpus, 2) clustering technique
to generate clusters from extracted features to assign pseudo-labels, and 3) selection
operation to extract reliable samples from clusters to fine-tune the deep model. A CNN
based DL model extracts features from RS image patches. The considerDL model is
pre-trained on ImageNet weights [59] (an irrelevant domain) that does not contain the
RS imagery. As a result, the extracted features from the pre-trained model may not be a
good representation of the RS data. Thus, the clusters they form may be loosely packed.
A selection operation is applied that extracts the samples present near the centroids as
reliable samples. These reliable samples are used to fine-tune the DL model. This process
of extracting features and clustering them, extracting reliable samples, and fine-tuning
the deep model with reliable samples is done iteratively till the DL model has converged.
This iterative process of learning features with pseudo-label makes the proposed model
unsupervised. For a better understanding of UCL, please see the algorithm 1. The UCL
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model is explained in more detail in Paper A.

Algorithm 1 UCL Alogrithm

Input: Unlabeled data {xi}Ni=1, Reliability Threshold λ, pre-trained DL model φ(., θ0)
Output: Trained model φ(., θt)
Initialization: θt ← θ0

1: while model not converged do
2: {fMapi}Ni=1 ← φ({xi}Ni=1, θt) . Feature extraction from deep model θt at time t
3: {fi}Ni=1 ← Flatten({fMapi}Ni=1) . Vector representation of extracted features
4: {ck}2k=1 ← Clustering({fi}Ni=1) . Clustering the features in 2 clusters
5: {ĉk}2k=1 ←CentroidFeature({fi}Ni=1, {ci}2i=1) . Centroids of 2 clusters
6: for k := 1 to 2 do
7: for i := 1 to N do
8: γi ← fi · ĉk
9: if γi > λ then

10: x
′
i ← xi . Selection of reliable samples

11: end if
12: end for
13: end for
14: θt+1 ← Finetune(x

′
, θt) . Fine-tune deep model θt with reliable samples

15: θt ← θt+1 . Update the deep model θt with fine-tuned one θt+1

16: end while

Some empirical experiments are performed before finalizing the proposed unsuper-
vised architecture. Multiple widely used CNN models, namely VGG-16[60], ResNet-
50 [61], Inception Network [62], Xception network [63], and DensNet [64], have been
explored in this study of unsupervised learning. Out of all these architectures, ResNet
and VGG-16 performed better than other architectures. The performance scores attained
by VGG-16 and ResNet-50 are not significantly different. Whereas ResNet was taking
longer to train than VGG-16. Considering the performance efficiency and minimum time
consumption for training, VGG-16 is used in the proposed UCL architecture. Similarly,
three different clustering techniques are explored; namely, K-Means [65], Fuzzy C-Means
(FCM) [66] and Hierarchical Clustering [67]. K-Means and FCM performed better than
the Hierarchical clustering technique, but FCM took longer to generate clusters than
K-Means. As a result, the K-Means clustering algorithm is used in UCL. The final archi-
tecture of UCL is composed of VGG-16, K-Means clustering algorithm, and a selection
criterion for reliable samples.

2.2.3 Implementation Details

UCL is implemented in Python using TensorFlow [68] and Keras [69] libraries. Jupyter-
Lab is used as a development framework. In all cases of the downstream task, the dataset
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is shuffled and split into training and test corpus in the ratio 80:20. Out of this 80% of
the data, 20% is used for validation, and 80% is used for training. In every iteration of
UCL fine-tuning, the training and validation corpus are shuffled and recreated. So for
each fine-tuning iteration of UCL, there is a different validation set. Stochastic Gradient
Descent (SGD) [70] optimizer, Softmax activation function [71] and Cross-entropy loss
function are used in the training process of deep model. The early-stopping criterion
is used to stop the training. The criterion says if the validation is not reduced in the
next five epochs, stop the training and store the model of the epoch reporting minimum
validation loss. All the experiments reported in this thesis are conducted on a GPU
machine having an NVIDIA Titan-X GPU for training and fine-tuning with 32 GB RAM
and Linux operating system.



Chapter 3

Experiments and Results

“Look for the answer inside your question.”

Jalāl ad-Dı̄n Muhammad Rūmı̄

This chapter summarizes the common areas of the experimental details of both pa-
pers. In the beginning of the chapter, the proposed experiments for Paper A and B are
described. It also explains the evaluation metrics used to analyze the results. Lastly, the
results attained in two papers are summarized.

Experiments in Paper A are designed to evaluate the Unsupervised Curriculum Learn-
ing (UCL) for water body classification using three different datasets. As each dataset
is composed of RS imagery of places from different continents, this addresses regional
independence. Further, these datasets are composed of images captured from different
sources adding variability in spatial resolution. These variations in the datasets make
the results more robust. These experiments are designed for visual bands of RS imagery
catering to the air-borne data from aircraft and UAVs having primarily visual bands
only. Later, this technique is extended to multi-spectral imagery of space-borne data in
Paper B, where the task is to classify burnt regions using multi-spectral imagery.

3.1 Evaluation Metrics

The results produced in the two papers included in this thesis are evaluated using various
performance metrics. The compactness of the generated clusters is evaluated by using
purity and the Silhouette Score. The Sum of Squared Error (SSE) is calculated for
added cluster analysis, an objective function of K-Means clustering. Along with these
metrics, the reliable samples extracted at each iteration of fine-tuning are also analyzed,
such as the growing count in the reliable set with every iteration of fine-tuning and how
consistent the pseudo-labels are in progressive fine-tuning iterations. The training curves
of the deep model with clustering pseudo-labels are also monitored. After the fine-tuning
of UCL with pseudo-labels, the model is evaluated on a test dataset where precision,
recall, and F1-Score performance are used.

17
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3.1.1 Purity

Purity is an external evaluation criterion for analyzing the quality of clusters. It uses the
true labels and pseudo-labels the calculate the purity score. Its value ranges between 0
and 1. The higher the value of purity, the better the clusters in quality. In other words,
it calculates the ratio of the total number of samples in the clusters that are correctly
classified in the unit range [0..1]. The following Equation 3.1 is used to calculate the
purity score.

Purity =
1

N

k∑
i=1

max
j
|ci ∩ tj| (3.1)

Where N is the total count of samples in the corpus, k is the total count of clusters. As
this thesis addresses binary classification, k = 2, i.e., in Paper A, either the generated
cluster is of water bodies or not water bodies, and in Paper B, either the generated cluster
is of burnt regions or not burnt regions. ci is the set of clusters, and tj is the set of classes
with a maximum count for cluster ci. Equation 3.1 is used to calculate the purity of the
clusters.

3.1.2 Silhouette Coefficient

Silhouette Coefficient or Silhouette Score is a metric used to evaluate the saturation in
the clusters. It calculates the ratio based on the distance between each sample within the
cluster (Equation 3.2) and the neighboring clusters (Equation 3.3). Its value ranges from
-1 to 1. Where 1 means the clusters are well separated from each other and can clearly
be distinguished, and 0 means that the cluster is indifferent or the distance between the
clusters is insignificant. The Silhouette Score for each sample in the dataset is calculated
by using the following set of Equation 3.2 to 3.5.

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i, j) (3.2)

Where a(i) represents the intra-cluster distance of sample i. In other words, the distance
of sample i from other samples present in the same cluster of i, where Ci are the sample
points in cluster i. d(i, j) is the distance between each sample i and j present in cluster
i. a(i) measures how well a sample i belongs to the cluster. The smaller the value is, the
better the association.

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j) (3.3)

Where b(i) represent the inter-cluster distance. In other words, the mean distance of
sample i from other samples present in any other cluster Ck. It calculates the dissimilarity
of a sample i with other clusters. The cluster with the smallest dissimilarity could be
considered as the closest neighbors cluster of i.
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s(i) =
b(i)− a(i)

max(a(i), b(i))
, if |Ci| > 1 (3.4)

s(i) = 0 , if |Ci| = 1 (3.5)

The calculated intra and inter cluster distances (a(i) and b(i)) are used to calculate the
Silhouette Score s(i) of sample i using Equation 3.4. It can clearly be seen in Equation 3.2
that intra cluster distance a(i) can not be calculated when cluster Ci has only one sample.
To avoid this situation, s(i) is set to 0, represented in Equation 3.5.

3.1.3 Confusion Matrix

Each dataset used in this study has a text set. Once the UCL is fine-tuned on the
datasets, it is evaluated on each dataset using their respective test corpus. Confusion
matrix is a key measure for other evaluation metrics like Precision, Recall and F1=Score.
In both of the papers, following format in Table 3.1 is used for confusion Matrix.

Predicted
Negative Positive

Actual
Negative True Negative (TN) False Positive (FP)
Positive False Negative (FN) True Positive (TP)

Table 3.1: Confusion matrix used to calculate Precision, Recall and F1-Score.

3.1.4 Precision

Precision is one of the evaluation metric that is based on the confusion matrix and is
used in this work. It calculates the ratio of correctly classified among the samples that
were classified as true.

Precision =
TP

TP + FP
=

Correctly True Classified

Total True Classified
(3.6)

3.1.5 Recall

Recall is an evaluation metric that calculates the ratio of correctly classified among the
actual positive samples.

Recall =
TP

TP + FN
=

Correctly True Classified

Total True Classified
(3.7)
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3.1.6 F1-Score

In simple terms, the F1-Score is the harmonic mean of Precision and Recall. It is one of
the most suitable measuring scales as it deals with the non-uniform distribution of data
among the classes. It is quite useful to seek a balance between Precision and Recall.
This work also uses the macro and micro F1-Scores. The F1-Score is calculated using
following Equation 3.8

Precision =
2 ∗ Precision ∗Recall
Precision+Recall

(3.8)

Lastly, in Paper B, the generated results from different fine-tuned iterations of UCL
are visualized on the map by georeferencing. Georeferencing is mapping the digital map
(vector data), RS imagery, or processed aerial imagery (raster data) using an internal
coordinate system. The subject imagery to the map can be related to the ground system
of geographic coordinates.

3.2 Experiments and Results

This section summarizes the results of both papers. The following subsections present
results from each paper in a very brief format.

3.2.1 Paper A: UCL: Unsupervised Curriculum Learning for
Water Body Classification from Remote Sensing Imagery

Before moving towards the evaluation of UCL, some initial experiments have been con-
ducted. In these experiments, direct testing of VGG-16 architecture with ImageNet
weights is done using RGB RS imagery of the EuroSAT, PakSAT, and SAT-6 datasets.
Table 3.2 describes the results of these experiments. It is assumed in this experiment
that there is no labeled data provided. As a result, the classification using VGG-16 can
either be done using a random classification layer or some clustering technique. This

Initial Test Set F1-Score (%)
Weights Random FC K-Means

ImageNet EuroSAT 44.46 54.45
ImageNet PakSAT 51.98 57.13
ImageNet SAT-6 58.20 65.50

Table 3.2: Describes the direct inference of EuroSAT, PakSAT, and SAT-6 datasets on
VGG-16 considering three different techniques. Random FC indicates the results with
random initialization of the FC layer. K-Means shows the results for clustering the
features extracted from VGG-16 and classified by K-Means clustering.
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experiment has explored both techniques for the classification of RS image patches. It
has been shown in Table 3.2 that that ImageNet weights with K-Means clustering gave
better results than ImageNet weights with randomly initialized classification layer.

Fine-Tuned F1-Score (%)
& Tested Supervised UCL

EuroSAT 99.49 84.05
SAT-6 99.53 90.89
PakSAT 96.07 87.66

Table 3.3: F1-Scores of VGG-16 supervised fine-tuned and tested on each dataset; Eu-
roSAT, PakSAT, and SAT-6. The last column reports the results of UCL fine-tuned and
tested on each considered dataset.

In the next phase of experiments the performance of VGG-16 is evaluated in a way
that for each data sets, the model is fine-tuned in a supervised or unsupervised manner.
The resulting F1-Scores are reported in Table 3.3. It can be seen in the table that
supervised models reported F1-Score above 99% for EuroSAT and SAT-6, and 96% for
the PakSAT dataset showing that the model has learned the classes quite well. Although,
the UCL results are comparatively compromised. They still reported F1-Scores between
84% and 91% for the three datasets examined, showing that the model can learn the
classes from the data without the need for labeled corpora for training purposes, which
is an achievement in itself.

Fine-Tuned Tested F1-Score (%)
Supervised UCL

EuroSAT PakSAT 70.68 78.00
SAT-6 32.84 75.76

SAT-6 PakSAT 63.16 68.97
EuroSAT 42.83 72.43

PakSAT EuroSAT 62.70 79.00
SAT-6 59.92 71.72

Table 3.4: F1-Scores of VGG-16 fine-tuned in a supervised manner on each dataset and
tested on the other two datasets. The last column reports the results of UCL fine-tuned
on each dataset and tested on the other two datasets. The considered datasets are
EuroSAT, PakSAT, and SAT-6.

In the last phase, the conducted experiments evaluate the cross-domain adaptation
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for both approaches; the supervised fine-tuned VGG-16 and UCL. The results show that
supervised fine-tuned VGG-16 on one dataset when tested on the other two considered
datasets, its performance decreased dramatically. In comparison, UCL performed better
in domain-adaption than the supervised models. The results of these experiments are
shown in Table 3.4.

Predicted →
Actual ↓ Water Non-water Total
Water 1,460 0 1,460
Non-water 20 1,440 1,460
Total 1,480 1,440 2,920

Table 3.5: Confusion Matrix for SAT-6 test corpus on best iteration of fine-tuning of
VGG-16.

Table 3.5 shows the confusion matrix for UCL fine-tuned model on SAT-6 dataset.
As we can see in the matrix, only 20 samples out of 2,920 from the test corpus were
misclassified, showing that UCL efficiently learned the water and not water categories
from the SAT-6 dataset.

(a) (b)

Figure 3.1: (a) Purity and Silhouette Score and (b) Sum of Squared Error of generated
clusters for water bodies and other regions of SAT-6 over every iteration of fine-tuning
of VGG16.

In Figure 3.1, two graphs are presented; (a) showing the Purity and Silhouette Score
and (b) showing Sum of Squared Error calculated for the clusters generated during the
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fine-tuning interactions of UCL model for SAT-6 dataset. It can be seen in the graph
(a) that purity remains quite consistent whereas the Silhouette Score, representing the
saturation of the clusters, is quite low at the beginning. However, with fine-tuning
iterations, the score increased indicating that the clusters are getting saturated with
iterations. A small change in purity can be because of the very few reliable samples in
the initial fine-tuning iterations which later grew to the count of training corpus.

This is the gist of the experiments explained above. All these experiments are per-
formed on RGB RS imagery for water body classification. The detailed experiments with
in-depth analysis are provided in Paper A.

3.2.2 Paper B: Burnt Forest Estimation from Sentinel-2 Im-
agery of Australia using Unsupervised Deep Learning

In this paper, a new dataset based on multi-spectral imagery of Sentinel-2 is created
for Australian Wildfires classification. UCL model is designed in a way that it takes
three-channel input. Whereas, the Sentinel-2 imagery is composed of 13 bands. 12 out
of 13 bands are selected on the basis of their co-relation with the fire detection. These
13 bands are concatenated in a way that each input channel carries 4 bands of Sentinel-2
Imagery. The concatenation on three-channels can be seen in Figure 3.2.

Figure 3.2: The considered 12 bands of multispectral satellite imagery of Sentinel-2 into
three-channel input. Each channel contains four bands, 1 in each quarter. Each of the
red, green, and blue bands is kept in each channel, considering the input configuration
of the Convolutional Neural Networks (CNN) model. All the patches are preprocessed
in this way to make them suitable for the input of the DL model.

This input is fed to UCL for fine-tuning. Similar to Paper A, cluster generation
saturation and quality is monitored using purity and Silhouette Score. The analysis
is shown in Figure 3.3. It can be seen that the clusters are pretty saturated in the
beginning, and with fine-tuning iterations, the saturation score, i.e., Silhouette Score, is
getting improved.

Table 3.6 summarizes the performance of fine-tuned UCL by reporting Precision,
Recall, F1-Score, and Macro and Weighted Avg F1-Score. UCL has learned the classes
by reporting an F1-Score 85%.
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Figure 3.3: Graph showing the purity and Silhouette Score of generated clusters for burnt
forest and other regions over every iteration of fine-tuning of VGG16.

Precision Recall F1-Score

Class 0 0.86 0.83 0.84
Class 1 0.83 0.86 0.85

Accuracy - - 0.85
Macro Avg 0.85 0.85 0.85

Weighted Avg 0.85 0.85 0.85

Table 3.6: The table shows the average precision, recall, F1-Score and accuracy for best
5 iterations on the test corpus.

Figure 3.4 shows the georeferenced results of UCL of best 5 fine-tuned iterations.
The area considered for this visualization is the Australian Capital Territory. Among the
considered fine-tuned iterations, sub-figure (b) in Figure 3.4 reports the best performance
in deployment. The detailed results of this study are explained in Paper B.

3.3 Critical Analysis

UCL has performed exceptionally well on the considered task, but it carries some lim-
itations too. The proposed solution is fed with unbiased data, which means that both
classes carry an almost equal count of samples. This data distribution may enforce the
clustering technique to generate the clusters of the type of classes present in the data.
Also, both classes have a clear distinction of either to be of one class or not. Currently,
this distribution of samples among the classes is done manually. This distinction could
also be made using indices to get the equal distribution of samples in both classes. It
will be worthy of exploring how UCL with class distribution in the data using indices.
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Figure 3.4: (a) The region considered, covering the Australian Capital Territory and
South of it in an orange polygon, for testing the fine-tuned models on Sentinel-2 median
image of three months (Feb 2020 - Apr 2020). (b) The prediction results for the fine-tune
iteration of the deep learning model, reporting the highest accuracy on the test set. (c)
The prediction results for iteration reporting the 2nd highest accuracy on the test set.
(d) The prediction results for iteration reporting the 3rd highest accuracy on the test
set. (e) The prediction results for iteration reporting the 4th highest accuracy on test
corpus. (f) The prediction results for iteration reporting the 5th highest accuracy on
test corpus.
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Chapter 4

Contributions

“Shine like the whole universe is yours.”

Jalāl ad-Dı̄n Muhammad Rūmı̄

4.1 Paper A: UCL: Unsupervised Curriculum Learn-

ing for Water Body Classification from Remote

Sensing Imagery

Title: UCL: Unsupervised Curriculum Learning for Water Body Classification from
Remote Sensing Imagery

Authors: Nosheen Abid, Muhammad Shahzad, Muhammad Imran Malik, Ulrich Schwa-
necke, Adrian Ulges, György Kovács and Faisal Shafait

Submitted in: International Journal of Applied Earth Observation and Geoinformation

Abstract: This paper presents a Convolutional Neural Networks (CNN) based Unsu-
pervised Curriculum Learning approach for the recognition of water bodies to overcome
the stated challenges for remote sensing based RGB imagery. The unsupervised nature
of the presented algorithm eliminates the need for labelled training data. The problem
is cast as a two class clustering problem (water and non-water), while clustering is done
on deep features obtained by a pre-trained CNN. After initial clusters have been identi-
fied, representative samples from each cluster are chosen by the unsupervised curriculum
learning algorithm for fine-tuning the feature extractor. The stated process is repeated
iteratively until convergence. Three datasets have been used to evaluate the approach
and show its effectiveness on varying scales: (i) SAT-6 dataset comprising high resolution
aircraft images,(ii) Sentinel-2 of EuroSAT, comprising remote sensing images with low
resolution, and (iii) PakSAT, a new dataset we created for this study. PakSAT is the
first Pakistani Sentinel-2 dataset designed to classify water bodies of Pakistan. Extensive
experiments on these datasets demonstrate the progressive learning behaviour of UCL
and reported promising results of water classification on all three datasets. The obtained
accuracies outperform the supervised methods in domain adaptation, demonstrating the
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effectiveness of the proposed algorithm.
Personal Contribution: Conceptualization, methodology, and experimentation by
Nosheen Abid. Refining scope, contribution, and methodology by Muhammad Shahzad
and Faisal Shafait. Original draft written by Nosheen Abid. Review and supervision by
Muhammad Imran Malik, Ulrich Schwanecke, Adrian Ulges, György Kovács and Faisal
Shafait.

4.2 Paper B: Burnt Forest Estimation from Sentinel-

2 Imagery of Australia using Unsupervised Deep

Learning

Title: Burnt Forest Estimation from Sentinel-2 Imagery of Australia using Unsupervised
Deep Learning
Authors: Nosheen Abid, Muhammad Imran Malik, Muhammad Shahzad, Faisal Shafait,
Haider Ali, Muhammad Mohsin Ghaffar, Christian Weis, Norbert Wehn and Marcus Li-
wicki
Published in: International Conference on Digital Image Computing: Techniques and
Applications (DICTA), 2021.
Abstract: Massive wildfires not only in Australia but also across the globe burn millions
of hectares of forests and green land affecting the social, ecological and economical situ-
ation worldwide. Widely used indices-based threshold methods like Normalized Burned
Ratio (NBR) require a huge amount of data pre-processing and are specific to the data
capturing source. The state-of-the-art Deep Learning models are supervised and require
domain experts knowledge for labeling the data in huge quantity. These limitations make
the existing models difficult to be adaptable to the new variations in the data and cap-
turing sources. In this work, we have proposed an unsupervised Deep Learning based
architecture to map the burnt regions of forests. The model considers small patches of
satellite imagery and classifies them into burnt and not burnt. These small patches are
concatenated into binary masks to segment out the burnt region of the forests. The
proposed system is composed of two modules: 1) a state-of-the-art Deep Learning archi-
tecture for feature extraction and 2) a clustering algorithm for the generation of pseudo
labels to train the Deep Learning architecture. The proposed method is capable of learn-
ing the features progressively in an unsupervised fashion from the data with pseudo labels
reducing the exhausting efforts of data labeling that requires expert knowledge. We have
used the real-time data of Sentinel-2 for training the model and mapping the burnt re-
gions. The obtained F1-Score of 0.87 demonstrates the effectiveness of the proposed
model.

Personal Contribution: Conceptualization, methodology, and experimentation by
Nosheen Abid. Refining methodology by Muhammad Imran Malik, Muhammad Shahzad,
Faisal Shafait, and Haider Ali. Original draft written by Nosheen Abid. Review and Su-
pervision by Faisal Shafait, Muhammad Mohsin Ghaffar, Christian Weis, Norbert Wehn
and Marcus Liwicki.



Chapter 5

Conclusion and Future Work

“Your heart knows the way, run in that direction.”

Jalāl ad-Dı̄n Muhammad Rūmı̄

Remote Sensing and Earth Observation have been evolving from providing efficient
sensors for capturing detailed information about the planet to designing EO algorithms.
Many algorithms are designed and developed for monitoring the surface of the Earth,
considering the specifications of the sensors, making them very specific to capturing the
source. One of the famous and widely used solutions for RS data analysis are thresholding
methods based on indices. In literature, there are several designed indices for a different
types of classification tasks from RS data. Namely, Automated Water Extraction In-
dex (AWEI) [72] for detecting water, and Modified Burned Area Index (BAIM) [25] for
detecting burnt areas. These, methods, however, largely rely on multspectral imagery,
which is not always available (particularly, when working with aerial imagery that pro-
vides high spatial resolution). Moreover, thresholding method are designed by domain
experts, and rely on their expert knowledge, and hand-crafted features. Many classical
machine learning algorithms have already been used in working with RS data, including
Decision Trees [30], Random Forests [73], Support Vector Machines [29], and different
types of Neural Networks. These methods, however, still largely rely on the use of hand-
crafted features. It was the emergence of Deep Learning (DL) techniques that removed
the need of these features. These methods are considered state-of-the-art in analyzing
and classifying the data in many fields, including RS.

This thesis explores DL methods for RS data to monitor natural resources, namely,
water bodies and forests. DL methods are efficient in learning features from the data
but require a massive corpora of labeled data for training the model. In such a scenario,
unsupervised approaches are pretty suitable. This thesis is composed of two published
papers exploring the combination of DL models with unsupervised algorithms to take
advantage of both methods. The research questions addressed in this thesis are:

Q1 How well do supervised methods work with RGB aerial imagery?

Q2 Is it possible to reach similar performance to supervised methods using unsuper-
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vised approaches?

Q3 Can the unsupervised approach be extended to multispectral satellite imagery?

Paper A addresses the first two research questions by introducing an Unsupervised
Curriculum Learning (UCL) method for classifying water bodies from three different con-
tinents to the classification of space-borne and air-borne RGB imagery. It is composed of
the widely used VGG-16 architecture with clustering technique, K-Means. UCL progres-
sively learns the features from the data in an unsupervised manner with pseudo-labels
generated by K-Means clustering. The unsupervised nature of the UCL removes the re-
quirement of data labeling that demands domain experts’ knowledge. UCL is evaluated
using three datasets; SAT-6, EuroSAT, and PakSAT. Passat is a novel contribution of
this work designed for Pakistani water bodies. The evaluated results on these datasets
showed that UCL outperformed supervised models in domain adaptation.

Paper B builds on the previous study by extending UCL to multispectral imagery to
classify Australian wildfires of late 2019 and early 2020. This study has used multispectral
imagery of Sentinel-2 satellite to create the patch-based dataset forest fire damaging
Australia. It concatenates 12 out of the 13 bands of Sentinel-2 imagery in such a way
that they are suitable as a three-channel input of UCL. It classifies the patches into burnt
and not burnt categories. This work achieved an F1-Score 87% mapping the burnt and
not burnt regions of Australia, demonstrating the effectiveness of the proposed model.

5.1 Future directions

Unsupervised learning for classification covers a wide range. This thesis touches on one
of its aspects and introduces the concept of Unsupervised Curriculum Learning (UCL)
for classification of image patches. The work presented in this thesis can be extended
in many ways in the domain of Earth Observation (EO) (e.g. by increasing the number
of classes, modifying the method developed for multi-class problems, or by moving from
patch-based classification to pixel-based classification), and I describe these directions
in more detail in Section 5.1.1. The present work can also be extended beyond Earth
Observation (EO), to other domains, like document analysis and NLP, as it is discussed
in more detail in Section 5.1.2.

5.1.1 Expansion of UCL

To demonstrate the viability of the UCL model on a relatively simple task first, the
research work so far was mainly focusing on the binary classification of patches. The
proposed solution, however, can be extended to the multi-class classification of patches.
One way to achieve this would be by adding for each class a representative sample (that is
a sample one can think of as the prototypical representation of its class) to the training
set. In the first iteration of fine-tuning, clusters would be created considering these
samples as the centroids so that the model could distinguish the multiple classes. This
makes the model semi or weakly supervised.
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Another possible direction can be extending the patch-based classification to pixel-
based one. Initial experiments are in process to analyze the performance of widely used
supervised deep learning-based segmentation algorithms, namely, U-Net, SegNet, Masked
R-CNN [74] and RetinaNet [75]. Further direction is to explore semi or unsupervised do-
mains to develop a better-unsupervised approach for pixel-based classification. Moreover,
as EO can also include other types of data than just images (e.g. meteorological data),
another possible future direction for this work is to include other modalities in the pro-
posed framework.

5.1.2 Beyond Earth Observation

The proposed method can also be applied to other domains involving multispectral and
multi-model data. It can be adapted to the domain of historical document analysis,
forgery detection from documents, and Natural Language Processing (NLP) classification.

UCL is a patch-based binary classifier. Some areas of historical document analysis
like font classification could be solved with the proposed unsupervised approach where
data is processed into small patches carrying important information of the font text.
Later, these patches will be fed to UCL to learn the different fonts from the data.

The same iterative approach can be applied even outside the domain of image process-
ing too. Here, one would only need to replace the current model (e.g., VGG16) with one
that would learn a latent representation for other modalities. One possible candidate for
this is Natural Language Processing (NLP) and, in particular, text classification. Here,
instead of the Convolutional Neural Network for image processing, one can use text rep-
resentation models, like the State-of-the-art transformers (e.g., BERT [76], or T5 [77]).
Then, the same clustering as before can be applied to the latent representations generated
by these models for text data for the classification of text. This integration of NLP deep
models will make UCL framework suitable for NLP binary problems like hate speech
classification. The initial experiments are in process for binary hate speech classification
with the initial UCL framework. Hate speech classification could prove to be a potential
problem to explore the effectiveness UCL in NLP domain.
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Abstract

This paper presents a Convolutional Neural Networks (CNN) based Unsupervised Cur-
riculum Learning approach for the recognition of water bodies to overcome the stated
challenges for remote sensing based RGB imagery. The unsupervised nature of the pre-
sented algorithm eliminates the need for labelled training data. The problem is cast as
a two class clustering problem (water and non-water), while clustering is done on deep
features obtained by a pre-trained CNN. After initial clusters have been identified, repre-
sentative samples from each cluster are chosen by the unsupervised curriculum learning
algorithm for fine-tuning the feature extractor. The stated process is repeated iteratively
until convergence. Three datasets have been used to evaluate the approach and show
its effectiveness on varying scales: (i) SAT-6 dataset comprising high resolution aircraft
images,(ii) Sentinel-2 of EuroSAT, comprising remote sensing images with low resolu-
tion, and (iii) PakSAT, a new dataset we created for this study. PakSAT is the first
Pakistani Sentinel-2 dataset designed to classify water bodies of Pakistan. Extensive
experiments on these datasets demonstrate the progressive learning behaviour of UCL
and reported promising results of water classification on all three datasets. The obtained
accuracies outperform the supervised methods in domain adaptation, demonstrating the
effectiveness of the proposed algorithm.

1 Introduction

Waterbody detection from the water surface is a fundamental module in many remote
sensing studies such as land cover [1] and land use [2], estimating water scarcity [3],
controlling flood hazard [4], predicting aquatic widespread disease, and measuring water
quality [5]. In this paper, we cast water detection as a two-class problem where input
images are divided into smaller sized image patches, and each image patch is classified as
water or a non-water patch. To solve this classification problem, we present an efficient
and robust deep Unsupervised Curriculum Learning (UCL) based algorithm. Specifi-
cally, in this work, we propose unsupervised curriculum learning such that representative
sample selection for water and non-water category is done from unlabelled data.

Extraction of representative samples for each cluster to fine-tune the deep network is
thus a key step in our approach. For this, we take inspiration from curriculum learning [6]
in which the learning algorithm is fed by training samples in the order of their difficulty.

45
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Difficulty depends upon the complexity of the samples’ features. Easy samples are fed
in the starting iterations and the complexity is gradually increased in the subsequent
iterations. It has been shown that feeding the learner in this manner improves the
learning speed as deep learning algorithm has to gradually learn complex examples.
The major challenge in curriculum learning is how to define the difficulty level of a
sample. Different heuristics have been used successfully in different domains to establish
the complexity of a data sample. Here, we use proximity from cluster centroids as the
criteria for the selection of representative “easy” samples. In the beginning, the deep
learning model used for feature extraction is pre-trained on the ImageNet dataset, which
represents a different domain. Hence, the resulting model may not extract good features
of the water bodies and non-water bodies from remote sensing imagery, leading to loose
clusters. When the clusters are loosely packed, only a few easy samples are selected.
The deep learning model is fine-tuned on these samples using their pseudo labels. With
every iteration, the fine-tuned deep learning model extracts better features resulting in
improved clusters. Progressively, we increase the complexity of the chosen samples via
curriculum learning by allowing more samples to be selected for fine-tuning deep model
on water bodies using pseudo labels. This progressive-leaning behaviour can be called
Unsupervised Curriculum Learning. This idea has been exploited in natural images [7, 8]
and the proposed framework adopted this idea for the classification of remote sensing
imagery.

In this context, the contributions proposed in this paper are two-fold. (1) An easy-
to-implement unsupervised progressive deep learning model for water body classification
from RGB remote sensing imagery. The integration of clustering with curriculum learn-
ing leads to unsupervised learning of the deep model by using pseudo labels.(2) The
evaluation of the proposed strategy is performed using three datasets, out of which two
are benchmark datasets, space-borne EuroSAT [9] and air-borne Sat-6 [10], and our
newly introduced custom space-borne dataset, PakSAT, which shall be made open for
the public. The statistics of the PakSAT dataset are detailed in Section 4.3.

The rest of the paper is structured as follows: In Section 2 we present a brief review of
the techniques related to our approach and waterbodies detection using remote sensing
data. In Section 3 we describe the designed unsupervised methodology. Then, in Section 4
we discuss the datasets used “as-is” as well as the dataset generated for this paper.
Following this, in Section 5 we present the experiments conducted and give a detailed
analysis of the obtained results. Lastly, in Section 6 we provide our conclusions and give
an outlook to future work.

2 Related Work

Numerous techniques have been introduced to detect water utilizing radar and optical
imagery [11]. Radar data have the advantage of capturing the information in almost every
weather and day-night condition. However, the prominent features of vegetation [12],
waves [13, 14], sand [15] and radar shadows produced by landscape features [16] deterrent
the effective separation of water from the land surface. Therefore, the extraction of water
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bodies from remotely sensed data is more effective from optical imagery than from radar
data [17].

2.1 Sensing Modalities

Satellite Imagery (Space-borne)

The satellite imagery (spaceborne) of the Landsat Program (launched in 1972) gradu-
ally became the most popular source of optical imagery in remote sensing. The opti-
cal sensor of the Landsat satellites has a typical spatial resolution of 30 m which was
better than other freely available coarse sensors like MERIS with spatial resolution
300 m, NOAA/AVHRR with spatial resolution 1100 m, and MODIS with spatial reso-
lution 250−1000 m. Therefore, most of the global digital maps for water are designed
using Landsat imagery, some of the datasets are Global Inland Water Body (GIW) [18],
Global Surface Water [19], and Global Water Bodies Database (GLOWABO) [20]. Sim-
ilarly, most of the water detection based applications are designed using Landsat Im-
agery [21, 22, 23]. The Sentinel-2 which was launched by the European Space Agency
(ESA) in 2015 became an alternative to Landsat. Compared to the Landsat imagery,
Sentinel-2 provides 10 meter spatial resolution imagery of RGB bands with less revisit
time and wider swath.

The data captured from satellites has a low ground resolved distance. This leads to
a blurring of the images and making the detailed land features like the boundaries of
water bodies difficult or almost impossible to identify. The lack of detailed land feature
analysis impacts the results of environmental assessment [24]. Despite the availability
of high-resolution sensors like GeoEye (0.46−1.84 m), WorldView (0.31−2.40 m), and
IKONOS (1−4 m) [25] that are used in different applications, the difficulty of accessing
the data creates hindrance in the development of pervasive applications. Alternative
solutions are required to overcome the stated limitation to capture the land information
in detail for analyzing inter and intra class variation.

Aerial Imagery (Air-borne)

The multispectral satellite imagery allows reliable extraction of water using various water
indices [26, 27, 28] and specific bands based threshold methods. However, usage of optical
imagery in the presence of clouds prevents the observation of the earth’s surface [29]. For
this, some approaches have used radar data during the period of intense cloud cover to
overcome the limitations of optical imagery [19, 21]. On the contrary, most air-crafts and
Unmanned Aerial Vehicles capture the data from very low elevation and provide high-
resolution air-borne imagery when required considering the limitations of law regulation
and weather condition [30, 31]. Air-borne imagery is actively used to detect land cover
and land use changes [32, 33], and natural disasters like floods and earthquakes [34, 35].
Baker et al. [36] presented autonomous shoreline navigation using UAVs. The use of
UAVs to capture air-borne imagery is comparatively cheap and fast for detailed land
feature analysis of a specific area.



48 Paper A

2.2 Relevant Approaches

Threshold Methods

In remote sensing studies, most of the water detection algorithms are based on water
indices. In 1996, McFeeters [26] firstly designed a popular water index, the Normalized
Difference Water Index (NDWI) for water mapping from satellite imagery. He has used
the near-infrared (NIR) and the green bands of the Landsat Thematic Mapper (TM) for
depicting water features. Xu [37] modified the NDWI by replacing the NIR band with
shortwave-infrared (SWIR) and named it Modified Normalized Difference Water Index
(MNDWI). MNDWI partly reduced the error rate generated by soil, vegetation, and
urbanized areas. Feyisa [38] introduced the Automated Water Extraction Index (AWEI)
to cater for the misclassification of shadow as water by using multispectral bands. A
new water index was created with linear discriminant analysis which Fisher [39] revised
by using five surface reflectance (SR) bands of Landsat. She also provided a thorough
comparison of water indices for Landsat imagery.

Water detection requires rich spatial information to design threshold methods like
Near Infra-Red (NIR) band that separates the water from the land. Most of the low-cost
off-the-shelf UAVs are only equipped with conventional cameras that provide only the
spectral bands red, green, and blue. RGB based threshold methods are only used for
vegetation detection and observing its growth, e.g., Colour Index of Vegetation Extrac-
tion (CIVE) [40], Excess Green (ExG) [41], Excess Red (ExR) [42], Green Leaf Index
(GLI) [43], Normalized Green-Red Difference Index (NGRDI) [44], Red-Green-Blue Veg-
etation Index (RGBVI) [45], and many others. The lack of rich spectral information
in imagery provided by most UAVs limits the use of indices for water body classifica-
tion [46]. In such scenarios, an effective machine learning algorithm is needed based on
water classification for remote sensing imagery having limited spectral information but
substantial scale variations.

Machine Learning Methods

Machine learning algorithms for water estimation can be categorized into supervised
and unsupervised methods. Many waterbody classification algorithms have been de-
signed using supervised methods, such as Support Vector Machines (SVM) [47], Decision
Trees [22, 48, 49], Random Forests [50, 51, 52], Gradient Boosting [53], and Deep Neu-
ral Networks [54]. In the past few years, bag-of-visual-words based methods employing
K-Means and SVM have been used in several classification and target detection tech-
niques leading to better accuracy [55, 56]. It is noteworthy that the essential semantic
information is stored within the spatial relationship of pixels instead of individual pixel
intensity values. Many methods have been introduced involving image context to make
the class information more explicit [33]. Luo et al. [57] proposed a hierarchical generative
model, the Author-Genre-Topic Model (AGTM), to introduce context information. It
was designed to perform annotation of satellite images. Recently, Generative Adversar-
ial Neural networks (GANs) are being used in a semi-supervised manner to address the



3. Methodology 49

problem of cross-domain adaptation in semantic segmentation of remote sensing imagery
[58, 59].

Deep learning has become a state-of-the-art method to extract more abstract features
from lower layers to higher layers of the model. Comparing deep learning methods with
shallow classification methods like SVM, deep learning solutions result in better learning
models [60]. Cheng et al. [61] replaced hand-crafted features with CNN for water bodies
segmentation. Lin et al. [62] used Fully Convolutional Network (FCN) to add multi-scale
information. Noh et al. [63] designed a multi-layer deconvolutional network to address
the scale challenge. Wei et al. [64] and Miao et al. [65] used auto-encoders to extract high-
level feature maps from high-resolution images. Fang et al. [66] used the ResNet model
to identify global water reservoirs. Yagmur et al. [67] combined residual blocks in the
inception network to detect shallow water areas. In spite of their excellent performance,
supervised methods have some limitations. 1) If labelled data is not available, supervised
methods require the collection of data and expert knowledge for data labelling which is
a time-consuming and tedious task. 2) Supervised methods are domain specific. Their
accuracy often decreases drastically when applied to different domain data about the
same problem. Some researchers have also explored and used the concept of Curriculum
Learning to efficiently train supervised deep neural networks [68]. The focus of our work
is to overcome the stated issues by introducing an unsupervised deep learning solution
using the concept of curriculum learning for water body classification for RGB data.

3 Methodology

The proposed deep learning based UCL model learns the features of water bodies from
remote sensing imagery in an unsupervised manner using the pseudo-labels generated
by the clustering technique. The outline of the proposed method is shown in Figure 1.
UCL is composed of two main modules (i) A pre-trained deep learning architecture
(CNN) to extract and learn features from the remote sensing data, (ii) an unsupervised
clustering technique to cluster the extracted features. A UCL based selection operation
is added between clustering and fine-tuning to extract the samples present near the
clusters’ centroids, called “reliable samples”. The deep learning model is fine-tuned on
the extracted reliable samples. UCL is composed of the following steps:

Step 1: Extract features of remote sensing imagery of water bodies and non-water bodies
using a pre-trained deep learning architecture.

Step 2: Create two clusters on the extracted features of remote sensing imagery, assigning
them pseudo-labels of water-bodies and non-water-bodies clusters.

Step 3: From each cluster, select the reliable images using the UCL based selection opera-
tion.

Step 4: Fine-tune the deep learning module on reliable samples using pseudo labels given
by the clusters.
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Figure 1: UCL: Deep learning based Unsupervised Curriculum Learning for water clas-
sification. UCL (1) extracts the features of a training corpus using Convolutional Neural
Network (CNN). It clusters the features into two classes. (2) It applies a selection op-
eration to remove the noisy samples from the clusters. (3) The selected samples from
the training corpus are used to fine-tune the CNN model. Once, the CNN model is
fine-tuned, the steps are repeated until the CNN model has learned the patterns in the
training corpus.

Step 5: Extract features of the whole training corpus of remote sensing imagery using the
pre-trained model of the previous step.

Step 6: Repeat steps 2 to 5 until the deep learning model is converged.

In the beginning, the CNN, pre-trained on a different domain (ImageNet) is used
to extract features from remote sensing imagery. These features are clustered into two,
assuming them to be of water and non-water category. As the clusters are created from
the features generated from a deep learning model trained on a different domain, we
may obtain noisy clusters (for water classification of the remote sensing imagery). To
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filter out the reliable samples from the clusters, a UCL based selection operation is used
to extract a small number of reliable samples. These are the samples present near the
centroid of the clusters, containing the prominent features. The CNN model is fine-
tuned on these reliable samples with pseudo labels assigned by clustering. The reliable
samples restrict the CNN to learn only the prominent features of the clusters by avoiding
unnecessary noise. The updated CNN is used for feature extraction in the preceding
iteration. With every iteration, the model learns the features of remote sensing imagery
with pseudo labels of clusters resulting in comparatively better clusters than the previous
iteration. The process iterates until the CNN model has converged. This process is called
unsupervised because it only needs the pseudo labels of the clusters to fine-tune the CNN
model.

3.1 Deep Learning Model

In UCL, a deep learning module is used for feature extraction from remote sensing im-
agery. Later, this module is fine-tuned on selected reliable samples, say, of water bodies
and non-water bodies. Several deep learning models like VGG-16, ResNet-50, DenseNet,
Inception Net, and Xception Net have been explored in this work to demonstrate the
generalization of the introduced framework. VGG-16 and ResNet-50 outperformed the
other networks for water bodies classification from remote sensing imagery. Hence, we
have used VGG-16 for our final UCL algorithm due to its lower computational complex-
ity compared to ResNet-50. The described training process is general and independent
of the CNN used. It will work with VGG as well as with Inception Net, and Xception
Net. The training process of VGG-16 in UCL can be decomposed into two parts:

1. Feature Extraction: VGG-16, pre-trained on the ImageNet dataset is used for fea-
ture extraction of remote sensing imagery in the first iteration. The output of
the last convolutional layer is extracted to get feature maps of each sample in the
dataset. The extracted feature maps are flattened to get the feature vectors. These
feature vectors are clustered into two, assuming them to be of water and non-water
bodies. From these clusters, reliable feature samples are selected using the UCL
based selection operation for fine-tuning the deep model.

2. Fine-tuning of VGG-16 with reliable images: The model is fine-tuned on the train-
ing set of reliable samples considering their cluster as their pseudo label. We have
modified the input layer of VGG-16 according to our aerial image patch size and
the output layer to the number of clusters we generate. In the current scenario, the
considered two classes for training are; water-body and non-water-body.

3.2 Clustering

The features extracted from the deep learning module are clustered using an unsupervised
clustering technique. We have explored three different types of clustering techniques, K-
Means, hierarchical clustering, and Fuzzy C-Means (FCM). These techniques are suitable
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for the considered problem of water and non-water classification of remote sensing im-
agery patches as they have a fixed number of classes. FCM and K-Means clustering
generated better clusters than hierarchical clustering (see Section 5). We have deployed
K-Means clustering as it has lower time complexity than FCM.

Suppose the features extracted from remote sensing imagery patches {xi}Ni=1 using
the deep learning model φ(., θi) are represented by {fi}Ni=1.

{fi}Ni=1 ← φ({xi}Ni=1, θ) (1)

These features are clustered such that each feature vector is assigned a cluster label
{yi}Ni=1 where yi ∈ {1, . . . , k} on the basis of a minimum distance from the centroid ck,
where c is the centroid of kth cluster. In the current scenario, k = 2 to generate two
clusters, assuming them to be of water bodies and non-water bodies.

{yi}Ni=1 ← min
N∑
i=1

2∑
k=1

|fi − ck| (2)

These generated pseudo-labels, {yi}Ni=1, are later used for fine-tuning the CNN model.

3.3 UCL based Selection Operation

Using the concept of CL we want to extract reliable samples for fine-tuning the CNN.
We achieve this in an unsupervised manner, by selecting features near the centroid of a
cluster. More specifically, we select all features that are at a distance λ from the centroid
of the cluster (see Selection Operation in Figure 1). The parameter λ is a constant value
that can be adjusted according to the requirement. We have used λ = 0.85 after empirical
evaluations.

The closest feature vector to the centroid is considered as a centroid feature vector,
{fk}2k=1 where k represents the cluster.

{fk}2k=1 ← min{|fik − ck|}Ni=1 (3)

We calculate the similarity between a specific feature vector fi belonging to a cluster
k and the centroid feature vector fk using the inner product, i.e.

{γi}Ni=1 ← {fik · fk}Ni=1 (4)

If the calculated similarity is greater than the λ, the sample of the considered feature
vector is declared as a reliable sample x

′
i and the cluster label is considered as the pseudo

sample label for the next training cycle.

{x′

i}Mi=1 ← {γi}Ni=1 < λ (5)

The number of extracted reliable samples vary at every iteration of fine-tuning.
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3.4 Progressive Learning

Initially, when the model is not trained on remote sensing imagery, the features extracted
from this model may result in loose clusters. These clusters are less dense and result in
a set of only a few reliable images. In the beginning, the network is fine-tuned on this
set of a few reliable images considering their cluster as their pseudo label, either water or
non-water. Then the fine-tuned network is used to extract features of the whole training
corpus and new clusters are generated. The selection operation is performed on these
clusters to extract reliable samples. This time the clusters might be comparatively dense
than they were in the previous iteration, and we get more reliable images. Progressively,
the model gets stronger by learning the patterns from the data and the set of reliable
images iteratively grows leading to self-paced learning.

The proposed UCL technique is an unsupervised binary classifier where the model
has learnt the features and is able to create clusters of water and non-water. Now the
question is how to know which cluster indicates which class? The automation of mapping
the pseudo-labels to true labels is beyond the scope of this work and can be considered
as one of the future directions.

3.5 Implementation Details

The experiments were conducted on a GPU machine having an NVIDIA Titan-X GPU
for training and fine-tuning with 32 GB RAM and Linux operating system. It took about
4.5 h for training the model on the considered datasets. We used a Stochastic Gradient
Descent (SGD) optimizer and categorical cross-entropy loss. Learning rate was set to
0.0001 , momentum to 0.9 and batch size to 16 images. The training dataset with pseudo
labels is split into 80% for training and 20% for validation for progressive learning of
UCL. The input layer of the deep learning model is set to 64x64x3. As the considered
three datasets have a difference in their image patch sizes (28x28, 61x61, and 64x64), the
patches of all the datasets were interpolated to patch size 64x64 to make them suitable
as an in input to the deep learning model.

4 Datasets

UCL takes the input in the form of an image patch and classifies it either to be of water or
non-water category. Therefore, huge tiles of aerial images were broken down into smaller
patches on the basis of the requirement for better classification. Only RGB bands of the
images were considered to model the situation where only these bands are available, like
high-resolution UAV data which usually does not contain multispectral bands. We have
used two publicly available datasets, namely, EuroSAT [9] and SAT-6 [10], and our newly
created PakSat dataset to demonstrate the effectiveness of the proposed architecture.

This study has considered the imagery from different parts of the world to address
variations in the spectral responses of water depending on the region of the globe. Eu-
roSAT carries Sentinel-2 imagery patches of 34 European countries, SAT-6 covers the
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area of California, and PakSAT is composed of Sentinel-2 imagery patches of Pakistan.

4.1 SAT-6 Dataset

SAT-6 [10] is a high-resolution dataset captured from an aircraft providing 1 meter GSD
pixel resolution covering different parts of California. It is composed of small patches of
size 28× 28 divided into six classes. Initially, it has four bands; red, green, blue, and
infrared. The dataset was preprocessed to remove the infrared band from the corpus to
make it suitable for RGB input. The patches were divided into two categories i.e. water
and non-water class. Both classes contain an almost equal number of patches, having a
corpus of 7500 image patches for fine-tuning and 3000 for testing. This high-resolution
dataset was used to evaluate the robustness of UCL for scale variation and to prove the
hypothesis of the progressive learning behaviour of the model.

4.2 EuroSAT Dataset

EuroSAT [9] is composed of image patches from different regions of 34 European coun-
tries. The image parches are of sentinel-2 satellite having a resolution of 10 m per pixel
for red, green, and blue bands. It consists of 10 classes of land cover and land use. We
have only used the red, green, and blue bands of the data and divided the dataset into
two classes by considering the “river” and “sea & lake” as water class and the rest of
the classes as the non-water class in such a way that there are almost 50 % samples of
water and 50 % of non-water category. The purpose behind balancing the two classes is
the unbiased training of the deep learning model. The size of each patch is in EuroSAT
dataset is 64× 64. We have considered 8000 image patches for fine-tuning and 3000 for
testing.

4.3 PakSAT Dataset

With the PakSat dataset, we have developed the dataset for water bodies segmentation
from Sentinel-2 satellite imagery. This dataset is composed of water bodies of Pakistan.
We have applied the threshold methods to get a roughly estimated mask of water pixels
in the image. Later, the correction of the generated mask is done manually. The PakSat
dataset is composed of 61× 61 sized patches of water, non-water, and mixed classes. Each
patch has 14 bands, the first 13 bands are of Sentinel-2 and the 14 th is the generated
mask. In this study, we have only considered the red, green, and blue bands of the
data having a pixel resolution of 10 m. The dataset consists of three classes; namely
water, non-water, and mixed. The patches containing more than 75 % of water pixels
are declared as water patches. Patches with less than 75 % of water are placed in the
mixed category. The patches with no water pixel were classified as non-water patches.
Lets have a look into the process of PakSAT dataset creation.
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Process for creating the PakSAT dataset

The creation of PakSAT dataset was started with the downloading Sentinel-2 tiles of
water reservoirs and part of the Indus river of Pakistan from June 2015 till October
2019. After downloading the required tiles of Sentinel-2 imagery, the following steps
were taken one by one to create the ground truth of the PakSAT dataset.

Resampling

The Sentinel-2 bands come in varying spatial resolution of 10m, 20m, and 60m. For over-
lying data, the cell resolution should be the same. For this, each band was upsampled
to achieve 10 m resolution using the Bilinear Resampling technique. Bilinear is an in-
terpolation technique that considers the values of the four nearest pixels to calculate the
value for the current pixel on the output image. The calculated new values on the output
raster are the weighted average of the considered four nearest values. The four values are
considered on the basis of their distance from the center of the output pixel. Resampling
is processed by Data Management Tools in ArcGIS. All bands of the spatial resolution of
20m e.g. Band5, Band6, Band7, Band8A, Band11, and Band12 of Sentinel-2 and bands
of 60m resolution e.g. Band1, Band9, and Band10 of Sentinel-2 resolution was resampled
to 10m by using the Bilinear Resampling technique. We have performed this step in the
creation of the PakSAT data to make it more practical for more interested researchers
who intended to use the dataset with multispectral bands.

Labelling Water Features

Clear and greenish reflection water bodies show high reflectance values for the green
band than red and blue. Whereas muddy water bodies show high reflectance on the
red band than green and blue. Hence, the Normalized Difference Water Index (NDWI),
uses the green band along with the near-infrared (NIR) band, whereas the Normalized
Difference Vegetation Index (NDVI), uses the red band with near-infrared (NIR). Both of
the approaches map the water bodies differently according to the difference in their color.
We have used both of the indices to estimate the water bodies in Sentinel-2 imagery.

Normalized Water Index (NDWI) is another threshold method to detect water from
remote sensing data. NDWI absorbs the NIR reflectance and emphasizes the green band
reflectance to detect water bodies. Thus, water pixels become prominent having positive
values, and other categories like soil and vegetation carry zero or negative values. A
threshold on these values gives an estimated binary mask of water bodies.

NDWI =
Green−NIR
Green+NIR

(6)

The values of NDWI range between -1 and 1. In most cases, NDWI was used to
detect water features but in some tiles, where there are some problems in detecting
features due to shadows, clouds, or muddy water, NDVI was deployed. The values of
NDVI as well range between -1 and 1 as both are normalized indices. For NDVI, the
negative values close to -1 represent water/ The values close to zero usually correspond
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to barren areas like rocky or sandy land or snow category. Low positive values roughly
up to 0.4 classify green lands like grass and shrubs. Whereas positive values approaching
1 represent tropical and temperate rainforests.

NDV I =
NIR−Red
NIR +Red

(7)

The pixels of water were labelled by reclassifying the pixels. The pixel values rep-
resenting water were labelled as 1 and 0 otherwise. This resulted in a binary mask for
water bodies. These auto-generated binary masks contained some errors like cloud cover,
shadows, and boundary pixels of the water bodies.

Manual Correction

Manual Correction included the step of locating the errors by visualizing the satellite im-
age and the corresponding generated binary mask for a specific area of interest containing
water body (see Figure 2). Wherever the pixel(s) was misclassified, it was manually cor-
rected by changing the binary mask value from 0 to 1 and vice versa.

Figure 2: Sentinel-2 tile captured on 11th May 2018 containing Rawal Dam along with
its approximated binary mask generated by using NDVI and NDWI.

Bands Composition

Band composition is similar to layer stacking in which after resampling into the same
resolution of 10m, all the 13 bands are stacked together in the standard order of Sentinel-
2. Lastly, the generated ground-truth mask is added to it as a 14th band and stored as
a single raster file.
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Water Bodies Capturing Date Water Land Mixed Total

Chashma Reservior
2016-09-05 877 160 - 1037
2017-11-06 315 296 - 611

Darawat Dam 2019-10-19 118 510 131 759
Ghazi Barotha Reservior 2019-04-06 9 778 137 924

Gomal zam Dam
2016-08-15 372 - - 372
2019-06-08 58 189 76 323

Indus River 2016-07-22 287 - - 287

Manchar Lake

2017-06-08 650 215 - 865
2017-08-27 570 1651 173 2394
2018-08-01 554 - - 554
2019-10-16 719 1694 242 2655

Mangla Dam

2016-02-06 455 3186 228 3869
2016-10-20 673 - - 673
2017-12-07 206 2299 402 2907
2018-08-19 492 3336 660 4488
2018-12-11 452 - - 452

Rawal Dam
2016-11-12 75 - - 75
2018-10-07 73 - - 73
2019-06-10 48 951 171 1170

Tarbela Dam
2016-07-04 347 - - 347
2017-07-07 235 2102 212 2549
2019-04-06 389 1954 335 2678

Total Count 7974 19321 2767 29389

Table 1: The count of patches in each category generated from Sentinel-2 tile captured
on a specified date containing water body.

Splitting into Patches

As each raster file was huge in size, they should be divided into smaller patches to
make it suitable for UCL. Each raster file composed of 14 channels (13 Sentinel-2 bands
and 14th ground-truth binary mask) is split into smaller non-overlapping patches of size
61× 61× 14. The size of the patch is an important parameter as UCL takes the patch
and does classification at the patch level.

Categorization of Patches

Some of the generated patches contain only water, some do not contain water or contain
the coastline of the water having a portion of water and non-water part. We segmented
the patches into three different categories on the basis of the water pixels they contain.
If a patch has no water pixel, it belongs to the ”Land” category. If a patch has 75% or
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more water pixels then it belongs to the ”Water” category. If a patch has water less than
75%, it is categorized as ”Mixed” containing both water and non-water regions.

In total 29 389 patches were created. Out of which 7974 patches belong to the Water
category, 19 321 belong to the Land category, and 2767 belong to the Mixed category.
The details of the water patches can be seen in Table 1.

In this work, we have used the water and non-water patches with RGB bands for
unsupervised progressive learning of water classification from satellite imagery. Figure 3
provides a visualization of the patches of the considered three datasets.

Figure 3: Some patches of Sat-6, EuroSAT and PakSAT Datasets.

The size of the input patch has great significance. If the patch size is large, there are
chances of mixing the boundary pixels of multiple land covers. The smaller the patch
size the better the results. Our main focus is to develop an unsupervised deep learning
based approach considering the prominent features of each class. This could be done
by avoiding the patches containing the features of both classes significantly like 50% of
each class in the patch. It may confuse the network at the time of training for binary
classification. If the network is designed for multiple classes and a new class can be added
called ”mix class”, the network will be able to learn such patches containing features of
multiple classes which can be considered as a future direction of the work. Our major
focus is on learning the prominent features for binary classification.

5 Experimental Validation

The progressive learning behaviour of UCL was analyzed by conducting multiple ex-
periments on the considered datasets, namely Sat-6, EuroSAT, and PakSAT. The ex-
periments are divided into 4 subsections; i) direct testing of the considered dataset on
ImageNet weights, ii) fine-tuning of VGG-16 and UCL supervised, iii) their cross domain
adaptation, iv) clustering analysis and v) error analysis.
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5.1 Direct Testing on ImageNet Weights

Before conducting the experiments of UCL progressive learning and supervised compar-
ison, direct testing on VGG-16 with ImageNet weights of EuroSAT, SAT-6 and PakSAT
is done (see Table 2).

Initial Test Set F1-Score (%)
Weights Random FC K-Means

ImageNet EuroSAT 44.46 54.45
ImageNet PakSAT 51.98 57.13
ImageNet Sat-6 58.20 65.50

Table 2: Describes the direct inference of EuroSAT, PakSAT, and SAT-6 datasets on
VGG-16 considering three different techniques. Random FC indicates the results with
random initialization of the FC layer. K-Means shows the results for clustering the
features extracted from VGG-16 and classified by K-Means clustering.

VGG-16 with ImageNet weights is directly tested on EuroSAT, PakSAT, and SAT-6
datasets. Assuming the dataset to be unlabelled, two strategies were followed; 1) the
classification layer of VGG-16 is randomly initiated with 0 mean and 0.001 standard
deviations, and 2) VGG-16 with ImageNet weights are used as a feature extractor for
remote sensing data. In Table 2, Random FC represents the results of randomly ini-
tializing the fully connected binary classification layer. As the random initialization of
the classification layer is not aware of the considered datasets, it makes the classification
quite challenging leading to unsatisfactory results. Whereas, in the second approach,
K-Means has been used for the classification of deep extracted features which lead to
comparatively better performance for all three datasets. The EuroSAT gives the lowest
performance, it is because we have combined the River class with Sea & Lake. Sea &
Lake class carries the Sentinel-2 patches of only water. Whereas, in River class patches
we can observe a great part of the land with the river stream. This intermixes the river
patches with non-water class leading to poor intra class variation for clustering and com-
promised F1-Score. The PakSAT and SAT-6 datasets carry prominent patches of water
and non-water categories.

5.2 Fine-tuning of VGG-16 and UCL

In general, supervised deep learning models have better performance than unsupervised
models as they are trained using ground-truth labels. UCL’s performance has been ana-
lyzed considering the supervised model’s performance as the benchmark. VGG-16 with
ImageNet weights is fine-tuned in a supervised manner on EuroSAT, SAT-6 and PakSAT
datasets that reported the F1-Score of 99.49 %, 99.53 % and 96.07 %, respectively, see
Table 3. All the fine-tuned models have learned the remote sensing features to classify
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the water patches for the respective datasets.

Fine-Tuned F1-Score (%)
& Tested Supervised UCL

EuroSAT 99.49 84.05
SAT-6 99.53 90.89
PakSAT 96.07 87.66

Table 3: F1-Scores of VGG-16 supervised fine-tuned and tested on each dataset; Eu-
roSAT, PakSAT, and SAT-6. The last column reports the results of UCL fine-tuned and
tested on each considered dataset.

We have analyzed the progressive learning behaviour of UCL that is capable of learn-
ing the variations in the new dataset, progressively. For UCL training, we assume that
there are no labels available for the training process. UCL uses the clustering technique
to generate the pseudo labels to train the deep learning model. The CNN based model
of UCL with ImageNet weights has been fine-tuned with EuroSAT, PakSAT, and SAT-6
datasets in unsupervised progressive learning behaviour. The UCL reported promising
results on all the three datasets by giving F1-Score above 80%, see Table 3. The super-
vised model performed better than UCL but there is a huge trade-off of data labelling
which is quite an exhaustive task.

Considering the dataset with no labels, the direct testing on ImageNet weights with
K-Mean clustering performed comparatively better than the random classification layer
(see Table 2). It reported the F1-Score of 54.45 % for EuroSAT, 57.13 % for PakSAT, and
65.5 % for SAT-6 dataset. Later, deploying the UCL for progressive unsupervised learning
from the data, it is able to learn the features from the unlabelled data by reporting the
considerable improvement in the F1-Score. The evaluated F1-Score on UCL is 84.05 %
for EuroSAT, 87.66 % for PakSAT, and 90.89 % for SAT-6 dataset, see Table 3. The
F1-Score is improved by around 20 % for EuroSAT and PakSAT datasets, and 25 % for
SAT-6 dataset.

5.3 Cross-domain Adaptation

To analyze the domain adaptation, we have tested the model trained on one dataset on
the other two datasets (see Table 4). It has been observed that the test accuracy for
supervised fine-tuned VGG-16 is quite low on the other datasets, indicating that the
supervised models are data-specific and lack adaptability in the cross-domain adaptation
scenario. Here, the variation among the datasets is due to different data acquisition
platforms (space-borne/air-borne), resulting in different image properties with varying
image resolution.

To further analyze the progressive learning behaviour of the proposed model and
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Fine-Tuned Tested F1-Score (%)
Supervised UCL

EuroSAT PakSAT 70.68 78.00
SAT-6 32.84 75.76

SAT-6 PakSAT 63.16 68.97
EuroSAT 42.83 72.43

PakSAT EuroSAT 62.70 79.00
SAT-6 59.92 71.72

Table 4: F1-Scores of VGG-16 fine-tuned in a supervised manner on each dataset and
tested on the other two datasets. The last column reports the results of UCL fine-tuned
on each dataset and tested on the other two datasets. The considered datasets are
EuroSAT, PakSAT, and SAT-6.

its adaptation to the new dataset, each UCL model trained on one dataset was tested
on the other two considered datasets. It can be seen in Table 4, the supervised model
trained on EuroSAT does not perform that well on PakSAT and SAT-6 datasets with an
F1-Score of 70.68 % and 32.84 %, respectively. Whereas, UCL fine-tuned with EuroSAT
achieved comparatively better F1-Scores on the other datasets i.e., 78.00 % for PakSAT
and 75.76 % for SAT-6 datasets. Similarly, the supervised trained models and the UCL
trained models of SAT-6 and PakSAT were tested on the other two datasets and a similar
trend was observed (as reported in Table 4).

5.4 Clustering Analysis

The UCL results of the SAT-6 dataset are further analyzed by observing the clusters
generated using K-Means during training. We have observed the training procedure of
UCL for 20 iterations of fine-tuning. Initially, the clusters are created using the features
extracted from a model trained on a different domain, ImageNet, which does not contain
any remote sensing data. Consequently, the generated clusters are not compact and
loosely packed for remote sensing imagery. To evaluate the compactness of the clusters,
purity and Silhouette Score are computed, see Figure 4. The purity is a supervised
measure that calculates the correctly classified samples over the total number of samples
in the cluster. Whereas, Silhouette Score is an unsupervised measure that calculates the
compactness of the clusters on the basis of the distance between each sample within the
cluster and the neighboring clusters.

It can be seen in Figure 4 that the Silhouette Score is as low as 0.15 at the start,
showing the lack of compactness in the clusters. Later, with iterations of fine-tuning, the
value grows indicating the saturation in the compactness. Whereas, the purity remains
at a good score in the range of 0.90 to 1.00 over iterations.

The Sum of Squared Error (SSE) is evaluated for the clusters generated from SAT-
6 dataset which is also an objective function of K-Means clustering. In Figure 5, the
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Figure 4: Graph showing the purity and Silhouette Score of generated clusters for water
bodies and other regions of SAT-6 over every iteration of fine-tuning of VGG16.

Figure 5: Graph showing Sum of Squared Error of generated clusters for water bodies
and other regions of SAT-6 over every iteration of fine-tuning of VGG16.

graph represents the values of SSE for generated clusters at every fine-tuning iteration.
The vertical axis represents the values of SSE and the horizontal axis are the fine-tuning
iterations of the model. The graph shows a quite high value of SEE at the start when
clustering is done with features extracted from a pre-trained model of ImageNet. As soon
as the model is fine-tuned on SAT-6 patches, the SEE score is exponentially decreased.
We can see a small peak at the end of the curve showing that the progressive fine-tuning of
the model has led to somewhat over-fitting and fine-tuned models of these iterations can
be ignored. This graph helps to choose the candidate fine-tuned models over iterations.
The fine-tuning iterations having minimum SSE can be the potential fine-tuned model
for the deployment.

As the clusters are loosely packed at the start, we extract the reliable samples present
near the centroid of the clusters using the selection operation of UCL. The deep learning
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model is fine-tuned on these samples. This step avoided the noisy samples of the clusters
and restricted the model to learn random features.

Figure 6: Graph showing the count of reliable samples of SAT-6 over every iteration of
fine-tuning of VGG16.

It can be seen in Figure 6 that only a few reliable samples (exactly 4) are extracted
at the start using the pre-trained model further indicating that the samples are loosely
packed in the clusters. With iterations of fine-tuning, the count of reliable samples is
significantly growing. After a few iterations, the growth in the count of the reliable
samples seemed saturated. After 4 iterations, the count of reliable samples remains
above 6000 indicating that the reliable set contained the majority of the samples from
the corpus of size 7000.

Figure 7: The centroids of the clusters of SAT-6 at each iteration of fine-tuning of VGG-
16.

In UCL, VGG-16 is trained with pseudo-labels generated by the clustering technique,
K-Means. The model has reported almost 0% error over cross-validation on every it-
eration of fine-tuning. The cross-validation corpus is a fraction of the training corpus
where the generated pseudo-labels are used for cross-validation purpose as well. The
model is fine-tuned end-to-end to the classification layer. Figure 7 shows a visualization
of centroid patches of the clusters at every iteration of fine-tuning for the SAT-6 dataset.
It can be seen that the centroids of both clusters at every iteration are belonging to the
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water and non-water class indicating that the model is able to distinguish both classes.

Figure 8: Graph showing the test accuracy of SAT-6 over every iteration of fine-tuning
of VGG16.

Predicted →
Actual ↓ Water Non-water Total
Water 1,460 0 1,460
Non-water 20 1,440 1,460
Total 1,480 1,440 2,920

Table 5: Confusion Matrix for SAT-6 test corpus on best iteration of fine-tuning of
VGG-16.

The fine-tuned models of 20 iterations are evaluated on the test corpus, see Figure 8.
It can be seen that the model has converged well on the 4th iteration, reporting the
F1-Score of 0.99. The accuracy remained consistent for the next two iterations. After
that, the accuracy tends to decrease indicating a sign of overfitting. It may be because
of the multiple interactions of fine-tuning the model over the same dataset. The model
reported the highest accuracy 99.31 % at the 6th iteration. Table 5 shows the confusion
matrix of the 6th iteration of fine-tuning. It can be seen that most of the patches are
correctly classified with the exception of 20 false-negative patches that are belonging to
other regions and are declared as water by the model.

To analyze the change of pseudo-labels among the patches, we have evaluated the
count of the patches whose pseudo-labels are changed in the next iteration, see Figure 9.
It can be seen that at the 0th iteration, all the patches are predicted with a specific class.
Later, with every iteration, the count of change in the labels of patches tends to decrease



5. Experimental Validation 65

and gets converged after a few iterations.

Figure 9: Graph showing the count of the patches whose pseudo-labels are changed in
the next iteration of fine-tuning of VGG16.

5.5 Error Analysis

Figure 10: These are some failure cases that where intermixed with water class. The gen-
erated clusters were intermixing forest, annual crop, pasture and herbaceous vegetation
with water class because of resemblance in the appearance.
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The extracted reliable samples of the best fine-tuning iteration of EuroSAT demon-
strate that the visual features of residential, industry, highways, annual and permanent
crops were properly classified as non-water categories. Whereas, the forest patches show
a similar colour as the reflection of some lakes and seawater which resulted in intermixing
of some forest patches with water and vice versa. Herbaceous vegetation patches also
showed a resemblance to water. It could be because of the low resolution of Sentinel-2 to
appropriately distinguish the intra-class variation in different lands. Some of the failure
cases have been visualized in Figure 10.

6 Conclusion and Outlook

In this paper, we have introduced an unsupervised method UCL to categorize water
bodies from remote sensing imagery and showed that the unsupervised deep learning
approach can learn the desired features and have the tendency to outperform the super-
vised model with respect to domain adaptation. The supervised models of deep learning
need a massive dataset of labelled images to train the architecture, which is a tedious,
exhausting, and time-consuming task. The unsupervised algorithm removes the require-
ment of a labelled dataset for training the architecture and perform classification. The
datasets used to prove the hypothesis are, EuroSAT (covering 34 European countries),
PakSAT (covering Pakistan), and SAT-6 (covering California). This paper has shown the
efficiency of unsupervised architecture by reporting the F1-Score around 85% to 91% for
considered datasets (see Table 3). We have also analyzed the domain adaptation of UCL
to check its robustness using EuroSAT, PakSAT, and SAT-6 datasets. We have trained
the UCL on one dataset and tested its performance on the other datasets. UCL was able
to give better domain adaptation performance on other datasets than supervised models
with a considerable difference in the F1-Score from 8% to 42% (see Table 4). However, a
big room of work is still to be done in the field. We worked on the patch-wise classifica-
tion of the images considering red, green, and blue bands only which can be extended to
pixel-based segmentation. This work also focused only on binary classification and could
be further extended to the multi-class classification of aerial photographs.
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Abstract

Massive wildfires not only in Australia but also across the globe burn millions of hectares
of forests and green land affecting the social, ecological and economical situation world-
wide. Widely used indices-based threshold methods like Normalized Burned Ratio (NBR)
require a huge amount of data pre-processing and are specific to the data capturing
source. The state-of-the-art deep learning models are supervised and require domain
experts knowledge for labeling the data in huge quantity. These limitations make the
existing models difficult to be adaptable to the new variations in the data and capturing
sources. In this work, we have proposed an unsupervised deep learning based architec-
ture to map the burnt regions of forests. The model considers small patches of satellite
imagery and classifies them into burnt and not burnt. These small patches are concate-
nated into binary masks to segment out the burnt region of the forests. The proposed
system is composed of two modules: 1) a state-of-the-art deep learning architecture for
feature extraction and 2) a clustering algorithm for the generation of pseudo labels to
train the deep learning architecture. The proposed method is capable of learning the fea-
tures progressively in an unsupervised fashion from the data with pseudo labels reducing
the exhausting efforts of data labeling that requires expert knowledge. We have used the
real-time data of Sentinel-2 for training the model and mapping the burnt regions. The
obtained F1-Score of 0.87 demonstrates the effectiveness of the proposed model.

1 Introduction

Australia is, more than any other, a fire continent [1]. It has faced an annihilating begin-
ning of a gigantic fire within the last quarter of 2019, which burnt over 5.8 million hectares
of forests, mostly in Victoria(VIC) and New South Wales (NSW). In general, the num-
ber of fire alerts in Australia has increased in the past two decades due to an increase in
humidity, drought, record heat, and high winds [2]. Similar to Australia, forests in other
continents have historically burned up to approximately 5% in the previous decade [3]
essentially devastating biodiversity, timberland riches, and human settlements [4].

Considering the severity of the circumstances and disadvantages of the furious blaze [5],
the research community has actively worked on the issue. Many methods and solutions
have been designed for detecting and monitoring the woodland fire by different sources
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like Radio Detection and Ranging (RADAR), Light Detection and Ranging (LiDAR),
and optical imagery [6]. The primary sources of remote optical imagery are Unmanned
Aerial Vehicles (UAV) and satellites. Satellite imagery, captured through multispectral
sensors, is particularly used worldwide for forest fire detection and assessment.

Satellite imagery-based burnt area classification algorithms can be generally divided
into two major categories; rule-based methods and machine learning methods. Rule-
based methods are a combination of the spectral response of burnt region mostly in short
wave infrared (SWIR) and near-infrared (NIR) bands of the satellite imagery. This is
because fire has a significant reflectance in the SWIR and NIR bands. The spectral
responses in these bands are pretty helpful in detecting sound vegetation and burned
regions. In burning areas, a significant drop in values is observed in NIR reflectance and
a rise in SWIR reflectance after burning. This response is because of the sensitivity of the
NIR band to chlorophyll substance of healthy plants, and SWIR captures the moisture of
soil and vegetation [7]. These multispectral bands, along with visual bands (red, green,
and blue), are commonly used in the indices applied to detect burnt regions in satellite
imagery. The most commonly used indices for the purpose are Normalized Burned Ratio
(NBR) [8], the Mid-InfraRed Burn Index (MIRBI) [9], and the Modified Burned Area
Index (BAIM) [10]. For detection of burnt areas from an aerial view, mostly pre-event
imagery of the scene is used along with the post-event to detect the changes with the
help of empirically calculated thresholds. Here, an insufficient choice of a pre-event scene
may lead to misclassifications. Additionally, these traditional rule-based approaches are
sensitive to noise, like cloud cover, and require exhaustive preprocessing of a massive
corpus of data–thereby making the task more challenging.

In the recent past, several machine learning-based techniques have been designed
to map burnt regions using remotely sensed imagery. The lately designed algorithms
MCD64AI at 500 m resolution [11] and FIRECCI51 at 250-meter resolution [12] create
temporal composites for capturing the lasting changes, sift low-quality pixels, and com-
bine these processed pixels with active blaze identified using the MODerate resolution
Imaging Spectroradiometer sensor (MODIS). For FireCCI51, initially, some candidate
pixels for the burnt area are detected. Later the neighboring burnt pixels of the can-
didate pixels are identified using a pixel growing algorithm. For MCD64A1C6, steps in
series are followed, including the region growing procedure. The use of the region grow-
ing technique is a very common practice in traditional approaches for mapping burnt
regions [13, 14, 15]. Many other algorithms have been presented and used at regional
levels. For instance, One-Class Support Vector Machine [16] is used for reducing the
omission error produced by the omission of the active blaze. It has minimized the re-
quirement of using the region growing technique to make the approach comparatively
easier. However, the proposed method used temporal composite for avoiding cloud cover
and cloud shadows leading to discarding some information that could be useful. Further-
more, sensors vary from each other in characteristics. Most of the traditional approaches
are sensitive to the particular sensors they are designed and refined for, and adaptation
of these algorithms to different sensors becomes a challenging task. Despite improve-
ments over the years in the algorithms for burnt area mapping, there are still some facets
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that need improvements and/or are outside the limitations of the traditional methods.
Specifically, the burnt zone mapping tools would be more useful for larger and steady
time-series data, better uncertainty estimation, and mapping blaze areas and combus-
tion completeness [17]. It raises the need to have a method that is scalable as well as
adaptable to variations. Deep learning (DL) is capable of addressing the above-stated
limitations [18].

Today Deep Learning (DL) techniques are rapidly becoming state-of-the art for learn-
ing variant and complex features across various domains [19]. Computer-vision problems
of object detection, localization, and recognition are thrived by Convolutional Neural
Networks (CNN) [20].

In the domain of remote sensing, CNNs are used in emerging applications of land-
cover classification [21], segmentation of buildings, roads [22] and small objects [23],
reconstruction of missing information in the data [24], cloud-cover detection [25] and
cloud shadows and effective utilization of Spatio-temporal satellite data [26, 27, 28, 29].
On a similar note, burnt land mapping and dating have also been addressed by using deep
learning [30]. Pinto et al. [31] combined CNNs and Long-Short-Term-Memory (LSTM)
with U-Net based architecture for mapping and dating burnt regions using multispectral
imagery. Similarly, Knopp et al. [32] have segmented burnt land from mono-temporal
Sentinel-2 using U-Net based architecture.

Even though the deep learning methods are becoming state-of-the-art, they carry a
few limitations. 1) They are generally supervised and require a huge amount of labeled
data for training the model. Data labeling is time-consuming and an exhaustive task.
Furthermore, in many instances, it requires expert knowledge, which is hardly available at
scale. 2) They are domain-specific. Their performance diminishes radically when applied
to a diverse dataset of the same problem. To bargain with these issues, the concept of
Curriculum Learning [33] has been used by a few researchers [34]. In this paper, we
have also used a similar concept. We performed burnt forest estimation by combining
the state-of-the-art machine learning and computer vision methods with the concept of
CL using Sentinel-2 Imagery of Australia. We have performed unsupervised patch-based
classification of burnt and unburnt patches in satellite imagery. The process itself covers
three stages, including the selection of training examples, computing the discriminative
features, and classify the burnt and unburnt regions.

The proposed unsupervised method is composed of deep learning architecture, clus-
tering algorithm, and selection operation based upon curriculum learning for burnt region
classification. The model takes satellite image patches as input and classify them into
”burnt” and ”not burnt” class. It is assumed that the input patch is not labeled. There-
fore, a clustering algorithm is used to tackle the issue of labeling. Firstly, pre-trained deep
learning architecture is used to extract feature vectors of patches. Secondly, these feature
vectors are clustered into two categories using state-of-the-art clustering techniques to
generate pseudo-labels, assuming them to be burnt and not burnt. The pseudo-labels
are used as a new identity of the patch. Initially, the pre-trained deep learning model
is trained on the ImageNet dataset, which does not contain aerial imagery. Hence, the
pre-trained model may not extract good features vector resembling burnt and not burnt
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region of aerial imagery, resulting in loose clusters in the feature space. Our hypothesis is
that clustering will give better distribution of burnt and non-burnt patches than random
division. The main idea of the approach is to iteratively improve the feature extractor by
fine-tuning the deep learning model on representative samples from each cluster. A se-
lection operation is used for selecting the samples from generated clusters for fine-tuning.
The selection operation selects the samples present near the centroids of the clusters.
These samples indicate the prominent features of the respected cluster. Fine-tuning of
the model with selected samples and respected pseudo-labels makes the model learn the
discriminative features between the two clusters. As a result, better discrimination is
achieved between burnt and not burnt regions. When the model converges, one of the
clusters will belong to the ”burnt” and the other to the ”not burnt” class. The major
contributions of our work include:

1. A progressive deep learning model for burnt region classification from multispectral
aerial imagery.

2. An unsupervised architecture removes the need for data labeling, which is a primary
requirement of state-of-the-art supervised deep learning based methods.

3. A patch-based Sentinel-2 imagery dataset of burnt Australian regions from the 2020
fire incident has been developed and will be publicly available.

2 Materials and Methods

2.1 Study Area

In this study, different regions of Victoria (VIC) and New South Wales (NSW) have
been considered for analyzing the wild bushfire. Figure 1 graphically shows the regions
selected for this analysis while Table 1 lists down the precise geographical locations in
the standard latitude/longitude (WGS84) coordinates and surrounding cities. The NSW
and Victoria regions are chosen as these were the worst-hit states of Australia affected
by the massive fire of 2019-2020. It has burnt more than 5 million hectares of bush,
forests, and parks across the state and destroyed more than 2,000 houses. The wildfire
was mostly located at the coast of the Tasman Sea in NSW. The windy conditions and
hot weather added fuel to the fire and resulted in an uncontrollable situation. The
massive bushfire raged the area, including the Australian capital Canberra, for weeks
and months. In Victoria, the fire affected 1.2 million hectares by early January 2020 [35].
The generated smoke had drastically polluted the environment, air quality, and satellite
imagery. According to Swiss-based group AirVisual [36], the quality of the polluted air
in Canberra (capital) was rated as the 3rd worst of all major global cities on January 3,
2020. The satellite images from early January 2020 manifested significant dissemination
of smoke from firestorms in NSW and Victoria and spread far away to New Zealand as
reported in the BBC report [37].
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Figure 1: An illustration of the regions of New South Wales (NSW) and Victoria is con-
sidered in this study for analyzing and training the deep learning model. The rectangular
regions indicate the area of early 2019 and are considered as not burnt. Whereas the
other polygons in NSW and Victoria are of the 1st quarter of 2020 and considered as
burnt regions as a result of the massive fire.

Class Region Latitude Longitude Cities
East West North South

Not Burnt
2019

Mymagee -32.14 146.72
Crowdy

Head
Broken

Hill Gowang
Mount
Hope

Balrang -34.70 143.64 Maude Rabinvale Corrong Winlatin

Burnt
2020

- -35.76 148.43
Yarran-
gobily Buddong - Cabramurra

Torn
Groggin -36.53 1447.92

Murray
Gorge -

Nariel
Vally -

East-South
Coast NSW -36.40 149.59 Narooma - Bundanoon Tamboon

Table 1: The table shows the details of the considered NSW regions of 2019 and 2020.
Two polygons are considered from 2019 for ”Not Burnt” class, whereas three polygons
are considered from 2020 for ”Burnt” class. These regions are used for training and
testing the unsupervised deep learning model.

2.2 Data and Pre-Processing

The Sentinel-2 multispectral imagery of the selected regions of NSW and Victoria is
used to generate the required dataset. We have visualized the Sentinel-2 imagery and
accordingly labeled the unaffected and affected regions from fire. The rectangular regions,
as shown in Figure 1, belong to the 1st quarter of 2019 and are considered as unaffected
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from the wildfire. Whereas the randomly shaped polygon corresponds to the 1st quarter
of 2020 and is the affected burnt regions. We have extracted the respective bundle of
images considering only equal to or less than 1% of the clouds. From both bundles, the
two respected median images are computed. The 2019 median image of the rectangular
region is used as an unaffected class, whereas the 2020 median image of irregular polygon
regions is used as the burnt forest class. These two images are divided into small patches
of size 64x64. We have considered the 12 bands of Sentinel-2, that are, Band 1 – Coastal
aerosol, Band 2 – Blue, Band 3 – Green, Band 4 – Red, Band 5 to 7 – Vegetation red
edge, Band 8 – NIR, Band 8A – Narrow NIR, Band 9 – Water vapor, Band 11 – SWIR,
Band 12 – SWIR (i.e., all the bands are used except the Band – SWIR – Cirrus – 10 as
it does not provide the surface information).

Figure 2: Shows the considered 12 bands of multispectral satellite imagery of Sentinel-2
into three-channel input. Each channel contains four bands, 1 in each quarter. Each of
the red, green, and blue bands is kept in each channel, considering the input configuration
of the CNN model. All the patches are preprocessed in this way to make them suitable
for the input of the deep learning model.

Figure 3: Shows the visuals of 10 samples of burnt and not burnt from the dataset
where each sample is composed of 12 bands of Sentinel-2 imagery concatenated into
three channels.
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These bands are concatenated to make them suitable to feed as input to the deep
learning network. The four of these bands are concatenated together to form one channel
of size (128x128). Similarly, three channels sample size (128x128x3) is created out of the
chosen twelve bands. Figure 2 graphically shows the bands concatenation. Among the
generated data, we have randomly selected 12,000 samples for training and evaluating the
employed unsupervised deep learning model. The considered dataset of 12,000 samples
includes 6,000 affected (i.e., burnt forest) and 6,000 not affected regions‘ samples, out of
which 8,000 were used for training and 4,000 for testing. Some affected and unaffected
samples from the generated dataset are shown in Figure 3.

2.3 Deep Unsupervised Burnt Forest Learning Scheme

The proposed methodology essentially frames the burnt forest monitoring process in an
unsupervised learning manner. It does so by adopting a two-phase procedure: In the
first phase, a base deep convolutional neural network (CNN) is patch-wise trained (as an
initializer for the subsequent phase) on the relevant dataset to learn robust and distinctive
burnt forest features. Subsequently, in the second phase, these features are then input to
an unsupervised clustering scheme to perform the grouping of image patches that share
similar appearance characteristics. The fundamental underlying idea is to iteratively
fine-tune this whole feature extraction and clustering scheme in an unsupervised way.
The idea has been adopted from computer vision community (e.g., [38] [39] [40]) which
combines the strengths of transfer learning and latent space representation to enable
cross-domain adaptation. The clustering results are treated as pseudo labels and are fed
back to the network to further fine-tune the base model. The process then continues with
increasingly growing training samples with pseudo labels until convergence. Following
are the individual steps outlined in a sequential manner:

1. Perform feature extraction using a pre-trained base model to extract robust burnt
forest feature representations;

2. Feed the extracted feature representations to an unsupervised clustering to cluster
burnt forests from the rest image patches;

3. Refine the obtained clusters to probabilistically retain the representative image
patches;

4. The cluster IDs are used to assign pseudo labels to the unlabeled refined image
patches;

5. Retrain (i.e., fine-tune) the deep learning module with each refined image patch of
every cluster;

6. Extract features of the whole unlabeled training corpus using the fine-tuned model
obtained from Step 5.

7. Repeat Step 2 to 6 until the deep learning model is converged.
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Figure 4: Shows the three prominent steps of the technique; 1) Deep learning model
(VGG-16) to learn and extract the features, 2) Clustering to generate pseudo labels, and
3) Thresholding the samples present near the centroids of the clusters and declaring them
as reliable samples.

For Step 1, the adopted base model is the VGG16 model pre-trained on a large-
scale ImageNet dataset which is employed for extracting features from the training input
image patches. The output of the last convolutional layer is extracted to get feature maps
of each sample in the dataset. The extracted features are flattened to get the feature
vectors. To cluster these feature representations, a well-known unsupervised k-means
clustering algorithm is adopted. The input layer of the VGG-16 is adapted according to
remote sensing image patch size and the output layer to the number of clusters that are
generated. If we suppose that the features extracted from the training image patches
{xi}Ni=1 are represented by {fi}Ni=1, then in Step 2, these features are clustered using k -
means objective function: {yi}Ni=1 ← min

∑N
i=1

∑2
k=1 |fi−ck| where each feature vector is

assigned a cluster label {yi}Ni=1 on the basis of its minimum distance from the particular
centroid ck, where c is the centroid of the kth cluster. In the current scenario, we have
set the value of k to be two so that all the image patches are clustered into two groups,
namely burnt forest and the other category. In Step 3 and 4, the obtained clustering IDs
are used to assign the pseudo labels that are later used for fine-tuning the CNN model.

Since the employed VGG16 model use model weights that have been trained on a
completely irrelevant (natural) dataset, therefore the obtained clusters are quite noisy
and cannot be directly used to fine-tune remote sensing images to recognize burnt forest
image patches. To cope with this issue, the obtained clusters are passed through a
filtering mechanism to prune individual clusters. For this purpose, only those features
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Figure 5: Graph showing the purity and Silhouette Score of generated clusters for burnt
forest and other regions over every iteration of fine-tuning of VGG16.

are retained whose distance to the centroid of the pixel is less than a certain threshold.
The refinement process keeps only the feature points near the cluster centroids and thus
restricts the CNN to learn only the prominent features and avoid unnecessary noisiness.
The image patches belonging to the refined clusters are then subsequently used to retrain
the whole network in an unsupervised manner, i.e., with the cluster IDs as pseudo labels,
in Step 5. In the next iteration, the updated (fine-tuned) model is used to extract
the features from the image patches. With every iteration, the model learns the image
features using the pseudo labels of clusters resulting in comparatively better clusters
than the previous iteration. The process thus iterates until the loss of the deep model is
converged. See Figure 4 for model visualization.

3 Results and Discussion

3.1 Clustering

Initially, the clusters are generated out of features extracted from a pre-trained deep
learning model. The model is trained on an irrelevant domain (ImageNet) which does
not contain the satellite imagery, more specifically, burnt forests in Sentinel-2 Imagery.
As a result, the clusters are not compact and loosely packed for our input of Sentinel-2
imagery. To evaluate the compactness of the clusters, purity and the Silhouette Score
are computed (see Figure 5). Purity is a supervised measure that calculates the ratio
of correctly classified samples to the total number of samples for all clusters. Silhouette
Score is an unsupervised measure that calculates the ratio on the basis of the distance
between each sample within-cluster and the neighboring clusters.

It can be seen in the graph that, in the beginning, the Silhouette Score is a small
number, which is 0.07, indicating the lack of compactness in the clusters. With every
iteration of fine-tuning of the model, the compactness in the clusters increases (at max to
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Figure 6: Graph showing Sum of Squared Error of generated clusters for burnt forest
and other regions over every iteration of fine-tuning of VGG16.

0.64 at the 7th iteration). After a few iterations, the compactness is saturated. Whereas
purity remains consistent throughout between the interval (0.75 - 0.85), indicating the
ratio of correctly classified samples.

For further analysis, the Sum of Squared Error (SSE) is calculated, which is also the
objective function of K-Means clustering. It can be seen in Figure 6. Initially, the value
of SSE was quite high when clustering was done using pre-trained VGG16. As soon as
the model is fine-tuned on a few images of Sentinel-2, the SSE decreased significantly by
the one-degree exponent. After that it remains consistent at mean 3.9xe8.

As the clusters are loosely packed in the beginning, it is better to use those samples
present near the centroids of the clusters for fine-tuning of VGG16. It restricts the model
from learning random features and ignores the noisy samples from the clusters. To do
so, the dot product is used to find the similarity of every sample within a cluster with
its respective centroid. Its value ranges from 0 to 1. If the dot product is greater than
or equal to a pre-defined threshold, it is counted as the sample present near the centroid
and declared as a reliable sample.

It can be seen in Figure 7 that at the start, only a few, i.e., 22 reliable samples, are
extracted using the pre-trained VGG16. It indicates that the clusters are loosely packed.
As the VGG-16 gets fine-tuned iteratively, the count of a reliable sample grows. The
growth of reliable samples gets saturated after some iterations. After the 7th iteration,
the graph remains quite consistent, with a count close to 8,000. It indicates that the
clusters contain the majority of the samples from the training corpus of 9,000 samples
as a reliable set and declaring only a small fraction of about 1,000 as the noisy ones.

Considering the purity, Silhouette Score and SSE measures, and count of reliable
samples, it can be seen that the clusters generated at the 7th and 10th iteration are
the best ones. We have fine-tuned the model for 20 interactions. After this, no more
improvement in the clustering and fine-tuning is observed.
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Figure 7: Graph showing the count of reliable samples over every iteration of fine-tuning
of VGG16.

3.2 Fine-tuning VGG16

VGG16 is a supervised deep learning architecture that requires labels along with images
to train the model. The pseudo labels of generated clusters are used to train VGG16. It
can be seen in Figure 8 that the model is reporting almost a very small cross-validation
loss on every iteration of fine-tuning VGG-16, considering the pseudo labels as the labels
of the patches. It shows that the model is effectively learning the generated labels of the

Figure 8: Graph showing the training and cross-validation loss with pseudo labels over
every iteration of fine-tuning of VGG16.

patches. The model is fine-tuned end-to-end till the classification layer. This fine-tuned
model is used for feature extraction in the next iteration, where the last max-pooling
layer’s output is used to generate the feature vectors for the clustering step.
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Figure 9: Graph showing F1-Score on the test corpus over every iteration of fine-tuning
of VGG16.

The fine-tuned models generated over 20 iterations are evaluated on a real-time
dataset. Figure 9 shows the calculated F1-Score. It can be seen that the model at
1st, 2nd, 3rd, 10th, and 13th gave the top 5 F1-Scores. Considering the top 5 results on
test corpus over the 20 iterations, a mean of precision, recall, F1-Score, and accuracy are
reported in Table 2.

Precision Recall F1-Score

Class 0 0.86 0.83 0.84
Class 1 0.83 0.86 0.85

Accuracy - - 0.85
Macro Avg 0.85 0.85 0.85

Weighted Avg 0.85 0.85 0.85

Table 2: The table shows the average precision, recall, F1-Score and accuracy for best 5
iterations on the test corpus.

3.3 Analysis on Sentinel-2 Imagery

We have considered the median Sentinel-2 imagery of three months (Feb 2020 - Apr 2020)
for the region, Australian Capital Territory, and South of it, see Figure 10-(a). This area
is the worst affected region by the massive wildfire. The top 5 iterations of fine-tuning the
model reporting the highest performance on test corpus were deployed to analyze their
performance on the considered region. The results can be seen in Figure 10-(b-f). Image
(b) of the figure shows the result of 1st fine-tune iteration, reporting the highest accuracy
of 0.87 on the test corpus. Similarly, (c) shows the result of the 3rd iteration reporting
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Figure 10: (a) Shows the region considered, covering Australian Capital Territory and
South of it in an orange polygon, for testing the fine-tuned models on Sentinel-2 median
image of three months (Feb 2020 - Apr 2020). (b) Shows the prediction results for the
fine-tune iteration of the deep learning model, reporting the highest accuracy on test
corpus. (c) Shows the prediction results for iteration reporting the 2nd highest accuracy
on test corpus. (d) Shows the prediction results for iteration reporting the 3rd highest
accuracy on test corpus.. (e) Shows the prediction results for iteration reporting the 4th
highest accuracy on test corpus. (f) Shows the prediction results for iteration reporting
the 5th highest accuracy on test corpus.

the 0.85 of accuracy, (d) shows the result of 2nd iteration reporting 0.84 of accuracy, and
(e-f) results of 10th and 13th iterations, each reporting 0.83 of accuracy. The accuracy on
the test corpus for 1st, 2nd, and 3rd is comparatively higher, but the generated clusters
are loosely packed compared to later iterations of fine-tuning, and the count of reliable
samples is less than 50 (see sub-session 3.1). Considering the compactness and good
count of reliable samples, the model at iteration 10 and 13 generate better clusters but
performance decreases on the test set. This might be because of multiple iterations of
fine-tuning leading the models towards overfitting.
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4 Conclusions

In this paper, we have proposed an unsupervised deep learning technique for mapping the
burnt regions of Australia. The method is capable of learning the features progressively
from the data without expert knowledge. The proposed solution provides the advantages
of supervised deep learning models along with removing the tedious step of data labeling.
We are able to achieve the F1-Score of 0.85 with the progressive learning behavior of the
model in an unsupervised manner. The real-time Sentinel-2 Imagery is used for training
the deep learning architecture and mapping the burnt region of Australia. The method
can be applied without any modifications to estimate the burnt forest region in any other
region of the world due to its unsupervised nature.
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